第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学

合集下载

虚拟变量回归课件

虚拟变量回归课件
虚拟变量回归在各个领域都有广泛的应用,其中包括房价预测和汽车保险费用预估。通过实际案例分析, 我们将展示其在实际问题中的应用。
虚拟变量回归面临的问题
在进行虚拟变量回归时,我们可能会面临多重共线性问题。为了解决这个问 题,我们将介绍哑变量陷阱和特征选 收集数据 2. 对数据进行预处理 3. 分析数据 4. 建立模型 5. 模型的评估与优化
虚拟变量回归
通过介绍虚拟变量回归,我们将探讨其概念、作用以及应用。还将讨论面临 的问题和解决方法,以及如何进行虚拟变量回归并提高模型精度。
什么是虚拟变量回归
虚拟变量回归是一种统计方法,用于处理具有分类特征或非数字特征的数据。 它将非数字变量转换为二元变量,以便在回归模型中使用。
虚拟变量回归的应用
总结
虚拟变量回归具有自身的优点和局限性。我们将总结这些,并探讨未来的发 展方向。最后,我们将分享一些提高模型精度的技巧和建议。

计量经济学导论:ch07 多元回归分析:虚拟变量

计量经济学导论:ch07 多元回归分析:虚拟变量
MBR b0 d1CR1 d2CR2 d3CR3 d4CR4 其他因素
d j系数含义可解释为:保持其他因素不变,信用等级为j
级的城市和信用等级为零级的城市之间在MBR上的差异。 其中,j 1, 2,3, 4。
问题:两种估计方法中,哪种方法更优?
16
例7.7 相貌吸引力对工资的影响
在劳动力市场中,除了存在性别歧视之外,还 可能存在相貌、身高等歧视。如果将样本相貌 分为三类:一般水平、低于一般水平、高于一 般水平,并以一般水平组作为基组,分别对男 人、女人估计方程得:
y = b0 + d0d + b1x + u
This can be interpreted as an intercept shift
If d = 0, then y = b0 + b1x + u If d = 1, then y = (b0 + d0) + b1x + u
The case of d = 0 is the base/benchmark group
虚拟变量与非虚拟变量之间也有交互作用,使 得出现不同的斜率。
female 0,男性组截距是b0,受教育的斜率是b1; female 1,女性组的截距是b0 d0,受教育的斜率是b1 d1。
24
25
我们关心的两个假设: ➢ 男性和女性受教育的回报是相同的。
H0:d1 0
➢ 受教育水平相同的男性和女性的平均工资相同。
将式7.13中的调整R 平方与把排名作为一个单独变量得到
的调整R 平方比较,前者是0.905,后者是0.836。所以,式
7.13 增加了回归的灵活性。 另外,式 7.13中所有其他变量都变得不显著了,联合显著性

《计量经济学简介》幻灯片

《计量经济学简介》幻灯片
《计量经济学简介》幻灯 片
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
ห้องสมุดไป่ตู้
教学进度
第一讲 第二讲 第三讲
第四讲
第五讲
第六讲 第七讲 第八讲
软件学习参考书
现代医学统计方法 Stata 应用,陈峰主编,中国统 计出版社,1999
Stata在统计与计量分析中的应用,王群勇著,南开 大学出版社,2007
计量经济学字典,阿德里安大.C.内尔(Adrian C. Darnell)著,钱晓明(译),上海财大出版社, 2006。
结课验收方式:
1、分组做报告 (20%) (5人一组,每组15分钟)
, 2021
靳云汇,高级计量经济学〔上下〕,北京大学出版社,2021
理论学习参考书
Jerry M. Wooldridge, Introductory Econometrics: A Modern
Approach
中译本:计量经济学导论-现代观点,J. M. 伍德里奇,
费剑平等〔译〕,中国人民大学出版社,2003
(8学时) (8学时) (6学时) (4学时)
共计48学时
理论学习参考书
潘省初,计量经济学中级教程,清华大学出版社,2021 孙敬水,中级计量经济学,上海财经大学出版社,2021 张卫东,中级计量经济学,西南财经大学出版社,2021 陈强, 高级计量经济学及Stata应用,高等教育出版社,
2021 胡咏梅,计量经济学根底与Stata应用,北京师范大学出版社
Goldberger, A. S., 1991, A Course in Econometrics, Harvard University Press. 〔本书善用简单例子解释一 些重要的根本观念〕

计量经济学-虚拟变量回归共71页文档

计量经济学-虚拟变量回归共71页文档
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
计量经济学-虚拟变量回归
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0















66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

计量经济学课件虚拟变量

计量经济学课件虚拟变量
提高模型精度和预测能力
通过引入虚拟变量,可以更准确地刻画经济现象的非线性特征,从而提高计量经济学模型 的精度和预测能力。
拓展应用领域
虚拟变量的引入使得计量经济学模型能够应用于更多的领域,如金融、环境、社会等,进 一步拓展了计量经济学的应用范围。
未来研究方向和趋势
深入研究虚拟变量的理论 和方法
未来研究将进一步深入探讨虚 拟变量的理论和方法,包括虚 拟变量的选择、设定和估计方 法等,以更准确地刻画经济现 象。
https://
未来研究将积极推动虚拟变量 在交叉学科领域的应用,如环 境经济学、金融经济学等,以 促进不同学科之间的交流和合 作。
WENKU DESIGN
WENKU DESIGN
2023-2026
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
要点二
虚拟变量的设置原则
在设置虚拟变量时,需要遵循完备性 和互斥性的原则。完备性要求虚拟变 量的取值能够覆盖所有可能的情况, 而互斥性则要求不同虚拟变量之间不 能存在重叠或交叉的情况。
要点三
虚拟变量的回归系数 解释
在线性回归模型中,虚拟变量的回归 系数表示该定性因素对因变量的影响 程度。当虚拟变量取值为1时,其对 应的回归系数表示该水平与参照水平 相比对因变量的影响;当虚拟变量取 值为0时,则表示该水平对因变量没 有影响。
参数估计与假设检验
参数估计
采用最小二乘法等估计方法,对引入虚拟变量后的模型进行参数估计,得到各 解释变量的系数估计值。
假设检验
根据研究问题和假设,构建相应的原假设和备择假设,通过t检验、F检验等方 法对参数进行假设检验,判断虚拟变量对模型的影响是否显著。

虚拟变量回归模型:计量经济学

虚拟变量回归模型:计量经济学
在实时经济分析和决策支持方面,虚拟变量回归模型可以结合实时数据流进行 动态更新和预测,为政策制定者和市场参与者提供及时、准确的经济分析和决 策支持。
对未来研究的展望
拓展模型应用领域
未来研究可以进一步拓展虚拟变 量回归模型的应用领域,如环境 经济学、劳动经济学、金融经济 学等,以更深入地揭示经济现象 背后的规律。
宏观经济学领域应用
经济增长研究
引入虚拟变量以刻画不同国家或地区的经济增 长模式,并分析各种因素对经济增长的贡献。
通货膨胀与货币政策研究
利用虚拟变量回归模型,探讨通货膨胀的成因、 传导机制及货币政策的效应。
国际贸易研究
通过构建虚拟变量,分析贸易自由化、关税壁垒等因素对国际贸易流量的影响。
金融学领域应用
线性问题,影响模型的稳定性和解释性。
预测能力有限
03
对于具有复杂关系的数据,虚拟变量回归模型可能无法提供准
确的预测。
与其他模型的比较
01
与线性回归模型的比较
虚拟变量回归模型是线性回归模型的一种扩展,通过引入 虚拟变量来处理分类变量。线性回归模型则主要关注连续 变量的影响。
02 03
与逻辑回归模型的比引言 • 虚拟变量回归模型基本原理 • 虚拟变量回归模型应用举例 • 虚拟变量回归模型优缺点分析 • 虚拟变量回归模型在实证研究中的应用 • 虚拟变量回归模型的发展趋势和前景
01 引言
计量经济学简介
1 2
计量经济学定义
计量经济学是应用数学、统计学和经济学方法, 对经济现象进行定量分析的学科。
完善模型理论和方法
在模型理论和方法方面,未来研 究可以进一步完善虚拟变量回归 模型的理论基础和方法体系,提 高模型的解释力和预测能力。

计量经济第七章虚拟变量模型课件

计量经济第七章虚拟变量模型课件

log
P2i P1i
21
21 X i ;
log
P3i P1i
31
31 X i ;
log
P3i P2i
32
32 X i .
其中 P1i、P2i、P3i 分别表示第 个决策者做出 第1、2、3个选择的概率。
23
Yi 0 1D1i ui ,
i 1,2, ,n.
其中 Yi
为个人月支出,
D1i
=
1,已婚 0,未婚
6
• 未婚者的月期望支出为:
E Yi | D1i 0 E 0 1 0 ui 0
• 已婚者的月期望支出为:
E Yi | D1i 1 E 0 1 1 ui 0 1
0 :未婚者的月平均支出 1 :未婚者与已婚者的月平均支出差距 0 1 :已婚者的月平均支出
Zi
f
1
Pi
ln
1
Pi Pi
ln
Pi 1 Pi
0
1
X1i
+
+k X ki
17
二、二元Logit模型估计
• 1.可重复观测数据的二元Logit模型 参数估计
• P144 【相关链接】
• 2.不可重复观测数据的二元Logit模 型参数估计
• P145 【相关链接】
18
三、模型检验与拟合优度
定义:以虚拟变量为因变量的线性回 归模型称为线性概率模型。
(linear probability model,LPM) 模型的基本形式为:
Yi 0 1X1i +2 X2i k Xki ui ,
E Yi | X 0 1X1i +2 X2i k Xki ,
i 1,2, ,n.

计量经济第七章虚拟变量模型

计量经济第七章虚拟变量模型
11
1.线性概率模型(LPM模型)
定义:以虚拟变量为因变量的线性回 归模型称为线性概率模型。 (linear probability model,LPM) 模型的基本形式为:
Yi 0 1 X1i +2 X 2i L k X ki ui ,
E Yi | X 0 1 X1i +2 X 2i L k X ki ,
第八章 虚拟变量模型
1
第一节 第二节 第三节
虚拟变量模型概述 二元概率模型 二元逻辑模型
2
第一节
虚拟变量模型概述
一、虚拟变量的含义 二、虚拟变量作为自变量 三、虚拟变量作为因变量
3
一、虚拟变量的含义
• 一个定性变量,它的可能值只有两个, 也就是说出现或不出现某种属性。一般 地,用1表示出现某种属性,用0表示没 有出现该属性。像这样取值只为0、1的 变量称为虚拟变量或哑变量。 • 并用符号 D表示,从而与常用符号 X区别 开。我们把赋值为0的一类称为基准类。
14
一、二元Probit模型
• 二元Probit模型的基本形式为:
1 Pi Zi 2

Zi

e
t 2 /2
dt
其中 Zi 0 1 X1i +L +k X ki ;是累积标 准正态分布函数,t 为服从标准正态分布 的随机变量。
Zi 1 P i 1 P i 0 1 X1i +L +k X ki .
i 1,2,L , n.
1,已婚 其中 Yi 为个人月支出, D1i = 0,未婚
7
• 未婚者的月期望支出为:
E Yi | D1i 0 E 0 1 g0 ui 0

计量经济学——虚拟解释变量模型PPT课件

计量经济学——虚拟解释变量模型PPT课件

编辑版pppt
8
以一个最简单的虚拟变量模型为例,如 果只包含一个质的因素,而且这个因素 仅有两个特征,则回归模型中只需引入 一个虚拟变量。如果是含有多个质的因 素, 自然要引入多个虚拟变量。
编辑版pppt
9Байду номын сангаас
如果只有一个质的因素,且具有m个特 征,那么如果是含有截距项的,就要引入 m-1个虚拟变量;不含有截距项的, 应该 引入m个虚拟变量,这就是虚拟变量的设 定原则。
编辑版pppt
10
一 、截距变动模型和斜率变动模型
(一)包含一个虚拟变量的截距变动模型 首先从最简单的例子入手,假设只有一
个定性因素影响被解释变量的变化,而且这 个因素仅有两种特征,这时候只需要引入一 个虚拟变量。
编辑版pppt
11
【例8.1】假设有一个包括正常年份和
非正常年份(亚洲金融危机或SARS的影
17
D 0时 正常E 年 ( Y ) i 份 02 X i D 1时 非正E 常 ( Y I) 年 01份 2 X i
如果我们绘制图形,得到的结果仍然
是一样的。此时,β1<0,非正常年份的
线低于正常年份的线,代表非正常年份的 消费水平低于正常年份的消费水平。
编辑版pppt
18
2.虚拟变量D=0所代表的特性或
编辑版pppt
6
需要指出的是,虚拟变量主要是用来 代表质的因素,但是有些情况下也可以 用来代表数量因素。例如在建立储蓄函 数时,“收入”显然是一个重要解释变 量,虽然是“数量”因素,但是为了方 便也可以用虚拟变量表示。
编辑版pppt
7
第二节 虚拟解释变量的设定
虚拟解释变量模型的设定因为质的 因素的多少和这些因素特征的多少而引 入的虚拟变量也会不同。

计量经济学课件虚拟变量

计量经济学课件虚拟变量

2. 检验模型结构的稳定性
定义: 如果模型中参数的估计值与样本的选取无关, 则称该模型结构是稳定的。 用途: (1)检验多重共线性; (2)比较两个回归模型是否存在显著差异。 例:不同时期、不同地区、不同行业
模型:
样本1
样本2
y a1 b1 x
y a2 b2 x
组合:y a bx D XD
1 D 0 1 D 0
1 D 0 1 D 0
宽松政策 紧缩政策 发达地区 不发达地区
销售旺季 销售淡季
高收入家庭 低收入家庭
作用:
⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的关系,提高模型的精度 ⑶便于处理异常数据。
本节学习要求: 1958 年 1 D 其他年份 ⑴如何设置虚拟变量; 0 ⑵如何描述和测量定性因素的影响。
东 中 西
中部地区 其他地区
α2 -α1
(a 1 ) bX
东部地区 其他地区
α1
a bX
方式3:设置3个虚拟变量
1 D1 0
1 D3 0
中部地区 其他地区
西部地区 其他地区
1 D2 0
东部地区 其他地区
D1 D2 D3 1
虚拟变量的设置原则 1:
第四节
虚拟变量
一、虚拟变量及其作用
问题: 在计量经济模型中如何反映定性因素影响?例如:
金融计量分析中的政策因素、心理因素 经济增长分析中的地区差异因素 产品销售分析中的季节因素、消费习惯等因素

定义: 用以描述定性因素影响、只取数值0和1的人工变 量为“虚拟变量”,一般用符号D表示。 (Dummy variable—哑变量)

第七章 多元回归分析-虚拟变量

第七章 多元回归分析-虚拟变量
第七章 多元回归分析 ——虚拟变量
• • • • • • • • • • 模型 y = β0 + β1x1 + β2x2 + . . . βkxk + u 虚拟变量 表示两个类型的虚拟变量 表示多个类型的虚拟变量 虚拟变量之间的交叉项 虚拟变量和连续变量的交叉项 Chow检验 线性概率模型 项目评估和自选择偏差
多个数值的类型变量(续)
• 任何类型变量都可以变成一组虚拟变量 • 因为参照组由常数项表示了, 那么如果一共 有n 个类型,就应该由n – 1 虚拟变量 • 如果有太多的类型,通常应该对其进行分 组 • 例:前10 , 11 – 25, 等

虚拟变量之间的交叉项
• 求虚拟变量的交叉项就相当于对样本进行进一 步分组 • 例:有男性(male)的虚拟变量和hsgrad (仅仅中学毕业) 和 colgrad (大学毕业)的 虚拟变量 • 加入 male*hsgrad 和 male*colgrad, 共有五个 虚拟变量 –> 共有六种类型 • 参照组是女性中学辍学的人 • 此时hsgrad 代表女性仅仅中学毕业者, colgrad 表示女性大学毕业者 • 交叉项表示男性仅仅中学毕业者和男性大学毕 业者
事实上是经济过程检验
• 做模型回归时我们假设所有的样本观测值 都来自同一个总体,如果总体发生改变, 那么模型参数也将发生改变,因此检验总 体也就是经济过程是否发生改变是用计量 进行经济研究的主要步骤。或者是在进行 经济计量研究时必须考虑的一个重要步 骤。其具体方法是:
• 假设我们在1到n个时期研究经济的结构关系,得到如 下的回归模型: Y=b0+b1X1+b2X2+…+bkXk+e 在第q期(1<q < n)曾出台一个经济政策,为检验该 经济政策是否影响我们所研究的经济结构可作如下检 验: 1、用1到q个观测值对模型进行回归,得到回归残差的平 方和,记为ESS1;用q+1到n个观测值对模型进行回 归,得到回归残差平方和,记为ESS2,并令 ESSUR= ESS1+ ESS2。 2、用1到n个观测值对模型进行回归,得到回归残差平方 和,记为ESSR,这可用下面的F统计量检验在k时期出 台的经济政策是否导致经济结构变化: ( ESS R − ESSUR ) / k F ( k , n − 2k ) = ESSUR /(n − 2k )

虚拟变量回归模型课件.ppt

虚拟变量回归模型课件.ppt
第7章 单方程回归模型的几个专门问题
7.1 虚拟变量
7.1.1 虚拟变量的概念及作用
1.虚拟变量的内涵 在计量经济学中,我们把反映定性(或属性)因素变化,取值为0和1的人工变量称为 虚拟变量(Dummy Variable),或称为哑变量、虚设变量、属性变量、双值变量、类型变量、 定性变量、二元型变量、名义变量等,习惯上用字母D表示。例如
第2页,共32页。
虚拟变量
为什么要引入“虚拟变量” ?? 许多经济变量是可以定量度量的或者说是可以直接观测的
如商品需求量、价格、收入、产量等
但是也有一些影响经济变量的因素无法定量度量或者说无法直接观测
如职业、性别对收入的影响,战争、自然灾害对GDP的影响,季节 对某些产品(如冷饮)销售的影响等。
第3页,共32页。
第29页,共32页。
临界指标的虚拟变量的引入
在经济发生转折时期,可通过建立临界指 标的虚拟变量模型来反映。
第30页,共32页。
第31页,共32页。
当截距与斜率发生变化时,则需要同时引入加法与乘 法形式的虚拟变量。
OLS法得到该模型的回归方程为
则两时期进口消费品函数分别为:
当t<t*=1978年, Dt = 0
•女职工本科以上学历的平均薪金: E(Yt | Xt , D1 = 0, D2 = 1) = (b 0 + b3 ) + b1 Xt
•男职工本科以上学历的平均薪金:
E(Yt | Xt , D1 = 1, D2 = 1) = (b0 + b 2 + b3 ) + b1 Xt
第23页,共32页。
2、乘法方式
第8页,共32页。
这种“量化”通常是通过引入“虚拟变量”来完成的。根据这些

第七章虚拟变量回归

第七章虚拟变量回归

第七章虚拟变量回归第七章虚拟变量回归第⼀节虚拟变量的性质在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。

例如需要考虑性别、民族、不同历史时期、季节差异、政府的更迭(⼯党-保守党)、经济体制的改⾰、固定汇率变为浮动汇率、从战时经济转为和平时期经济等。

这些因素也应该包括在模型中。

⼀、基本概念由于定性变量通常表⽰的是某种特征的有和⽆,所以量化⽅法可采⽤取值为1或0。

这种变量称作虚拟变量(dummy variable )。

虚拟变量也称:哑元变量、定性变量等等。

通常⽤字母D 或DUM 加以表⽰(英⽂中虚拟或者哑元Dummy 的缩写)。

⽤1表⽰具有某⼀“品质”或属性,⽤0表⽰不具有该“品质”或属性。

虚拟变量使得我们可以将那些⽆法定量化的变量引⼊回归模型中。

虚拟变量应⽤于模型中,对其回归系数的估计与检验⽅法和定量变量相同。

虚拟变量表⽰两分性质,即“是”或“否”,“男”或“⼥”等。

下⾯给出⼏个可以引⼊虚拟变量的例⼦。

例1:你在研究学历和收⼊之间的关系,在你的样本中,既有⼥性⼜有男性,你打算研究在此关系中,性别是否会导致差别。

例2:你在研究某省家庭收⼊和⽀出的关系,采集的样本中既包括农村家庭,⼜包括城镇家庭,你打算研究⼆者的差别。

例3:你在研究通货膨胀的决定因素,在你的观测期中,有些年份政府实⾏了⼀项收⼊政策。

你想检验该政策是否对通货膨胀产⽣影响。

上述各例都可以⽤两种⽅法来解决,⼀种解决⽅法是分别进⾏两类情况的回归,然后看参数是否不同。

另⼀种⽅法是⽤全部观测值作单⼀回归,将定性因素的影响⽤虚拟变量引⼊模型。

⼆、虚拟变量设置规则虚拟变量的设置规则涉及三个⽅⾯: 1.“0”和“1”选取原则虚拟变量取“1”或“0”的原则,应从分析问题的⽬的出发予以界定。

从理论上讲,虚拟变量取“0”值通常代表⽐较的基础类型;⽽虚拟变量取“1”值通常代表被⽐较的类型。

“0”代表基期(⽐较的基础,参照物);“1”代表报告期(被⽐较的效应)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 虚拟变量
• 在回归分析中,被解释变量的影响因素 除了量(或定量)的因素还有质(或定 性)的因素,这些质的因素可能 会使回 归模型中的参数发生变化,为了估计质 的因素产生的影响,在模型中就需要引 入一种特殊的变量—虚拟变量。
2020/6/16
(二)作用
• 1、可以描述和测量定性(或属性)因素 的影响;
2、多个因素各两种属性
• 如果有m个定性因素,且每个因素各有两个不同的 属性类型,则引入m个虚拟变量。
• 例2
• 研究居民住房消费函数时,考虑到城乡差异和不同 收入层次的影响将消费函数设定为:
Yt=b0+b1Xt+a1D1t+ a2D2t+ μt
Yt=居民住房消费支出
Xt=居民可支配收入
1城镇居民
2020/6/16
虚拟变量对截距的影响
y
有适龄子女
b0&#
o
图1 虚拟变量对截距的影响
x
2020/6/16
2、乘法方式引入虚拟变量
• 基本思想:以乘法方式引入虚拟解释变量
,是在所设定的计量经济模型中,将虚拟 解释变量与其他解释变量相乘作为新 的解释变量,以达到其调整模型斜率的
目的。 • 该方式引入虚拟变量主要作用:
D=
0 无适龄子女
将家庭教育费用支出函数写成:Yt=b0+b1Xt+aDt+μt 即以加法形式引入虚拟变量。
2020/6/16
子女年龄结构不同的家庭教育 费用支出函数为:
• 无适龄子女家庭的教育费用支出函数(D=0 ):Yt=b0+b1Xt+μt
• 有适龄子女家庭的教育费用支出函数(D=1 ):Yt=(b0+a)+b1Xt+μt
• 加法形式引入虚拟解释变量,其作用是改 变了设定模型的截距水平。
2020/6/16
例4
• 居民家庭的教育费用支出除了受收入水平的影响外,还 与子女的年龄结构密切相关。如果一个家庭中有适龄子 女(6—21岁),教育费用支出就多。为了反映“子女 年龄结构”这一定性因素,可设置虚拟变量:
1 有适龄子女
• 2、能够正确反映经济变量之间的相关关 系,提高模型的估计精度;
• 3、便于处理异常数据。
2020/6/16
二、虚拟变量的设置
• (一)设置规则 在模型中设置虚拟变量时,应遵循一定的设置规 则,以免使虚拟变量之间产生多重共线性。
• 1、一个因素多个属性 若定性因素有m个不同属性或相互排斥的类型, 在模型中只能引入m-1个虚拟变量,否则会产生 多重共线性。
2020/6/16
课堂练习
• 某商品需求函数为 Yt=b0+b1Xt+μt,其中,Y
为需求量,X为价格,考虑“地区(农村和城市 )和季节(春夏秋冬)”两个因素的影响,如 何引入虚拟变量建立所需模型。
2020/6/16
3、虚拟变量取值应从分析问题
的目的出发予以界定
• 定性因素的变化通常表现为某种属性或特征是否 存在,所以用1,0两个数值来量化。
费支出的影响反映到上述模型中,需要引入一个虚拟变 量
1城镇居民 D= 0农村居民
则居民消费函数为:Yt=b0+b1Xt+a1Dt+μt
2020/6/16
接前页
城镇居民住房消费模型(即D=1时):
Yt=(b0 +a1)+b1Xt+μt
农村居民住房消费模型(即D=0时):
Yt=b0 +b1Xt+μt
2020/6/16
D1t= 0农村居民 1高收入家庭
2020/6/16
D2t= 0低收入家庭 μt=随机误差项
该模型反映出不同类型居民家 庭的住房消费情况
• 农村低收入家庭(D1=D2=0): Yt=b0+b1Xt+μt
• 农村高收入家庭(D1=0,D2=1):Yt=(b0+a2)+ b1Xt+μt
• 城镇低收入家庭(D1=1,D2=0):Yt=(b0+a1)+ b1Xt+μt • 城镇高收入家庭(D1=D2=1):
4、虚拟变量在单一方程中可以作为解释变量 20,20/6/1也6 可以作为被解释变量。
(二)虚拟变量的引入方式
• 1、加法式引入虚拟变量 • 加法式引入虚拟变量,是在所设定的模型
中,根据所研究问题中数值变量的作用, 按照虚拟变量设置原则,直接在所设定的 计量经济模型中加入适当的虚拟变量,此 时虚拟变量与其他解释变量在设定模型中 是相加关系。
例如:一个定性因素“居民”分为“城镇居民”和 “农村居民”两个属性,则在引入虚拟变量时只 能引入1个。
2020/6/16
例1
• 居民消费函数为:
Yt=b0+b1Xt+μt 其中, Yt=第t个居民的住房消费支出
Xt=第t个居民的可支配收入
μt=随机误差项 为了将城镇居民和农村居民这两种不同类型的居民对住房消
Yt=(b0+a1+ a2)+ b1Xt+μt
2020/6/16
总结与推广
• 通过上例我们可以看出,如果有m个定 性因素,且每个因素各有两个不同的属 性类型,则应该引入 m个虚拟变量。
• 因此,“多因素各两个属性”的虚拟变 量引入可以推广到一般情况,若有些因 素有多个属性类型,则可参照“一个因 素,多种类型”的设置原则来设置虚拟 变量(即应该引入m-1个虚拟变量)。
• 一般地,1表示这种属性或特征存在,0表示这种 属性和特征不存在。而且设置虚拟变量时,基础 类型、否定类型通常取值为0,而比较类型、肯定 类型取值为1。如:在引入“政策”这个虚拟变量 时,将“政策不变”设置为0,将“政策变动”设 置为1;又如:引入“自然灾害”变量对产量影响 ,可将“受灾年份”设置为0,将“不受灾年份” 设置为1。
两个回归模型之间的比较; 因素之间的交互影响分析; 提高模型对现实经济现象的描述精度。
2020/6/16
例5
• 随着收入水平的提高,家庭教育消费支 出的边际消费倾向可能会发生变化。如 下图2。为了反映定性因素对斜率的影响 ,可以用乘法方式引入虚拟变量,将家 庭教育费用支出函数写成:
• Yt=b0+b1Xt+aDtXt+μt • 该函数形式可以分别写成: 有适龄子女(D=1):Yt=b0+(b1+a)Xt+μt 无适龄子女(D=0):Yt=b0+b1Xt+μt
2020/6/16
虚拟变量对斜率的影响
y
有适龄子女
a b0
无适龄子女
o
x
图2 虚拟变量对斜率的影响
2020/6/16
说明
• 从图2可以看出,以乘法方式引入虚拟变 量,反映的是定性因素对斜率的影响, 系数描述了定性因素的影响程度。
相关文档
最新文档