隔焰隧道窑温度-温度串级控制系统Word 文档
陶瓷隧道窑微机温度控制系统
陶瓷隧道窑微机温度控制系统摘要目前我国陶瓷隧道窑炉大多采用人工或简单仪表控制,要想使窑炉长期达到最佳工作状态是不可能的,造成产品合格率、一级品率一直处于较低的水平。
陶瓷隧道窑炉是由预热带、烧成带和冷却带三个部分组成,瓷件烧成温度在1320℃左右,窑内温度场主要由烧成带12对喷嘴燃冷煤气产生,窑炉系统用8组风机来调节窑内的压力场。
排烟风、助燃风将直接影响烧成带的温度场,急冷风会影响最终产品的质量。
温度控制系统将采集的各点温度值,经A/D转换后与设定值进行比较,控制器输出经由D/A变换,变成 4~20mA形式模拟量输出给电动执行器,驱动蝶形阀调节喷嘴的煤气进给量,从而控制烧成带的温度。
12只温度传感器与12个喷嘴一一对应。
关键词:MSP430F149单片机、热电偶,变送器、大林算法、I2C总线、多路开关一.总体方案设计 1.对象的工艺过程陶瓷隧道窑炉是由预热带、烧成带和冷却带三个部分组成,瓷件烧成温度在1320℃左右,窑内温度场主要由烧成带12对喷嘴燃冷煤气产生,窑炉系统用8组风机来调节窑内的压力场。
排烟风、助燃风将直接影响烧成带的温度场,急冷风会影响最终产品的质量。
温度控制系统将采集的各点温度值,经A/D转换后与设定值进行比较,控制器输出经由D/A变换,变成 4~20mA 形式模拟量输出给电动执行器,驱动蝶形阀调节喷嘴的煤气进给量,从而控制烧成带的温度。
12只温度传感器与12个喷嘴一一对应。
窑温控制示意图2.对象分析被控过程传递函数se s s G 403o )251(25.2)(-+=是一个大的延迟环节,而且温度的控制对系统的输出超调量有严格的限制,用最少拍无纹波数字控制器的设计,和PID算法效果欠佳,所以本设计采用大林算法设计数字控制器。
3.控制系统设计要求窑温控制在1320±10℃范围内。
微机自动调节:正常工况下,系统投入自动。
模拟手动操作:当系统发生异常,投入手动控制。
微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。
隧道窑炉温自动控制
隧道窑炉温自动控制隧道窑炉温自动控制A、测温点的选取对炉温控制而言,起关键作用的是烧成带。
为此,目前隧道窑的整个温度制度的控制,通常简化为对烧成带内若干个特定点的温度定值控制,即将烧成带的所有燃烧室分成若干个区,每一区选择一个测温点作为温度控制点。
其温度控制数值由工艺给定的温度控制来决定。
采用热电偶作为检测元件的有两种测温点选择方案;一种是选在侧墙上,将热电偶按垂直方向插入窑内,另一种是选在窑顶上,将热电偶按垂直方向插入窑内。
采用全辐射高温计作为检测元件的一般是在侧墙上留出水平方向的测温孔。
B、对温度测量信号的处理用全辐射高温计测量窑内火焰空间的温度时,很容易受到各种干扰因素的影响。
其中特别是火焰的脉动干扰,常使测量信号也出现严重的脉动情况。
全辐射高温计输出的热电毫伏信号,直接送至电子电位差计记录下来的温度曲线,其脉动辐度可达30~40℃,而把这样的温度测量信号送入炉温控制系统是不适当的。
因为这种脉动信号将使调节器的输出电流也随着发生波动,导致调节阀的频繁动作,显然这种情况对控制系统的工作是十分不利的。
为此,必须设法减少温度测量信号的脉动,经常采用的方法是利用由电容和电阻组成的电子滤波器,对脉动信号进行滤波。
全辐射高温计输出的热电毫伏信号送至DBW型温度变送器,变送器输出的脉动电信号进入RC滤波器,滤除脉动分量后的电流信号经电阻R1进入调节器。
同时从电阻R1上取得电压毫伏信号送至电子电位差计作记录用。
~ 1 ~RC滤波器中的电阻R和电容C的取值,可以通过实验来确定,一般R取1KΩ左右,C取4000uF左右。
C、热电偶的安装为了保证热电偶的测量精度,灵敏度和可检验性,使用寿命,以及安装和维护的方便,必须注意热电偶在窑炉上的安装基本方法和特点。
①窑炉碹顶上安装热电偶测量燃烧式工业窑炉火焰空间温度时,一般采用窑炉碹顶上安装热电偶,在碹顶测量点耐火砖预留孔内,插入WRR型或WRP型热电偶,并用耐火泥填塞孔隙,防止窜火,这是最简单的安装方法。
第6章-串级控制系统讲解全文编辑修改
D1
烧成带 θ1
副测量变送器
主测量变送器 根据副控制器的“反”作用,其输出将减小,“气开”式的控制阀门将 被关小,燃料流量将被调节回稳定状态时的大小。
6.1 串级控制系统的基本概念
串级控制系统的工作过程
(2)只存在一次干扰
θ1r
主控制器
副控制器 调节阀
D2 燃烧室 θ2
隔焰板
D1
烧成带 θ1
副测量变送器
主参数设定
-
主调 节器
-
副调 节器
调节 阀
二次扰动
副对象
一次扰动 主参数
主对象
副变送器
副参数
定值控 制系统
主变送器
主回路
图6-6 串级控制系统标准方框图
1) 在结构上,串级控制系统由两个闭环组成.副回路 起“粗调”作用,主回路起“细调”作用。
2) 每个闭环都有各自的调节对象,调节器和变送器 3) 调节阀由副调节器直接控制
-
-
Gm2(s)
Y2(s)
Gm1(s)
y2,sp
+ -
Gc2 ym2
Gv Gm2
+ +
GGpo22
D2 y2
D2(s)
1 + Gc G 2Gv op22Gm2
y2,sp
Gc2GvGGop2
1 + Gc G 2Gv op22Gm2
+ D2' (s)
+
y2(s)
Go2’(s)
6.2 串级控制系统的分析
6.2 串级控制系统的分析
串级控制特点总结:
1) 在系统结构上, 它是由两个串接工作的控制器构成的双闭环 控制系统。其中主回路是定值控制,副回路是随动控制;
隧道窑工作原理及系统操作
隧道窑工作原理及系统操作隧道窑的系统设置是否合理、窑体结构能否满足要求、操作是否得当,对产品质量、产量、燃料消耗以及窑炉使用寿命都有影响。
(一)隧道窑工作原理隧道窑属于泥流操作的热工设备,沿窑长度方向分为预热带、烧成带、冷却带。
制品与气流以相反方向运动,在三带中依次完成制品的预热、烧成、冷却的过程。
隧道窑两端设有窑门,每隔一定的时间,将装好砖坯的窑车推入一辆,同时,已经烧成砖瓦成品的窑车被推出一辆。
坯体进入预热带后,首先与来自烧成带的燃烧产物(烟气)接触而且被加热,而后进入烧成带,燃料燃烧放出的热量及生成的燃烧产物加热坯体,使之达到一定的温度而烧成,并经过一定时间的保温,生成稳定的制品。
燃烧产物自预热带的排烟口、烟道,经风机或烟囱排出窑外。
烧成的制品进入冷却带,将热量传递给入窑的冷空气制品本身冷却后出窑。
被加热的空气一部分抽进去进行余热利用。
简单来说,隧道窑的烧成过程就是燃料在窑内燃烧、坯体与气体进行热交换、湿交换的过程。
通过燃料燃烧产生的热量,将窑内温度升高到坯体烧成所需温度,在烧成温度时,坯体内各组分发生一系列物理、化学变化,经过这一系列变化,坯体由生坯焙烧为具有一定强度和耐久性,符合建筑要求的砖成品。
(二)隧道窑烧成制度隧道窑工作系统的设置就是在热工基础知识的指导下,针对特定的原料和制品,制定出适宜的烧成制度并保证烧成制度的实现。
窑炉的烧成制度包括温度制度和压力制度,温度制度需要根据原料性能和产品要求而定,而压力制度是保证窑炉按照既定的温度制度进行烧成。
因此影响产品性能的关键是烧成的温度制度。
(1)温度制度温度制度依据物料在烧成过程中的化学、物理变化制定的温度及其与时间的关系,包括升温速度、烧成温度、保温时间、降温速度等参数,并最终形成适宜的烧成曲线。
隧道窑的烧成曲线隧道窑的烧成曲线也是沿窑长装在窑顶或窑侧的热电偶测得的窑内温度曲线(见图5-3),在低温阶段接近气体温度,在高温阶段接近制品温度。
隧道窑控制系统及操作应用
隧道窑控制系统及操作应用隧道窑控制系统使用与窑炉基本故障排除方法自动焙烧控制系统,实现自动焙烧首先必须要建立一个标准,利马窑炉控制设备提供了三种建立标准的办法,第一个是在机柜内有一个空气开关,这个开关上下扳动一次就可以自动建立这个扳动时刻为参考点的标准,这个扳动时刻一定是窑炉工作状况良好,烧出的砖质量好的情况下完成。
第二个是可以根据所烧出砖的历史数据,选择比较理想的那车转,在顶车前五分钟的数据为参考点设定一个标准。
第三个通过操作面板上界面人工修正的一个标准,通常可以参考设备的人工修正标准来控制焙烧。
正常焙烧温度、产量和质量的控制一、合理配风,控制焙烧窑的温度、产量和质量主要是合理配风。
所谓合理配风,就是窑里面焙烧点的氧气不多也不少,我们是用空气来烧砖,空气中的氧含量是21℅,可以用简单的办法检测窑里面是不是缺氧(风的大小)或不缺氧,在焙烧窑温度顶点(最高温度点)往前(进砖方向)走一个车位,打开火眼管盖子,将一块木柴从火眼管放进去,盖上管盖。
揭开管盖,木柴已经燃烧有明火了,证明窑里面不缺氧;如果当揭开管盖,木柴过一两秒钟突然冒出明火就证明窑里面缺氧。
计算机配风就是根据每次加风或是减风,焙烧段的温度是升高还是减少来决定的。
二、及时顶车,顶车就是烧砖,烧砖就等于往窑里面投煤(砖里面有内燃煤),控制风及顶车实质上就是控制氧气和煤耗,控制这两个就可以把窑烧好,烧出质量好产量高的产品。
风闸的使用风闸的使用正确与否显得十分重要,风闸的使用大致分为三种,一是梯形闸,二是桥型闸,三是倒梯形闸。
梯形闸,就是从进砖的方向的风闸开得最大,从风闸的2号或者3号是最高的一个拉闸,最大的拉闸,就是风管半径的一个拉闸。
例如直径400MM的风闸,最大的拉闸就是200MM,往后走可以拉6对、8、9对闸,并逐步减小。
拉梯形闸,要求砖坯要干,砖坯进窑就加温,出高产量。
桥型闸,2、3车位是最低的,8、9车位也是最低的,中间是最大的,也就是风闸呈中间大两头小分布格局。
隧道窑
隧道窑
1.概述 2.隧道窑的结构 3.隧道窑的温度制度
概述
在耐火材料、陶瓷等制品的生产过程中, 烧成是一道重要工序,对产品的产量和质 量影响较大。 烧成设备主要有两大类,一类是连续式窑, 如隧道窑;另一种为间歇式窑,如倒焰窑 等。
高铝砖(3.5 万吨/年): 预热带/烧成带/冷却带 = 72/24/60.6(米)
镁质制品(4~4.5 万吨/年): 预热带/烧成带/冷却带 = 72/24/60(米)
日用瓷(7 x 106 吨/年): 预热带/烧成带/冷却带 = 29.86/26.47/35.67(米)
电瓷(还原焰)(562 万吨/年): 预热带/烧成带/冷却带 = 38.52/28.0/50.07(米)
概念: 一次空气:通过烧嘴直接进入燃烧室(或直接 进入窑内空间)与燃料混合燃烧的空气。它可 以是冷却带抽出的多余热风,可以是冷空气。 二次空气:在冷却带吹入的冷风的一部分,流 到烧成带,与燃料混合燃烧。
一次空气送风装置:风机、喷射器
★一次空气为冷空气时: 冷空气→通风机→空气管道→烧嘴。
★一次空气为热风时: 冷却带的多余热风→耐热风机→管道→烧嘴;
★窑的各带长度确定的一般原则:
1.预热带长度应根据排出废气温度来确 定,废气离开排烟机温 度应低于250℃;
2. 烧成带长度根据保温时间来确定 3.冷却带长度根据出窑制品的温度来确
定,一般应低于100℃
隧道窑长度及各带长度计算式:
V— 隧道窑的有效容积, m3;
隧道窑
日用瓷(7 x 106 吨/年): 预热带/烧成带/冷却带 = 29.86/26.47/35.67(米)
电瓷(还原焰)(562 万吨/年): 预热带/烧成带/冷却带 = 38.52/28.0/50.07(米)
卫生瓷(隔 焰)(2 x 105 件/年): 预热带/烧成带/冷却带 = 30/22/40(米)
空
一 次 空 气
送 煤 气
风
气
图1-1 隧道窑工作原理图
隧道窑系统图
图1-2
三.隧道窑的规格
不同制品的隧道窑常见的规格为:
粘土砖(3~3.5 万吨/年): 预热带/烧成带/冷却带 = 41.8/22.0/37.4(米)
高铝砖(3.5 万吨/年): 预热带/烧成带/冷却带 = 72/24/60.6(米)
隧道窑
1.概述 2.隧道窑的结构 3.隧道窑的温度制度
概述
在耐火材料、陶瓷等制品的生产过程中, 烧成是一道重要工序,对产品的产量和质 量影响较大。 烧成设备主要有两大类,一类是连续式窑, 如隧道窑;另一种为间歇式窑,如倒焰窑 等。
★隧道窑的特点: 优点:生产能力大、燃耗低、使用寿命长、
机械化、自动化程度高、劳动条件好。
釉面砖釉烧(1.8 x 105 m2/年): 预热带/烧成带/冷却带 = 13.47/6.9/13.51(米)
1.概述 2.隧道窑的结构 3.隧道窑的温度制度
隧道窑的结构
规格:长×内宽×有效高度
有效高度:从车台平面至拱顶内衬的最大高度
1.断面尺寸与长度
图1-5
2.窑顶结构
3.窑墙结构 4.隧道窑预热带结构
冷却带:中间高两边低
隧道窑操作说明书
隧道窑操作说明书75⽶⽇⽤瓷轻型装配式环保节能⽓烧隧道窑操作说明书第⼀章窑炉设计说明⼀、⼀般说明㈠⽤途本系列新型节能隧道窑主要⽤于⽇⽤陶瓷⾏业的盘、蝶、杯、碗类制品的烧成。
㈡⼯作原理本系列隧道窑是连续性⼯作的陶瓷烧成热⼯设备,配备全套⾃动控制。
燃料、助燃空⽓和雾化空⽓(以液体燃料⼯作时),通过各⾃的管路系统,受调节阀门控制,以所需的压⼒、流量进⼊烧嘴内均匀混合燃烧,⾼速喷⼊窑道内并在那⾥进⼀步进⾏充分燃烧。
窑道内⾼温燃烧产物与制品直接接触从⽽⾼效地加热制品,然后以与制品前进相反的⽅向⾃烧成带向窑头流动,并继续加热低温区的坯体,最终在窑头集中经由排烟管路系统排出窑外。
坯体分层装载于窑车上,由液压顶车机推动窑道内的窑车运⾏,将坯体匀速、平稳地⾃窑头向窑尾输送。
在坯体前进过程中经历⾃低温预热到⾼温烧成各个温度带,不断与燃烧产物直接进⾏热交换⽽受到加热升温,伴随着⽔份蒸发、结构⽔脱离、氧化物分解、新的晶相形成和玻璃相熔化等⼀系列复杂的物理化学反应,烧制成为陶瓷制品进⼊急冷带、冷却带。
然后受合理直接冷却、缓慢冷却⼀整套冷却⼯作系统,安全、有效地冷却产品出窑。
在配有⾃动、进出窑机衔接的情况下,上述整个过程完全脱离⼈⼯操作⽽⾃动完成。
㈢燃料本系列窑仅适⽤于洁净⽓体燃料和液体燃料。
在为⽤户提供窑炉时,是以其中某种燃料为特定条件设计、制造的。
当以后燃料供应条件发⽣变化时,需改换燃料供应管路、阀门及燃料系统,可供选择互换的燃料有:㈣特点本系列隧道窑经⼴泛吸收⼋⼗年代末国外先进的设计制造技术,结合中国具体国情进⾏优化设计制造。
具有如下⼀些特点:1、采⽤明焰裸烧⼯艺,燃烧产物与被烧制品直接接触,热交换效率⾼,制品受热均匀,可以实现低温快烧。
2、耐⽕保温材料全部采⽤⾼热阻、低蓄热的轻质隔热材料,因⽽,升温降温速度快,保温性能极好;窑外表⾯温度低,散热⼩。
以上两⼤特点使得本系列隧道窑能耗接近了理论烧成能耗。
3、⼯作系统灵活,调整余地⼤,通过调节控制各温度点,可以灵活地改变烧成曲线,实现⼀条窑烧制不同产品之⽬的。
隧道窑热工制度及热工操作
隧道窑内温度分布特点
预热带:前高后低、上高下低、中间高两边低 烧成带:均匀 冷却带:后高前低、下高上低、中间高两边低
但对某一砖垛:预热带:中间低两边高
冷却带:中间高两边低(传热学)
温度的检测与控制
烧成曲线是保证烧成产品质量的主要工艺参数, 只要保证预热带、烧成带和冷却带的温度曲线符 合工艺要求即可。 温度的检测多采用接触式的测温热电偶,配 以非接触式红外辐射高温计。 温度的控制: 烧成带——控制两侧喷枪的燃料量进行温度控制; 冷却带——改变冷却风机的鼓风量及抽热风机的抽风
4.热工制度的调节
所谓热工制度调节,即根据制品的特点及生产要 求来改变隧道窑中某些可变因素使其达到合理的热工 制度。
在隧道窑的实际操作中,主要是调节三大风机
(排烟机、一次风机、冷却风机)、管道闸板开启度、
燃料用量、流速的大小、压力的高低、推车制度等。
⑴预热带
①掌握预热带温度以及减少温差的措施;
②关于排烟机的调节
③冷却带
冷却制品用的空气用量,要根据以下两个原则确定:
ⅰ.要保证制品的冷却效果,窑车出窑后制品的温度一
般应低于100℃。
ⅱ.保证烧成带有足够的二次空气量。
ⅲ. 有抽热风设备时,热风的抽出量应适当。若抽力 过大,会引起该处温度急剧下降,易引起烧成带热气 流向抽出热风的风口方向倒流,破坏窑内气流的运动 方向。
出,通过窑顶、窑墙通道送入窑内; ②喷射器将窑内砖垛下部的气体引射到窑内 上部,形成窑内上下气流循环。
7
5
⑸增热循环: 排烟孔抽出的烟气与增热炉出来的烟气混合后, 从窑顶重新送入窑内各砖垛间,使烟气上下循环, 可以加快对流换热,降低上下温差。
⑹辅助烧嘴
(预热带安装高速烧嘴,耐火
隔焰隧道窑温度-温度串级控制系统复习课程
隔焰隧道窑温度-温度串级控制系统隧道窑是对陶瓷制品进行预热、烧成、冷却的装置。
制品在窑道的烧成带内按工艺规定的温度进行烧结,烧结温度一般为1300°C,偏差不得超过5°C。
本文设计的隔焰式隧道窑烧成带系统是以窑道烧成带的温度作为被控变量,燃料的流量作为操纵变量的温度—温度串级控制系统。
在设计中具体分析了系统各组成部分的选型与正反作用方式的确定及其系统的工作过程。
本系统的硬件设计核心为单片机的和温度的检测变送两部分,同时给出了整体的软件设计流程。
在本文的最后详细的叙述了参数整定的几种方法,各有优点。
关键字:串级控制温度控制单片机参数整定控制器1 隔焰式隧道窑系统的分析及设计要求 (1)1.1 隔焰式隧道窑系统概述 (1)1.2 隔焰式隧道窑系统设计要求 (1)2 隔焰式隧道窑串级控制系统设计 (2)2.1 隔焰式隧道窑控制系统方案设计 (2)2.2 系统控制量和被控量的选择 (4)2.3 系统主副控制器的选择 (4)2.4 系统各部分正反作用方式的确定 (4)2.5 隔焰式隧道窑系统的调节过程 (5)3 系统硬件电路设计 (8)3.1 硬件设计总体思路 (8)3.2 单片机系统的设计 (8)3.3 传感器和变送器的选择 (9)3.4 外围电路结构 (10)4 系统软件设计 (12)4.1软件设计流程图 (12)5 控制器控制规律的实现以及参数整定 (14)5.1控制规律的实现 (14)5.2 控制规律参数的整定 (14)6 心得体会 (16)参考文献 (17)隔焰式隧道窑温度-温度串级控制系统1 隔焰式隧道窑系统的分析及设计要求1.1 隔焰式隧道窑系统概述隧道窑是对陶瓷制品进行预热、烧成、冷却的装置。
制品在窑道的烧成带内按工艺规定的温度进行烧结,烧结温度一般为1300°C,偏差不得超过5°C。
所以烧成带的烧结温度是影响产品质量的重要控制指标之一,因此将窑道烧成带的温度作为被控变量,将燃料的流量作为操纵变量。
陶瓷窑炉及设计 第一章隧道窑第一节概述
陶瓷窑炉与设计----第一章 隧道窑
SUST
陶瓷窑炉与设计----第一章 隧道窑
分类依据 窑 名
特点
按热源分
按火焰是否 进入隧 道来分
1.火焰隧道窑 2.电热隧道窑
1.明焰隧道窑 2.隔焰隧道窑 3.半隔焰隧道窑
以煤、煤气或油为燃料 利用电热元件加热
火焰直接进入隧道 火焰和制品间有隔焰板(马弗板),火焰加热隔 焰板,隔焰板再将热辐射给制品 隔焰板上有孔口,让部分燃烧产物与制品接 触,或烧成带隔焰,预热带明焰
第一章
隧 道 窑 (1)
陶瓷窑炉与设计----第一章 隧道窑
1.1 概述 1.定义:
指连续式窑炉 广义指直通道、连续式烧成的窑炉。 狭义是指窑车式、直通道、连续式窑炉。
SUST
陶瓷窑炉与设计----第一章 隧道窑
2.分类: 按燃料分:煤烧、油烧、气烧和电烧 按制品运载方式分:窑车、辊道、推板 按火焰与制品的接触情况:明焰、隔焰 按通道数:单通道、双通道、多通道 按尺寸: 大型 长100米以上,断面宽1~2米以上, 高1~2米。 小型 数米长,断面:分米×分米(特种瓷)
按窑内运 输设备分
1.窑车隧道窑 2.推板隧道窑 3.辊底隧道 4.输送带隧道窑 5.步梁隧道窑 6.气垫隧道窑
按通道 多少分
1.单通道隧道窑 2.多通道隧道窑
注:电热窑炉也有隔焰式(马弗窑),用隔焰板将电热元件和制品分开
SUST
陶瓷窑炉与设计----第一章 隧道窑 3.隧道窑的特点
利用烟气来预热坯体,使废气排出温度只在200℃℃左右。 利用产品冷却放出的热加热空气使出窑产品温度仅80℃左右 连续性窑、窑墙、顶温度不变,不积热,热耗很低
辊道窑的钢架结构:由槽钢、角钢、方形钢管、圆钢和扁钢
隧道窑工作系统
排烟机:使用温度300度以下 度以下, 排烟机:使用温度 度以下,
若温度高则应 • 掺入冷风。 掺入冷风。
窑 内
图4-5 隧道窑排废气管道结构
六、气幕循环搅动装置
• 作用
– 克服预热带气体分层,保证温度制度及气氛制度的实现。 克服预热带气体分层,保证温度制度及气氛制度的实现。
• 1、封闭气幕 、
– 设置 在窑头或窑尾的窑墙、 在窑头或窑尾的窑墙、窑顶设置分散垂直小孔或与窑车方 向成45°夹角的狭缝,气体喷入形成1- 的正压, 向成 °夹角的狭缝,气体喷入形成 -2Pa的正压,防止 的正压 气体漏入( 气体漏入(出)窑。 – 风源 车下抽热风,冷却带抽热风或分流部分烟气入窑头。 车下抽热风,冷却带抽热风或分流部分烟气入窑头。 – 作用 防止冷风漏入窑内; 防止冷风漏入窑内; 减少上下温差; 减少上下温差; 减少排烟设备的负荷。 减少排烟设备的负荷。
• ①窑体
– 窑墙、窑顶、窑车衬砖 窑墙、窑顶、
浙江特拉 10m 烧嘴顶装
• ②窑内输送设备
– 窑车、推车机 窑车、
• ③燃烧设备
– 燃烧室、烧咀、管道(油、气) 燃烧室、烧咀、管道(
• ④通风设备
– 组成:排烟系统、气幕及循环装置、冷却系统(烟道及管道、 组成:排烟系统、气幕及循环装置、冷却系统(烟道及管道、 排烟机、烟囱、鼓风机) 排烟机、烟囱、鼓风机)
拱 顶 的 砌 筑 方 法
拱顶结构
• 拱脚砖:在两侧窑墙上 拱脚砖:
支撑拱顶的脚砖。 支撑拱顶的脚砖。
• 拱脚梁:是在拱脚处沿 拱脚梁:
窑长方向水平安置的槽 钢、角钢或钢筋混凝土 横梁。 横梁。
• 立柱:是紧靠窑墙两侧 立柱:
直立的工字钢、 直立的工字钢、槽钢或 钢筋混凝土柱。立柱下 钢筋混凝土柱。 端埋在基础内或用拉杆 端埋在基础内或用拉杆 拉紧。 拉紧。
陶瓷窑炉及设计 第一章隧道窑 第二节隧道窑的工作系统和结构(1)
墙体上孔洞砌筑方法 (a)宽度小于250的孔洞砌筑方法;(b)宽度小于450的孔洞砌筑方法
SUST
陶瓷窑炉与设计----第一章 隧道窑 圆形墙错缝与直形墙错缝方法相同,圆形墙应按中心线砌筑
圆形墙的错缝砌法
SUST
陶瓷窑炉与设计----第一章 隧道窑
砌体检查方法 (a)水平度检查方法,(b)倾斜度检查方法,(c)垂直度检查方法
SUST
陶瓷窑炉与设计----第一章 隧道窑
在砌筑工作中有停歇时,不允许留垂直的缺口,应按图留 成阶梯或退台状。
墙体阶梯形退台砌筑方法
SUST
陶瓷窑炉与设计----第一章 隧道窑
炉墙为两种或两种以上砖砌筑:
每一种砌体必须单独砌筑,犹如一堵单墙。 内外墙互相咬砌的砌筑层
窑
名
焙烧卫生陶瓷明焰隧道窑 焙烧卫生陶瓷隔焰隧道窑 焙烧釉面砖素烧明焰隧道窑 焙烧釉面砖釉烧明焰隧道窑
焙烧锦砖明焰隧道窑
各带长度比例% 预热带 烧成带 冷却带 32~34 18~20 46~48 34~38 20~22 44~46 36~44 16~22 32~40 30~32 15~20 46~50 40~50 17~20 32~40
SUST
陶瓷窑炉与设计----第一章 隧道窑
窑顶用材料: 内衬耐火砖 中间隔热砖, 粉状或粒状 隔热材料之上,用一些粉状或粒状的材料填平上部, 硅藻土、粒状高炉矿渣,废碎耐火砖等 红砖 外表的整齐和便于人行走,上面平铺一层红砖。
SUST
陶瓷窑炉与设计----第一章 隧道窑 窑内温度在1300℃以下:
陶瓷窑炉与设计----第一章 隧道窑-结构
隧道炉温度控制系统毕业设计书
基于PLC的红外线隧道炉温度控制系统设计摘要传统的隧道炉电气控制系统普遍采用继电器控制技术,由于采用固定接线的硬件实现逻辑控制,使控制系统的体积增大,耗电多,效率不高且易出故障,不能保证正常的工业生产。
随着计算机控制技术的发展,传统继电器控制技术必然被基于计算机技术而产生的PLC控制技术所取代。
而PLC本身优异的性能使基于PLC 控制的温度控制系统变的经济高效稳定且维护方便。
文章首先介绍了PLC控制系统的硬件结构、工作原理以及设计PLC控制系统的基本原则和步骤。
先根据工厂生产要求设计了温度控制系统的硬件设计,主要包括红外线隧道炉的温度超高警报、温度超低警报、炉腔内温度扩散、加热器的选择等。
最后按照工艺要求设计PLC控制系统,包括PLC的选型、扩展模块的选择,PID指令的选用以及按照温度控制工艺编制PLC程序等。
关键词:PLC,温度控制,PID 调节器,S7-200,温度传感器BASED ON PLC INFRARED TUNNEL TYPE FURNACE TEMPERATURE CONTROL SYSTEM DESIGNABSTRACTThe traditional tunnel type furnace electricity control system uses the black-white control technology generally, because uses the link the hardware to realize the logical control, causes the control system the volume to increase, consumes the electricity to be many, efficiency Gao Qieyi does not crash, cannot guarantee the normal industrial production. Along with the computer control technology development, the tradition black-white control technology the PLC control technology which has based on the computer technology is substituted inevitably. But the PLC itself outstanding performance causes the economy which changes based on the PLC control temperature control system highly effective stable also the maintenance is convenient. The article first introduced the PLC control system hardware architecture, the principle of work as well as design the PLC control system the basic principle and the step.Has first designed the temperature control system hardware design according to the plant production request, mainly includes the infrared tunnel type furnace in the temperature superelevation warning, the temperature ultra low warning, the furnace chamber the temperature proliferation, the heater choice and so on.Finally defers to the technological requirement to design the PLC control system, including the PLC shaping, the expansion module choice, PID instruction selection as well as establishes the PLC procedure according to the temperature control craft and so on.KEY WORDS:PLC,temperature control,PID regulator,S7-200,temperature sensor目录前言 (1)第1章设计总体方案及控制算法描述 (2)1.1 系统总体方案 (2)1.1.1硬件方案设计 (2)1.1.2 软件方案设计 (3)1.2 PID控制算法 (3)1.2.1 PID算法的种类 (5)1.2.2 PID在PLC中的回路指令 (6)1.2.3 PID参数整定 (8)第2章系统硬件设计 (9)2.1 系统的硬件组成 (9)2.1.1 系统结构组成 (9)2.1.2 系统各个组成部分完成的任务 (9)2.2 可编程控制器 (9)2.2.1 PLC的特点 (10)2.2.2 PLC的选型 (10)2.2.3西门子S7-200系列PLC系统主要功能模块介绍 (11)2.3 系统其他硬件选型及配置 (14)2.3.1 显示模块 (14)2.3.2 调功器 (14)第3章S7-200PLC控制程序的设计 (19)3.1 控制程序的组成 (19)3.2温度采集程序设计 (19)3.3 数字滤波程序设计 (20)3.4 PID控制程序设计 (23)第4章程序调试 (25)结论 (27)谢辞 (28)参考文献 (29)附录 (30)前言随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。
隔焰隧道窑温度-温度串级控制系统
隧道窑是对陶瓷制品进行预热、烧成、冷却的装置。
制品在窑道的烧成带内按工艺规定的温度进行烧结,烧结温度一般为1300°C,偏差不得超过5°C。
本文设计的隔焰式隧道窑烧成带系统是以窑道烧成带的温度作为被控变量,燃料的流量作为操纵变量的温度—温度串级控制系统。
在设计中具体分析了系统各组成部分的选型与正反作用方式的确定及其系统的工作过程。
本系统的硬件设计核心为单片机的和温度的检测变送两部分,同时给出了整体的软件设计流程。
在本文的最后详细的叙述了参数整定的几种方法,各有优点。
关键字:串级控制温度控制单片机参数整定控制器1 隔焰式隧道窑系统的分析及设计要求 (1)1.1 隔焰式隧道窑系统概述 (1)1.2 隔焰式隧道窑系统设计要求 (1)2 隔焰式隧道窑串级控制系统设计 (2)2.1 隔焰式隧道窑控制系统方案设计 (2)2.2 系统控制量和被控量的选择 (4)2.3 系统主副控制器的选择 (4)2.4 系统各部分正反作用方式的确定 (4)2.5 隔焰式隧道窑系统的调节过程 (5)3 系统硬件电路设计 (8)3.1 硬件设计总体思路 (8)3.2 单片机系统的设计 (8)3.3 传感器和变送器的选择 (9)3.4 外围电路结构 (10)4 系统软件设计 (11)4.1软件设计流程图 (11)5 控制器控制规律的实现以及参数整定 (12)5.1控制规律的实现 (12)5.2 控制规律参数的整定 (12)6 心得体会 (14)参考文献 (15)隔焰式隧道窑温度-温度串级控制系统1 隔焰式隧道窑系统的分析及设计要求1.1 隔焰式隧道窑系统概述隧道窑是对陶瓷制品进行预热、烧成、冷却的装置。
制品在窑道的烧成带内按工艺规定的温度进行烧结,烧结温度一般为1300°C,偏差不得超过5°C。
所以烧成带的烧结温度是影响产品质量的重要控制指标之一,因此将窑道烧成带的温度作为被控变量,将燃料的流量作为操纵变量。
隧道窑窑温的自动控制系统
2016.10瓦世界现用于烧成各种窑业制品如砖瓦、建筑陶瓷等的隧道窑通常是在烧成带安装多个烧嘴,通过烧嘴燃烧热,加热窑内,保持所设定窑温。
但来自烧嘴的适宜燃烧状态随各种条件而变化,譬如烧结制品种类及其形状、窑内坯件码堆方式、白天晚上或季节变化特别是夏季和冬季。
原来控制燃烧状态的方式是控制烧嘴燃料和燃烧空气的供给,也就是用热电偶测定窑温,与设定窑温用调温器对比,启动控制电机,变换燃料阀开度,调节由管道向烧嘴供给的燃料量来消除温差,此外可同时调节管道上风机气阀的开度,使由风机经管道供给烧嘴的燃烧空气量达到适宜的供给量。
这种方式是在保持风机转数一定的同时,调节管道上的风机气阀开度,操作人员靠手工操作来调节燃烧空气供给量和风机气阀。
手工操作不能充分适应各种条件的变化,各烧嘴燃烧条件未必能保持适宜的燃烧状态,往往因窑内燃烧条件变化,致使制品过烧或欠烧,产生不合格制品。
此外,因夜间操作负荷变动引起电压波动,特别难以适应风机供气量变化,这也是产生不合格制品的原因。
手工调节风机气阀还费力费时。
为解决上述温控问题,隧道窑窑温自动控制系统应运而生。
1 窑温控制系统设计该窑温控制系统的设计方案:由风机经管道向烧嘴供给燃烧空气的同时,用压力传感器测定经管道送入的燃烧空气压力,用转速控制装置控制风机转速,使测定的压力达到适宜燃烧供气量的设定压力。
压力传感器设于恒温室内,使压力传感器周围保持在窑内气温下。
在恒温室内设有温度传感器和加热器。
温度传感器测定恒温室的温度,依据测定温度控制加热器在恒温室内加热,使其保持在恒温状态下。
窑内废气由废气管道和抽风机排出的同时,用压力传感器测定窑内压力或废气管道内的(砖瓦世2016.10然后依据其差值,通过变换器使测定压力达到适宜的设定压压力调节器为控制转速的装置。
其周围窑内气温保持一恒温室内设置用作传感器的热电偶,然后测定温度转化为电信号,与预先设定的适宜温度对比,依使恒温原供调节开度控制燃烧空气供给量该设计例中,取而代之控制风机±20mmH2O(中心值为采用该设计控制系统,其±1mmH2O范围内。
隔焰隧道窑温度-温度串级控制系统
主调节器的任务是准确保持被调量符合生产要求。凡是需要采用串级调节的场合,工艺上对控制品质的要求总是很高的,不允许被调量存在偏差,因此,主调节器都必须具有积分作用,一般都采用PI调节器。如果副环外面的容积数目较多,同时有主要扰动落在副环外面的话,就可以考虑采用PID调节器.
1.2
1)分析被控对象特性,设计一种串级控制系统,绘制系统的结构示意图和原理方框图,说明其工作原理和工艺流程。
2)系统调节过程,控制量和被控量的选择
3)系统各组成部分的选型与正反作用方式的确定。
4)系统硬件电路与软件设计
5)控制器控制规律的实现以及参数整定
2.1
(1)隔焰式隧道窑烧成带温度简单控制系统
串级系统和简单系统有一个显著的区别,即其在结构上形成了两个闭环。一个闭环在里面,被称为副环或者副回路,在控制过程中起着“粗调"的作用;一个环在外面,被称为主环或主回路,用来完成“细调”任务,以最终保证被调量满足工艺要求。无论主环或副环都有各自的调节对象、测量变送元件和调节器。
2
制品在窑道的烧成带内按工艺规定的温度进行烧结,烧结温度一般为1300°C,偏差不得超过5°C。所以烧成带的烧结温度是影响产品质量的重要控制指标之一,因此将窑道烧成带的温度作为被控变量,将燃料的流量作为操纵变量。
(副控制器±)×(调节阀±)×(副对象±)=(-)
其中,调节阀的“±”取决于它的“气开”还是“气关”作用方式,“气开”为“+”,“气关”为“—”;而副对象的“±”取决于控制变量和副被控变量的关系,控制变量增大,副被控变量也增大时称其为“+",否则称其为“-”.
隔焰式隧道窑烧成带温度控制流程图
隔焰式隧道窑烧成带温度控制流程图下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!隔焰式隧道窑烧成带温度控制流程详解隔焰式隧道窑作为一种高效的热工设备,其烧成带的温度控制是整个生产过程中的关键环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隧道窑是对陶瓷制品进行预热、烧成、冷却的装置。
制品在窑道的烧成带内按工艺规定的温度进行烧结,烧结温度一般为1300°C,偏差不得超过5°C。
本文设计的隔焰式隧道窑烧成带系统是以窑道烧成带的温度作为被控变量,燃料的流量作为操纵变量的温度—温度串级控制系统。
在设计中具体分析了系统各组成部分的选型与正反作用方式的确定及其系统的工作过程。
本系统的硬件设计核心为单片机的和温度的检测变送两部分,同时给出了整体的软件设计流程。
在本文的最后详细的叙述了参数整定的几种方法,各有优点。
关键字:串级控制温度控制单片机参数整定控制器1 隔焰式隧道窑系统的分析及设计要求 (1)1.1 隔焰式隧道窑系统概述 (1)1.2 隔焰式隧道窑系统设计要求 (1)2 隔焰式隧道窑串级控制系统设计 (2)2.1 隔焰式隧道窑控制系统方案设计 (2)2.2 系统控制量和被控量的选择 (4)2.3 系统主副控制器的选择 (4)2.4 系统各部分正反作用方式的确定 (4)2.5 隔焰式隧道窑系统的调节过程 (5)3 系统硬件电路设计 (8)3.1 硬件设计总体思路 (8)3.2 单片机系统的设计 (8)3.3 传感器和变送器的选择 (9)3.4 外围电路结构 (10)4 系统软件设计 (11)4.1软件设计流程图 (11)5 控制器控制规律的实现以及参数整定 (12)5.1控制规律的实现 (12)5.2 控制规律参数的整定 (12)6 心得体会 (14)参考文献 (15)隔焰式隧道窑温度-温度串级控制系统1 隔焰式隧道窑系统的分析及设计要求1.1 隔焰式隧道窑系统概述隧道窑是对陶瓷制品进行预热、烧成、冷却的装置。
制品在窑道的烧成带内按工艺规定的温度进行烧结,烧结温度一般为1300°C,偏差不得超过5°C。
所以烧成带的烧结温度是影响产品质量的重要控制指标之一,因此将窑道烧成带的温度作为被控变量,将燃料的流量作为操纵变量。
如果火焰直接在窑道烧成带燃烧,燃烧气体中的有害物质将会影响产品的光泽和颜色,所以就出现了隔焰式式隧道窑。
火焰在燃烧室中燃烧,热量经过隔焰式板辐射加热烧成带。
1.2 隔焰式隧道窑系统设计要求1)分析被控对象特性,设计一种串级控制系统,绘制系统的结构示意图和原理方框图,说明其工作原理和工艺流程。
2)系统调节过程,控制量和被控量的选择3)系统各组成部分的选型与正反作用方式的确定。
4)系统硬件电路与软件设计5)控制器控制规律的实现以及参数整定2 隔焰式隧道窑串级控制系统设计2.1 隔焰式隧道窑控制系统方案设计(1)隔焰式隧道窑烧成带温度简单控制系统隔焰式隧道窑烧成带温度简单控制系统工艺流程图如图1所示,原理方框图如图2所示。
按照简单控制系统,影响烧成带温度θ1的各种干扰因素都被包括在控制回路当中,只要干扰造成θ1偏离设定值,控制器就会根据偏差的情况,通过控制阀改变燃料的流量,从而把变化了的θ1重新调回到设定值。
图1 隔焰式隧道窑烧成带温度简单控制系统工艺流程图图2 隔焰式隧道窑烧成带温度简单控制系统原理方框图但由于从控制阀到窑道烧成带滞后时间太大,如果燃料的压力发生波动,尽管控制阀门开度没变,但燃料流量将使图2隔焰式隧道窑温度简单控制系统方框图生变化,必将引起燃烧室温度的波动,再经过隔焰式板的传热、辐射,引起烧成带温度的变化。
因为只有烧成带温度出现偏差时,才能发现干扰的存在,所以对于燃料压力的干扰不能够及时发现。
烧成带温度出现偏差后,控制器根据偏差的性质立即改变控制阀的开度,改变燃料流量,对烧成带温度加以调节。
可是这个调节作用同样要经历燃烧室的燃烧、隔焰式板的传热以及烧成带温度的变化这个时间滞后很长的通道,当调节过程起作用时,烧成带的温度已偏离设定值很远了。
也就是说,即使发现了偏差,也得不到及时调节,造成超调量增大,稳控制器烧成带燃烧室控制阀检测、变送D 2D 1设定值+-θ1定性下降。
如果燃料压力干扰频繁出现,对于单回路控制系统,不论控制器采用PID 的什么控制作用,还是参数如何整定,都得不到满意的控制效果。
(2)隔焰式隧道窑串级控制系统控制燃烧室的温度θ2并不是目的,真正的目的是烧成带θ1的温度稳定不变,所以烧成带温度控制器应该是定值控制,起主导作用。
而燃烧室温度控制器则起辅助作用,它在克服干扰D 2的同时,应该受烧成带温度控制器的操纵,操纵方法就是烧成带温度控制器的输出作为燃烧室温度控制器的设定值,从而就形成了图3所示的串级控制系统。
图3 隔焰式隧道窑温度-温度串联控制工艺流程图所谓串级控制系统,就是采用两个控制器串联工作,主控制器的输出作为副控制器的设定值,由副控制器的输出去操纵控制阀,从而对主被控变量具有更好的控制效果,这样的控制系统被称为串级控制系统,隔焰式隧道窑温度-温度串联控制原理方框图如图4所示。
图4 隔焰式隧道窑温度-温度串联控制原理方框图串级系统和简单系统有一个显著的区别,即其在结构上形成了两个闭环。
一个闭环在里面,被称为副环或者副回路,在控制过程中起着“粗调”的作用;一个环在外面,被称为主环或主回路,用来完成主控制器副检测变送烧成带燃烧室控制阀副控制器主检测变送设定值+-+-D2D1θ2θ1“细调”任务,以最终保证被调量满足工艺要求。
无论主环或副环都有各自的调节对象、测量变送元件和调节器。
2.2 系统控制量和被控量的选择制品在窑道的烧成带内按工艺规定的温度进行烧结,烧结温度一般为1300°C,偏差不得超过5°C。
所以烧成带的烧结温度是影响产品质量的重要控制指标之一,因此将窑道烧成带的温度作为被控变量,将燃料的流量作为操纵变量。
2.3 系统主副控制器的选择在串级控制系统中,主调节器和副调节器的任务不同,对于它们的选型即调节动作规律的选择也有不同考虑。
副调节器的任务是要快动作以迅速抵消落在副环内的二次扰动,面且副参数则并不要求无差,所以一般都选P调节器,也可以采用PD调节器,但这增加了系统的复杂性,而效果并不很大。
在一般情况下,采用P调节器就足够了。
如主、副环的频率相差很大,也可以考虑采用PI调节器。
隔焰式隧道窑串级控制系统中由于主、副对象都是对温度的采集,所以主、副环的频率相差不大,副调节器选用P调节器即可达到设计要求。
主调节器的任务是准确保持被调量符合生产要求。
凡是需要采用串级调节的场合,工艺上对控制品质的要求总是很高的,不允许被调量存在偏差,因此,主调节器都必须具有积分作用,一般都采用PI调节器。
如果副环外面的容积数目较多,同时有主要扰动落在副环外面的话,就可以考虑采用PID调节器。
隔焰式隧道窑串级控制系统中对烧成带的温度控制要求烧结温度一般为1300°C,偏差不得超过5°C,为了达到精准的控制,所以在系统本设计中主调节器选用PID调节器。
2.4 系统各部分正反作用方式的确定与简单控制系统一样,一个串级控制系统要实现正常运行,其主、副回路都必须构成负反馈,因而必须正确选择主、副控制器的正、反作用方式。
(1)副控制器正、反作用的选择串级控制系统中,副控制器作用方式的选择,是根据工艺安全等要求,在选定调节阀的气开、气关形式后,按照使副回路构成副反馈系统的原则来确定的。
因此,副控制器的作用方式与副对象特性及调节阀的气开、气关形式有关,其选择方法与简单控制系统中控制器正、反作用方式的选择方法相同。
这时可不考虑主控制器的作用方式,只是将主控制器的输出作为副控制器的设定值即可。
在假定副测量变送装置的增益为正的情况下,副控制器正反作用选择的判别式为(副控制器±)×(调节阀±)×(副对象±)=(-)其中,调节阀的“±”取决于它的“气开”还是“气关”作用方式,“气开”为“+”,“气关”为“-”;而副对象的“±”取决于控制变量和副被控变量的关系,控制变量增大,副被控变量也增大时称其为“+”,否则称其为“-”。
(2)主控制器正、反作用的选择串级控制系统中,主控制器作用方式的选择完全由工艺情况确定,而与调节阀的气开、气关形式及副控制器的作用方式完全无关,即只需根据主对象的特性,选择与其作用方向相反的主控制器就行了。
由于副回路是一个随动控制系统,在选择主控制器的作用方式时,首先把整个副回路简化为一个环节,该环节的输入信号是主控制器的输出信号(即副回路的设定值),而输出信号就是副变量,其副回路的输入信号与输出信号之间总是正作用,即输入增加,输出亦增加。
因此,整个副回路可看成为一个增益为正的环节。
这样,在假定主测量变送装置的增益为正的情况下,主控制器正、反作用的选择实际上只取决于主对象的增益符号,主控制器正反作用方式选择的判别式为(主控制器±)× (主对象±)=(-)由这个判别式也可看出,主控制器的作用方向与主对象的特性相反。
即当主对象为正作用时,主控制器选反作用;而当主对象为负作用时,主控制器选正作用。
在隔焰式隧道窑串级控制系统中,考虑到生产的安全,控制阀选择“气开”工作方式,根据主、副控制器的正反选择规律分析,两个控制器都选择“反”作用方式。
2.5 隔焰式隧道窑系统的调节过程(1)只存在二次干扰。
假定系统只受到来自燃料压力波动的干扰。
由于它进入副回路,所以属于二次干扰D2例如整个系统处于稳定状态下,突然燃料压力升高,这时尽管控制阀门开度没变,可燃料升高,经副温度检测变送器后,副控制器接受的流量增大了,首先将引起燃烧室温度θ2的测量值增大。
由于燃料流量的变化,并不能立即引起烧成带温度θ的变化。
所以此时1主控制器的输出暂时还没有变化,因此副控制器处于定值控制状态。
根据副控制器的“反”作用,其输出将减小,“气开”式的控制阀门将被关小,燃料流量将被调节回稳定状态时的大小。
(2)只存在一次干扰假定串级控制系统只受到来自窑车速度的干扰,比如窑车的速度加快,必然导致窑道中烧成带温度θ的降低。
对于定值控制的主控制器来说,其测量值减小,由于主控制器1的“反”作用,它的输出必然增大,也就是说副控制器的设定值增大了。
因为窑车的速度)没有影响,所以这时副控制器的测量值属于一次干扰,它对副变量(燃烧室的温度θ2暂时还没有改变。
对于副控制器来说,设定值增大而测量值没变,可以等效为其设定值不变而测量值减小。
根据副控制器的“反”作用,其输出将增大,“气开”式的控制阀门开升高,进而使窑道烧成带温度回升至设度增大,从而加大燃料的流量,使燃烧室温度θ2定值。
(3)一次干扰和二次干扰同时存在两种干扰同时存在又可分为两种不同情况。
①一次干扰和二次干扰引起主变量和副变量同方向变化,即同时增大或同时减小。
升高;二次干假定一次干扰为窑车的前进速度减小,将引起主变量(烧成带温度)θ1扰为燃料压力增大,导致副变量(燃烧室温度)θ也升高。