培优--平行线的判定与性质综合训练专题电子教案

合集下载

平行线的判定和性质教案

平行线的判定和性质教案

平行线的性质和判定复习课学案
一:复习
1、如何判定两直线平行?
2.如果两直线平行,你可以得到什么性质?
3.平行线的“判定”和“性质”之间有什么关系吗?
4.填空:如图
∵∠1=∠C (已知)
∴AD∥BC ()
∴∠2=∠B ()
∠EAC+∠C=180°()
前一步用的是平行线的_______,后一步用的是。

二.例题讲解
充分利用已知条件
问题1:已知:如图,∠1=∠2=∠B EF∥AB。

问:∠3和∠C有什么数量关系?为什么?
转化已知条件
问题2:如图:E在直线DF上,B在直线AC上,若∠AGB=∠EHF, ∠C=∠D, 求证: DF∥AC
变换条件
如图:E在直线DF上,B在直线AC上,若∠AGB=∠EHF, DF∥AC求证: ∠C=∠D
如何思考和证明。

并写出证明过程。

E D C B A
若把条件DF ∥AC 改为∠A=∠F 怎样证明?
添加辅助线,构造为基本图形
问题3.(1)如图,若AB//CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看
法.
(2)探究如果改变点E 的位置,它们的数量关系会改变吗?说明你的理由
三:练习巩固
1.已知∠1+∠2=180°, ∠3= ∠B,试判断∠AED 与∠C 的大小关系,并对结论进行说理.
B
C
2、如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠3,求证:AD 平分∠BAC。

教案平行线的性质与判定

教案平行线的性质与判定

经典教案平行线的性质与判定教学目标:1. 理解平行线的定义及性质;2. 掌握平行线的判定方法;3. 能够应用平行线的性质与判定解决实际问题。

教学重点:1. 平行线的定义及性质;2. 平行线的判定方法。

教学难点:1. 平行线的性质与判定在实际问题中的应用。

第一章:平行线的定义及性质1.1 平行线的定义1. 引入直线、射线、线段的概念;2. 讲解平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

1.2 平行线的性质1. 性质1:平行线上的任意一对对应角相等;2. 性质2:平行线上的任意一对内错角相等;3. 性质3:平行线上的任意一对同位角相等。

第二章:平行线的判定方法2.1 判定方法1:同位角相等1. 引入同位角的概念;2. 讲解判定方法:如果两条直线上的同位角相等,这两条直线平行。

2.2 判定方法2:内错角相等1. 引入内错角的概念;2. 讲解判定方法:如果两条直线上的内错角相等,这两条直线平行。

2.3 判定方法3:对应角相等1. 引入对应角的概念;2. 讲解判定方法:如果两条直线上的对应角相等,这两条直线平行。

第三章:平行线的性质与判定在实际问题中的应用3.1 利用平行线的性质解决实际问题1. 举例讲解:平行线之间的距离;2. 练习:已知一条直线上有点A,求距离点A固定距离的点B所在直线与已知直线的位置关系。

3.2 利用平行线的判定解决实际问题1. 举例讲解:已知两条直线上的角相等,求这两条直线平行的证明;2. 练习:已知两条直线上的角相等,证明这两条直线平行。

第四章:平行线的综合应用4.1 利用平行线的性质解决几何问题1. 举例讲解:平行线与三角形的关系;2. 练习:已知三角形ABC,求证:AB//CD。

4.2 利用平行线的判定解决几何问题1. 举例讲解:平行线与四边形的关系;2. 练习:已知四边形ABCD,求证:AD//BC。

第五章:课堂小结与拓展5.1 课堂小结1. 回顾本章所学内容,总结平行线的定义、性质及判定方法;2. 强调平行线在实际问题中的应用。

平行线的判定、性质的综合运用-北京版七年级数学下册教案

平行线的判定、性质的综合运用-北京版七年级数学下册教案

平行线的判定、性质的综合运用-北京版七年级数学下册教案一、教学目标1.知道平行线的概念与判定方法;2.掌握平行线的性质,如平行线的交角补角相等等;3.能够灵活应用平行线的性质,解决一些实际问题。

二、教学重难点1.平行线的判定;2.平行线的性质综合运用。

三、教学过程1. 导入(5分钟)从品质行业的角度,通过老师讲述沿不同路线行走的两个工人,到达事先设定的目的地的时间不同的情况。

2. 平行线的判定(15分钟)1.讲述平行线的定义:在同一平面内,没有交点的两条直线。

2.讲述平行线的判定方法:–通过角度判定:如果两条直线所成的角度相等,则这两条线是平行线。

–通过距离判定:在比较短线段上,找点作垂线,并且两个垂线分别与另一条直线相交,如果这两个垂线的长度相等,那么这两条线就是平行的。

3.让学生通过习题进行巩固练习。

3. 平行线的性质(20分钟)1.讲述平行线的性质:–两条平行线的交角是补角;–同侧内角是180度;–同侧外角是补角;–对顶角相等。

2.让学生通过图判定来巩固这些性质。

4. 平行线性质的运用(35分钟)1.让学生通过图例来解题。

2.教案设计下列习题:–解决矩形的问题:两条对边互相平行,相对边相等。

–两条平行线各有一个点与另一直线相交,证明交点构成的两直线平行。

3.针对学生的问题进行讨论,解答。

5. 思考题(10分钟)向学生提出几个实际问题:•如何通过学习平行线性质,解决出现在日常生活中令人困扰的问题?老师可以引导学生分别给出实际例子,由学生进行分析和解答。

四、诊断评价根据学生们在课堂上的表现,老师可以对学生的学习情况进行评估。

并针对学生在学习过程中出现的问题进行诊断,帮助学生进行及时补救。

《平行线的性质和判定的综合应用》教案

《平行线的性质和判定的综合应用》教案

《平行线的性质和判定的综合应用》教案清华附中大兴学校初一数学组教学目标:(1)平行线的性质与判定的综合应用.(2)经历例题的分析过程,从中体会转化的思想和分析问题的方法,在教学活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法.并在证明的过程中体会转化等数学思想; 进一步培养推理能力,体会数学在实际生活中的应用.教学重点:1.综合应用平行线的性质与判定解决问题.2.渗透数学模型的思想,体会转化的思想和分析问题的方法.教学难点:典型例题分析和综合运用.【教学过程】一、知识回顾对顶角的性质:__________________________.平行线的性质:性质1 :两直线平行,________________________.性质2 :两直线平行,________________________.性质3 :两直线平行,_______________________.平行线的判定:判定1: _________________,两直线平行.判定2: _________________,两直线平行.判定3: _________________,两直线平行.判定4:如果两条直线都与第三条直线平行,那么这条直线也互相________.学生活动——根据定理填空,画出相应的几何图形,写出几何语言.设计意图:以填空形式复习所有新学习的知识点,可以结合各定理的几何图形和几何语言进行复习,目的是加深对定理的认识和熟练掌握.二、例题讲解【例1】(1)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.解:∵∠1=72°,∠2=72°(已知)∴_______________∴_______________(______________________)∴_______________(______________________)又∵∠3=60°(已知)∴∠4=_______________.(2)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠5的度数.(3)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠6的度数.学生活动——认真分析条件,用彩色笔在图中标注,独立完成第1小题填空,和第2小题规范过程的书写.用多种方法解决第三题并说出做每步推理的依据. 教师活动——以填空形式给出第一题,注重理由填写,引导学生用多种方法解决第三题.设计意图:第一套题组非常简单,是平行线性质与判定最简单的综合运用,第三小题加入了对顶角和邻补角知识点,强化综合分析的方法,强化推导和书写的规范性.提炼平行线的性质与判定定理间的关系,形成解题策略.三、深入探究【例2】(1)已知:如图,DG ∥BC ,∠1=∠2求证:EF ∥CD证明:∵DG ∥BC (已知)∴∠1=_______(________________________) 又∵∠1=∠2(已知)∴____________ ∴EF ∥CD.(________________________)(2)已知:如图,∠ADG=∠B ,∠1=∠2求证:∠BEF=∠BDC.21EG D AB C21EGD ABC(3)已知:如图,CD ⊥AB ,EF ⊥AB,∠1=∠2求证:∠AGD=∠ACB.学生活动——独立完成对第1小题填空的填写,和老师一起思考、分析、讨论第二题,完成逻辑推理和书写过程.结合前两道题的思考尝试独立解决第三题. 教师活动——教师主要以讲第二题为主,画推导图,从已知条件出发,层层推理,直到得出结论.设计意图:如果直接给出第三题,对于初学平行线性质和判定的学生来说太难了,通过前两题的分析,逐步递进,化简难度.四、拓展提高【问题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?解读:已知条件:如图,AB ∥CD ,∠1=∠2,∠3=∠4.猜想:(1)∠2和∠3有什么关系,并说明理由;(2)试说明:PM ∥NQ .解:(1)答:∠2____∠3.理由如下: ∵ AB ∥CD ,∴ ∠2____∠3(两直线平行,_______________) 学生活动——将实际问题转化为几何问题,用所学几何知识来解决.教师活动——引导学生如何把实际问题转化为几何问题,并运用所学知识来解决.设计意图:提升学生利用所学几何知识解决实际问题的意识,培养学生将实际问题转化为数学知识及几何语言的能力,拓展学生应用能力.21EGDB C五、自我评价(1)平行线的性质与判定的区别是什么?(2)在解决具体问题过程中,你能区别什么时候需要使用平行线的性质,什么时候需要使用平行线的判定吗?。

《平行线的性质和判定及其综合运用》教案 (公开课)2022年人教版数学

《平行线的性质和判定及其综合运用》教案 (公开课)2022年人教版数学

第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,表达民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决方法〔一〕重点平行线的性质公理及平行线性质定理的推导.〔二〕难点平行线性质与判定的区别及推导过程.〔三〕解决方法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习稳固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤〔一〕明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.〔二〕整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习稳固新知.〔三〕教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题〔出示投影片1〕.1.如图1,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.2.如图2,〔1〕,那么与有什么关系?为什么?〔2〕,那么与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又效劳于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形〔见图4〕,当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,答复出不管怎样画截线,所得的同位角都相等.根据学生的答复,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的根底上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手答复.【教法说明】在前面复习引入的第2题的根底上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也鼓励了学生的学习兴趣.教师根据学生答复,给予肯定或指正的同时板书.[板书]∵〔〕,∴〔两条直线平行,同位角相等〕.∵〔对项角相等〕,∴〔等量代换〕.师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手答复以下问题.教师根据学生表达,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵〔〕,∴〔两直线平行,同位角相等〕.∵〔邻补角定义〕,∴〔等量代换〕.即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵〔见图6〕,∴〔两直线平行,同位角相等〕.∵〔〕,∴〔两直线平行,内错角相等〕.∵〔〕,∴.〔两直线平行,同旁内角互补〕〔板书在三条性质对应位置上.〕尝试反响,稳固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习〔出示投影片2〕:如图7,平行线、被直线所截:图7〔1〕从,可以知道是多少度?为什么?〔2〕从,可以知道是多少度?为什么?〔3〕从,可以知道是多少度,为什么?【教法说明】练习目的是稳固平行线的三条性质.变式训练,培养能力完成练习〔出示投影片3〕.如图8是梯形有上底的一局部,量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师防止包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,标准学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵〔梯形定义〕,∴,〔两直线平行,同旁内角互补〕.∴.∴.变式练习〔出示投影片4〕1.如图9,直线经过点,,,.〔1〕等于多少度?为什么?〔2〕等于多少度?为什么?〔3〕、各等于多少度?2.如图10,、、、在一条直线上,.〔1〕时,、各等于多少度?为什么?〔2〕时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言表达,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,假设学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.〔四〕总结、扩展〔出示投影片1第1题和投影片5〕完成并比较.如图11,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.学生活动:学生答复上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.〔出示投影6〕学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的根底上上升到理性认识,总结出平行线性质与判定的不同.稳固练习〔出示投影片7〕1.如图12,是上的一点,是上的一点,,,.〔1〕和平行吗?为什么?图12〔2〕是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了稳固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业〔一〕必做题课本第99~100页A组第11、12题.〔二〕选做题课本第101页B组第2、3题.作业答案A组11.〔1〕两直线平行,内错角相等.〔2〕同位角相等,两直线平行.两直线平行,同旁内角互补.〔3〕两直线平行,同位角相等.对顶角相等.12.〔1〕∵〔〕,∴〔内错角相等,两直线平行〕.〔2〕∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,同位角相等〕.B组2.∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,内错角相等〕.∵〔〕,∴〔两直线平行,同位角相等〕,〔同上〕.又∵〔已证〕,∴.∴.又∵〔平角定义〕,∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

公开课平行线的判定与性质教案

公开课平行线的判定与性质教案

公开课平行线的判定与性质教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的判定方法。

2. 引导学生探索平行线的性质,并能运用平行线的性质解决实际问题。

3. 培养学生的观察能力、思考能力及动手操作能力。

二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的判定方法:(1) 同位角相等,两直线平行。

(2) 内错角相等,两直线平行。

(3) 同旁内角互补,两直线平行。

3. 平行线的性质:(1) 平行线上的任意一对同位角相等。

(2) 平行线上的任意一对内错角相等。

(3) 平行线上的任意一对同旁内角互补。

(4) 如果两条直线都与第三条直线平行,这两条直线也互相平行。

三、教学重点与难点1. 教学重点:平行线的概念,平行线的判定方法,平行线的性质。

2. 教学难点:平行线的判定方法的应用,平行线的性质的证明。

四、教学方法1. 采用问题驱动法,引导学生探索平行线的性质。

2. 运用多媒体课件辅助教学,直观展示平行线的判定与性质。

3. 注重学生动手操作能力的培养,让学生通过实际操作来理解平行线的判定与性质。

五、教学过程1. 导入新课:通过展示生活中的平行线现象,引导学生进入对平行线的认识。

2. 讲解平行线的概念,引导学生理解平行线的定义。

3. 讲解平行线的判定方法,引导学生掌握平行线的判定技巧。

4. 探索平行线的性质,引导学生发现平行线的性质规律。

5. 运用平行线的性质解决实际问题,巩固学生对平行线的理解。

6. 课堂小结:回顾本节课所学内容,总结平行线的判定与性质。

7. 布置作业:设计相关练习题,让学生巩固所学知识。

六、教学评估1. 课堂问答:通过提问学生,了解学生对平行线概念、判定方法和性质的理解程度。

2. 练习题:布置一些有关平行线的练习题,检查学生对知识的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的能力。

七、教学反思在课后,对整个教学过程进行反思,分析教学中的成功之处和不足之处,以便在今后的教学中进行改进。

平行线的性质与判定的综合应用教学设计

平行线的性质与判定的综合应用教学设计

课题 5.3.1平行线的性质授课人教学目标知识技能使学生理解平行线的性质,能知道平行线的性质与判定的区别,能初步利用平行线的性质进行有关计算.数学思考让学生经历观察、猜想、操作、交流、归纳、推理等活动,培养学生的概括和逻辑思维能力.问题解决使学生体会观察、猜想、实验、归纳、验证的研究问题方法.情感态度让学生经历观察、猜想、操作、交流、归纳、推理等活动,感受数学活动充满了探索性和创造性,激发学生乐于探究的热情.教学重点平行线的性质.教学难点平行线的性质及性质与判定的区别.授课类型新授课课时教具三线相交模型(续表)教学活动教学步骤师生活动设计意图活动一:创设情境导入新课【课堂引入】图5-3-13如图5-3-13,已知公路c分别与两条互相平行的公路a,b相交.情景导入增强学生的直观效果,激发学生的求知欲.两辆汽车在公路a,b上同向行驶拐弯后上公路c 又同向行驶,那么两辆汽车行驶路径所夹的角有什么数量关系?活动二:实践探究交流新知【探究1】两直线平行,同位角相等图5-3-14问题1:如图5-3-14,直线a∥b,直线c与a,b相交,图中∠1与∠2之间有什么关系?你有什么猜想?学生画出图形,根据图形观察、讨论,教师可以启发学生用量角器量角的大小;或剪一组同位角中的一个,把它贴到另一个上面,观察两个角是否重合.鼓励学生尽可能多的利用其他方法进行探索.问题2:如图5-3-15,直线a∥b,直线c与a,b相交,图中其他同位角之间有什么关系?图5-3-15图5-3-16问题3:如图5-3-16,在图5-3-16中再任意画一条直线d与a,b相交,选择一对同位角比较它们的数量关系,你的猜想还成立吗?由此你能得出什么结论?师生共同归纳平行线的性质1:两直线平行,同位角相等.【探究2】两直线平行,内错角相等;两直线平行,同旁内角互补图5-3-17问题1:如图5-3-17,如果a∥b,直线c与a,b相交,那么∠2与∠3,∠2与∠4在数量上有什1.提出问题激发学生的探究欲望,学生亲手验证结论,体验数学活动充满探索性,体验解决问题的多样性.2.根据平行线的性质一推理证明性质2,3,再利用探究1的思路与方法对平行线的另两条性质进行验证,以加深对性质的认识.么关系?并说明理由.以小组为单位探讨推导过程,由小组推荐一人在班上交流,评出叙述最好的两名同学板书说理过程,教师给予评析,引导学生进行初步的逻辑推理.问题2:根据以上结论,你能说出平行线还有什么性质吗?引导学生类比性质1,归纳出平行线的性质2、性质3.问题3:你能动手验证一下平行线的性质2与性质3吗?学生独立思考,动手操作验证平行线的性质2与性质3.最后师生共同总结:平行线的性质2:两直线平行,内错角相等.平行线的性质3:两直线平行,同旁内角互补.(续表)活动三:开放训练体现应用【应用举例】例1图5-3-18是一块梯形铁片,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?图5-3-18解:因为梯形上、下两底AB,DC互相平行,根据“两直线平行,同旁内角互补”,可得∠A与∠D互补,∠B和∠C互补.于是∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.利用新知解决问题,根据相关性质进行推理.图5-3-19【拓展提升】例2光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时会发生折射.由于折射率相同,所以在水中平行的光线,在空气中也互相平行,若∠1=45°,∠2=122°,求图中其他角的度数.巩固新知,在复杂图形中确定各种角的位置关系.活动四:课堂总结反思【当堂训练】课本第20页练习第1,2题.课后作业:课本第22页习题5.3第1,2,3,4,5题.进一步巩固平行线的性质.【板书设计】5.3.1平行线的性质通过知识框图浓缩本节知识,易于学生理解.【教学反思】①[授课流程反思]由平行公路上的汽车同向转弯后两辆汽车行驶路径所夹的角的数量关系引入课题——平行线的性质,体现了数学来源于生活的理念,从而激发学生的探究欲望.授课过程中鼓励学生通过多角度合作探究完成结论的验证与证明,既开拓了学生的思维,又提高了学生的合作探究的意识与能力.②[讲授效果反思]平行线的性质把图形间的数量关系与位置关系紧密结合在一起,通过本节授课学生基本掌握了平行线的三条性质,能结合图形运用三条性质进行简单的推理及计算.③[师生互动反思]________________________________________________________________________④[习题反思]好题题号回顾反思,找出差距与不足,形成知识及数学体系,更进一步提升教师教学能力.。

平行线的判定与性质复习课教案[1]

平行线的判定与性质复习课教案[1]

平行线的判定与性质复习课学习目标:1、使学生进一步理解平行线的判定和性质,掌握平行线的判定和性质之间的区别与联系。

2、灵活运用平行线的判定和性质,提高分析和解决问题的能力。

学习重点:1、掌握平行线的判定和性质之间的区别与联系。

2、平行线的判定和性质的灵活运用。

学习难点:平行线的判定和性质的灵活运用。

教学过程:导入:1、(师:)孔子说:温故而知新,可以为师矣,同学们,你们想当老师吗?那就让我们从复习平行线的判定和性质开始吧!(出示课题:复习平行线的判定和性质)2、请同学们齐读复习目标3、师:为了更好的完成本节课的学习目标,先让我们来热热身吧!一、课前热身:师:这6个小题分别请6个小组齐声回答,比一比,看看哪个小组的同学声音最洪亮,表现最好。

(同学边回答,老师边板书3条判定和3条性质)师:以上这6个小题,我们能否将它们放入各自该进的房间呢?请同学们不要放错了哦!二、知识梳理师:同学们,你们分清楚了吗?那么,接下来就让我们小试刘刀吧!请看例1:三、典例剖析知识点1:平行线的判定.请一位同学说出答案,老师和同学一起说明其余3个错误原因。

(师:本题我们运用的是平行线的判定)意图:此题主要考查学生对平行线的判定这一知识点的理解和掌握,比较简单,属于基础题.知识点2:平行线的性质.例2 如图:AB∥CD,∠A=100°,∠C=120°,求∠AEC的度数师:引导学生作平行线,并请一位同学演板,同时老师板书此图。

解:过点F作FE∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1+∠3=180°,∠4+∠2=180°,∵∠1=100°,∠2=120°,∴∠3=80°,∠4=60°,∴∠AFC=∠3+∠4=140°小结:∠A+∠C+∠F=360°师:此题通过过折点作平行线,再利用平行线的性质解决问题。

意图:此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同旁内角互补与辅助线的作法.通过刚才的例题,我们能否借助同样的方法解决此题呢?小结:∠1+∠2=∠3师:再次体现了折点图形常规作辅助线的方法,此题也运用了平行线的性质。

平行线的性质与判定综合运用教学设计-经典教学教辅文档

平行线的性质与判定综合运用教学设计-经典教学教辅文档

平行线的性质与判定综合运用教学设计一、指点思想与理论根据推理是数学的基本思想方式,也是人们学习和生活中经常运用的思想方式。

本章在合情推理的基础上,引出归纳推理的必要性,属于推理的入门阶段。

二、教学背景分析教学内容:本节课是在学习了平行线的判定及性质定理的基础上,综合运用以上知识解决相关成绩,次要领会数形结合思想在几何教学中的运用。

先生情况:七年级先生刚刚跨入初中,仍然保留着小先生的天真活泼、对重惹事物很感兴味、求知愿望强、具有强烈的好奇心与求知欲,抽象直观思想已比较成熟,但推理能力还比较薄弱,对数形结合思想刚有初步认识,安排本节课是让先生进一步领会数形结合思想的运用及解题思绪的逐渐构成。

教学方式:合作交流,互动探求,点拨指点教学手腕:多媒体辅助教学与学案运用技术预备:多媒体课件三、教学目标1、知识与技能目标:(1)、巩固平行线的判定与性质定理,及其图形言语和符号言语。

(2)、会利用平行线的判定与性质进行简单的推理,从而培养先生的分析推理能力2 、过程与方法目标:经过审题、考虑、交流、展现等活动,明确结合证明题的解题思绪,领会数形结合思想与转化思想的运用;培养先生审题、分析、推理能力,发展先生智能,深化先生思想能力和综合运用能力;浸透数学建模思想。

3、情感态度与价值观目标:激发先生的求知欲,加强运用数学的认识,领会数学的价值,进步学习能力和合作精神,享用成功的喜悦。

在推理证明的书写过程中,领会数学符号言语的精简之美。

知识回顾基础训练一、知识回顾(发问)1.平行线的判定:2.平行线的性质:二、基础训练先生回答回答填空独立完成解题过程,然后一先生借助课件讲解解题过程。

检查先生的掌握情况,为下方的运用做好铺垫经过基础训练,进一步了解先生对定理的简单运用掌握情况。

课件出示标题及结果。

利用课件出示标题及讲例题解析学致运用学致先独立考虑解题思绪,然后由先生借助课件讲解解题过程先独立考虑解题思绪,然后由先生借助课件讲解解题训练先生简单的推理解标注。

北京版数学七年级下册《平行线的判定、性质的综合运用》教学设计

北京版数学七年级下册《平行线的判定、性质的综合运用》教学设计

北京版数学七年级下册《平行线的判定、性质的综合运用》教学设计一. 教材分析北京版数学七年级下册《平行线的判定、性质的综合运用》这一章节主要让学生掌握平行线的判定方法和性质,并能运用这些知识解决实际问题。

本章内容分为两个部分:第一部分是平行线的判定,包括同位角相等、内错角相等、同旁内角互补三种判定方法;第二部分是平行线的性质,包括平行线的性质、平行线的传递性质和两条直线的位置关系。

二. 学情分析学生在七年级上学期已经学习了平行线的概念和性质,对本章内容有一定的了解。

但部分学生对平行线的判定方法和性质的理解不够深入,需要在实际问题中灵活运用。

因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等活动,内化平行线的判定和性质,提高解决问题的能力。

三. 教学目标1.知识与技能:掌握平行线的判定方法,理解平行线的性质,并能运用这些知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.教学重点:平行线的判定方法和性质。

2.教学难点:如何引导学生运用平行线的判定和性质解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入平行线的判定和性质,激发学生的学习兴趣。

2.自主探究法:引导学生观察、操作、思考,培养学生自主学习的能力。

3.合作交流法:学生进行小组讨论,培养学生团队合作的精神。

4.反馈评价法:及时了解学生的学习情况,调整教学策略。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.学具:直尺、三角板、练习本。

七. 教学过程1.导入(5分钟)利用生活实例,如交通线路、建筑物布局等,引出平行线的判定和性质,激发学生的学习兴趣。

2.呈现(10分钟)通过多媒体展示平行线的判定和性质,引导学生观察、操作、思考,总结出平行线的判定方法和性质。

3.操练(10分钟)学生分组进行练习,运用平行线的判定和性质解决问题。

教案平行线的性质与判定

教案平行线的性质与判定

经典教案平行线的性质与判定一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。

2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。

3. 提高学生对几何图形的认识和空间想象力。

二、教学内容1. 平行线的概念及特征2. 平行线的性质3. 平行线的判定方法4. 平行线在实际问题中的应用5. 练习与拓展三、教学重点与难点1. 教学重点:平行线的性质和判定方法,以及其在实际问题中的应用。

2. 教学难点:平行线的判定方法,以及如何在实际问题中灵活运用平行线的性质。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质和判定方法。

2. 利用几何画板软件,直观展示平行线的性质和判定过程。

3. 结合实际例子,让学生学会用平行线的性质和判定方法解决问题。

4. 采用小组讨论法,培养学生的合作意识和团队精神。

五、教学步骤1. 导入新课:通过复习相关知识点,引入平行线的概念。

2. 探究平行线的性质:引导学生利用几何画板软件,自主探究平行线的性质。

3. 讲解平行线的判定方法:引导学生通过观察、分析、归纳,掌握平行线的判定方法。

4. 应用练习:结合实际例子,让学生运用平行线的性质和判定方法解决问题。

5. 课堂小结:回顾本节课所学内容,总结平行线的性质和判定方法。

6. 作业布置:布置相关练习题,巩固所学知识。

7. 课后反思:对本节课的教学进行总结,查找不足,改进教学方法。

六、教学拓展1. 引导学生思考:平行线在现实生活中有哪些应用?2. 举例说明:平行线在建筑设计、道路规划、印刷排版等方面的应用。

3. 引导学生探讨:如何利用平行线的性质解决实际问题?七、课堂互动1. 提问环节:请学生回答平行线的性质和判定方法。

2. 小组讨论:让学生分组讨论如何运用平行线的性质解决实际问题。

3. 分享环节:每组选一名代表分享讨论成果。

八、课后作业1. 完成练习册相关习题。

2. 结合生活实际,寻找平行线的应用实例,下节课分享。

平行线的判定和性质复习课-教案

平行线的判定和性质复习课-教案

平行线的判定和性质复习课-教案平行线的判定和性质复习课正大中学沈水荣一、教学目标1、通过平行线判定和性质的简单练习,进一步让学生感受平行线判定方法与平行线性质的区别和联系,并能正确掌握和解决平行线性质和判定的一般问题。

2、通过在数学过程中安排一定时间思考和交流,进一步认识平行线判定方法与平行线性质的区别和联系,提高分析问题、解决问题的能力、几何语言的书写和表达能力,为了今后平面几何的学习打下坚实的基础。

3、利用平行线的判定和性质,进一步体会几何说理过程,通过学生实践操作,和对例题的题意和变式的分析、讨论,让学生一起参与协作学习,感受集体主义精神,同时提供尝试成功的空间,进一步激发学生学习积极性。

二、教学重点、难点重点:理解并掌握平行线判定和性质之间的区别与联系。

难点:通过例题和例题的变式练习,提高平行线判定和性质的综合运用能力。

三、教材分析《平行线的判定和性质》是上海教育出版社七年级《数学》第十三章的内容。

本章的知识内容是平面几何的奠基和入门,要求学生正确认识几何概念,掌握知识之间的基本联系和基本运用,具有初步的逻辑推理意识、语言表达能力,言必有据的习惯。

会依据平行线的判断和性质及其有关基本事实进行说理,初步感知逻辑推理的过程及其表达。

四、学情分析七年级学生的理解能力和抽象思维能力都比较弱,对于平面图形停留在直观感觉上。

根据学生的这种情况,我通过简单的小练习,积极引导和有效促进学生落实本章学习的基本要求。

学生在学习几何中,在直观感知、逻辑分析、数学思考和规范表达等方面面临一定的困难,容易出现各种各样的问题,所以要通过课堂活动,引导学生重视画图、重视讲理和言必有据,正确、简明、有条理地表达。

同时运用多媒体手段,把原本抽象枯燥的几何问题变成形象直观、有趣的活动,有效地调动了学生的主观能动性,使学生从被动学习转变为主动探究学习。

五、教学过程教学过程内容、方法、活动设计意图(1)温故知新1、判定两条直线平行有哪些方法?在这些方法中,已经知道了什么?得到的结果是什么?平行线的判定:①同位角相等,两直线平行②内错角相等,两直线平行③同旁内角互补,两直线平行2、已知两条直线平行,那么同位角,内错角,同旁内角间有什么关系?温故知新,复习旧知,引入复习课的知识要点。

5_3_2 平行线的性质和判定及其综合运用(教学设计)

5_3_2 平行线的性质和判定及其综合运用(教学设计)

人教版初中数学七年级下册5.3.2 平行线的性质和判定及其综合运用教学设计一、教学目标:1.进一步熟悉平行线的判定方法和性质;2.运用平行线的性质和判定进行简单的推理和计算;(重点、难点)二、教学重、难点:重点:掌握平行线的性质与判定的综合运用;难点:会用平行线的性质与判定进行较复杂的推理和计算.三、教学过程:复习回顾1.平行线的判定方法有哪些?方法4:如图1,若a∥b,b∥c,则a∥c.()方法5:如图2,若a⊥b,a⊥c,则b∥c.()2.平行线的性质有哪些?1.如图是三个相同的三角尺拼接成的一个图形,请结合图形填空.(1)∵∠BCA=________,∴ BD∥AE (_______________________)(2)∵∠BCA=∠D,∴ ________ (_______________________)(3)∵∠BAE+_______=180°,∴ AB∥CE (_________________________)2.如图,AB∥CD,CE∥BF,试说明∠1=∠2.解:∵ AB∥CD (已知)∴∠2=____(_______________________)∵ CE∥BF (已知)∴∠1=____(_______________________)∴ ________ (等量代换)典例解析例 1.如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE//CF.完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知),∴AE //_____(________________________).∴∠EDC=∠5(________________________).∴∠5=∠A(已知),∴∠EDC=______(__________).∴DC//AB(_______________________).∴∠5+∠ABC=180°(________________________),即∠5+∠2+∠3=180°∵∠1=∠2(已知),∴∠5+∠1+∠3=180°(_________),即∠BCF+∠3=180°.∴BE//CF(_________________________).【针对练习】如图,AB//CD,AE交CD于点F,点G在AB上,GH⊥BF,垂足为H,∠1=∠2,试说明AE⊥BF.请将下面的解答过程补充完整(填数字式子或理由).解:∵AB//CD(已知),∴∠1=______(________________________).∵∠1=∠2(已知),∴_____=______(_________).∴______//_____(_______________________).又∵GH⊥BF,即∠GHB=90°,∴∠AFB=∠GHB=90°(______________________).∴_____ ⊥ _____.例2.如图,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,则∠A=∠F,为什么?解:∠AGB=∠DGF (对顶角相等)∠AGB=∠EHF (已知)∴∠DGF=∠EHF (等量代换)∵BD//CE (同位角相等,两直线平行)∴∠C=∠ABD (两直线平行,同位角相等)∵∠C=∠D (已知)∴∠D=∠ABD (等量代换)∴AC//DF (内错角相等,两直线平行)∴∠A=∠F (两直线平行,内错角相等)【针对练习】如图,在三角形ABC中,CD是高,点E, F,G分别在BC,AB,AC上,且EF⊥AB,∠1=∠2,试判断DG与BC的位置关系,并说明理由.解:DG//BC.理由如下:∵CD是三角形ABC的高,且EF⊥AB (已知)∴∠BFE=∠BDC=90° (垂直定义)∴EF//CD (同位角相等,两直线平行)∴∠1=∠BCD (两直线平行,同位角相等)∵∠1=∠2 (已知)∴∠BCD=∠2 (等量代换)∴DG//BC (内错角相等,两直线平行)例3.如图,若AB//CD,你能确定∠B、∠D与∠BED 的大小关系吗?说说你的看法.解:过点E作EF//AB.∴∠B=∠BEF.∵AB//CD.∴EF//CD.∴∠D =∠DEF.∴∠B+∠D=∠BEF+∠DEF =∠DEB.即∠B+∠D=∠DEB.辅助线:为帮助解题而添加的线.辅助线一般画成虚线.【针对练习】如图,AB//CD,探索∠A、∠C与∠AEC的大小关系 .解:过点E作EF//AB∴∠A+∠AEF=180°∵AB//CD∴EF//CD∴∠C+∠CEF=180°∴∠A+∠C+∠AEC=∠A+∠C+∠AEF+∠CEF=360°即∠A+∠C+∠AEC=360°例4.如图,AB∥CD,试说明∠B、∠D 、∠BED之间的大小关系.解:∠D+∠BED=∠B理由:过点E作EF∥AB∵AB∥CD,EF∥AB (已知)∴AB∥CD∥EF(平面内两条直线都与同一条直线平行,这两条直线互相平行)∴∠B=∠BEF,∠D=∠DEF(两直线平行,内错角相等)∵∠DEF+∠BED =∠BEF∴∠D+∠BED=∠B【针对练习】如图,AB∥CD,试说明∠B、∠D 、∠BED之间的大小关系.解:∠B+∠BED=∠D.理由:过点E作EF∥AB∵AB∥CD,EF∥AB (已知)∴AB∥CD∥EF(平面内两条直线都与同一条直线平行,这两条直线互相平行)∴∠B=∠BEF,∠D=∠DEF(两直线平行,内错角相等)∵∠BEF+∠BED =∠DEF∴∠B+∠BED=∠D【总结提升】课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。

平行线的判定与性质综合应用优秀教案

平行线的判定与性质综合应用优秀教案

平行线的判定与性质综合应用教学目标:1、理解掌握平行线的判定和性质;2、正确应用平行线的判定和性质解决问题;3、会进行简单的推理,书写推理过程。

教学重点:平行线的判定和性质综合应用。

教学难点:会分析和写简单推理过程。

教学方法:讲练结合。

学习方法:复习、归纳。

教学过程:一、复习:1、平行线的判定方法有哪些?学生回答2、平行线的性质有哪些?学生回答二、例题讲解:1、已知:如图,点B在DC上,BE平分∠ABD,∠DBE=∠A求证:BE∥AC.证明:如图,∵BE平分∠ABD(已知)∴∠DBE=∠1(角平分线的定义)∵∠DBE=∠A(已知)∴∠1=∠A()∴BE∥AC()①同角或等角的余角相等;②等量代换;③内错角相等,两直线平行;④两直线平行,内错角相等.②以上空缺处依次所填正确的是( )A. ①④B. ②③C. ①③D. ②④2、如图所示,∠1=∠2,AC平分∠DAB.求证:DC∥AB.证明:如图,∵AC平分∠DAB(已知)∴∠1=∠3(角平分线的定义)∵∠1=∠2(已知)∴(等量代换)∴DC∥AB()①∠2=∠3;②DC∥AB;③同位角相等,两直线平行;④两直线平行,内错角相等;⑤内错角相等,两直线平行.以上空缺处依次所填正确的是( )A. ①⑤B. ②③C. ①④D. ②⑤3、已知:如图,直线a,b与直线c,d分别相交,∠1=∠2,∠3=110°.求∠4的度数.解:如图,∵∠1=∠2(已知)∴(同位角相等,两直线平行)∴∠3+∠4=180°()∵∠3=110°(已知)∴∠4=70°(等式性质)①a∥b;②c∥d;③同旁内角互补,两直线平行;④两直线平行,同旁内角互补.以上空缺处依次所填正确的是( )A. ①④B. ②③C. ①③D. ②④三、课堂练习4、已知:如图,AB∥ED,∠ECF=70°.求∠BAF的度数.解:如图,∵∠ECF=70°(已知)∴∠1= (平角的定义)∵AB∥ED(已知)∴(两直线平行,同位角相等)∴∠BAF=110°(等量代换)①∠BAF;②110°;③70°;④;⑤;⑥.以上空缺处依次所填正确的是( )A. ①⑥B. ①⑤C. ②⑤D. ②④5、已知:如图,AB∥CD,BC∥DE.求证:∠B+∠D=180°.证明:如图,∵AB∥CD(已知)∴(两直线平行,内错角相等)∵BC∥DE(已知)∴(两直线平行,同旁内角互补)∴∠B+∠D=180°(等量代换)①∠B=∠C;②∠B=∠E;③∠C=∠D;④∠C+∠D=180°;⑤∠D=∠E.以上空缺处依次所填正确的是( )A. ①③B. ②④C. ①④D. ②③四、课后作业:1、课堂作业:完成练习册平行线性质第三课时练习题。

《平行线的性质和判定及其综合运用》教案

《平行线的性质和判定及其综合运用》教案

板书设计
5.3.1 平行线的性质(2)
错误!两直线平行
教学设计流程 图
导入新课
明确目标
研读课文
知识体验
基础训练
强化训练
归纳小结
课堂检测
教学反思
本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“ ∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻 辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容 的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于 学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别 和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已 知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平 行,得出角的关系,就是平行线的性质
教学目标 教学重难点
1.分清平行线的性质和判定.
2.已知平行用性质,要证平行用判定.
3.能够综合运用平行线性质和判定解题.
重点
平行线性质和判定综合应用
难点
平行线性质和判定灵活运用
本节课我的设计理念是:重组教材,恰当的创设情境,激发学生对教学内容
教学策略与
设计说明
的好奇心和 求知欲,通过独立思考,不断发问和提出问题,让学生在探究
授权书
本人对执教课例《初中数学
人教版
5.3.1平行线的性质
第2课时》拥有全部著作权,同意授权北京继教网教育科技发展有限公司永久使用。使用范
围:北京继教网教育科技发展有限公司所有经营范围(包括但不限于:其他专家主讲课程 中作为课例使用,在资源平台中展示等)。
本授权书自本人签字之日起生效。 授权人(签字): 2018 年 4 月 26 日

平行线的判定方法电子教案

平行线的判定方法电子教案
理由是 同旁内角互补,两直线平行 。
(4)从∠5=∠ ABC ,可以推出AB∥CD,
理由是 同位角相等,两直线平行 。
第二十五页,共28页。
归纳总结
平行线的判定
(pàndìng)
结合本节课的教学(jiāo
xué)目标 1.经历”同位角相等,两直线平行”的发现(fāxiàn)过程. 2.掌握平行线的判定方法 3. 会用平行线的判定方法进行简单的推理和表述.
2 b
所以 a//b
第十二页,共28页。
一般地,判断两直线平行(píngxíng)有下面 的方法:
判定方法(fāngfǎ)3 两条直线被第三条直线所 截,如果同旁内角互补,那么这两条直线平行 简单说成:同旁内角互补,两直线平行
第十三页,共28页。
想一想
如图: B= D=45°, C=135°,
问图中有哪些(nǎxiē)直线平行?
谈一下本节课你的收获与困惑
第二十六页,共28页。
平行线的判定示意图
判定
同位角相等(xiāngděng)
内错角相等(xiāngděng)
同旁内角(tónɡ pánɡ nèi jiǎo)互补
两直线平行 位置关系
数量关系
第二十七页,共28页。
思考
如图,∠1=∠2,能判断
AB∥DF吗?为什么?
不能.
若不能判断AB∥DF,你认为还
第三页,共28页。
平行线的画法 (huà fǎ):
一、放 二、靠
三、推
四、画
第四页,共28页。
平行线的判定(pàn
观察
(guā在nc画h图á)过程(guòchéng)中,什么角始终保持相等?
与发现:
A
由此你能发现判定两直线 (zhíxiàn)平行的方法吗?

2.3第2课时平行线性质与判定的综合运用(教案)

2.3第2课时平行线性质与判定的综合运用(教案)
在学生小组讨论环节,我发现有些同学在讨论过程中容易偏离主题,这可能是他们对平行线在实际生活中的应用还不够了解。针对这一问题,我计划在接下来的课程中,引入更多与生活密切相关的实例,让学生更好地理解平行线在实际中的应用。
2.提高逻辑推理能力:在学习平行线判定过程中,让学生运用逻辑思维,分析问题,推导结论,培养严谨的逻辑推理能力。
3.增强解决问题的能力:将平行线的性质与判定应用于解决实际问题,让学生在实际情境中运用所学知识,提高解决问题的能力。
4.培养几何直观:通过绘制、测量、估算等实践活动,培养学生的几何直观,使其能够直观地理解图形的性质和关系。
5.强化数学思维能力:引导学生运用数学语言、符号进行表达和交流,提高数学思维能力,为后续学习奠定基础。
三、教学难点与重点
1.教学重点
(1)平行线的性质:同位角相等、内错角相等、同旁内角互补,这是本节课的核心内容。教师在教学过程中应重点讲解和强调这些性质,确保学生能够熟练掌握。
举例:在讲解同位角相等时,可以通过绘制图形,让学生观察并理解同位角的定义及性质。
3.重点难点解析:在讲授过程中,我会特别强调平行线的性质和判定方法这两个重点。对于难点部分,如同位角、内错角等概念,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量和比较角度,演示平行线性质的基本原理。
(2)平行线的判定:掌握同位角相等、内错角相等、同旁内角互补这三个判定条件,并能运用这些条件判断两条直线是否平行。
举例:通过具体实例,如铁路轨道、梯子的摆放等,让学生了解平行线在实际生活中的应用,加深对平行线判定的理解。

初一-第07讲-平行线的性质(培优)-教案

初一-第07讲-平行线的性质(培优)-教案

学科教师辅导讲义学员编号: 年 级:七年级 课 时 数:3 学员姓名: 辅导科目:数学学科教师:授课主题 第07讲---平行线的性质授课类型 T 同步课堂P 实战演练S 归纳总结教学目标① 认识并掌握平行线的性质;② 运用平行线的性质进行简单的推理及有条理的表达; ③ 掌握尺规作图的基本方法。

授课日期及时段T (Textbook-Based )——同步课堂一、知识框架二、知识概念(一)平行线的性质1、性质1:两条平行直线被第三条直线所截,同位角相等。

简称为:两直线平行,同位角相等。

2、性质2:两条平行直线被第三条直线所截,内错角相等。

简称为:两直线平行,内错角相等。

3、性质3:两条平行直线被第三条直线所截,同旁内角互补。

简称为:两直线平行,同旁内角互补。

(二)平行线的性质和判定的区别与联系平行线的性质和判定中的条件和结论恰好相反,在“两条直线被第三条直线所截”的前提下,从同位角相等,内错角相等或同旁内角互补,推出两直线平行,这是平行线的判定;而从两直线平行推出同位角相等,内错角相等,同旁内角互补,这是平行线的性质。

体系搭建二者的因果关系如下: ⎫⎪⎬⎪⎭ƒ同位角相等内错角相等同旁内角互补 两直线平行。

(三)尺规作图1、尺规作图:在几何作图中,只用圆规和没有刻度的直尺来作图,称为尺规作图。

2、利用尺规作一个角等于已知角:已知∠AOB ,如右图所示,求作∠A O B ''',使∠A O B '''=∠AOB。

作法如下:①做射线O A '';②以点O 为圆心,以任意长为半径作弧,交OA 于点C ,交OB 于点D ; ③以点O '为圆心,以OC 长为半径作弧,交O A ''于点C '; ④以点C '为圆心,以CD 长为半径作弧,交前面的弧于点D '; ⑤过点D '作射线,∠A O B '''即为所求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学寒假培优训练四(平行线的判定与性质综合训练专题)
[一]、平行线的判定
一、填空
1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ .
2.若a⊥c,b⊥c,则a b .
3.如图2,写出一个能判定直线a ∥b 的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。

6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );
(3)由∠CBA +∠BAD = 180°得 ∥ ( )
8.如图6,尽可能多地写出直线l 1∥l 2的条件: .
9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:
(1)∵∠A =∠ (已知), ∴AC∥ED( );
(2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( );
(4)∵∠2 +∠ = 180°(已知),
∴AC∥ED( );
二、解答下列各题 11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.
12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说
明理由. A C B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3
A F C D
B E
图8
E B A
F D C 图9 1 3
2 A E C D B F 图10 A D C B O 图5 图6 5 1 2
4 3 l 1 l 2 图7
5 4 3 2 1 A D C B
13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.
[二]、平行线的性质 一、填空
1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = . 2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = .
3.如图3所示
(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°( ). (2)若∠2 =∠ ,则AE∥BF.
(3)若∠A +∠ = 180°,则AE∥BF.
4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .
5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = .
6.如图6,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB 互余的角有 . 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有 个. 二、解答下列各题
9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.
10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数. F
2
A B
C D Q E 1 P
M
N 图11
图1 2 4 3 1 A B C D E 1 2 A
B D
C E F 图2 1 2 3 4 5 A B C D
F E 图3 1 2 A B C D E F
图4 图5
1 A B C D
E F G H 图7 1 2 D A C B l 1
l 2 图8 1 A B F C D E G 图6 C D F E B A 图9
1 2 A C B F G E
D
图10
2
1
B C E D
G
32
1
F
E D C B A
11.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)
12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.
求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.
13、如图,EF ∥AD,∠1=∠2,∠BAC=70°.将求∠AGD 的过程填写完整. 解: 因为EF ∥AD,
所以∠2=____(____________________________) 又因为∠1=∠2
所以∠1=∠3(______________)
所以AB ∥_____(_____________________________) 所以∠BAC+______=180°(___________________________) 因为∠BAC=70° 所以∠AGD=_______.
14.如下左图,已知EF ⊥AB ,垂足为F ,CD ⊥AB ,垂足为D ,∠1=∠2,求证:∠AGD=∠
ACB.
A
B
C
D
G E
M F
N
H
15.如上中图,已知:∠B+∠BED+∠D=360°.求证:AB ∥CD.
16. 在上右图中,已知直线AB 和直线CD 被直线GH 所截,交点分别为E 、F ,∠AEF =∠EFD .
(1)直线AB 和直线CD 平行吗?为什么?
(2)若EM 是∠AEF 的平分线,FN 是∠EFD 的平分线,则EM 与FN 平行吗?为什么?
图11 1 2 A B E F D
C C 图12
1 2
3 A B D F
17. 如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.
C
18. 如图,已知AB //CD ,
(1)你能找到∠B 、∠D 和∠BED 的关系吗?
(2)如果∠B =46,∠D =58,则∠E 的度数是多少?
A
B
C
E
19. 如图,已知AD //BC ,且DC ⊥AD 于D ,
(1)DC 与BC 有怎样的位置关系?说说你的理由.
(2)你能说明∠1+∠2=180吗?
A B
C
D 1 5 2 3 4
20. 如下图,直线AB,CD 相交于O 点,OM ⊥AB.
(1)若∠1=∠2,求∠NOD;
(2)若∠1=
1
4
∠BOC,求∠AOC 与∠MOD.
M
N
1
O A B
D C
2
21. 如图,已知:AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,请说明:AE ⊥CF.
A
B
D C
E。

相关文档
最新文档