一元二次方程与圆的定义

合集下载

一元二次方程知识树于凤俊

一元二次方程知识树于凤俊
市场分析和预测
运用一元二次方程对市场趋势进行 拟合和预测,为企业制定营销策略 提供参考。
05 一元二次方程与其他知识 点的联系
与一次方程的联系
一元二次方程和一次方程的解法都涉及到方程的根, 即方程的解。对于一元二次方程,根的求解需要用到 配方法、公式法或分解因式法等方法,而这些方法也 适用于一次方程的求解。
示例:解方程 $x^2 - 5x + 6 = 0$, 可以寻找两个数 $-2$ 和 $-3$,使它 们的和等于 $-5$,它们的积等于 $6$, 所以可以将方程因式分解为 $(x - 2)(x - 3) = 0$,解得 $x = 2$ 或 $x = 3$。
03 一元二次方程根的性质
根与系数的关系
一元二次方程和一次方程都是代数方程,它们都是研 究未知数(变量)与已知数(常数)之间关系的数学 工具。
一元二次方程和一次方程在实际问题中都有广泛的应 用,如物理、化学、经济等领域的问题常常可以转化 为一元二次方程或一次方程进行求解。
与二次函数的联系
一元二次方程与二次函数密切相关,一元二次方程的解就是对应 二次函数与x轴交点的横坐标。
03
一元二次方程和分式方程在实际问题中都有广泛的应用,如物理中的电路问题 、化学中的反应速率问题等都可以转化为一元二次方程或分式方程进行求解。
06 一元二次方程常见误区及 注意事项
忽略判别式导致错误解
忽略判别式 $Delta = b^2 4ac$ 的计算,直接求解方程,
可能导致错误解或无解。
判别式 $Delta < 0$ 时,方程 无实数解,但有些同学可能忽略
没有理解到一元二次方程的根可能是复数,当 $Delta < 0$ 时,方程的解为复数。
忽视题目条件导致无解或多解

圆与二次函数知识点

圆与二次函数知识点

圆和二次函数知识点《圆》一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系<⇒点C在圆;1、点在圆⇒d r=⇒点B在圆上;2、点在圆上⇒d r>⇒点A在圆外;3、点在圆外⇒d r三、直线与圆的位置关系>⇒无交点;1、直线与圆相离⇒d r=⇒有一个交点;2、直线与圆相切⇒d r<⇒有两个交点;3、直线与圆相交⇒d r四、圆与圆的位置关系>+;外离(图1)⇒无交点⇒d R r外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 切(图4)⇒ 有一个交点 ⇒ d R r =-; 含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

一元二次方程概念

一元二次方程概念
教学难点
把实际问题转化为一元二次方程模型.
教学步骤
师生活动
设计意图
回顾
课件展示:教师引导学生完成下列题目,复习一元一次方程的相关知识.
1.回顾一元一次方程的概念;一元一次方程中的“一元”是指?“一次”是指?
2.一元一次方程的一般形式是ax+b=0(a,b是常数,且a≠0).
3.什么是一元一次方程的解?如何判断一个数是不是一元一次方程的解?若已知x=1是方程ax+3=0的解,则a=-3.
A.ax2+bx+c=0B.(m-3)x2-2x=0
C.(a-1)xa2-1-x+2=0D.(m2+1)x2+2x-5=0
2.已知b(b≠0)为方程x2+ax-b=0的一个根,则下列正确的是(A)
A.a+b=1B.a-b=1
C.a+b=-1D.a-b=-1
通过练习,可巩固和加深对新知的理解,培养学生严谨的数学思维以及灵活应用所学知识解决数学问题的能力.
(2)是一元二次方程?
解:(1)当k-5=0且k+2≠0时,方程为一元一次方程,即k=5.
所以当k=5时,方程(k-5)x2+(k+2)x+5=0为一元一次方程.
(2)当k-5≠0时,方程为一元二次方程,即k≠5.
所以当k≠5时,方程(k-5)x2+(k+2)x+5=0为一元二次方程.
【变式训练】
1.下列方程中一定是一元二次方程的是(D)
(试一试)指出下列各方程的二次项、一次项和常数项.
①3x2+2x-1=0;②2x2=3;③ =0.
问题2:类比一元一次方程的解的定义,你能给一元二次方程的根下定义吗?
师生共同小结(板书):
一元二次方程的根:
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.

人教版初三数学:一元二次方程及其解法(一)直接开平方法—知识讲解(基础)

人教版初三数学:一元二次方程及其解法(一)直接开平方法—知识讲解(基础)

一元二次方程及其解法(一)直接开平方法—知识讲解(基础)【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.要点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是不是一元二次方程:(1);(2).【思路点拨】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.【答案】(1)是;(2)不是.【解析】(1)整理原方程,得,所以.其中,二次项的系数,所以原方程是一元二次方程.(2)整理原方程,得,所以.其中,二次项的系数为,所以原方程不是一元二次方程.【总结升华】不满足(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.的方程都不是一元二次方程,缺一不可.举一反三:【高清ID 号:388447关联的位置名称(播放点名称):一元二次方程的概念-例1】 【变式】判断下列各式哪些是一元二次方程. ①21x x ++;②2960x x -=;③2102y =;④215402x x -+=; ⑤ 2230x xy y +-=;⑥ 232y =;⑦ 2(1)(1)x x x +-=. 【答案】②③⑥.【解析】①21x x ++不是方程;④215402x x -+=不是整式方程;⑤ 2230x xy y +-=含有2个未知数,不是一元方程;⑦ 2(1)(1)x x x +-=化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定2.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数: (1)-3x 2-4x+2=0; (2).【答案与解析】(1)两边都乘-1,就得到方程 3x 2+4x-2=0.各项的系数分别是: a=3,b=4,c=-2. (2)两边同乘-12,得到整数系数方程6x 2-20x+9=0. 各项的系数分别是:.【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中c=-2不能写为c=2, (2)题中不能写为. 举一反三:【高清ID 号:388447关联的位置名称(播放点名称):一元二次方程的形式-例3】【变式】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项: (1)2352x x =-; (2)(1)(1)2a x x x +-=-.【答案】(1)235+2=0x x -,二次项系数是3、一次项系数是-5、常数项是2.(2)(1)(1)2a x x x +-=-化为220,ax x a +--=二次项系数是a 、一次项系数是1、常数项是-a-2.类型三、一元二次方程的解(根)3. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( ) A.-3,2 B.3,-2 C.2,-3 D.2,3【答案】A;【解析】∵ x=2是方程x2+px+q=0的根,∴ 22+2p+q=0,即2p+q=-4 ①同理,12+p+q=0,即p+q=-1 ②联立①,②得24,1,p qp q+=-⎧⎨+=-⎩解之得:3,2.pq=-⎧⎨=⎩【总结升华】由方程根的定义得到关于系数的方程(组),从而求出系数的方法称为待定系数法,是常用的数学解题方法.即分别用2,1代替方程中未知数x的值,得到两个关于p、q的方程,解方程组可求p、q的值.类型四、用直接开平方法解一元二次方程4.(2016春•仙游县月考)求下列x的值(1)x2﹣25=0(2)(x+5)2=16.【思路点拨】(1)移项后利用直接开方法即可解决.(2)利用直接开方法解决.【答案与解析】解:(1)∵x2﹣25=0,∴x2=25,∴x=±5.(2)∵(x+5)2=16,∴x+5=±4,∴x=﹣1或﹣9.【总结升华】应当注意,形如=k或(nx+m)2=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.举一反三:【变式1】用直接开平方法求下列各方程的根:(1)x2=361;(2)2y2-72=0;(3)5a2-1=0;(4)-8m2+36=0.【答案】(1)∵ x2=361,∴ x=19或x=-19.(2)∵2y2-72=0,2y2=72,y2=36,∴ y=6或y=-6.(3)∵5a2-1=0,5a2=1,a2=,∴a=或a=-.(4)∵-8m2+36=0,-8m2=-36,m2=,∴m=或m=-.【变式2】解下列方程:(1)(2015 •东西湖区校级模拟)(2x+3)2-25=0;(2)(2014秋•滨州校级期末)(1﹣2x)2=x2﹣6x+9. 【答案】解:(1)∵ (2x+3)2=25,∴ 2x+3=5或2x+3=-5.∴x1=1,x2=-4.(2)∵(1﹣2x)2=x2﹣6x+9,∴(1﹣2x)2=(x﹣3)2,∴1﹣2x=±(x﹣3),∴1﹣2x=x﹣3或1﹣2x=﹣(x﹣3),∴x1=43,x2=﹣2.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r,侧面展开图中的扇形圆心角为n°,则圆锥的侧面积2360lS rlππ=扇n=,圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)【答案】R=40mm ,n=110CBAO∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)【答案】连结AD ,则AD ⊥BC ,A EB F P△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:2 8028=. 3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。

一元二次方程的定义和根

一元二次方程的定义和根

一元二次方程的定义和根一、一元二次方程的定义和根1、一元二次方程等号两边都是整式,只含有一个未知数(一元)。

并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2、一元二次方程的一般形式一元二次方程的一般形式是$ax^2$+$bx$+$c$=0($a$≠0)。

其中$ax^2$是二次项,$a$是二次项系数;$bx$是一次项,$b$是一次项系数;$c$是常数项。

对于方程$ax^2$+$bx$+$c$=0,只有当$a$≠0时才是一元二次方程。

反过来,如果说$ax^2$+$bx$+$c$=0是一元二次方程,则必须含着$a$≠0这个条件。

3、一元二次方程的根使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。

利用方程的根求待定系数时,只需将方程的根代入原方程,再解关于待定系数的方程。

4、解一元二次方程(1)直接开平方法我们知道如果$x^2$=25,则$x$=$土\sqrt{25}$,即$x$=±5,像这种利用平方根的定义通过直接开平方求一元二次方程的解的方法叫做直接开平方法。

一般地,对于方程$x^2$=$p$,① 当$p$>0时,方程有两个不等的实数根$x_1$=$\sqrt{p}$ ,$x_2$=$-\sqrt{p}$。

② 当$p$=0时,方程有两个相等的实数根$x_1$=$x_2$=0。

③ 当$p$<0时,因为对任意实数$x$ ,都有$x^2\geqslant$0,所以方程无实数根。

(2)配方法通过配成完全平方的形式来解一元二次方程的方法,叫做配方法。

用配方法解方程是以配方为手段,以直接开平方法为基础的一种解一元二次方程的方法。

用配方法解一元二次方程的一般步骤:① 化二次项系数为1。

② 移项:使方程左边为二次项和一次项,右边为常数项。

③ 配方:方程两边都加上一次项系数一半的平方,原方程变为$(x+n)^2$=$p$的形式。

④ 直接开平方:如果右边是非负数,就可用直接开平方法求出方程的解。

一元二次方程 的要点

一元二次方程 的要点

一元二次方程 一元二次方程要点要点一:1.一元二次方程的定义及一般形式定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 一元二次方程的一般式是)0(02≠=++a c bx ax ,其中2ax 叫做 ,a 叫做二次项系数,bx 叫做一次项, 叫做一次项系数,c 叫做常数项.2.一元二次方程的解的定义能使一元二次方程左右两边相等的 叫做一元二次方程的解(或根).例题1 下列方程中,属于关于x 的一元二次方程的是 ( ) A.()()12122+=-x x B.2XC.02=++c bx ax D.()()0712=+--x x x例题2 一元二次方程x x 642=-的一般形式是 ,二次项系数是 , 一次项系数是 ,常数项是 . 要点二:一元二次方程的四种解法 1.直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接平方法.把方程变为形如())0(2≥=+b b a x 的方程可用直接开平方法求解,两边直接开平方得b a x b a x -=+=+或,.,21b a x b a x --=+-=∴例3 解方程:()212=-x2.因式分解法如果一元二次方程经过因式分解能化成0=∙b a 的形式,且a 与b 都是含未知数的一次式,那么它就可以化成两个一元一次方程0=a 或0=b ,根据这种思想解一元二次方程的方法,就是因式分解法.例4 解方程:(1)0862=+-x x (2)()()03432=-+-x x x3.配方法通过配方把一元二次方程)0(02≠=++a c bx ax 变形为=⎪⎭⎫ ⎝⎛+22a b x 的形式,再利用直接开方法解之,这就是配方法.用配方法解一元二次方程的一般步骤:(1)化二次项系数为1:可在方程两边都除以二次项系数;(2)移项:使方程左边是二次项和一次项,右边为常数项(移项时注意变号);(3)配方:方程的两边都加上一次项系数一半的平方,使左边配成一个完全平方式,把方程化为()()02≥=+n n m x 的形式;(4)如果方程右边的幂数为非负数,用直接开平方法解变形后的方程. 例5解方程:(1)0522=-+x x (2)03832=-+x x(3)()()0453422=----x x (4)x x 7322=+4.公式法公式法就是利用求根公式求出一元二次方程解的方法,它是解一元二次方程的一般方法,具有通用性.应用配方法导出一元二次方程 )0(02≠=++a c bx ax 的求根公式 ()042≥-ac b 用公式法解一元二次方程的一般步骤:(1)化方程为一般形式,即 )0(02≠=++a c bx ax ; (2)确定a 、b 、c 的值(注意符号),并计算ac b 42-的值;(3)当 042≥-ac b 时,将a 、b 、c 及ac b 42-的值代入求根公式,得出方程的根aac b b x 242-±-=;当ac b 42-<0时,原方程无实数解. 例5 解方程:(1) (2)()62342=+-x x(3)0132=++x x (4)01432=-+x x要点三 一元二次方程根的判别式及应用1.一元二次方程根的判别式的概念及定理内容概念:我们知道,一元二次方程)0(02≠=++a c bx ax 是否有实数根,完全取决于ac b 42-与零的关系,因此,我们把ac b 42-叫一元二次方程的根的判别式.用“△”表示,即 注意:(1)△=ac b 42-只适用于一元二次方程.只有确认是一元二次方程时,才确定a 、b 、c ,求出△.(2)使用时,要先将一元二次方程化为一般形式,才能确定a 、b 、c ,求出△. (3)当△0≥时,方程有两个实数根. (4)当△>0时,方程有两个不等实数根 . (5)当△=0时,方程有两个相等实数根. (6)当△<0时,方程无实数根.2.一元二次方程根的判别式主要有一下应用:①不解一元二次方程,判断根的情况;②根据方程根的情况,确定方程中字母系数的取值范围;③证明字母系数方程有实数根或无实数根.例6 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是 ( ) A.012=+x B.012=-+x xC.0322=++x xD.01442=+-x x例7 关于x 的一元二次方程()012132=-+--m x m mx ,其根的判别式的值为1,求m 的值及该方程的根.例8 已知关于x 的一元二次方程02=--m x x 有两个不相等的实数根,求实数m 的取值范围.例9 关于x 的方程()01452=---x x a 有实数根,则a 满足 ( )A.1≥aB.51≠>a a 且 B.C.51≠≥a a 且D.5≠a例10 若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则k 的取值范围是( )A.1->kB.01≠->k k 且C.1<kD.01≠<k k 且 要点四 一元二次方程根与系数的关系及应用如果1x 、2x 是一元二次方程)0(02≠=++a c bx ax 的两根,那么1x 、2x 与系数a 、b 、c 有何关系?答:如果方程02=++c bx ax 的两个根是1x 、2x ,那么a b x x -=+21,ac x x =∙21. 推论:以1x 、2x 两个数为根的一元二次方程(二次项系数1)是()021212=∙++-x x x x x x . 例10 已知1x 、2x 是关于x 的一元二次方程()03222=++-m x m x 的两个不相等的实数根,且满足221m x x =+,则m 的值是 ( ) A.-1 B.3C. 3或-1D.-3或1例11 已知方程062=-+kx x 的一根是2,则另一根为 ,k= 例12 已知关于x 的一元二次方程0162=++-k x x 的两个实数根是1x 、2x ,且,则k 的值是 ( ) A.8 B.-7 C.6 D.5例13 关于x 的一元二次方程()0552=-+-m mx x 的两个正实数根分别为1x 、2x ,且7221=+x x ,则m 的值是 ( ) A.2 B.6 C.2或6 D.7例14 设1x 、2x 是一元二次方程0342=-+x x 的两个根,()23522221=+-+a x x x ,则a =例15 已知关于x 的一元二次方程()01222=+-+m x m x 有两个实数根1x 和2x(1)求实数m 的取值范围; (2)当02221=-x x 时,求m 的值.能力提高例题方法一 根据方程根的基本意义来求参数的值例1 已知m 、n 是方程0122=--x x 的两根,且()()876314722=--+-n n a m m ,则a 的值等于 ( ) A.-5 B.5 C.-9 D.9例2 若()0≠n n 是关于x 的方程022=++n mx x 的根,则n m +的值为 ( )A.1B.2C.-1D.-2 方法二 根与系数的关系结合“△判别法”求解字母参数的取值例 3 关于x 的方程()()012132=++--a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+⋅-12211,则a 的值是 ( ) A.1 B.-1 C.1或-1 D.2方法三 分类讨论思想例4 已知实数m 、n 满足0272=+-m m ,0272=+-n n ,则=+nmm n 变式练习已知实数a 、b 满足a a 222-=,b b 222-=,求baa b +的值一元二次方程应用题例题讲解:1.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. 现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元? 设每千克应涨价x 元,则:6000)20500)(10(=-+x x2.某商场销售某种彩电,每台进价为2500元,市场调配表明:当销售价为2900元时,平均每天能售出8台;而当售价每降50元时,平均每天就能多售出4台,商场要想使这种彩电的销售利润平均每天达到5000元,每台的售价应定为多少元?5000450290082500=⋅-+⋅-)()(xx 3.某商场销售一批衬衫,当每件盈利40元时,平均每天可售出20件,为扩大盈利,商场决定采取降价促销,经调查发现,每降价1元,就能多卖出2件。

一元二次方程方程的应用面积问题

一元二次方程方程的应用面积问题

一元二次方程方程的应用面积问题一元二次方程是数学中的重要概念,它在现实生活中有着丰富的应用。

其中之一就是在解决面积问题时发挥作用。

从简到繁,本文将深入探讨一元二次方程在面积问题中的应用,以便读者能够更深入地理解这一概念。

一、一元二次方程的基本概念在深入讨论一元二次方程在面积问题中的应用之前,我们先来复习一下一元二次方程的基本概念。

一元二次方程通常具有如下形式:\[ax^2 + bx + c = 0\]其中,\(a\)、\(b\) 和 \(c\) 分别是一元二次方程的系数,而 \(x\) 则是未知数。

通过求解一元二次方程,我们可以得到该方程的根,从而找到方程所代表的数学意义。

二、一元二次方程在面积问题中的应用1. 求矩形的面积假设矩形的长为 \(x+3\),宽为 \(x-1\),我们希望求解这个矩形的面积。

根据矩形面积的计算公式 \[面积 = 长 \times 宽\]我们可以建立一个关于矩形面积的一元二次方程,通过求解这个方程,就可以得到这个矩形的面积。

2. 求三角形的面积假设有一个底边长为 \(x+2\),高为 \(2x-1\) 的三角形,我们可以利用一元二次方程来求解这个三角形的面积。

根据三角形面积的计算公式\[面积 = \frac{底边 \times 高}{2}\]我们可以建立一个关于三角形面积的一元二次方程,通过求解这个方程,就可以得到这个三角形的面积。

3. 求圆的面积对于圆的面积问题,我们需要利用一元二次方程的相关知识进行转化。

假设一个圆的半径为 \(x+1\),我们希望求解这个圆的面积。

根据圆的面积公式 \[面积 = \pi \times 半径^2\]我们可以建立一个关于圆面积的一元二次方程,通过求解这个方程,就可以得到这个圆的面积。

三、总结与回顾通过以上的例子,我们可以看到一元二次方程在面积问题中的广泛应用。

无论是矩形、三角形还是圆,我们都可以利用一元二次方程来求解其面积,这为我们在实际生活中的计算提供了便利。

一元二次方程知识要点

一元二次方程知识要点

文档一元二次方程1. 一元二次方程的一般形式: a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ; 其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根; Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等). 4. 一元二次方程的根系关系: 当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式: .acx x abx x )2(a 2ac 4b b x )1(212122,1=-=+-±-=,; ※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式 ac x x a b x x 2121=-=+,;Δ=b 2-4ac 分析,不要求背记)(1)两根互为相反数 ⇔ a b-= 0且Δ≥0 ⇔ b = 0且Δ≥0;(2)两根互为倒数 ⇔ a c=1且Δ≥0 ⇔ a = c 且Δ≥0;(3)只有一个零根 ⇔ ac = 0且a b-≠0 ⇔ c = 0且b ≠0;(4)有两个零根 ⇔ a c = 0且a b-= 0 ⇔ c = 0且b=0;(5)至少有一个零根 ⇔ ac=0 ⇔ c=0;(6)两根异号 ⇔ ac<0 ⇔ a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值⇔ ac <0且a b->0⇔ a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值⇔ ac <0且a b-<0⇔ a 、c 异号且a 、b 同号;(9)有两个正根 ⇔ ac >0,a b->0且Δ≥0 ⇔ a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根 ⇔ a c >0,a b-<0且Δ≥0 ⇔ a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.文档ax 2+bx+c=a(x-x 1)(x-x 2) 或 ax 2+bx+c=⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛-+--a 2ac 4b b x a 2ac 4b b x a 22. 7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数. 8.平均增长率问题--------应用题的类型题之一 (设增长率为x ): (1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和. 9.分式方程的解法: .0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2≠分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧===------分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;⎪⎩⎪⎨⎧<-+-=--≥-+=-=-+-=+-+=+-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1x (x1x 2)x 1x (x1x x x 4)x x ()x x (x x 2)x x (x x )1(212122122121212212212122222221221221212212221⎪⎩⎪⎨⎧=--=-=-⇒=-4x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为 ; ⎪⎩⎪⎨⎧-==⇒==.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或 ;.0x ,0x :.1x x Bsin A cos ,1A cos A sin ,90B A B sin x ,A sin x )4(2122212221>>=+==+︒=∠+∠==注意隐含条件可推出由公式时且如文档AB C cba.0x ,0x :.x ,x ),,(,x ,x )5(212121>>注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个解三角形1.三角函数的定义:在Rt ΔABC 中,如∠C=90°,那么sinA=c a =斜对; cosA=cb =斜对;tanA=ba=邻对; cotA=a b =对邻.2.余角三角函数关系 ------ “正余互化公式” 如∠A+∠B=90°, 那么:sinA=cosB ; cosA=sinB ; tanA=cotB ; cotA=tanB. 3. 同角三角函数关系:sin 2A+cos 2A =1; tanA ·cotA =1. ※ tanA=A cos A sin ※ cotA=Asin Acos 4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小.5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数 值,要熟练记忆它们.K3 KKKK2 K230°45°60°ABC ABC文档※ 6. 函数值的取值范围: 在0° 90°时.正弦函数值范围:0 1; 余弦函数值范围: 1 0; 正切函数值范围:0 无穷大; 余切函数值范围:无穷大 0.7.解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边.※ 8. 关于直角三角形的两个公式: Rt △ABC 中: 若∠C=90°, .:m :R :r .m 2cR 2c b a r c c 斜边上中线外接圆半径,内切圆半径,;==-+=9.坡度: i = 1:m = h/l = tan α; 坡角: α.10. 方位角:11.仰角与俯角:12.解斜三角形:已知“SAS ” “SSS ” “ASA ” “AAS ” 条件的任意三角形都可以经过“斜化直”求出其余的边和角.※ 13.解符合“SSA ”条件的三角形:若三角形存在且符合“SSA ”条件,则可分三种情况:(1)∠A ≥90°,图形唯一可解; (2) ∠A <90°,∠A 的对边大于或等于它的已知邻边,图形唯一可解;(3)∠A <90°,∠A 的对边小于它的已知邻边,图形分两类可解. 14.解三角形的基本思路:(1)“斜化直,一般化特殊” ------- 加辅助线的依据;(2)合理设“辅助元k ”,并利用k 进一步转化是分析三角形问题的常用方法-------转化思想; (3)三角函数的定义,几何定理,公式,相似形等都存在着大量的相等关系,利用其列方程(或方程组)是解决数学问题的常用方法---------方程思想.北东北偏西30南偏东70仰角俯角水平线铅垂线lha i=1:m文档函数及其图象一 函数基本概念1.函数定义:设在某个变化过程中,有两个变量x,、y, 如对x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的函数,x 是自变量.※ 2.相同函数三个条件:(1)自变量范围相同;(2)函数值范围相同;(3)相同的自变量值所对应的函数值也相同.※3. 函数的确定:对于 y=kx 2(k ≠0), 如x 是自变量,这个函数是二次函数;如x 2是自变量,这个函数是一次函数中的正比例函数. 4.平面直角坐标系:(1)平面上点的坐标是一对有序实数,表示为: M (x,y ),x 叫横坐标,y 叫纵坐标; (2)一点,两轴,(四半轴),四象限,象限中点的坐标符号规律如右图:(3) x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 即“x 轴上的点纵为0,y 轴上的点横为0”;反之也 成立;(4)象限角平分线上点M(x,y) 的坐标特征:x=y <=> M 在一三象限角平分线上; x=-y <=> M在二四象限角平分线上. (5)对称两点M(x 1,y 1), N(x 2,y 2) 的坐标特征:关于y 轴对称的两点 <=> 横相反,纵相同; 关于x 轴对称的两点 <=> 纵相反,横相同; 关于原点对称的两点 <=> 横、纵都相反. 5.坐标系中常用的距离几个公式 -------“点求距”(1)如图,轴上两点M 、N 之间的距离:MN=|x 1-x 2|=x 大-x 小 , PQ=|y 1-y 2|=y 大-y 小 . (2)如图, 象限上的点M (x,y ):到y 轴距离:d y =|x|; 到x 轴距离: d x =|y|;22y x r +=到原点的距离:.(3)如图,轴上的点M (0,y )、N (x,0)到原点的距离: MO=|y|; NO=|x|.※(4)如图,平面上任意两点M (x 2,y 2)、N (x 2,y 2)之间的距离: .)y y ()x x (d 221221-+-=xyo + +_ _-- ++ -xyoM(x ,y)r xyo M (x ,y)N(x ,y)C文档※ 6. 几个直线方程 :y 轴 <=> 直线 x=0 ; x 轴 <=> 直线 y=0 ; 与y 轴平行,距离为∣a ∣的直线 <=> 直线 x=a ; 与x 轴平行,距离为∣b ∣的直线 <=> 直线 y=b. 7. 函数的图象:(1) 把自变量x 的一个值作为点的横坐标,把与它对应的函数值y 作为点的纵坐标,组成一对有序实数对,在平面坐标系中找出点的位置,这样取得的所有的点组成的图形叫函数的图象;(2) 图象上的点都适合函数解析式,适合函数解析式的点都在函数图象上;由此可得“图象上的点就能代入”-------重要代入!(3) 坐标平面上,横轴叫自变量轴,纵轴叫函数轴;利用已知的图象,可由自变量值查出函数值,也可由函数值查出自变量值;可由自变量取值范围查出对应函数值取值范围,也可由函数值取值范围查出对应自变量取值范围;(4) 函数的图象由左至右如果是上坡,那么y 随x 增大而增大(叫递增函数);函数的图象由左至右如果是下坡,那么y 随x 增大而减小(叫递减函数). 8. 自变量取值范围与函数取值范围:一次函数1. 一次函数的一般形式:y=kx+b . (k ≠0)2. 关于一次函数的几个概念:y=kx+b (k ≠0)的图象是一条直线,所以也叫直线y=kx+b,图象必过y 轴上的点( 0,b )和x 轴上的点( -b/k,0 );注意:如图,这两个点也是画直线图象时应取的两个点. b 叫直线y=kx+b (k ≠0)在y 轴上的截距,b 的本质是直线与y轴交点的纵坐标,知道截距即知道解析式中b 的值.x y (x,y)00(0,b)(-b/k, 0)b -b/k, 即取点对角 03.y=kx+b (k≠0) 中,k,b符号与图象位置的关系:yxok>0, b>0k>0, b<0图象过一二三象限,图象上坡.图象过一三四象限,图象上坡.图象过一二四象限,图象下坡.图象过二三四象限,图象下坡.4. 两直线平行:两直线平行 <=> k1=k2※两直线垂直<=> k1k2=-1.5. 直线的平移:若m>0,n>0, 那么一次函数y=kx+b图象向上平移m个单位长度得y=kx+b+m;向下平移n 个单位长度得y=kx+b-n (直线平移时,k值不变).6.函数习题的四个基本功:(1) 式求点:已知某直线的具体解析式,设y=0,可求出直线与x轴的交点坐标(x0 ,0);设x=0,可求出直线与y轴的交点坐标(0,y0);已知两条直线的具体解析式,可通过列二元一次方程组求出两直线的交点坐标(x0 ,y0);交点坐标的本质是一个方程组的公共解;(2) 点求式:已知一次函数图象上的两个点,可设这个函数为y=kx+b,然后代入这两个点的坐标,得到关于k、b的两个方程,通过解方程组求出k、b,从而求出解析式 ------ 待定系数法;(3) 距求点:已知点M(x0 ,y0)到x轴,y轴的距离和所在象限,可求出点M的坐标;已知坐标轴上的点P到原点的距离和所在半轴,可求出点P的坐标;(4) 点求距:函数题经常和几何相结合,利用点的坐标与它所在的象限或半轴特征可求有关线段的长,从而使得函数问题几何化.正比例函数1.正比例函数的一般形式:y=kx (k≠0);属于一次函数的特殊情况;(即b=0的一次函数)它的图象是一条过原点的直线;也叫直线y=kx.2.画正比例函数的图象:正比例函数y=kx (k≠0)的图象必过(0,0)点和(1,k)点,注意:如图,这两个点也是画正比例函数图象时应取的两个点,即列表如右:xy(x, y)1K(0,0)(1,K)文档文档3.y=kx (k ≠0)中,k 的符号与图象位置的关系:k>0k<0象过一三限,图象坡.象过二四象限,图象下坡.4. 求正比例函数解析式:已知正比例函数图象上的一点,可设这个正比例函数为y=kx,把已知点的坐标代入后, 可求k, 从而求出具体的函数解析式------ 待定系数法.二次函数1. 二次函数的一般形式:y=ax 2+bx+c.(a ≠0)2. 关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax 2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点.3. y=ax 2(a ≠0)的特性:当y=ax 2+bx+c (a ≠0)中的b=0且c=0时二次函数为y=ax 2 (a ≠0);这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y 轴对称;(2)顶点(0,0);(3)y=ax 2(a ≠0)可以经过补0看做二次函数的一般式,顶点式和双根式,即: y=ax 2+0x+0, y=a(x-0)2+0, y=a(x-0)(x-0). 4. 二次函数y=ax 2+bx+c (a ≠0)的图象及几个重要点的公式:5. 二次函数y=ax 2+bx+c (a ≠0)中,a 、b 、c 与Δ的符号与图象的关系: (1) a >0 <=> 抛物线开口向上; a <0 <=> 抛物线开口向下; (2) c >0 <=> 抛物线从原点上方通过; c=0 <=> 抛物线从原点通过;文档c <0 <=> 抛物线从原点下方通过;(3) a, b 异号 <=> 对称轴在y 轴的右侧; a, b 同号 <=> 对称轴在y 轴的左侧;b=0 <=> 对称轴是y 轴;(4) Δ>0 <=> 抛物线与x 轴有两个交点;Δ=0 <=> 抛物线与x 轴有一个交点(即相切); Δ<0 <=> 抛物线与x 轴无交点.6.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax 2+bx+c ,并把这三点的坐标代入,解关于a 、b 、c 的三元一次方程组,求出a 、b 、c 的值, 从而求出解析式-------待定系数法. 8.二次函数的顶点式: y=a(x-h)2+k (a ≠0); 由顶点式可直接得出二次函数的顶点坐标(h, k ),对称轴方程 x=h 和函数的最值 y 最值= k.9.求二次函数的解析式:已知二次函数的顶点坐标(x 0,y 0)和图象上的另一点的坐标,可设解析式为y=a(x-x 0)2+ y 0,再代入另一点的坐标求a ,从而求出解析式.(注意:习题无特殊说明,最后结果要求化为一般式)10. 二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k 的值, a 值不变,具体规律如下: k 值增大 <=> 图象向上平移; k 值减小 <=> 图象向下平移; (x-h )值增大 <=> 图象向左平移; (x-h)值减小 <=> 图象向右平移.11. 二次函数的双根式:(即交点式) y=a(x-x 1)(x-x 2) (a ≠0);由双根式直接可得二次函数图象与x 轴的交点(x 1,0),(x 2,0).12. 求二次函数的解析式:已知二次函数图象与x 轴的交点坐标(x 1,0),(x 2,0)和图象上的另一点的坐标,可设解析式为y= a(x-x 1)(x-x 2),再代入另一点的坐标求a ,从而求出解析式. (注意:习题最后结果要求化为一般式)13.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.反比例函数1. 反比例函数的一般形式:);0k (kx y xk y 1≠==-或图象叫双曲线.※ 2. 关于反比例函数图象的性质: 反比例函数y=kx -1中自变量x 不能取0, 故函数图象与y 轴无交点; 函数值y 也不会是0, 故图象与x 轴也不相交.3. 反比例函数中K的符号与图象所在象限的关系:图象过二四象限,图象上坡.图象过一三象限,图象下坡.k>0k<04. 求反比例函数的解析式:已知反比例函数图象上的一点,即可设解析式y=kx-1, 代入这一点可求k 值,从而求出解析式.函数综合题1.数学思想在函数问题中的应用:数学思想经常在函数问题中得到体现,例如:分析函数习题常常需要先估画符合题意的图象,利用数形结合降低难度;而点求式、式求点、点求距、距求点等基本操作则是转化思想在函数中应用;当函数问题与几何问题相结合时,方程思想则成为解决问题的基本思路;函数习题中,当图象与图形不唯一、点位置不唯一、可知条件不唯一时,往往造成函数问题的分类.2.数学方法在函数问题中的应用:建立坐标系、建立新函数、函数问题几何化、挖掘隐含条件、分类讨论、相等关系找方程、不等关系找不等式、等量代换、配方、换元、待定系数法、等各种数学方法在函数中经常得到应用,了解这些数学方法是十分必要的.3.函数与方程的关系:正比例函数y=kx (k≠0)、一次函数y=kx+b (k≠0)都可以看作二元一次方程,而二次函数y=ax2+bx+c (a≠0)可以看作二元二次方程,反比例函数)0k(xky≠-=可以看作分式方程,这些函数图象之间的交点,就是把它们联立为方程组时的公共解.4.二次函数与一元二次方程的关系:(1)如二次函数y=ax2+bx+c (a≠0)中的Δ>0时,图象与x轴相交,函数值y=0,此时, 二次函数转化为一元二次方程ax2+bx+c=0 (a≠0),这个方程的两个根x1 、x2是二次函数y=ax2+bx+c与x轴相交两点的横坐标,交点坐标为(x1 ,0)(x2 ,0);(2)当研究二次函数的图象与x轴相交时的有关问题时,应立即把函数转化为它所对应的一元二次方程,此时,一元二次方程的求根公式,Δ值,根系关系等都可用于这个二次函数.(3)如二次函数y=ax2+bx+c (a≠0)中的Δ>0时,图象与x轴相交于两点A(x1 ,0),B(x2 ,0)有重要关系式: OA=|x1|, OB=|x2|,若需要去掉绝对值符号,则必须据题意做进一步判断;同样,图象与y轴交点C(0,c),也有关系式: OC=|c|.5.二元二次方程组解的判断:一个二元一次方程和一个二元二次方程组成的方程组,若消去一个未知数,则转化为一元二次方程,此时的Δ值将决定原方程组解的情况,即:Δ>0 <=> 方程组有两个解;Δ=0 <=>方程组有一个解;Δ<0 <=>方程组无实解.文档初三数学应知应会的知识点 ( 圆 )几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文档文档几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高文档文档三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:文档文档。

九年级上册数学新坐标人教版

九年级上册数学新坐标人教版

九年级上册数学新坐标人教版一、一元二次方程。

1. 定义与一般形式。

- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 解法。

- 直接开平方法:对于形如x^2=k(k≥0)的方程,x=±√(k)。

- 配方法:将方程ax^2+bx + c = 0(a≠0)通过配方转化为(x + m)^2=n的形式,再用直接开平方法求解。

步骤为:先将二次项系数化为1,然后在方程两边加上一次项系数一半的平方。

- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a},其中b^2-4ac叫做判别式,记为Δ。

当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

- 因式分解法:将方程化为一边是两个一次因式乘积,另一边为0的形式,即(mx + n)(px+q)=0,则mx + n = 0或px+q = 0,从而求解。

3. 实际应用。

- 增长率问题:若原来的量为a,平均增长率为x,增长后的量为b,经过n 个时间单位,则a(1 + x)^n=b。

- 面积问题:根据图形的面积公式列出一元二次方程求解,如矩形面积S=长×宽,三角形面积S=(1)/(2)×底×高等。

二、二次函数。

1. 定义与表达式。

- 定义:一般地,形如y = ax^2+bx + c(a≠0)的函数叫做二次函数,其中x是自变量,y是x的函数。

- 表达式:- 一般式:y = ax^2+bx + c(a≠0)。

- 顶点式:y=a(x - h)^2+k(a≠0),其中(h,k)是抛物线的顶点坐标。

- 交点式:y=a(x - x_1)(x - x_2)(a≠0),其中x_1,x_2是抛物线与x轴交点的横坐标。

圆的切线证明,圆与全等三角形,一次函数,一元二次方程的联系总结和练习

圆的切线证明,圆与全等三角形,一次函数,一元二次方程的联系总结和练习

圆的复习一、温故而知新,可以为师矣1. 识别一条直线是圆的切线,有三种方法:(1)根据切线定义判定:即与圆只有一个公共点的直线是圆的切线;(2)根据圆心到直线的距离来判定:即与圆心的距离等于圆的半径的直线是圆的切线;(3)根据直线的位置关系来判定:即经过半径的外端且垂直于这条半径的直线是圆的切线,注意:证明一条直线是圆的切线,常常需要作辅助线,(1)如果已知直线过圆上某一点,则作出过这一点的半径,证明直线垂直于半径即可;(2)如果未知直线过圆上一点,则作垂直,然后证明垂线段等于半径。

2.切线长定理:(1).从圆外一点可以引圆的两条切线,切线长相等,这一点与圆心的连线平分两条切线的夹角。

(2). 与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三条内角平分线的交点,它到三角形三边的距离相等。

(3).圆外切四边形对边的和相等。

(4).如果三角形的三边用a,b,c表示,内切圆的半径用r表示,那么三角形的面积为(5).直角三角形的内切圆半径为:课前小测1.如图,某城市公园的雕塑是由3个直径为1m的圆两两相垒立在水平的地面上,则雕塑的最高点到地面的距离为()A.B.C. D.2.如图:PT切⊙O于点T,经过圆心的割线PAB交⊙O于点A和B,PT=4,PA=2,则⊙O的半径是;3.如图,AB是⊙O的直径,BC是弦,延长BC到D,使CD = BC,CE切⊙O于点C,交AD于E,求证:CE⊥AD例题讲解知识点一:切线的证明例1.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB.(1)求证:PC 是⊙O 的切线;(2)求证:BC=21AB ;知识点二:切线与一次函数例2.已知,如图,⊙D交y轴于A、B,交x轴于C,过C的直线:y=-2x-8与y轴交于P.(1) 求证:PC是⊙D的切线;(2)判断在直线PC上是否存在点E,使得S△EOC =4S△CDO,若存在,求出点E的坐标;若不存在,请说明理由.归纳方法:知识点三、圆与平面直角坐标系,一元二次方程的联系例3.如图:⊙M经过O点,并且与x轴、y轴分别交于A、B两点,线段OA,OB (OA﹥OB)的长是方程x2-17x+60=0的两根,(1)求线段OA、OB的长;(2)已知点C在劣弧OA上,连结BC交OA于D,当∠OBD=∠COD,时,求点C的坐标;知识点四、圆与全等三角形例4.如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O与点E,连接BE、CE与AC交于点F。

21.1 一元二次方程

21.1 一元二次方程
(50-2x)
x
(100-2x)
(100-2x)(50-2x)=3600
你能把它整理成形如x2+bx+c=0的形式吗?
(100-2x)(5ห้องสมุดไป่ตู้-2x)=3600 5000-100x-200x+4x2=3600 4x2-300x+1400=0 x2-75x+350=0
21.1 一元二次方程 ——一元二次方程的相关概念
R·九年级上册
新课导入
情景:要设计一座高2m的人体雕像,使 它的上部(腰以上)与下部(腰以 下)的高度比等于下部与全身的 高度比,则雕像的下部应设计多 少米高?
问题1:列方程解应用题的一般步骤是什么?
知识点4
一元二次方程的解
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.
下面哪些数是方程x2+3x-10=0的根?
-5,-4,-3,-2,-1,0,1,2,3,4,5.
分析:根据一元二次方程的根的定义,将这些数作为未知数x的值分别代入方程x2+3x-10=0中,能够使方程左右两边相等的数就是方程的根,通过代入检验可知,当且仅当x=-5或2时,方程x2+3x-10=0左右两边相等.
先去括号
移项、合并同类项
系数化为1
问题2中,本次排球比赛的总比赛场数为 场. 设邀请 支队参赛,则每支队与其余 支队 都要赛一场.根据题意,你列出的方程是 . 整理为 .
C
解:-4, 3.
3. 将下列方程化成一元二次方程的一般形式,并写出该方程的二次项系数、一次项系数和常数项. (1)3x2+1=6x; (2)4x2=81-5x;

12初中数学“一元二次方程与几何图形问题”全解析

12初中数学“一元二次方程与几何图形问题”全解析

初中数学“一元二次方程与几何图形问题”全解析一、引言一元二次方程与几何图形问题是初中数学中的重要内容,也是考试中的常见题型。

这类问题结合了代数与几何的知识,旨在考察学生的综合分析和解决问题的能力。

本文将详细解析一元二次方程与几何图形问题的基本概念、解题方法及应用,帮助同学们更好地掌握这一知识点。

二、基本概念1.一元二次方程:形式为ax²+bx+c=0(a≠0)的方程称为一元二次方程。

2.几何图形:初中数学中常见的几何图形有直线、角、三角形、四边形、圆等。

3.方程与图形的关联:在几何问题中,常利用一元二次方程来表示某些特定的条件或关系,如长度、面积、角度等。

三、解题方法1.建立方程:根据几何问题的条件,设定未知数并建立与问题相关的一元二次方程。

这一步是关键,要求能正确理解和转化几何条件为代数表达式。

2.解方程:利用一元二次方程的求解方法(如配方法、公式法等)解出未知数。

3.回归几何:将求得的代数解回归到原几何问题中,解释其实际意义,并验证其合理性。

四、应用举例1.直线与圆的位置关系:已知圆的半径r和圆心到直线的距离d,判断直线与圆的位置关系(相离、相切、相交)。

可通过比较d与r的大小来判断,若d=r,则直线与圆相切;若d<r,则直线与圆相交;若d>r,则直线与圆相离。

在此过程中,可通过建立一元二次方程求解d或r。

2.三角形的形状判断:已知三角形的三边a、b、c(满足a²+b²=c²),判断三角形的形状。

由勾股定理知,若满足上述条件,则三角形为直角三角形。

若不满足,则可通过比较a²+b²与c²的大小关系,进一步判断三角形为锐角三角形或钝角三角形。

在此过程中,也可能涉及到一元二次方程的求解。

3.面积问题:在求解某些特定形状(如矩形、梯形等)的面积时,可能会遇到需要利用一元二次方程来解决的问题。

例如,已知矩形的周长和一条边的长度,求矩形的面积。

一元二次方程的基本概念与常见求解方法

一元二次方程的基本概念与常见求解方法

一元二次方程的基本概念与常见求解方法知识点睛一元二次方程的定义只含有一个未知数,并且未知数的最高次数是 2,最高次数的项系数不为 0 的整式方程叫做一元二次方程.一元二次方程的一般形式2(0)0ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项.(1)要判断一个方程是否是一元二次方程,必须符合以下四个标准:一元二次方程是整式方程,即方程的两边都是关于未知数的整式.一元二次方程是一元方程,即方程中只含有一个未知数.一元二次方程是二次方程,也就是方程中未知数的最高次数是2.一元二次方程最高次数的项系数不为0.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式2(0)0ax bx c a ++=≠. 要特别注意对于关于 x 的方程2(0)0ax bx c a ++=≠.当0a ≠时,方程是一元二次方程;当00a b =≠且时,方程是一元一次方程. (3)关于x 的一元二次方程2(0)0ax bx c a ++=≠的项与各项的系数.ax 2 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.一元二次方程的解法(1)直接开平方法:适用于解形如 (ax +b )2 = ()00a c ≠, 的一元二次方程. (2)配方法:解形如2 )00(ax bx c a ++=≠的一元二次方程,运用配方法解一元二次方程的一般步骤是:① 二次项系数化为1.② 常数项右移.③ 配方 (两边同时加上一次项系数一半的平方).④ 化成 (x +m )2 = n 的形式.⑤ 若0n ≥,直接开平方得出方程的解。

(3)公式法:设一元二次方程为2 )00(ax bx c a ++=≠,其根的判别式为:2124b ac x x ∆=-,, 是方程的两根,则:1. ∆ > 0 ⇔ 方程 2)00(ax bx c a ++=≠有两个不相等的实数根 x = 2. ∆ = 0 ⇔ 方程 2 )00(ax bx c a ++=≠有两个相等的实数根 122b x x a==-; 3. ∆ < 0 ⇔ 方程2 )00(ax bx c a ++=≠ 没有实数根.运用公式法解一元二次方程的一般步骤是:① 把方程化为一般形式.② 确定 a 、b 、c 的值.③ 计算24b ac -的值.④ 若 240b ac -≥,则代入公式求方程的根.⑤ 若240b ac -<,则方程无实数根.(4)因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:① 将方程化为一元二次方程的一般形式;② 把方程的左边分解为两个一次因式的积;③ 令每一个因式分别为零,得到两个一元一次方程;④ 解出这两个一元一次方程得到原方程的解. 一元二次方程解法的灵活运用直接开平方法,公式法,配方法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.(1)直接开平方法:用于缺少一次项以及形如 ax 2 = b 或 (x +a )2 = b (0)b ≥ 或 (ax +b )2 =(cx +d )2 的方程,能利用平方根的意义得到方程的解.(2)配方法:配方法是解一元二次方程的基本方法,而公式是由配方法演绎得到的.把一元二次方程的一般形式 ax 2 +bx +c = 0(a 、b 、c 为常数,0a ≠) 转化为它的简单形式 Ax 2 = B ,这种转化方法就是配方,之后再用直接开平方法就可得到方程的解.(3)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 24b ac -的值.(4)因式分解法:适用于右边为 0(或可化为 0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法.【例 1】(1) 若 x 2a +b -3x a-b +1 = 0 是关于 x 的一元二次方程,求 a 、b 的值.(2) 若 n (n ≠0) 是关于 x 的方程 x 2 +mx +2n = 0 的根,则 m +n 的值为 ( )A. 1B. 2C. -1D. -2(3) 已知 43x =,则2421x x x ++的值是 .(4) 当 111552n n x -⎛⎫=- ⎪⎝⎭时,(.n x = ( n 为自然数)【例 2】(1) 用直接开平方法解方程:2269(5) 2x x x -+=-. (2) 用配方法解方程:22310x x ++=.(3) 用分解因式法解方程:2()2136x x -=-. (4) 用公式法解方程:161432)2(2x x x x ⎛⎫++-=+ ⎪⎝⎭例 3】(1) 解关于 x 的方程: 21 213()()0m x m x m -+-+-=. (2) 解关于 x 的方程22656223200x xy y x y --++-=. 【例 4】(1)如果方程 22()2020x px q x qx p p q -+=-+=≠和 有公共根,则该公共根为 .(2)若方程2222100ax ax x ax a +-=--=和有公共根,求a 的值例 5】(1) 解方程:22132(10)|2|x x ---+=.(2) 解方程:221|4|x x +-=.练习2 高次方程和无理方程知识点睛1.特殊高次方程的解法:一般的高次方程没有统一的求解方法. 对于一些特殊的高次方程, 可通过降次, 转化为一元二次方程或一元一次方程求解,转化的方法有因式分解法(因式定理)、换元法、变换主元法等.2. 特殊分式方程的解法:求解分式方程总的原则是通过去分母或换元, 使其转化为整式方程, 然后再求解. 在这个过程中离不开分式的恒等变形, 如通分、约分及降低分子的次数等等, 这就有可能使方程产生增根(或遗根).3. 特殊无理方程的解法:解无理方程的基本思路是把根式转化为有理方程求解. 转化过程中常用的方法有: 乘方、配方、因式分解、等价变换、换元、增元、对偶、利用比例性质等. 如果变形过程是非等价变形(如方程两边平方), 可能产生增根, 因此应注意验根.精讲精练【例 6】(1) 解方程:43225122560x x x x --++=.(2)解关于 x 的方程 ()()322212 0x t x tx t t +--+-=.(3)解方程 321010x x ++++=【例 7】(1)解方程:(8x + 7)2 (4x + 3)(x + 1)= 29 ;(2)解方程: x x x x x x +-=------2221120102910451069. (3)解方程:222234112283912x x x x x x x x ++-+=+-+.【例 8】(1)解方程:()()222323322x x x x x =+-++--. (2)解方程:22252x x x ⎛⎫+= ⎪+⎝⎭. (3)方程()()3232232?47615180x x x x x x x x -+---++-+=全部实根是 .【例 9】(12=.(2)解方程 266 0x x --+=.【例 10】(1)已知 2x =,求.(2)无理方程 221518x x -=-的解是 。

一元二次方程知识点以及考点分析(可编辑修改版)

一元二次方程知识点以及考点分析(可编辑修改版)

x2
b 2a

当 b2 4ac 0 时,方程无实数根.
公式法的一般步骤:①把一元二次方程化为一般式;②确定 a, b, c 的值;③代入 b2 4ac 中计算其值,
判断方程是否有实数根;④若 b2 4ac 0 代入求根公式求值,否则,原方程无实数根。
(因为这样可以减少计算量。另外,求根公式对于任何一个一元二次方程都适用,其中也包括不完全的 一元二次方程。) (4)因式分解法: ①因式分解法解一元二次方程的依据:如果两个因式的积等于 0,那么这两个因式至少有一个为 0,即:
(3) 8x 2
10x 3
0 ( x1
1 4 , x2
3 2

(2) y 2 4 y 45 0 ( y1 9, y2 5 ) (4) 7x 2 21x 0 ( x1 0, x2 3 )
(5) 6x 2 3 3x 2 2x
6 ( x1
3 2
, x2
2 3

(6) (x 5)2
2.应用一元二次方程的定义求待定系数或其它字母的值
(1) m 为何值时,关于 x 的方程 (m 2)x m2 (m 3)x 4m 是一元二次方程。( m 2 )
(2)若分式 x 2 7x 8 0 ,则 x x 1
(x 8)
3.由方程的根的定义求字母或代数式值
(1)关于 x 的一元二次方程 (a 1)x 2 x a 2 1 0 有一个根为 0,则 a
3.增长率问题(下降率):在此类问题中,一般有变化前的基数( a ),增长率( x ),变化的次数( n ),
变化后的基数( b ),这四者之间的关系可以用公式 a(1 x)n b 表示。
4.其它实际问题(都要注意检验解的实际意义,若不符合实际意义,则舍去)。 (五)新题型与代几综合题 (1)有 100 米长的篱笆材料,想围成一矩形仓库,要求面积不小于 600 平方米,在场地的北面有一堵 50 米的旧墙,有人用这个篱笆围成一个长 40 米、宽 10 米的仓库,但面积只有 400 平方米,不合要求,问 应如何设计矩形的长与宽才能符合要求呢? (2)读诗词解题(列出方程,并估算出周瑜去世时的年龄): 大江东去浪淘尽,千古风流数人物,而立之年督东吴,英年早逝两位数,十位恰小个位三,个位平方与 寿符,哪位学子算得准,多少年华属周瑜?(36 岁)

(完整版)一元二次方程知识点总结

(完整版)一元二次方程知识点总结

(完整版)⼀元⼆次⽅程知识点总结⼀元⼆次⽅程1、⼀元⼆次⽅程:含有⼀个未知数,并且未知数的最⾼次数是2的整式⽅程叫做⼀元⼆次⽅程。

2、⼀元⼆次⽅程的⼀般形式:,它的特征是:等式左边⼗⼀个关)0(02≠=++a c bx ax 于未知数x 的⼆次多项式,等式右边是零,其中叫做⼆2ax 次项,a 叫做⼆次项系数;bx 叫做⼀次项,b 叫做⼀次项系数;c 叫做常数项。

3.⼀元⼆次⽅程的解法(1)直接开平⽅法:利⽤平⽅根的定义直接开平⽅求⼀元⼆次⽅程的解的⽅法叫做直接开平⽅法。

直接开平⽅法适⽤于解形如的⼀元⼆次⽅程。

根据b a x =+2)(平⽅根的定义可知,是b 的平⽅根,当时,,a x +0≥b b a x ±=+,当b<0时,⽅程没有实数根。

b a x ±-=(2)配⽅法:配⽅法的理论根据是完全平⽅公式,把公式中的a 看222)(2b a b ab a +=+±做未知数x ,并⽤x 代替,则有。

222)(2b x b bx x ±=+±配⽅法的步骤:先把常数项移到⽅程的右边,再把⼆次项的系数化为1,再同时加上1次项的系数的⼀半的平⽅,最后配成完全平⽅公式(3)公式法:公式法是⽤求根公式解⼀元⼆次⽅程的解的⽅法,它是解⼀元⼆次⽅程的⼀般⽅法。

⼀元⼆次⽅程的求根公式:)0(02≠=++a c bx ax )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把⼀元⼆次⽅程的各系数分别代⼊,这⾥⼆次项的系数为a ,⼀次项的系数为b ,常数项的系数为c(4)因式分解法:因式分解法就是利⽤因式分解的⼿段,求出⽅程的解的⽅法,这种⽅法简单易⾏,是解⼀元⼆次⽅程最常⽤的⽅法。

分解因式法的步骤:把⽅程右边化为0,然后看看是否能⽤提取公因式,公式法(这⾥指的是分解因式中的公式法)或⼗字相乘,如果可以,就可以化为乘积的形式4.⼀元⼆次⽅程根的判别式:⼀元⼆次⽅程中,叫做⼀)0(02≠=++a c bx ax ac b 42-元⼆次⽅程的根的判别式,通常⽤“)0(02≠=++a c bx ax ”来表⽰,即?acb 42-=?I 当△>0时,⼀元⼆次⽅程有2个不相等的实数根;II 当△=0时,⼀元⼆次⽅程有2个相同的实数根;III 当△<0时,⼀元⼆次⽅程没有实数根5.⼀元⼆次⽅程根与系数的关系如果⽅程的两个实数根是,那么,)0(02≠=++a c bx ax 21x x ,ab x x -=+21。

判断一元二次方程与圆的位置关系

判断一元二次方程与圆的位置关系

判断一元二次方程与圆的位置关系2023年,学生们正在学习数学中的一元二次方程与圆的位置关系。

这是一项重要的数学概念,具有广泛的应用。

一元二次方程是指具有形式 "ax^2 + bx + c = 0" 的方程,其中a、b、c 均是实数且a ≠ 0。

一般情况下,我们可以使用公式法或配方法来求解这种方程。

而圆则是平面上一组离心距相等的点的集合,通常用 (x - a)^2 + (y - b)^2 = r^2 表示,其中 (a, b) 为圆心坐标,r 为半径。

圆是一种基本的几何形状,在物理、工程、计算机图形学等领域中都有广泛的应用。

判断一元二次方程与圆的位置关系是数学中的一项重要内容。

当一个一元二次方程的解与圆的某个点重合时,我们称该方程与圆有交点。

否则,该方程与圆无交点。

不同的情况需要使用不同的方法来求解。

首先,我们可以通过求解方程组 "ax^2 + bx + c = y" 和 "(x - a)^2 + (y - b)^2 = r^2"来判断一元二次方程与圆的位置关系。

解出方程组后,如果方程有实数解,则表示方程与圆有交点。

如果方程没有实数解,则表示方程与圆没有交点。

其次,我们还可以通过求一元二次方程的根的判别式来判断其与圆的位置关系。

当判别式的值大于 0 时,表示方程有两个不相等的实根,此时方程与圆有两个交点。

当判别式的值等于 0 时,表示方程有两个相等的实根,此时方程与圆有一个交点(在圆上切一点)。

当判别式的值小于 0 时,表示方程没有实数根,此时方程与圆没有交点。

最后,我们还可以通过将一元二次方程和圆的方程化简后比较系数的大小来判断其之间的位置关系。

当 a、b、c、r 均为正数时,如果 b^2 - 4ac < r^2,则方程与圆有交点。

当 b^2 - 4ac = r^2 时,方程与圆有一个交点。

当 b^2 - 4ac > r^2 时,方程与圆没有交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程与圆的定义 姓名 成绩 20130920
一、填空:
1.到定点O 的距离为3 cm 的点的集合是以点_______为圆心,_______为半径的圆.
2.已知矩形ABCD 的边AB =3 cm ,AD =4 cm .
(1)若以点A 为圆心,4 cm 长为半径作⊙A ,则点B 在⊙A_______,点C 在⊙A_______,点D 在⊙A_______,AC 与BD 的交点O 在⊙A_______;
(2)若作⊙A ,使B 、C 、D 三点至少有一个点在⊙A 内,至少有一点在⊙A 外,则⊙A 的半径r 的取值范围是_______.
3.若⊙O 的半径是4 cm ,OP =2 cm ,则点P 到圆上各点的距离中最短距离为_______,最长距离为_______.
4.已知点P 到圆上各点的距离中最短距离为2cm ,最长距离为6 cm ,则⊙O 的半径为____ ___.
5.如图,AB 是⊙O 的直径,AC 是弦,D 是AC 的中点,若OD =4,则BC =_______.
(第5题) (第6题) (第8题) (第12题)
6.如图,在平面直角坐标系中,已知一圆弧过小正方形网格的格点A 、B 、C ,已知点A 的坐标是(-3,
5),则该圆弧所在圆的圆心坐标是 _______.
7.一条弦把圆分成1:3两部分,则劣弧所对的圆心角为_______.
8.如图,⊙O 的直径CD =10,弦AB =8,AB ⊥CD ,垂足为M ,则DM 的长为______.
9.在⊙O 中,弦AB 的长恰好等于半径,弦AB 所对的圆心角为_______.
10.过⊙O 内一点P ,最长的弦为10 cm ,最短的弦长为8 cm ,则OP 的长为_______.
11.圆内一弦与直径相交成30°,且分直径为1 cm 和5 cm ,则圆心到这条弦的距离为_______.
12.如图,∠C =90°,⊙C 与AB 相交于点D ,AC =5,CB =12,则AD =_______.
13、已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .
二、选择:
( )14.已知AB 为⊙O 的直径,P 为⊙O 上任意一点,则点P 关于AB 的对称点P'与⊙O 的位置关系为
A .在⊙O 内
B .在⊙O 外
C .在⊙O 上
D .不能确定
( )15.下列说法中,正确的是
A .两个半圆是等弧
B .同圆中优弧与半圆的差必是劣弧
C .长度相等的弧是等弧
D .同圆中优弧与劣弧的差必是优弧
( )16.下列说法中,正确的是
A .弦是直径
B .半圆是弧
C .过圆心的线段是直径
D .圆心相同半径相同的两个圆是同心圆
( )17.顺次连接圆内两条相交直径的4个端点,围成的四边形一定是
A .梯形
B .菱形
C .矩形
D .正方形
( )18.如图,在Rt △ABC 中,∠C =90°,AB =10,若以点C 为圆心,CB 长为半径的圆恰好经过
AB 的中点D ,则AC 的长等于 A . B .5 C . D .6
(第18题) (第19题) (第21题) (第22题) (第23题) ( )19.如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD等于A.70°B.60°C.50°D.40°
( )20.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内
C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外
( )21.如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不一定成立的是
A.∠COE=∠DOE B.CE=DE C.OE=BE D.BC=BD
(第25题) (第26题) (第27题)
( )22.如图,⊙O的弦AB=6,M是AB上任意一点,且OM的最小值为4,则⊙O的半径为
A.5 B.4 C.3 D.2
( )23.如图,P为半径为5的⊙O内一点,且PO=3,在过点P的所有⊙O的弦中,弦长为整数的弦有A.2条B.3条C.4条D.5条
( )24.下列语句中,正确的有
①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个
( )25.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8 m,最深处水深0.2 m,则此输水管道的直径是A.0.4 m B.0.5 m C.0.8 m D.1m
( )26.如图,⊙O过点B、C,圆心O在等腰直角三角形ABC的内部,∠BAC=90°,OA=1,BC
=6,则⊙O的半径为A B.C.D
( )27.如图,已知AB是半径为1的⊙O的一条弦,且AB=a<1.以AB为一边在⊙O内作正三角形ABC,点D为⊙O上不同于点A的一点,且DB=AB=a,DC的延长线交⊙O于点E,则AE的长为
A a B.1 C D.a
三、解答:28.如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE点C为 AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.
29.如图,⊙O的半径OA、OB分别交弦CD于点E、F,且CE=DF.求证:△OEF是等腰三角形.
30.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,求∠A的度数.
31.如图,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为.求⊙O1的半径.
32.如图,点A、B、C是⊙O上的三点,AB//OC.
(1)求证:Ac平分∠OAB;
(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.
33.已知x 1,x 2是一元二次方程2x 2-2x+m+1=0的两个实根.
(1)求实数m 的取值范围;
(2)如果m 满足不等式7+4x 1x 2>x 12+x 22,且m 为整数,求m 的值.
34、先用配方法说明:不论x 取何值,代数式2
267x x -+的值总大于0.再求出当x 取何值时,代数式257x x -+的值最小?最小值是多少?
35.商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件, 当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:
(1)当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少?
(2)在上述条件不变、商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600 元?(提示:盈利=售价-进价)。

相关文档
最新文档