知识讲解_指数函数及其性质_基础

合集下载

指数函数与对数函数的像与性质知识点总结

指数函数与对数函数的像与性质知识点总结

指数函数与对数函数的像与性质知识点总结指数函数与对数函数是高中数学中重要的内容,本文将对这两个函数的像与性质进行总结。

一、指数函数的像与性质指数函数是以底数为常数的指数幂为自变量,以指数为变量的函数。

其一般形式为f(x) = a^x(a>0,且a≠1)。

以下是指数函数的一些重要性质和像:1. 增长性:当底数a>1时,指数函数呈现增长趋势;当0<a<1时,指数函数呈现下降趋势。

2. 指数为0时的取值:当x=0时,指数函数的值为1,即f(0) = 1。

3. 零点问题:指数函数f(x) = a^x (a>0, a≠1,x为实数)的零点不存在,因为指数函数的值永远不会为0。

4. 水平渐近线:当x趋于负无穷大时,指数函数的值趋于0。

因此,y=0是指数函数的水平渐近线。

5. 正负性:当指数x为正数时,指数函数的值为正数;当指数x为负数时,指数函数的值为分数或小数。

二、对数函数的像与性质对数函数是指数函数的逆运算,它们彼此互为反函数。

设a>0,且a≠1,对数函数的一般形式为f(x) = logₐ(x)。

以下是对数函数的一些重要性质和像:1. 基本性质:对数函数f(x) = logₐ(x)中,a为底数,x为函数值。

其中,a被称为对数函数的底数,x被称为真数。

2. 定义域:当底数a>0,且a≠1时,对数函数的定义域为x>0。

3. 增长性:当底数a>1时,对数函数呈现增长趋势;当0<a<1时,对数函数呈现下降趋势。

4. 对数函数与指数函数的关系:指数函数与对数函数是互为反函数的关系,即f(x) = logₐ(a^x) = x。

5. 表达式的转换:对于对数函数f(x) = logₐ(x),可以利用换底公式进行不同底数的转换,例如log_b(x) = logₐ(x) / logₐ(b)。

综上所述,指数函数与对数函数是数学中的重要概念,了解它们的性质和像对于解决实际问题及应用数学知识具有重要意义。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结适用于高一应届学习及高三一轮复习指数函数和对数函数知识点总结及练习题一.指数函数(一)指数及指数幂的运算a am ar as ar s (ar)s ars (ab)r arbr(二)指数函数及其性质1.指数函数的概念:一般地,形如y a(a 0且a 1)叫做指数函数。

xmn二.对数函数(一)对数1.对数的概念:一般地,如果a N(a 0且a 1),那么x叫做以a为底N的对数,记作x logaN,其中a叫做底数,N叫做真数,logaN叫做对数式。

2.指数式与对数式的互化幂值真数xax log指数对数适用于高一应届学习及高三一轮复习3.两个重要对数(1)常用对数:以10为底的对数lgN(2)自然对数:以无理数e 2.***** 为底的对数lnN(二)对数的运算性质(a 0且a 1,M 0,N 0)①logaM logaN logaMN ②logaM logaN loga③logaM nlogaM ④换底公式:logab 关于换底公式的重要结论:①logamb(三)对数函数1.对数函数的概念:形如y logax(a 0且a 1)叫做对数函数,其中x 是自变量。

M Nnlogcb(c 0且c 1)logcannlogab ②logab logba 1 m适用于高一应届学习及高三一轮复习基本初等函数练习题1.已知集合M { 1,1},N {x|12x 1 4,x Z},则M∩N=()2A.{-1,1}B.{0}C.{-1}D.{-1,0} 2.设11b1a() () 1,则()333abaaabbaabaaA.a a bB.a b aC.a a bD.a b a 3.设y1 40.9,y2 80.48,y3 () 1.5,则()12A.y3 y1 y2B.y2 y1 y3C.y1 y3 y2D.y3 y1 y2 4.若()122a 11()3 2a,则实数a的取值范围是()211A.(1,+∞)B.(,+∞)C.(-∞,1)D.(-∞,)221-5.方程3x1=的解为()9A.x=2B.x=-2C.x=1D.x=-1116.已知实数a,b满足等式(a=()b,则下列五个关系式:①0ba;②ab0;③0ab;23④ba0;⑤a=b。

指数函数及其性质-(公开课)

指数函数及其性质-(公开课)

函数的奇偶性
总结词
指数函数并非总是奇函数或偶函数,这取决于底数 $a$ 的值 。
详细描述
如果 $a > 0$ 且 $a neq 1$,那么 $f(x) = a^x$ 是非奇非偶函 数。这是因为对于所有 $x in mathbb{R}$,都有 $f(-x) = a^{-x} = frac{1}{a^x} neq a^x = f(x)$,同时也不满足 $f(-x) = -f(x)$。
风险评估
指数函数可以用于风险评估,例如计算投资组合的贝塔系数,衡量 投资组合相对于市场的波动性。
在科学研究中的应用
放射性衰变
01
放射性衰变是指放射性物质释放出射线并转化为另一种物质的
过程,指数函数可以用来描述放射性衰变的规律。
种群增长模型
02
在生态学中,指数函数可以用来描述种群数量的增长趋势,例
如细菌繁殖等。
谢谢
THANKS
变化。
网络流量预测
网络流量的变化趋势可以使用指数 函数进行建模和预测。
软件性能测试
在软件性能测试中,指数函数可以 用于描述软件响应时间随用户数量 增加的变化规律。
04 指数函数与其他数学知识的联系
CHAPTER
与对数函数的关系
对数函数是指数函数的反函数,即如 果y=a^x,那么x=log_a y。
03 指数函数的应用
CHAPTER
在金融领域的应用
复利计算
指数函数在金融领域中常 用于计算复利,描述本金 及其产生的利息之和随时 间变化的规律。
股票价格模型
股票价格通常使用指数函 数进行建模,以描述其随 时间增长的趋势。
保险与养老金计算
保险费和养老金的累积也 常使用指数函数进行计算。

指数函数、对数函数、幂函数的图像和性质知识点总结.docx

指数函数、对数函数、幂函数的图像和性质知识点总结.docx

(一)指数与指数函数1.根式(1)根式的概念根式的It念3符号表示a备注3如果x n=a,那么x叫做a的〃次方根a n > lfin e AT P 当«为奇数时,正数的«次方根是一个正数,负数的川次方根是一个负数3零的兀次方根是零3当n为偶数时,正数的n次方根有两个,它们互为相反数"土嚅(° >0)3负数没有偶次方根卩(2).两个重要公式*a①> 0)\a\=<[-a{ci < 0)②=a (注意a必须使砺有意义)。

2.有理数指数幕(1)幕的有关概念①正数的正分数指数幕:a"= 奸(d > (),m. n w AT,且〃〉1);豐 1 1②正数的负分数指数幕:a n = —=-=(^7>0,/?K /?G N\JBL H>1)a n③0的正分数指数幕等于0,0的负分数指数幕没有意义.注:分数指数幕与根式可以互化,通常利用分数指数幕进行根式的运算。

(2)有理数指数幕的性质①a I a'=a H'"(a>0,r、s G Q);②(a r)s=a re(a>0,r> sEQ);③(ab)'=a r b s(a>0,b>0,r E Q);.3.指数函数的图象与性质y=a x a>l 0<a<l图象~d 1 *定义域 R 值域 (0, +oo) 性质(1)过定点(0, 1)(2)当 x>0 时,y>l; x<0 时,0<y<l(2)当 x>0 时,0<y<l; x<0 时,y>l(3)在(-oo, +oo)上是增函数(3)在 (-00 , 4-00 )上是减函数注:如图所示,是指数函数(1) y=a x , (2) y=b x ' (3) ,y=c x (4) ,y=d x 的图象,如何确 定底数a,b,c,d 与1之间的大小关系?提示:在图屮作直线x=l,与它们图象交点的纵坐标即为它们各自底数的值,即 ci>』>l>ai>bi,・・・c>d>l>a>b 。

指数函数及其性质

指数函数及其性质

不同底但同指数 底不同,指数也不同
(6)1.70.3与0.93.1
例2:已知下列不等
式 , 比较 m,n 的大小 : m n 2 2 (1 ) m n 0 . 2 0 . 2 (2 ) m n a a (a 0且a 1) (3 )
布置作业:
习题2.1A组第6、7、8题
x
x
y2
x
1 y ( )x 2
y 3
x
… -3 1 … 8 … 8 1 … 27
-2
1 4
-1
1 2
1 3
4
2
3
1 9
0 1 1 1 1
1 2
1 2
2 4
1 4
3
1 3
9
1 9
… … 1 … 8 27 … 3 8
1 27
1 y ( )x 3
… 27 9

y
1 y 2
x
• 例1:
大小
同底指数幂比大 小,构造指数函数, 比较下列各题中两值的 利用函数单调性 同底比较大小 不同底但可化同底
(1) 1.72.5 与 1.73; (2) 0.8-01与0.8-02 不同底数幂比大小 ,利用指数函数图像 与底的关系比较 (3) 与 (4) 与
-0.3 利用中间量进 (5)(0.3) -0.3 与 (0.2) 行比较
思考3:上述函数在其结构上有何共同特点?
1. 指数函数的定义
系数为1
y= 1 · a
x
自变量
常数
定义:一般地,函数
y a x (a 0, a 1, x R) 叫做指数函数
规定
a 0, a 1
1:指出下列函数那些是指数函数:

指数函数及其性质

指数函数及其性质

教学过程一、 复习预习复习函数的基本性质(奇偶性、单调性以及周期性。

)二、知识讲解(一)创设情景、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……按这样的规律,51号同学该准备多少米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重。

师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……按这样的规律,51号同学该准备多少米?【学情预设:学生可能说很多或能算出具体数目】师:大家能否估计一下,51号同学该准备的米有多重?教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨。

师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨。

这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!【设计意图:用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。

】在以上两个问题中,每位同学所需准备的米粒数用y 表示,每位同学的座号数用x 表示,y 与x 之间的关系分别是什么?学生很容易得出y=2x (∈x *N )和x y 2=(∈x *N )【学情预设:学生可能会漏掉x 的取值范围,教师要引导学生思考具体问题中x 的范围。

】(二)师生互动、探究新知1.指数函数的定义师:其实,在本章开头的问题2中,也有一个与x y 2=类似的关系式x y 073.1=(20,≤∈*x N x )⑴让学生思考讨论以下问题(问题逐个给出):(约3分钟)①x y 2=(∈x *N )和x y 073.1=(20,≤∈*x N x )这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?【设计意图:引导学生从具体问题、实际问题中抽象出数学模型。

《指数函数》经典讲义(完整版)

《指数函数》经典讲义(完整版)

指数函数讲义经典整理(含答案)一、同步知识梳理知识点1:指数函数函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R知识点2:指数函数的图像和性质知识点3:指数函数的底数与图像的关系指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如图所示,则01c d a b <<<<<,在y 轴右侧,图像从下到上相应的底数也由小变大, 在y 轴左侧,图像从上到下相应的底数也由小变大 即无论在y 轴左侧还是右侧,底数按逆时针方向变大在第一象限内,“底大图高”知识点4:指数式、指数函数的理解① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值④ 在理解指数函数的概念时,应抓住定义的“形式”,像1223,,21xx y y x y y =⋅===- 等函数均不符合形式()01x y a a a =>≠且,因此,它们都不是指数函数⑤ 画指数函数x y a =的图像,应抓住三个关键点:()()11,,0,1,1,a a ⎛⎫- ⎪⎝⎭二、同步题型分析题型1:指数函数的定义、解析式、定义域和值域例1:已知函数,且. (1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明. 专题: 计算题. 分析:(1)欲求m 的值,只须根据f (4)=的值,当x=4时代入f (x )解一个指数方程即可;(2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f (x )与f (﹣x )的关系,即可得到答案; (3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f (x1)>f (x2),即可. 解答: 解:(1)因为,所以,所以m=1.(2)因为f (x )的定义域为{x|x≠0},又,所以f (x )是奇函数. (3)任取x1>x2>0,则,因为x1>x2>0,所以,所以f (x1)>f (x2),所以f(x)在(0,+∞)上为单调增函数.点评:本题主要考查了函数单调性的判断、函数奇偶性的判断,与证明及指数方程的解法.在判定函数奇偶性时,一定注意函数的定义域关于原点对称,属于基础题.例2:已知函数,(1)讨论函数的奇偶性;(2)证明:f(x)>0.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的判断;函数奇偶性的性质.专题:计算题.分析:(1)由2x﹣1≠0解得义域为{x|x≠0},关于原点对称.f(﹣x)=()(﹣x)=()x=f(x),故该函数为偶函数.(2)任取x∈{x|x≠0},当x>0时,2x>20=1且x>0,故,从而.当x<0时,﹣x>0,故f(﹣x)>0,由函数为偶函数,能证明f(x)>0在定义域上恒成立.解答:解:(1)该函数为偶函数.由2x﹣1≠0解得x≠0即义域为{x|x≠0}关于原点对称…(2分)f(﹣x)=()(﹣x)=﹣(+)x=()x=()x=()x=f(x)(6分)故该函数为偶函数.…(7分)(2)证明:任取x∈{x|x≠0}当x>0时,2x>20=1且x>0,∴2x﹣1>0,故从而…(11分)当x<0时,﹣x>0,∴f(﹣x)>0,…(12分)又因为函数为偶函数,∴f(x)=f(﹣x)>0,…(13分)∴f(x)>0在定义域上恒成立.…(14分)点评:本题考查函数的奇偶性的判断和证明f(x)>0.解题时要认真审题,注意指数函数性质的灵活运用.例3:已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)求f(x)+f(1﹣x)的值;(3)求的值.考点:指数函数的定义、解析式、定义域和值域.专题:综合题;函数的性质及应用.分析:(1)由y=ax单调得a+a2=20,由此可求a;(2)写出f(x),代入运算可得;(3)借助(2)问结论分n为奇数、偶数讨论可求;解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,∴a+a2=20,得a=4,或a=﹣5(舍去);(2)由(1)知,∴====1;(3)由(2)知f(x)+f(1﹣x)=1,得n为奇数时,=×1=;n为偶数时,=+f()==;综上,=.点评:本题考查指数函数的单调性、最值等知识,属中档题.题型2:指数函数的图像变换.例1:已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.考点:指数函数的图像变换.专题:综合题;函数的性质及应用.分析:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到.(2)结合函数的图象,可得函数的减区间和增区间.(3)数形结合可得,当x=1时,ymiin=0.解答:解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,ymiin=0.点评:本题主要考查指数函数的图象和性质综合,体现了数形结合的数学思想,属于中档题.题型3:指数函数单调性例1:已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a=﹣3b,求f(x+1)>f(x)时的x的取值范围.考点:指数函数的单调性与特殊点;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)分a>0,b>0和a<0,b<0两种情况讨论,运用单调性的定义可作出判断;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),分b>0,b<0两种情况进行讨论,整理可得指数不等式解出即可;解答:解:(1)当a>0,b>0时,任意x1,x2∈R,且x1<x2,则f(x1)﹣f(x2)=a(﹣)+b(﹣),∵<,<,a>0,b>0,∴a(﹣)<0,b(﹣)<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在R上是增函数;当a<0,b<0时,同理,可判断函数f(x)在R上是减函数;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),则f(x+1)>f(x)即化为b(3x+1﹣3•2x+1)>b(3x﹣3•2x),若b>0,则有3x+1﹣3•2x+1>3x﹣3•2x,整理得,解得x>1;若b<0,则有3x+1﹣3•2x+1<3x﹣3•2x,整理得,解得x<1;故b>0时,x的范围是x>1;当b<0时,x的范围是x<1.点评:本题考查函数单调性的判断、指数函数的单调性的应用,考查分类讨论思想,属基础题.例2:已知定义在(﹣1,1)上的奇函数f(x).在x∈(﹣1,0)时,f(x)=2x+2﹣x.(1)试求f(x)的表达式;(2)用定义证明f(x)在(﹣1,0)上是减函数;(3)若对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立,求实数t的取值范围.考点:指数函数综合题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)由f(x)是定义在(﹣1,1)上的奇函数可得f(0)=0,x∈(0,1)时,f(x)=﹣f(﹣x)=﹣(2x+2﹣x);从而写出f(x)的表达式;(2)取值,作差,化简,判号,下结论五步;(3)对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立转化为对于x∈(0,1)上的每一个值,不等式t>﹣恒成立,从而可得.解答:解:(1)∵f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,设∈(0,1),则﹣x∈(﹣1,0),则f(x)=﹣f(﹣x)=﹣(2x+2﹣x),故f(x)=;(2)任取x1,x2∈(﹣1,0),且x1<x2,则f(x1)﹣f(x2)=+﹣(+)=,∵x1<x2<0,∴﹣<0,0<<1,故f(x1)﹣f(x2)>0,故f(x)在(﹣1,0)上是减函数;(3)由题意,t•2x•f(x)<4x﹣1可化为t•2x•(﹣(2x+2﹣x))<4x﹣1,化简可得,t>﹣,令g(x)=﹣=﹣1+,∵x∈(0,1),∴g(x)<﹣1+=0,故对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立可化为t≥0.点评:本题考查了函数的性质的综合应用及恒成立问题的处理方法,属于难题.例3:已知函数f(x)=|2x﹣1﹣1|,(x∈R).(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(﹣∞,1)上的单调性;(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n 的取值范围.考点:指数函数综合题.专题:计算题;证明题.分析:(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性;(2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围.解答:解:(1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴,∴,∴f(x1)<f(x2).所以f(x)在区间(1,+∞)上为增函数.(5分)函数f(x)在区间(﹣∞,1)上为减函数.(6分)(2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(﹣∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分)易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m﹣1﹣1<0,2n ﹣1﹣1>0,又A,B两点的坐标满足方程t=|2x﹣1﹣1|,故得t=1﹣2m﹣1,t=2n﹣1﹣1,即m=log2(2﹣2t),n=log2(2+2t),(12分)故m+n=log2(2﹣2t)+log2(2+2t)=log2(4﹣4t2),当0<t<1时,0<4﹣4t2<4,﹣∞<log2(4﹣4t2)<2.因此,m+n的取值范围为(﹣∞,2).(17分)点评:本题的考点是指数函数综合问题,主要考查函数单调性的证明,考查函数图形的性质,有较强的综合性.依据定义,证明函数的单调性的步骤通常为:取值,作差,变形,定号,下结论三、课堂达标检测检测题1:已知函数f(x)=(其中e=2.71828…是一个无理数).(1)求函数f(x)的定义域;(2)判断奇偶性并证明之;(3)判断单调性并证明之.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;证明题.分析:(1)把分子整理变化成和分母相同的一部分,进行分子常数化,则变量只在分母上出现,根据分母是一个指数形式,恒大于零,得到函数的定义域是全体实数.(2)根据上一问值函数的定义域关于原点对称,从f(﹣x)入手整理,把负指数变化为正指数,就得到结果,判断函数是一个奇函数.(3)根据判断函数单调性的定义,设出两个任意的自变量,把两个自变量的函数值做差,化成分子和分母都是因式乘积的形式,根据指数函数的性质,判断差和零的关系.解答:解:f(x)==1﹣(1)∵e2x+1恒大于零,∴x∈R(2)函数是奇函数∵f(﹣x)==又由上一问知函数的定义域关于原点对称,∴f(x)为奇函数(3)是一个单调递增函数设x1,x2∈R 且x1<x2则f(x1)﹣f(x2)=1﹣=∵x1<x2,∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)在R是单调增函数点评:本题考查函数的定义域,考查函数的奇偶性的判断及证明.考查函数单调性的判断及证明,考查解决问题的能力,是一个综合题目.检测题2:已知函数f(x)=2ax+2(a为常数)(1)求函数f(x)的定义域.(2)若a=1,x∈(1,2],求函数f(x)的值域.(3)若f(x)为减函数,求实数a的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数的单调性与特殊点.专题:常规题型;转化思想.分析:(1)利用指数函数的定义域来考虑.(2)利用函数f(x)在(1,2]上的单调性求函数的值域.(3)根据复合函数的单调性,函数u=ax+2必须为减函数.解答:解:(1)函数y=2ax+2对任意实数都有意义,所以定义域为实数集R.(2)因为a=1,所以f(x)=2x+2.易知此时f(x)为增函数.又因为1<x≤2,所以f(1)<f(x)≤f(2),即8<f(x)≤16.所以函数f(x)的值域为(8,16].(3)因为f(x)为减函数,而y=2u是增函数,所以函数u=ax+2必须为减函数.所以得a<0点评:本题考查指数函数的定义域、值域、单调性,复合函数的单调性,体现转化的数学思想.检测题3:设f(x)的定义域是(﹣∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(﹣x)=﹣f(x).已知当x>0时(1)求当x<0时,f(x)的解析式(2)解不等式.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的性质.专题:常规题型.分析:(1)求当x<0时,f(x)的解析式,在哪个区间上求解析式,就在哪个区间上取值x,再转化到已知区间上求解析式,由f(﹣x)=﹣f(x)解出f(x)即可.(2)解不等式f(x)<﹣,分x>0和x<0两种情况,根据求得的解析式求解即可.解答:解:(1)当x<0时,﹣x>0,=又f(﹣x)=﹣f(x)所以,当x<0时,(2)x>0时,,∴化简得∴,解得1<2x<4∴0<x<2当x<0时,∴解得2x>1(舍去)或∴x<﹣2解集为{x|x<﹣2或0<x<2}点评:本题考查分段函数解析式的求法,注意在哪个区间上求解析式,就在哪个区间上取值,再转化到已知的区间上求解析式,再根据奇偶性,解出f(x)来.解不等式也要分段求解,注意x的取值范围.11。

(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)

(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习一、指数的性质(一)整数指数幂n 1.整数指数幂概念:a =a ⋅Λ⋅a (n ∈N )a 0=1(a ≠0)1⋅4a 243*n 个aa-n=1a ≠0,n ∈N *)n(a 2.整数指数幂的运算性质:(1)a m ⋅a n =a m +n (m ,n ∈Z )(2)a (3)(ab )=a ⋅b n n n ()mn=a mn(m ,n ∈Z )(n ∈Z )其中a ÷a =a ⋅a m n m -n =a m -n a n ⎛a ⎫-1nn -n , ⎪=(a ⋅b)=a ⋅b =n .b ⎝b ⎭n 3.a 的n 次方根的概念即:若x n 一般地,如果一个数的n 次方等于a n >1,n ∈N ),那么这个数叫做a 的n 次方根,=a ,则x 叫做a 的n 次方根,(n >1,n ∈N )**(说明:①若n 是奇数,则a 的n 次方根记作n a ;若a >0则n a >0,若a <o 则n a <0;②若n 是偶数,且a >0则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:-n a ;(例如:8的平方根±8=±2216的4次方根±416=±2)③若n 是偶数,且a <0则n a 没意义,即负数没有偶次方根;④Θ0=0n >1,n ∈N nn (*)∴n 0=0;⑤式子a 叫根式,n 叫根指数,a 叫被开方数。

∴(a )nn=a ..4.a 的n 次方根的性质一般地,若n 是奇数,则n a n =a ;若n 是偶数,则n a n =a =⎨5.例题分析:例1.求下列各式的值:(1)3-8⎧a⎩-aa ≥0a <0.(3)(2)(-10)*2(3)4(3-π)(4)4例2.已知a <b <0,n >1,n ∈N ,化简:n (a -b )+n (a +b ).n n (二)分数指数幂1051231.分数指数幂:5a =a =a102(a >0)3a =a =a124(a >0)即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)a 3()kn=akn 对分数指数幂也适用,442255⨯3⨯4⎛2⎫⎛⎫2532例如:若a >0,则 a 3⎪=a 3=a , a 4⎪=a 4=a ,∴a =a 3⎝⎭⎝⎭a =a .545即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

知识讲解_指数函数及其性质_基础

知识讲解_指数函数及其性质_基础

指数函数及其性质要点一、指数函数的概念:函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:(1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31xy =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a =,则000x x ⎧>⎪⎨≤⎪⎩xx时,a 恒等于,时,a 无意义.②如果0a <,则对于一些函数,比如(4)xy =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在.③如果1a =,则11xy ==是个常量,就没研究的必要了. 要点二、指数函数的图象及性质:y=a x0<a<1时图象a>1时图象图象性质 ①定义域R ,值域 (0,+∞)②a 0=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数a④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x >1 x>0时,0<a x <1⑤x<0时,0<a x <1 x>0时,a x >1⑥ 既不是奇函数,也不是偶函数(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。

(2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。

当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。

当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。

(3)指数函数xy a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称。

要点三、指数函数底数变化与图像分布规律 (1)① xy a = ②xy b = ③x y c = ④x y d =则:0<b <a <1<d <c又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数112,3,(),()23x x x x y y y y ====的图像:要点四、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法比较法有作差比较与作商比较两种,其原理分别为:①若0A B A B ->⇔>;0A B A B -<⇔<;0A B A B -=⇔=; ②当两个式子均为正值的情况下,可用作商法,判断1A B >,或1AB<即可. 【典型例题】类型一、指数函数的概念例1.函数2(33)xy a a a =-+是指数函数,求a 的值. 【答案】2【解析】由2(33)xy a a a =-+是指数函数,可得2331,0,1,a a a a ⎧-+=⎨>≠⎩且解得12,01,a a a a ==⎧⎨>≠⎩或且,所以2a =.【总结升华】判断一个函数是否为指数函数:(1)切入点:利用指数函数的定义来判断;(2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x .举一反三:【变式1】指出下列函数哪些是指数函数(1)4xy =;(2)4y x =;(3)4xy =-;(4)(4)xy =-;(5)1(21)(1)2xy a a a =->≠且;(6)4x y -=.【答案】(1)(5)(6)【解析】(1)(5)(6)为指数函数.其中(6)4x y -==14x⎛⎫ ⎪⎝⎭,符合指数函数的定义,而(2)中底数x 不是常数,而4不是变数;(3)是-1与指数函数4x 的乘积;(4)中底数40-<,所以不是指数函数.类型二、函数的定义域、值域 例2.求下列函数的定义域、值域.(1)313xxy =+;(2)y=4x -2x +1;(4)y =为大于1的常数)【答案】(1)R ,(0,1);(2)R [+∞,43);(3)1,2⎡⎫-+∞⎪⎢⎣⎭[)0,+∞;(4)(-∞,-1)∪[1,+∞) [1,a)∪(a ,+∞)【解析】(1)函数的定义域为R (∵对一切x ∈R ,3x ≠-1).∵ (13)1111313x x xy +-==-++,又∵ 3x >0, 1+3x >1, ∴ 10113x <<+, ∴ 11013x-<-<+,∴ 101113x<-<+, ∴值域为(0,1). (2)定义域为R ,43)212(12)2(22+-=+-=x x x y ,∵ 2x >0, ∴ 212=x即 x=-1时,y 取最小值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,43). (3)要使函数有意义可得到不等式211309x --≥,即21233x --≥,又函数3x y =是增函数,所以212x -≥-,即12x ≥-,即1,2⎡⎫-+∞⎪⎢⎣⎭,值域是[)0,+∞.(4)∵011112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞), 又∵111011≠+-≥+-x x x x 且,∴ a ay a y x x x x≠=≥=-+-+1121121且, ∴值域为[1,a)∪(a ,+∞).【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中112111≠+-=+-x x x 不能遗漏. 举一反三:【变式1】求下列函数的定义域: (1)2-12x y =(2)y =(3)y =(4)0,1)y a a =>≠【答案】(1)R ;(2)(]-3∞,;(3)[)0,+∞;(4)a>1时,(]-0∞,;0<a<1时,[)0+∞,【解析】(1)R(2)要使原式有意义,需满足3-x ≥0,即3x ≤,即(]-3∞,.(3) 为使得原函数有意义,需满足2x -1≥0,即2x ≥1,故x ≥0,即[)0,+∞(4) 为使得原函数有意义,需满足10xa -≥,即1xa ≤,所以a>1时,(]-0∞,;0<a<1时,[)0+∞,.【总结升华】本题中解不等式的依据主要是指数函数的单调性,根据所给的同底指数幂的大小关系,结合单调性来判断指数的大小关系.类型三、指数函数的单调性及其应用例3.讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性,并求其值域.【思路点拨】对于x ∈R ,22103x x-⎛⎫> ⎪⎝⎭恒成立,因此可以通过作商讨论函数()f x 的单调区间.此函数是由指数函数及二次函数复合而成的函数,因此可以逐层讨论它的单调性,综合得到结果.【答案】函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数 (0,3] 【解析】解法一:∵函数()f x 的定义域为(-∞,+∞),设x 1、x 2∈(-∞,+∞)且有x 1<x 2,∴222221()3x x f x -⎛⎫= ⎪⎝⎭,211211()3x x f x -⎛⎫= ⎪⎝⎭,222222121212121122()()(2)2211()113()3313x x x x x x x x x x x x f x f x -----+--⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭. (1)当x 1<x 2<1时,x 1+x 2<2,即有x 1+x 2-2<0.又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)<0,则知2121()(2)113x x x x -+-⎛⎫> ⎪⎝⎭.又对于x ∈R ,()0f x >恒成立,∴21()()f x f x >. ∴函数()f x 在(-∞,1)上单调递增.(2)当1≤x 1<x 2时,x 1+x 2>2,即有x 1+x 2-2>0. 又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)>0,则知2121()(2)1013x x x x -+-⎛⎫<< ⎪⎝⎭.∴21()()f x f x <.∴函数()f x 在[1,+∞)上单调递减.综上,函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数.∵x 2―2x=(x ―1)2―1≥-1,1013<<,221110333x x--⎛⎫⎛⎫<≤= ⎪⎪⎝⎭⎝⎭. ∴函数()f x 的值域为(0,3].解法二:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3uf u ⎛⎫= ⎪⎝⎭.∵u=x 2―2x=(x ―1)2―1,在(―∞,1]上是减函数,1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内是减函数,∴函数()f x 在(-∞,1]内为增函数.又1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()f x 在[1,+∞)上是减函数.值域的求法同解法一.【总结升华】由本例可知,研究()f x y a =型的复合函数的单调性用复合法,比用定义法要简便些,一般地有:即当a >1时,()f x y a=的单调性与()y f x =的单调性相同;当0<a <1时,()f x y a=的单调与()y f x =的单调性相反.举一反三:【变式1】求函数2323xx y -+-=的单调区间及值域.【答案】3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减. 14(0,3]【解析】[1]复合函数——分解为:u=-x 2+3x-2, y=3u ;[2]利用复合函数单调性判断方法求单调区间; [3]求值域. 设u=-x 2+3x-2, y=3u ,其中y=3u 为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增, u=-x 2+3x-2在3[,)2x ∈+∞上单减, 则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≤, 2323x x y -+-=的值域为14(0,3].【变式2】求函数2-2()(01)xxf x a a a =>≠其中,且的单调区间.【解析】当a>1时,外层函数y=a u 在()-∞+∞,上为增函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()(-1)x xf x a =∞在区间,上为减函数,在区间[)1+∞,上为增函数; 当0<a<1时,外层函数y=a u 在()-∞+∞,上为减函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()xxf x a =在区间(1)-∞,上为增函数,在区间[)1,+∞上为减函数.例4.证明函数1()(1)1x xa f x a a -=>+在定义域上为增函数. 【思路点拨】利用函数的单调性定义去证明。

指数函数如何判断知识点

指数函数如何判断知识点

指数函数是高中数学中的重要知识点,通过学习和掌握指数函数,我们可以更好地理解和解决与指数相关的数学问题。

本文将从逐步思考的角度,介绍如何判断知识点与指数函数的关联。

第一步:了解指数函数的定义和性质指数函数是形如f(x) = a^x的函数,其中a是常数,x是变量。

首先,我们需要明确指数函数的定义,并了解其一些基本性质,如定义域、值域、增减性、奇偶性等。

这些性质将有助于我们判断与指数函数相关的知识点。

第二步:分析指数函数的图像和特征了解指数函数的图像和特征,可以帮助我们判断哪些知识点与指数函数相关。

我们可以通过画出指数函数的图像,观察其随着a和x的变化而发生的变化。

指数函数的图像通常呈现出一些共性特征,如拐点、渐进线等。

通过观察这些特征,我们可以判断出哪些知识点与指数函数相关。

第三步:寻找与指数函数相关的数学问题在课本或其他资料中,寻找与指数函数相关的数学问题。

这些问题可能涉及到指数函数的应用、性质证明、函数图像的变化等。

我们可以通过分析这些问题,找到与指数函数相关的知识点。

例如,求解指数方程、指数函数的等式性质等都与指数函数紧密相关。

第四步:总结与指数函数相关的知识点通过前面的分析,我们可以得到一些与指数函数相关的知识点。

这些知识点可能包括指数函数的基本性质、指数方程的求解方法、指数函数的图像特征等。

可以将这些知识点进行总结,形成一个完整的知识体系。

第五步:应用与指数函数相关的知识点将学到的指数函数知识点应用到实际问题中。

通过解决一些相关问题,巩固对指数函数的理解,并提高解决实际问题的能力。

例如,利用指数函数解决增长或衰减问题,求解复利问题等。

通过以上逐步思考的方法,我们可以较为全面地判断与指数函数相关的知识点。

对于学习指数函数和解决相关问题,也能提供一种系统性和有条理的方法。

最后,我们希望通过不断练习和思考,能够更深入地理解和掌握指数函数的知识。

高一数学指数及指数函数基础知识

高一数学指数及指数函数基础知识

高一数学指数及指数函数1•根式的性质(3)负数没有偶次方根 (4)零的任何正次方根都是零2•幕的有关概念 (1)正整数指数幕:naa a a ..… n...... a (n N )(2)零指数幕a 01(a 0)1⑶负整数指数幕 a p-(a 0.p N )a pm(4)正分数指数幕a nnma (a0, m, n N ,且 n 1) (5)负分数指数幕a m1 nm(a0, m, n N ,且 n 1)a 石(6)0的正分数指数幕等于0,0的负分数指数幕无意义3•有理指数幕的运算性质rr s⑶(ab) a a ,(a0,b 0, r Q)4、指数函数的定义:函数y a% 0且a °叫做指数函数,其中x 是自变量,函数定义域是R 。

① 若a 0,则当x 0时,『0;当x 0时,a x 无意义.1 1② 若a 0,则对于X 的某些数值,可使a 无意义•如(2),这时对于 4,2,等等,在实数范围内函数值不存在•③ 若a 1,则对于任何x R ,a x 1,是一个常量,没有研究的必要性• 对于任何x R ,「都有意义,且『0.因此指数函数的定义域是R ,值域是(°)有些函数貌似指数函数,实际上却不是,如y 『k (a 0且 a 1,k Z );x有些函数看起来不像指数函数,实际上却是,如y a (a 0且a 1),因为它可 x1 1 1 0 1 a ,其中a ,且a(1)当n 为奇数时,有n a na(2)当n 为偶数时,有;a" a a, (a 0) a, (a 0)r sr s .八 亠、(1) a a a ,(a 0, r, s Q)/ r、srs , -亠、⑵(a )a ,(a 0,r,s Q)以化为y5、函数的图象(1)①特征点:指数函数y = a x (a > 0且a ^ 1) 的图象经过两点(0 , 1)和(1,a).②指数函数y = a x (a > 0且a 工1)的图象中,y = 1 反映了它的分布特征;而直线x = 1 与指数函数图象的交点(1,a)的纵坐 标则直观反映了指数函数的底数特 征,称直线x = 1和y = 1为指数函 数的两条特征线•(2)、函数的图象单调性当a > 1时,函数在定义域范围内 呈单调递增; 当0v a v 1时,函数在定义域范围 内呈单调递减; 推论:(1)底互为倒数的两个函数图像关于y 轴对称(2)当a > 1时,底数越大,函数图象越靠近丫轴;当0v a v 1时,底数越小, 函数图象越靠近丫轴。

知识讲解_指数函数、对数函数、幂函数综合_基础

知识讲解_指数函数、对数函数、幂函数综合_基础

指数函数、对数函数、幂函数综合【要点梳理】要点一、指数及指数幂的运算 1.根式的概念a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈当n 为奇数时,正数的n 次方根为正数,负数的nn 为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为负数没有偶次方根,0的任何次方根都是0.n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:(1)当na =;当n,0,,0;a a a a a ≥⎧==⎨-<⎩(2)na =3.分数指数幂的意义:)0,,,1m na a m n N n =>∈>;()10,,,1mnm naa m n N n a-=>∈>要点诠释:0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:()0,0,,a b r s Q >>∈(1)rsr sa a a+= (2)()r s rsa a = (3)()rr rab a b =要点二、指数函数及其性质 1.指数函数概念 一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R .2.指数函数函数性质:要点三、对数与对数运算 1.对数的定义(1)若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>. 2.几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.3.常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).4.对数的运算性质如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 要点四、对数函数及其性质1.对数函数定义一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2.要点五、反函数 1.反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x fy -=,习惯上改写成1()y f x -=.2.反函数的性质(1)原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.(2)函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.(3)若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.(4)一般地,函数()y f x =要有反函数则它必须为单调函数. 要点六、幂函数 1.幂函数概念形如()y x R αα=∈的函数,叫做幂函数,其中α为常数. 2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).(3)单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. 【典型例题】类型一:指数、对数运算 例1.化简与计算下列各式 (1)10220.531222(0.01)54--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()20.53207103720.12392748π--⎛⎫⎛⎫++-+⎪⎪⎝⎭⎝⎭;(3)5332332323323134)2(248aa a a ab aaab b b a a ⋅⋅⨯-÷++--.【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)1615;(2)100;(3)2a . 【解析】 (1)原式=1122141149100⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭ =1+11610-=1615;(2)原式=122322516437390.12748-⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭ =5937100331648++-+=100(3) 原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.【总结升华】化简要求同初中要求,注意结果形式的统一,结果不能同时含有根式和分数指数,也不能既有分母又含有负指数;一般地,进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数位分数等,便于进行乘、除、乘方、开方运算,以达到化繁为简的目的;举一反三:【变式一】化简下列各式:(1)133241116()()8()100481----+⋅;. 【答案】(1)-27;(2【解析】(1)1313332424111681()()8()10048()10048116----+⋅=-+⨯ 344310648()106427272⎛⎫=-+⨯=-+=- ⎪⎝⎭;133⎫=1)1)=-=-=例2. 已知:4x =,求:111244311422111x x xx x xx -+⋅⋅+++的值.【思路点拨】先化简再求值是解决此类问题的一般方法. 【答案】2 【解析】111244311422111x x xx x xx -+⋅⋅+++11441411122411111x x x x x x x ⎛⎫+ ⎪-⎝⎭=⋅⋅+⎛⎫++ ⎪⎝⎭1111442211122211111111x xx x x x xx x --=⋅⋅+=+=-+=++∴ 当4x =时,111112442231142211421x x xx x x xx -+⋅⋅+===++.【总结升华】解题时观察已知与所求之间的关系,同时乘法公式要熟练,直接代入条件求解繁琐,故应先化简变形,创造条件简化运算. 解题时,要注意运用下列各式.11112222a b a b a b ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭,2111122222a b a a b b ⎛⎫±=±+ ⎪⎝⎭;112112333333a b a a b b a b ⎛⎫⎛⎫±+=± ⎪⎪⎝⎭⎝⎭例3.计算(1) 2221log log 12log 422-; (2)33lg 2lg 53lg 2lg5++; (3)222lg5lg8lg5lg 20lg 23+++. 【答案】(1)12-;(2)1;(3)3;(4)14.【解析】(1)原式=122221log 12log log 22-⎫===-; (2)原式=()()22lg 2lg 5lg 2lg 2lg 5lg 53lg 2lg 5+-++=()2lg10lg5lg 23lg 2lg53lg 2lg5⎡⎤⋅+-+⎣⎦=1-3lg 2lg5+3lg 2lg5=1(3)原式=()22lg52lg 2lg51lg 2lg 2++++=()2lg5lg 2lg5lg 2(lg 2lg5)++++=2+lg5lg 2+=3;【总结升华】这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧. 【变式1】552log 10log 0.25+=( )A.0B.1C.2D.4 【答案】C【解析】552log 10log 0.25+=25555log 10log 0.25log (1000.25)log 252+=⨯==. 【变式2】(1)2(lg 2)lg 2lg50lg 25+⋅+;(2)3948(log 2log 2)(log 3log 3)+⋅+. 【答案】(1)2;(2)54. 【解析】(1) 原式22(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=;(2) 原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg352lg36lg 24=⋅=.类型二:指数函数、对数函数、幂函数的图象与性质例4.已知函数3log ,0,()2,0,x x x f x x >⎧=⎨≤⎩ 则1(())9f f =( )A.4B.14C.-4D.-14【答案】B【解析】1)12(log )2(23=-=f ,0((2))22f f e ==. 【总结升华】利用指数函数、对数函数的概念,求解函数的值.举一反三:【变式一】已知函数221,1,(),1,x x f x x ax x ⎧+<⎪=⎨+≥⎪⎩若((0))4f f a =,则实数a 等于( ).A.12B. 45 C. 2 D. 9 【答案】C .【解析】1,()21,(0)2x x f x f <=+∴= ,由((0)f f a=,则有(2)4f a =.21,(),442x f x x ax a a ≥=+∴=+ ,2a ∴=,选C .例5.函数1()f x x=的定义域( ) . A.(][),42,-∞-+∞ B.()()4,00,1- C.[)(]4,00,1- D. [)()4,00,1- 【答案】D【解析】220,320,340,0.x x x x x ≠⎧⎪-+≥⎪⎨--+≥>【总结升华】以对数函数、幂函数为背景的函数定义域问题,一直是高考命题的热点.解答这类问题关键是紧扣真数大于零、底数大于零且不等于1,偶次根号大于等于零、分母不为零. 例12-xA .B .C .D .【答案】B【解析】先作出2(0)x y x =≥的图象,然后作出这个图象关于y 轴对称的图象,得到||2x y =的图象,再把||2x y =的图象右移一个单位,得到12-=x y 的图象,故选B例7. 函数)86(log 231+-=x x y 的单调递增区间是( )A .(3,+∞)B .(-∞,3)C .(4,+∞)D .(-∞,2)【思路点拨】这是一个内层函数是二次函数,外层函数是对数函数的复合函数,其单调性由这两个函数的单调性共同决定,即“同增异减”。

高考数学复习知识点讲义课件25---指数函数的概念及其图象和性质

高考数学复习知识点讲义课件25---指数函数的概念及其图象和性质

答案:(-1,-1) (2)y=13x+1+2=3-(x+1)+2.作函数 y=3x 的图象关于 y 轴的对称图象得函数 y=3-x 的图象,再向左平移 1 个单位长度就得到函数 y=3-(x+1)的图象,最后再 向上平移 2 个单位长度就得到函数 y=3-(x+1)+2=13x+1+2 的图象,如图所示.
x0 1
2
3

y 200 210 220.5 231.525 …
作直线y=300与函数y=200(1+5%)x的图象交于A点,则A(x0,300),A点的横 坐标x0的值就是函数值y=300时(木材蓄积量为300万立方米时)所经过的时间x年 的值.
∵8<x0<9,则取x=9(计划留有余地,取过剩近似值),即经过9年后,林区的 木材蓄积量能达到300万立方米.
[解析] (1)函数 y=13x 是指数函数,且 y=4x 也是指数函数,其它函数不 符合指数函数的三个特征.
(2)设指数函数 fx=ax,由 f2-f1=6 得 a2-a=6,解得 a=-2(舍去)或 a=3,则 f3=33=27.
[答案](1)①④ (2)27
[方法技巧] (1)判断一个函数是否为指数函数,只需判断其解析式是否符合y=ax(a>0, 且a≠1)这一形式,其具备的特点为:
2.底数与指数函数图象的关系 (1)由指数函数 y=ax 的图象与直线 x=1 相交于点(1,a)可知,在 y 轴右侧, 图象从下到上相应的底数由小变大. (2)由指数函数 y=ax 的图象与直线 x=-1 相交于点-1,1a 可知,在 y 轴左侧,图象从下到上相应的底数由大变小. 如图所示,指数函数底数的大小关系为 0<a4<a3<1<a2<a1.
(一)指数函数的概念 一般地,函数 y=ax(a>0,且a≠1) 叫做指数函数,其中指数x是自变量,定义 域是 R .

指数函数、对数函数、幂函数的图像和性质知识点总结

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①)0()0(||aa a a a aann;②a a nn)((注意a 必须使na 有意义)。

2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:(0,,1)mnmn a a a m n N n 、且;②正数的负分数指数幂:11(0,,1)mnmnmnaam nN n aa、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质①a r a s=a r+s(a>0,r 、s ∈Q ); ②(a r )s=a rs(a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质y=ax a>1 0<a<1n 为奇数n 为偶数图象定义域R 值域(0,+)性质(1)过定点(0,1)(2)当x>0时,y>1; x<0时,0<y<1 (2) 当x>0时,0<y<1; x<0时, y>1 (3)在(-,+)上是增函数(3)在(-,+)上是减函数注:如图所示,是指数函数(1)y=a x,(2)y=b x,(3),y=c x(4),y=d x的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。

即无论在轴的左侧还是右侧,底数按逆时针方向变大。

(二)对数与对数函数1、对数的概念(1)对数的定义如果(01)xaN a a 且,那么数x 叫做以a 为底,N 的对数,记作log Na x,其中a叫做对数的底数,N 叫做真数。

(2)几种常见对数对数形式特点记法一般对数底数为a 0,1a a 且log Na 常用对数底数为10 lg N 自然对数底数为 eln N2、对数的性质与运算法则(1)对数的性质(0,1aa 且):①1log 0a ,②lo g 1a a,③lo g N aa N ,④lo g N a aN 。

高中数学第二章基本初等函数(ⅰ)2.1.2指数函数及其性质(第1课时)指数函数的图象及性质

高中数学第二章基本初等函数(ⅰ)2.1.2指数函数及其性质(第1课时)指数函数的图象及性质

12/13/2021
第十二页,共三十八页。
(1)判断一个函数是指数函数的方法 ①看形式:只需判断其解析式是否符合 y=ax(a>0,且 a≠1)这 一结构特征; ②明特征:看是否具备指数函数解析式具有的三个特征.只要 有一个特征不具备,则该函数不是指数函数.
12/13/2021
第十三页,共三十八页。
解析:选 B.法一:由图象可知③④的底数必大于 1,①②的底
数必小于 1.
作直线 x=1,在第一象限内直线 x=1 与各曲线的交点的纵坐
标即各指数函数的底数,则 1<d<c,b<a<1,从而可知 a,b,
c,d 与 1 的大小关系为 b<a<1<d<c.
法二:根据图象可以先分两类:
③④的底数大于 1,①②的底数小于 1,再Байду номын сангаас③④比较 c,d 的
12/13/2021
第十八页,共三十八页。
求解指数函数图象问题的策略 (1)抓住特殊点:指数函数的图象过定点(0,1). (2)巧用图象变换:函数图象的平移变换(左右平移、上下平移). (3)利用函数的性质:奇偶性与单调性.
12/13/2021
第十九页,共三十八页。
1.指数函数①f(x)=mx,②g(x)=nx 满足不等式 0<m<n<1,则 它们的图象是( )
第二十一页,共三十八页。
2.已知 0<a<1,b<-1,则函数 y=ax+b 的图象必定不经过
() A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析:选 A.函数恒过点(0,1+b),因为 b<-1,所以点(0,1 +b)在 y 轴负半轴上.故图象不经过第一象限.
12/13/2021

指数函数、对数函数、幂函数的图像和性质知识点总结

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数1根式(1) 根式的概念(2).两个重要公式”n 为奇数a① 勺a =〈a(a 王0) n 为偶数\a\=: 、—a(a<0)② (n .a)n =a (注意a 必须使I a 有意义) 2. 有理数指数幂 (1)幂的有关概念m①正数的正分数指数幂:a n =n 孑(a 0,m> n N ,且n 1);注:分数指数幂与根式可以互化,通常利用分数指数幂进行 根式的运算。

(2) 有理数指数幂的性质 ① aras=ar+s(a>0,r 、s € Q);②正数的负分数指数幂1— ■ (a • 0, m 、n m 'n N ,且 n 1)③0的正分数指数幂等于 0,0的负分数指数幂没有意义② (ar)s=ars(a>O,r 、s€ Q);③ (ab)r=arbs(a>O,b>O,r € Q);.3. 指数函数的图象与性质注:如图所示,是指数函数(1)y=ax, (2)y=bx, (3),y=cx (4),y=dx的图象,如何确定底数a,b,c,d与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即 c1>d1>1>a1>b1,二c>d>1>a>b 。

即无论在轴 的左侧还是右侧,底数按逆时针方向变大。

(二)对数与对数函数 1、对数的概念 (1) 对数的定义如果a * = N (a - 0且a "),那么数x 叫做以a 为底,N 的对数,记作 x=log a N ,其中a 叫做对数的底数,N 叫做真数。

(2) 几种常见对数2、对数的性质与运算法则(1)对数的性质(a -0,且 a=1):① log a^ 0,② log, =1,③ a 1* 二 N , ④ log a^ = N 。

(2)对数的重要公式:12叫(a,b 均为大于零且不等于1,N 0);log a(3)对数的运算法则:如果a 0,且a=1, M 0, N 0那么①换底公式: N log b② log a b1 iog b a①log a (MN ) = log a M log a N;②log a M-log a M-log a N;N③log a M n二n log a M (n・ R);④log m b n = —log a b。

第八节 指数函数及其性质

第八节  指数函数及其性质

第8 课 幂函数、指数函数及其性质【考点导读】1.了解幂函数的概念,结合函数y x =,2y x =,3y x =,1y x=,12y x =的图像了解它们的变化情况;2.理解指数函数的概念和意义,能画出具体指数函数的图像,探索并理解指数函数的单调性;3.在解决实际问题的过程中,体会指数函数是一类重要的函数模型. 【基础练习】1.指数函数()(1)x f x a =-是R 上的单调减函数,则实数a 的取值范围是(1,2).2.把函数()f x 的图像分别沿x 轴方向向左,沿y 轴方向向下平移2个单位,得到()2x f x =的图像,则()f x =222x -+.3.函数220.3x xy --=的定义域为___R __;单调递增区间1(,]2-∞-;值域14(0,0.3].4.已知函数1()41x f x a =++是奇函数,则实数a 的取值12-. 5.要使11()2x y m -=+的图像不经过第一象限,则实数m 的取值范围2m ≤-.6.已知函数21()1x f x a -=-(0,1)a a >≠过定点,则此定点坐标为1(,0)2. 【范例解析】例1.比较各组值的大小: (1)0.20.4,0.20.2,0.22, 1.62;(2)ba -,ba ,aa ,其中01ab <<<;(3)131()2,121()3.分析:同指不同底利用幂函数的单调性,同底不同指利用指数函数的单调性.解:(1)0.20.200.20.40.41<<= ,而0.2 1.6122<<,0.20.20.2 1.60.20.422∴<<<.(2)01a << 且b a b -<<,b a ba a a -∴>>.(3)111322111()()()223>>.点评:比较同指不同底可利用幂函数的单调性,同底不同指可利用指数函数的单调性;另注意通过0,1等数进行间接分类.例2.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求,a b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围. 分析:研究函数的单调性,将恒成立问题转化为求最值问题.(1)解:因为()f x 是奇函数,所以(0)f =0,即111201()22xx b b f x a a +--=⇒=∴=++ 又由f (1)= -f (-1)知11122 2.41a a a --=-⇒=++(2)解法一:由(1)知11211()22221x x x f x +-==-+++,易知()f x 在(,)-∞+∞上为减函数.又因()f x 是奇函数,从而不等式: 22(2)(2)0f t t f t k -+-<等价于222(2)(2)(2)f t t f t k f k t -<--=-,因()f x 为减函数,由上式推得:2222t t k t ->-.即对一切t R ∈有:2320t t k -->,从而判别式14120.3k k ∆=+<⇒<-解法二:由(1)知112()22xx f x +-=+.又由题设条件得:2222222121121202222t t t k t t t k ---+-+--=<++, 即 :2222212212(22)(12)(22)(12)0t k tttt tk-+--+-+-++-<,整理得 23221,tt k-->因底数2>1,故:2320t t k -->上式对一切t R ∈均成立,从而判别式14120.3k k ∆=+<⇒<-点评:本题第(2)问解法二,计算量大;而解法一利用单调性可以达到简化目的. 例3.已知函数2()(1)1xx f x a a x -=+>+,求证: (1)函数()f x 在(1,)-+∞上是增函数; (2)方程()0f x =没有负根. 分析:注意反证法的运用.证明:(1)设121x x -<<,122112123()()()(1)(1)xxx x f x f x a a x x --=-+++,1a > ,210x x a a ∴->,又121x x -<<,所以210x x ->,110x +>,210x +>,则12()()0f x f x -<故函数()f x 在(1,)-+∞上是增函数.(2)设存在00x <0(1)x ≠-,满足0()0f x =,则00021x x ax -=-+.又001xa <<,002011x x -∴<-<+即0122x <<,与假设00x <矛盾,故方程()0f x =没有负根. 点评:本题主要考察指数函数的单调性,函数和方程的内在联系. 例4.已知函数1133()5x x f x --=,1133()5x x g x -+=.(1)证明()f x 是奇函数,并求()f x 的单调区间;(2)分别计算(4)5(2)(2)f f g -和(9)5(3)(3)f f g -的值,由此概括出涉及函数()f x 和()g x 的对所有不等于零的实数x 都成立的一个等式,并加以证明. 分析:利用定义证明函数的奇偶性和单调性.解:(1)函数()f x 的定义域为(,0)(0,)-∞⋃+∞关于原点对称,又11113333()()()()55x x x x f x f x -------==-=-,()f x ∴是奇函数.设120x x <<,则11113333112212()()55x x x x f x f x -----=-11331211331211()(1)5x x x x =-+,11331211331210,10x x x x -<+> ,12()()0f x f x ∴-<,即函数()f x 在(0,)+∞上是增函数.又()f x 是奇函数,则函数()f x 在(,0)-∞上是增函数.(2)计算(4)5(2)(2)0f f g -=,(9)5(3)(3)0f f g -=,由此概括对所有不等于零的实数x 有2()5()()0f x f x g x -=.221111222233333333332()5()()5055555x x x x x x x x x x f x f x g x -------+---=-⋅⋅=-=.点评:本题主要考察幂函数的性质,以及分析,归纳能力和逻辑思维能力. 【反馈演练】1.函数)10()(≠>=a a a x f x且对于任意的实数y x ,都有( C ) A .)()()(y f x f xy f =B .)()()(y f x f xy f +=C .)()()(y f x f y x f =+D .)()()(y f x f y x f +=+2.设713=x,则 ( A )A .-2<x <-1B .-3<x <-2C .-1<x <0D .0<x <13.将y =2x 的图像( D )A .先向左平行移动1个单位B .先向右平行移动1个单位C .先向上平行移动1个单位D . 先向下平行移动1个单位再作关于直线y =x 对称的图像,可得到函数2log (1)y x =+的图像.4.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( C ) A .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a5.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( A )A .132()()()323f f f <<B .231()()()323f f f << C .213()()()332f f f << D .321()()()233f f f <<6.函数x a y =在[]1,0上的最大值与最小值的和为3,则a 的值为___2__.7.设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =12.8.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3小时,这种细菌由1个可繁殖成_____512____个.9.已知实数a , b 满足等式,)31()21(ba=下列五个关系式: ①0<b <a ②a <b <0 ③0<a <b④b <a <0 ⑤a =b其中不可能...成立的关系式有_____③④____. 10.若关于x 的方程4220xxm ++-=有实数根,求实数m 的取值范围.解:由4220x xm ++-=得,219422(2)224xxxm =--+=-++<,(,2)m ∴∈-∞ 11.已知函数2()()(0,1)2x xa f x a a a a a -=->≠-. (1)判断()f x 的奇偶性;(2)若()f x 在R 上是单调递增函数,求实数a 的取值范围. 解:(1)定义域为R ,则2()()()2x xa f x a a f x a --=-=--,故()f x 是奇函数.(2)设12x x R <∈,12121221()()()(1)2x x x x a f x f x a a a a -+-=-+-, 当01a <<时,得220a -<,即01a <<;当1a >时,得220a ->,即a >综上,实数a的取值范围是(0,1))⋃+∞.12.定义在R 上的奇函数()f x 的最小正周期为2,且(0,1)x ∈时,2()41xx f x =+.(1)求()f x 在[1,0]-上的解析式;(2)判断()f x 在(0,1)上的单调性,并证明;(3)当λ为何值时,方程()f x λ=在[1,1]-上有实数解.解:(1) ()f x 是R 上的奇函数,(0)0f ∴=;又2为()f x 的最小正周期,(1)(21)(1)(1)f f f f ∴=-=-=-,(1)(1)0f f -==,设(1,0)x ∈-,则(0,1)x -∈.22()()4141x x x x f x f x --∴-===-++,2()41x x f x ∴=-+.2,(1,0)41()0,{1,0}2,(0,1)41xx xx x f x x x ⎧-∈-⎪+⎪⎪∴=∈±⎨⎪⎪∈⎪+⎩.(2)设1201x x <<<,12121212(22)(12)()()0(41)(41)x x x x x x f x f x +---=>++,故()f x 在(0,1)上是单调减函数.(3)因为()f x 在(0,1)上是单调减函数,0022()4141f x ∴<<++,即21()(,)52f x ∈,同理,()f x 在(1,0)-上时,12()(,)25f x ∈--,又(1)(1)(0)0f f f -===, 2112(,)(,){0}5225λ∴∈⋃--⋃,方程()f x λ=在[1,1]-上有实数解.。

指数函数和对数函数复习(有详细知识点和习题详解)

指数函数和对数函数复习(有详细知识点和习题详解)

指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。

另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。

整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。

其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。

例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。

二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。

例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。

例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。

二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。

当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。

规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。

2.1.2指数函数及其性质(1)

2.1.2指数函数及其性质(1)
2.1.2指数函数 及其性质
一、指数函数的实际背景:
我国GDP(国内生产总值)未来20年平均增长率可望达到73 . %, 问题1: 那么x年后GDP可望为今年的y倍,则
x y ( 1+7.3%) =1.073x ( x N ,x 20)
问题2:生物体内碳14含量P与死亡年数t的函数关系为:
4、函数y=a x-1+4恒过定点( A.(1,5) B.(1,4) C.(0,4) D.(4,0)
A
)
5、若函数y=a2x+b+1(a>0且a≠1,b为 实数)的图象恒过定点(1,2), -2 则b=_____.
一、通过本节课的教学,你有什么收获?
(1)指数函数的概念; (2)指数函数的图象和性质; (3)利用单调性比较两个指数值的大小。 二、你体会到的数学思想方法有哪些? 数形结合的思想、分类与整合的思想以及 特殊与一般的思想等。
x
1 3
1 2
④、
1.7 , 0.9
0.3
3.1
Hale Waihona Puke x 解: ③、 a 当a 1时,y a 是R上的增函数,
1 3
1 3
a
3.1
1 2
1 2
当0 a 1时,y a 是R上的减函数, a a
④、
1.7
0.3
1而0.9 1,
3.1
1.7
0.3
0.9
小结:比较指数值大小的方法 ①、构造函数法:要点是利用函数的单调性,数 的特征是同底不同指(包括可以化为同底的), 若底数是参变量要注意分类讨论。 ②、中间介值比较法:用别的数如0或1做桥。数 的特征是不同底不同指。
课堂练习:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数及其性质编稿:丁会敏 审稿:王静伟【学习目标】1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域;2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响;(3)从图象上体会指数增长与直线上升的区别.3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型;4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法;5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】要点一、指数函数的概念:函数y=a x(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:(1)形式上的严格性:只有形如y=a x(a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31x y =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a =,则000x x ⎧>⎪⎨≤⎪⎩xx时,a 恒等于,时,a 无意义.②如果0a <,则对于一些函数,比如(4)xy =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在.③如果1a =,则11xy ==是个常量,就没研究的必要了. 要点二、指数函数的图象及性质:y=a x0<a<1时图象a>1时图象图象性质 ①定义域R ,值域 (0,+∞)②a 0=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数a④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x>1x>0时,0<a x<1⑤x<0时,0<a x<1x>0时,a x>1⑥ 既不是奇函数,也不是偶函数要点诠释:(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。

(2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。

当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。

当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。

(3)指数函数xy a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称。

要点三、指数函数底数变化与图像分布规律 (1)① xy a = ②xy b = ③x y c = ④x y d =则:0<b <a <1<d <c又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数112,3,(),()23x x x x y y y y ====的图像:要点四、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法比较法有作差比较与作商比较两种,其原理分别为:①若0A B A B ->⇔>;0A B A B -<⇔<;0A B A B -=⇔=; ②当两个式子均为正值的情况下,可用作商法,判断1A B >,或1AB<即可. 【典型例题】类型一、指数函数的概念例1.函数2(33)xy a a a =-+是指数函数,求a 的值. 【答案】2【解析】由2(33)xy a a a =-+是指数函数,可得2331,0,1,a a a a ⎧-+=⎨>≠⎩且解得12,01,a a a a ==⎧⎨>≠⎩或且,所以2a =.【总结升华】判断一个函数是否为指数函数:(1)切入点:利用指数函数的定义来判断;(2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x .举一反三:【变式1】指出下列函数哪些是指数函数?(1)4xy =;(2)4y x =;(3)4xy =-;(4)(4)xy =-;(5)1(21)(1)2xy a a a =->≠且;(6)4x y -=. 【答案】(1)(5)(6)【解析】(1)(5)(6)为指数函数.其中(6)4xy -==14x⎛⎫⎪⎝⎭,符合指数函数的定义,而(2)中底数x 不是常数,而4不是变数;(3)是-1与指数函数4x的乘积;(4)中底数40-<,所以不是指数函数.类型二、函数的定义域、值域例2.求下列函数的定义域、值域.(1)313x xy =+;(2)y=4x -2x+1;(4)y =为大于1的常数)【答案】(1)R ,(0,1);(2)R [+∞,43);(3)1,2⎡⎫-+∞⎪⎢⎣⎭[)0,+∞;(4)(-∞,-1)∪[1,+∞) [1,a)∪(a ,+∞)【解析】(1)函数的定义域为R (∵对一切x ∈R ,3x≠-1).∵ (13)1111313x x xy +-==-++,又∵ 3x >0, 1+3x>1, ∴ 10113x <<+, ∴ 11013x-<-<+,∴ 101113x<-<+, ∴值域为(0,1).(2)定义域为R ,43)212(12)2(22+-=+-=x x x y ,∵ 2x >0, ∴ 212=x即 x=-1时,y 取最小值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,43). (3)要使函数有意义可得到不等式211309x --≥,即21233x --≥,又函数3x y =是增函数,所以212x -≥-,即12x ≥-,即1,2⎡⎫-+∞⎪⎢⎣⎭,值域是[)0,+∞.(4)∵011112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞),又∵111011≠+-≥+-x x x x 且,∴ a ay a y x x x x≠=≥=-+-+1121121且, ∴值域为[1,a)∪(a ,+∞).【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中112111≠+-=+-x x x 不能遗漏. 举一反三:【变式1】求下列函数的定义域: (1)2-12x y =(2)y =(3)y =0,1)y a a =>≠ 【答案】(1)R ;(2)(]-3∞,;(3)[)0,+∞;(4)a>1时,(]-0∞,;0<a<1时,[)0+∞,【解析】(1)R(2)要使原式有意义,需满足3-x ≥0,即3x ≤,即(]-3∞,.(3) 为使得原函数有意义,需满足2x-1≥0,即2x≥1,故x ≥0,即[)0,+∞(4) 为使得原函数有意义,需满足10xa -≥,即1xa ≤,所以a>1时,(]-0∞,;0<a<1时,[)0+∞,.【总结升华】本题中解不等式的依据主要是指数函数的单调性,根据所给的同底指数幂的大小关系,结合单调性来判断指数的大小关系.类型三、指数函数的单调性及其应用例3.讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性,并求其值域.【思路点拨】对于x ∈R ,22103x x-⎛⎫> ⎪⎝⎭恒成立,因此可以通过作商讨论函数()f x 的单调区间.此函数是由指数函数及二次函数复合而成的函数,因此可以逐层讨论它的单调性,综合得到结果.【答案】函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数 (0,3] 【解析】解法一:∵函数()f x 的定义域为(-∞,+∞),设x 1、x 2∈(-∞,+∞)且有x 1<x 2,∴222221()3x x f x -⎛⎫= ⎪⎝⎭,211211()3x x f x -⎛⎫= ⎪⎝⎭,222222121212121122()()(2)2211()113()3313x x x x x x x x x x x x f x f x -----+--⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭. (1)当x 1<x 2<1时,x 1+x 2<2,即有x 1+x 2-2<0.又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)<0,则知2121()(2)113x x x x -+-⎛⎫> ⎪⎝⎭.又对于x ∈R ,()0f x >恒成立,∴21()()f x f x >.∴函数()f x 在(-∞,1)上单调递增.(2)当1≤x 1<x 2时,x 1+x 2>2,即有x 1+x 2-2>0. 又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)>0,则知2121()(2)1013x x x x -+-⎛⎫<< ⎪⎝⎭.∴21()()f x f x <.∴函数()f x 在[1,+∞)上单调递减.综上,函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数.∵x 2―2x=(x ―1)2―1≥-1,1013<<,221110333x x--⎛⎫⎛⎫<≤= ⎪⎪⎝⎭⎝⎭. ∴函数()f x 的值域为(0,3].解法二:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3uf u ⎛⎫= ⎪⎝⎭.∵u=x 2―2x=(x ―1)2―1,在(―∞,1]上是减函数,1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内是减函数,∴函数()f x 在(-∞,1]内为增函数.又1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()f x 在[1,+∞)上是减函数.值域的求法同解法一.【总结升华】由本例可知,研究()f x y a =型的复合函数的单调性用复合法,比用定义法要简便些,一般地有:即当a >1时,()f x y a=的单调性与()y f x =的单调性相同;当0<a <1时,()f x y a=的单调与()y f x =的单调性相反.举一反三:【变式1】求函数2323xx y -+-=的单调区间及值域.【答案】3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减. 14(0,3]【解析】[1]复合函数——分解为:u=-x 2+3x-2, y=3u;[2]利用复合函数单调性判断方法求单调区间; [3]求值域.设u=-x 2+3x-2, y=3u,其中y=3u为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增,u=-x 2+3x-2在3[,)2x ∈+∞上单减, 则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≤, 2323x x y -+-=的值域为14(0,3].【变式2】求函数2-2()(01)x x f x a a a =>≠其中,且的单调区间.【解析】当a>1时,外层函数y=a u在()-∞+∞,上为增函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()(-1)xxf x a =∞在区间,上为减函数,在区间[)1+∞,上为增函数;当0<a<1时,外层函数y=a u在()-∞+∞,上为减函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()xxf x a =在区间(1)-∞,上为增函数,在区间[)1,+∞上为减函数.例4.证明函数1()(1)1x xa f x a a -=>+在定义域上为增函数. 【思路点拨】利用函数的单调性定义去证明。

相关文档
最新文档