一元二次方程的解法直接开平方法教案

合集下载

1.2《一元二次方程的解法—直接开方法》教案

1.2《一元二次方程的解法—直接开方法》教案

§1.2一元二次方程的解法⑴——直接开方法班级________姓名____________一.学习目标:1.由平方根的定义探寻直接开方法;2.掌握形如:ax2=b;a(x-m)2=b;a(x-m)2=b(x-n)2的解题方法.二.学习重点:会用直接开平方法解一元二次方程.学习难点:体会整体思想在解题中的作用.三.教学过程Ⅰ.知识准备①4的平方根是;81的平方根是;100的算术平方根是.②若x2=a,则叫的平方根;记作x=.③x2=14,则x=.若分式x2-92x-6的值为零,则x的值为.Ⅱ.活动探究【复习】回忆数的开方一章中的知识,请大家生回答下列问题,并说明解决问题的依据.求下列各式中的x:1.x2=225;2.x2-169=0;3.36x2=49;4.4x2-25=0.【新知探究】我们已经学过了一些方程知识,那么上述方程属于什么方程呢?阅读:解方程x2-4=0.解:移项,得x2=4.∴x=±4=±2即x1=2,x2=−2.我们把这种解一元二次方程的方法叫做“直接开平方法”.思考:比较用直接开平方法解方程和求一个非负数的平方根的差异。

例1:解下列一元二次方程.⑴x2=196;⑵9x2=16;⑶4x2-3=0.例2:解下列一元二次方程.⑴(x− 2)2=5;⑵(x-1)2-18=0;⑶3(x+2)2=27;⑷12(2-x)2-9=0.【题后反思】你能否总结一下,能使用直接开平方法的一元二次方程的形式是怎样的?一般解题步骤又是怎样的?例3:用“直接开方法”解下列方程:⑴(3x-2)2=(x+1)2;⑵(x+2)2-(2x+3)2=0.【思考】若将⑵中的两项加上系数又如何解呢?4(x+2)2-9(2x + 3)2=0【课内反馈】1.①方程x2=9的根为;②方程4x2=100的解为.2.①方程6x2-1=23的解为;②方程(x+1)2=16的解为.3.关于x的方程x2+k=0有实数根的条件是()A.k>0 B.k<0 C.k≥0 D.k≤04.解下列方程⑴2x2=50;⑵12y2=16;⑶(x-2)2=6;⑷(2m-4)2-18=0.。

九年级数学上册第24章一元一次方程 解一元二次方程1配方法__直接开平方法解方程说课稿新版冀教版

九年级数学上册第24章一元一次方程 解一元二次方程1配方法__直接开平方法解方程说课稿新版冀教版

配方法——直接开平方法解方程今天我说课的课题是《直接开平方法方法解一元二次方程》。

下面我从教材分析、教学目标的确定,教学重、难点的分析,教法、学法,教学过程几个方面对本节课的教学进行一个说明。

一、教材分析:一元二次方程的解法是本章的重点内容,直接开平方法一元二次方程解法的起始课,直接接开平方法是解一元二次方程的基础方法。

它的推导建立在平方根意义和开方运算的基础上,首先它配方法的基础,其次再求二次函数与X轴交点等问题中都必须用一元二次方程的解法。

同时,这一届教材的编写中突出体现了化归、类比等重要的数学思想方法。

因此这一届不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。

为此,根据课标要求和学生实际情况,制定了如下的教学目标:二、教学目标:1.知识与技能(1)会用开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程.(2)能根据具体问题的实际意义检验结果是否合理,并对其进行取舍.2.过程与方法通过实例,使学生体会一元二次方程应用价值并意识到解一元二次方程的重要性,理解直接开平方法的数学依据,并能应用直接开平方法.让学生经历由简到繁过程,体验类比、化归、降次的数学思想方法,培养学生观察、分析、计算等思维能力及应用意识.3.情感态度与价值观通过学生对具体问题的思考、讨论、交流,最终得出结论的过程,培养学生的进取精神,让学生养成科学严谨的治学态度和应用所学知识解决问题的习惯.三、教学重点与教学难点的分析本节课是一元二次方程解法的起始课,教学重点是用直接开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程。

难点是不可直接降次解方程化为可直接降次解方程的“化归”的转化方法与技巧.四、教法学法分析:1、教法:本节课采用启发式和自主探究式与交流讨论相结合的教学方式。

在教学中以启发学生进行探究的形式展开,利用已有的知识,利用学生已有的知识,让学生多交流,主动参与到教学活动中来,让学生处于主导地位。

一元二次方程的解法(直接开平方法)

一元二次方程的解法(直接开平方法)

一元二次方程的解法(直接开平方法)研究目标:1、理解直接开平方法的定义和基本思想;2、掌握用直接开平方法解一元二次方程的技巧;3、了解哪些形如(含有未知数)2=非负数的方程可以用直接开平方法解。

教学过程:一、检查预1、解方程:x²-36=0二、复练1、将下列方程化为一般形式,并列出各项及系数:1)5=4x-x²2)5=3x²3)y²-(y+1)=(y+2)(y-2)²2、要求学生复述平方根的意义:1)用文字语言表示:如果一个数的平方等于a,这个数叫a的平方根。

2)用式子表示:若x²=a,则x叫做a的平方根。

一个正数有两个平方根,这两个平方根互为相反数;零的平方根是零;负数没有平方根。

3)4的平方根是2,81的平方根是9,100的算术平方根是10.三、新课讲解例1:解下列方程(1)x²=4;(2)x²-1=0;处理:1、让学生尝试解,然后总结方法。

2、形如x²=a(a≥0),x=±√a练:解下列方程1)x²-9=0;(2)x²-2=0;例2、解方程16x²-25=0练:解下列方程:1)12y²-25=0;(2)4x²-16=0;例3、解方程(x+1)²=144练:解方程4(x+2)²-25=0四、巩固练1、请挑选一下列一元二次方程,哪些更适宜用直接开平方法来解?⑴x²=3⑵3t²-t=0⑶3y²=27⑷(y-1)²-4=0⑸(2x+3)²=6⑹x²+x-9=0⑺x²=36x⑻x²+2x+1=02、解下列方程1)2x²-8=0;(2)9x²-5=3;3)(x+6)²-9=0;(4)3(x-1)²-6=0;五、小结直接开平方法解一元二次方程的关键是要化成什么形式?(学生畅所欲言)六、小测解下列方程1)9x²=16;(2)2x²-12=0;3)(x+2)²-36=0;(4)(3x-1)²=3;七、作业1、预配方法:尝试解方程y²-4y+2=0;2、完成研究辅导P17-P18.。

(完整版)直接开平方法教案

(完整版)直接开平方法教案
2 2
3、x+16=0;4、x=0。
(1、Xi=12,X2=—12;2、xi=3,X2=—3;3、无解负数没有平
方根;4、x=00有一个平方根,它是0本身)。
例2解方程:(x+3)2=2。
说明与分析:此例要求解出方程的根,同时通过此例的学习也为进一步 解公式法作准备。实际上,我们将用此例以及类似的题目推导出一元二 次方程的另一解法一一配方法。
[复习提问]
1、什么样的方程叫做一元一次方程?什么样的方程叫做一元二次方
程?(在整式方程中,只含一个未知数,并且未知数的最咼次数是1,
这样的方程叫做一元一次方程;在整式方程中,只含一个未知数,并且
未知数的最高次数是2,这样的方程叫做一元二次方程。)
2、说明
兀一次方程与一兀二次方程的相同点和不同点?(都是整式
集体备课课时计划
第 周 星期第节年 月曰执教者:
课题
§12.2
一元二次方程的解法(1) 直接开平方法
教学
使学生掌握直接开平方法,并会解某些一元二次方程;使学生会解(x-
-a)
目标
2=b(b>0)型的方程,为进一步学习公式法作好准备。
教材
重点
掌握直接开平方法,并会解某些一兀二次方程。
分析
难点
会解(x—a)2=b(b>0)型的方程。
方程,并且都含有一个未知数,这是它们的相同点;它们的不同点是未
知数的次数,一个是一次,一个是二次。)

3、一兀二
【次方程的一般形式是什么?其中a应具备什么条件?(一元

二次方程的一般形式是:ax+bx+c=0,其中a应不等于零。因为a=0,

一元二次方程的解法(直接开平方法)

一元二次方程的解法(直接开平方法)

3 , x2= 3 3 , x 2= 3 .
答案:x1=
【3 】 (1)x2+2x+1=3.(2)4y2-12y+9=16
【想一想】 两边都含有未知数的方程,例如:(2x-3)2=(3x-2)2怎么求解? 提示:用直接开平方法求解.(2x-3)2=(3x-2)2,两边开平方得 2x-3=〒(3x-2),解得x1=-1,x2=1.
【想一想】 一元二次方程ax2=b在什么情况下有解?说明ax2=b解的情况. 提示:当a,b同号或者b为0时方程有解.当a,b同号时, x 2 b ,
数,此时方程无解;当b=0时,x =0,x1=x2=0.
ab 当a,b异号时, b <0,由于任何数的平方都是非负 x ; a a 2
a
【微点拨】 1.形如x2=p的一元二次方程,只有当p≥0时,才有解. 2.一元二次方程x2=p(p≥0)总有两个根.
பைடு நூலகம்
1.解下列方程:
2
1 2 x 2 32 0 2 25 x 2 16 0 3 x 2 3 28
1 2 4 2 x 8 0 ( ) 2
1 2 x 32 0 2 25 x 2 16 0 2 =16,用直接开平方法解得 2 (1)变形得x 【解析】 3 x 3 28
【 2】
【例】解下列方程:
(1)25x2-36=0 【解析】
(1)变形得x2
36 6 6 6 = , x=〒 ,所以x1= 5 , x2= 5 25 5
1 2 (2 ) x 2 2 0 2
(2)变形得(x+2)2 = 4,所以x1=0 , x2=-4.
练习
(1)x2=11. (2)64x2=49. (3)9x2-25=0.

1.2.1 一元二次方程的解法-直接开平方法(解析版)

1.2.1 一元二次方程的解法-直接开平方法(解析版)

1.2.1 一元二次方程的解法-直接开平方法考点一、直接开方法解一元二次方程: (1)直接开方法解一元二次方程: 利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法. (2)直接开平方法的理论依据: 平方根的定义. (3)能用直接开平方法解一元二次方程的类型有两类: ①形如关于x 的一元二次方程,可直接开平方求解. 若,则;表示为,有两个不等实数根; 若,则x=O ;表示为,有两个相等的实数根; 若,则方程无实数根. ②形如关于x 的一元二次方程,可直接开平方求解,两根是 .要点:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.题型1:直接开平方法解一元二次方程1.一元二次方程2250x -=的解为( )A .125x x ==B .15=x ,25x =-C .125x x ==-D .1225x x ==【答案】B 【解析】【分析】先移项,再通过直接开平方法进行解方程即可.解:2250x -=,移项得:2=25x ,开平方得:15=x ,25x =﹣,故选B .本题主要考查用开平方法解一元二次方程,解题关键在于熟练掌握开平方方法.2.若()222a =-,则a 是( )A .-2B .2C .-2或2D .4【答案】C 【解析】【分析】先计算2(2)-,再用直接开平方法解一元二次方程即可.()2224a =-=Q 2a \=±故选C 【点睛】本题考查了有理数的乘方,直接开平方法解一元二次方程,熟练直接开平方法是解题的关键.3.方程x 2- =0的根为_______.【答案】x=± 【解析】【分析】,得出x 2=8,利用直接开平方法即可求解.解: x 2- =0,∴x 2=8,∴x =±故答案为:x =±.【点睛】本题考查直接开平方法解一元二次方程及算术平方根,解题关键是熟练掌握直接开平方法的解题步骤.4.有关方程290x +=的解说法正确的是( )A .有两不等实数根3和3-B .有两个相等的实数根3C .有两个相等的实数根3-D .无实数根【答案】D【分析】利用直接开平方法求解即可.∵290x +=,∴290x =-<,∴该方程无实数解.故选:D 【点睛】考查了直接开平方法解一元二次方程.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.5.若方程()20ax b ab =>的两个根分别是4m -与38m -,则ba=_____.【答案】1【解析】【分析】利用直接开平方法得到x =,得到方程的两个根互为相反数,所以4380m m -+-=,解得3m =,则方程的两个根分别是1与1-1=,然后两边平方得到b a 的值.解:∵()20ax b ab =>,∴2b x a=,∴x =,∴方程的两个根互为相反数,∵方程2ax b =的两个根分别是4m -与38m -,∴4380m m -+-=,解得3m =,∴4341m -=-=-,383381m -=´-=,∴一元二次方程ax 2=b 的两个根分别是1与1-,1=,∴1ba=.故答案为:1.【点睛】本题考查了解一元二次方程﹣直接开平方法:形如2x p =或()()20nx m p p +=³的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成2x p =的形式,那么可得x =()()20nx m p p +=³的形式,那么nx m +=6.解方程:(1)23270x -=; (2)2(5)360x --=;(3)21(2)62x -=; (4)()()4490+--=y y .【答案】(1)123,3x x ==-;(2)1211,1x x ==-;(3)122,2x x ==-;(4)125,5y y ==-.【解析】【分析】(1)先移项,再两边同除以3,然后利用直接开方法解方程即可得;(2)先移项,再利用直接开方法解方程即可得;(3)先两边同乘以2,再利用直接开方法解方程即可得;(4)先利用平方差公式去括号,再移项合并同类项,然后利用直接开方法解方程即可得.(1)23270x -=,2327x =,29x =,3x =±,即123,3x x ==-;(2)2(5)360x --=,2(5)36x -=,56x -=或56x -=-,11x =或1x =-,即1211,1x x ==-;(3)21(2)62x -=,2(2)12x -=,2x -=2x -=-,2x =或2x =-+,即122,2x x ==-;(4)()()4490+--=y y ,21690y --=,225y =,5y =±,即125,5y y ==-.【点睛】本题考查了利用直接开方法解一元二次方程,一元二次方程的主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.7.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为( )A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =23【答案】D 【解析】【分析】直接开平方与开立方,再解一次方程即可.解:由4(3x +1)2﹣1=0得(3x +1)2=14,所以3x +1=±12,解得x =﹣16或x =﹣12,由3274y ﹣2=0得y 3=827,所以y =23,所以x =﹣16或﹣12,y =23.故选:D .【点睛】本题考查开平方法解一元二次方程与立方根法解三次方程,掌握平方根与立方根性质与区别是解题关键.82x = )A .120,x x ==B .120,x x ==C .12x x ==D .12x x ==【答案】A 【解析】【分析】利用直接开方法解一元二次方程即可得.2x =(23x =,利用直接开方法得:x解得120,x x ==故选:A .【点睛】本题考查了利用直接开方法解一元二次方程,熟练掌握直接开方法是解题关键.题型2:直接开平方法解一元二次方程的条件9.下列方程中,不能用直接开平方法求解的是( )A .230x =-B .2(14)0x =--C .220x =+D .22()12()x =--【答案】C 【解析】【分析】方程整理后,判断即可得到结果230x =-移项得23x =,可用直接开平方法求解;2(10)4x -=-移项得2(14)x =-,可用直接开平方法求解;22()(12)4x ==--,可用直接开平方法求解.故选C.【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键10.方程y 2=-a 有实数根的条件是( )A .a ≤0B .a ≥0C .a >0D .a 为任何实数【答案】A 【解析】【分析】根据平方的非负性可以得出﹣a ≥0,再进行整理即可.解:∵方程y 2=﹣a 有实数根,∴﹣a ≥0(平方具有非负性),∴a ≤0;故选:A .【点睛】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出﹣a ≥0.11.有下列方程:①x 2-2x=0;②9x 2-25=0;③(2x-1)2=1;④21(x 3)273+=.其中能用直接开平方法做的是( )A .①②③B .②③C .②③④D .①②③④【答案】C 【解析】【分析】利用因式分解法与直接开平方法判断即可得到结果.①x 2-2x=0,因式分解法;②9x 2-25=0,直接开平方法;③(2x-1)2=1,直接开平方法;④21(x 3)273+=,直接开平方法,则能用直接开平方法做的是②③④.故选:C.【点睛】考查直接开方法解一元二次方程,掌握一元二次方程的几种解法是解题的关键.12.方程 x 2=(x ﹣1)0 的解为( )A .x=-1B .x=1C .x=±1D .x=0【答案】A 【解析】【分析】根据(x-1)0有意义,可得x-1≠0,求出x≠1,通过解方程x 2=1,确定x 的值即可.∵(x-1)0有意义,∴x-1≠0,即x≠1,∵x 2=(x ﹣1)0∴x 2=1,即x=±1∴x=-1.故选A.【点睛】本题考查了解一元二次方程—直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a≥0)的形式,利用数的开方直接求解.同时还考查了零次幂.13.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是( ).A .0m >B .7m …C .7m >D .任意实数【答案】B 【解析】【分析】根据70-³m 时方程有实数解,可求出m 的取值范围.由题意可知70-³m 时方程有实数解,解不等式得7m …,故选B .【点睛】形如()2+m =a x 的一元二次方程当a≥0时方程有实数解.14.已知方程()200ax c a +=¹有实数根,则a 与c 的关系是( ).A .0c =B .0c =或a 、c 异号C .0c =或a 、c 同号D .c 是a 的整数倍【答案】B 【解析】【分析】将原方程化为2a=c-x 的形式,根据2x 0³可判断出正确答案.原方程可化为2a=c -x ,∵2x 0³,∴c0a -³时方程才有实数解.当c=0时,20=x 有实数根;当a 、c 异号时,c0a -³,方程有实数解.故选B .【点睛】形如2=a x 的一元二次方程当a≥0时方程有实数解.题型3:直接开平方法解一元二次方程的复合型15.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C 【解析】【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.16.方程224(21)25(1)0x x --+=的解为( )A .127x x ==-B .1217,3x x =-=-C .121,73x x ==D .1217,3x x =-=【答案】B 【解析】【分析】移项后利用直接开平方法解答即可.解:移项,得224(21)25(1)x x -=+,两边直接开平方,得2(21)5(1)x x -=±+,即2(21)5(1)x x -=+或2(21)5(1)x x -=-+,解得:17x =-,213x =-.故选:B .【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握直接开平方法是解题的关键.17.解方程:(1)21(2)602y +-=;(2)22(4)(52)x x -=-.【答案】(1)122,2y y =-=--;(2)121,3x x ==.【解析】【分析】(1)原方程先整理,再利用直接开平方法解答即可;(2)利用直接开平方法求解即可.解:(1)21(2)602y +-=,整理,得2(2)12y +=.∴2y +=±即122,2y y ==-;(2)22(4)(52)x x -=-Q ,4(52)x x \-=±-,∴452x x -=-或()452x x -=--,解得:121,3x x ==.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握直接开平方法是解题的关键.题型3:一元二次方程的根的概念深入理解18.一元二次方程2251440t -=的根与249(1)25x -=的根( )A .都相等B .都不相等C .有一个根相等D .无法确定【答案】C【解析】【分析】运用直接开平方法分别求出两个方程的解,然后再进行判断即可得解.2251440t -=,214425t =,∴125t =±;249(1)25x -=,715x -=±,∴1125x =,225x =-;∴两个方程有一个相等的根125.故选C.【点睛】此题主要考查了用直接开平方法解一元二次方程和确定方程的解,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).题型4:直接开平方法解一元二次方程的根的通用形式19.关于x 的方程(x+a)2 =b(b>0)的根是( )A .-aB .C .当b≥0时,D .当a≥0时,【答案】A【解析】【分析】由b>0,可两边直接开平方,再移项即可得.∵b>0,∴两边直接开平方,得:∴-a ,故选A【点睛】此题考查解一元二次方程-直接开平方法,解题关键在于掌握运算法则20.形如2()(0)ax b p a +=¹的方程,下列说法错误的是( )A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =【答案】D【解析】【分析】根据应用直接开平方法求解的条件逐项判断即得答案.解:A 、当0p >时,原方程有两个不相等的实数根,故本选项说法正确,不符合题意;B 、当0p =时,原方程有两个相等的实数根,故本选项说法正确,不符合题意;C 、当0p <时,原方程无实数根,故本选项说法正确,不符合题意;D 、当0p ³时,原方程的根为x =故选:D .【点睛】本题考查了一元二次方程的解法,属于基本题目,熟练掌握应用直接开平方法求解的条件是关键.题型5:直接开平方法解一元二次方程-降次21.方程4160x -=的根的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】移项得416x ==24,然后两边同时开四次方得x-=±2,由此即可解决问题.解:∵4160x -=∴416x ==24,∴x=±2,∴方程4160x -=的根是x=±2.故选B.【点睛】本题考查高次方程的解法,解题的关键是降次,这里通过开四次方把四次降为了一次.题型6:直接开平方法解一元二次方程-换元法22.若()222225a b +-=,则22a b +的值为( )A .7B .-3C .7或-3D .21【答案】A【解析】【分析】把()222225a b +-=两边开方得到a 2+b 2-2=±5,然后根据非负数的性质确定22a b +的值.解:∵()222225a b +-=,∴a 2+b 2-2=±5,∴a 2+b 2=7或a 2+b 2=-3(舍去),即a 2+b 2的值为7.故选A .【点睛】本题考查解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.题型7:直接开平方法解一元二次方程-创新题,数系的扩充23.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=×=-=-==-=,从而对于任意正整数n ,我们可以得到()41444n n n i i i i i +=×=×=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++L 的值为________.【答案】1-【解析】【分析】根据()41444nn n i i i i i +=×=×=,424341,,1n n n i i i i ++=-=-=,化简各式即可求解.解:依题意有()()()22123242,1,1,11i i i i i i i i i i ==-=×=-=-==-=,∵2022÷4=505…2,∴2022i =21i =-∴234202*********i i i i i i ++++++L =−1−i +1+i +…+1+i −1=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.一、单选题1.方程()2690x +-=的两个根是( )A .13x =,29x =B .13x =-,29x =C .13x =,29x =-D .13x =-,29x =-【答案】D【分析】根据直接开平方法求解即可.【解析】解:()2690x +-=,()269x +=,63x \+=±,123,9x x \=-=-,故选:D .A .0k ³B .0h ³C .0hk >D .0k <【答案】A 【分析】根据平方的非负性即可求解.【解析】解:()20x h +³Q ,0k \³.故选:A .【点睛】本题考查了直接开平方法解一元二次方程,理解直接开平方法的条件是解题的关键.5.已知()22230aa x x ---+=是关于x 的一元二次方程,那么a 的值为( )A .2±B .2C .2-D .以上选项都不对【答案】C【分析】只含有一个未知数,且未知数的最高次数是2的整式方程是一元二次方程,根据定义解答即可.【解析】解:∵()22230aa x x ---+=是关于x 的一元二次方程,∴222,20a a -=-¹,解得2a =-,故选:C .【点睛】此题考查了一元二次方程的定义,解一元二次方程,熟记定义是解题的关键.6.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【解析】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:【解析】∵根据题意可得:420420a b c a b c ++=ìí-+=î①②,①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200ax bx c a ++=¹可得,∵240ax bx a +-=,240ax a -=24ax a=∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.二、填空题11.方程240x -=的根是______.【答案】12x =-,22x =【分析】根据直接开平方法求解即可.【解析】解:240x -=,24x =,∴2x =±,即12x =-,22x =.【点睛】本题考查了解一元二次方程,掌握用直接开平方法解一元二次方程是解题的关键.12.方程()219x +=的根是_____.【答案】1224x x ==-,【分析】两边开方,然后解关于x 的一元一次方程.【解析】解:由原方程,得13x +=±.=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.两边开平方,得63x +=第二步所以3x =- 第三步“小华的解答从第_________步开始出错,请写出正确的解答过程.【答案】(1)-1;(2)二 ;正确的解答过程,见解析【分析】(1)利用平方差公式展开,合并同类项即可;(2)根据直接开平方法求解即可.【解析】(1)解:2(1)(1)+--m m m 221m m =--=-1;(2)解:第二步开始出现错误;正确解答过程:移项,得(x +6)2=9,两边开平方,得x +6=3或x +6=-3,解得x 1=-3,x 2=-9,故答案为:二.【点睛】本题主要考查了整式的混合运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.27.嘉嘉和琪琪用图中的A 、B 、C 、D 四张带有运算的卡片,做一个“我说你算”的数学游戏,规则如下:嘉嘉说一个数,并对这个数按这四张带有运算的卡片排列出一个运算顺序,然后琪琪根据这个运算顺序列式计算,并说出计算结果.例如,嘉嘉说2,对2按A B C D ®®®的顺序运算,则琪琪列式计算得:222[(23)(3)2](152)(17)289+´--=--=-=.(1)嘉嘉说-2,对-2按C A D B ®®®的顺序运算,请列式并计算结果;。

02用直接开平方法解一元二次方程教案

02用直接开平方法解一元二次方程教案

用直接开平方法解一元二次方程一、教学目标(一)知识与技能:认识形如x2=p(p≥0)或(mx+n)2=p(m≠0,p≥0,m,n,p为常数)类型的方程,并会用直接开平方法解.(二)过程与方法:培养学生准确而简洁的计算能力及抽象概括能力.(三)情感态度与价值观:通过两边同时开平方,将2次方程转化为一次方程,向学生渗透数学新知识的学习往往由未知(新知识)向己知(旧知识)转化,这是研究数学问题常用的方法,化未知为已知.二、教学重点、难点重点:运用开平方法解形如(mx+n)2=p(m≠0,p≥0,m,n,p为常数)的方程,领会降次一转化的数学思想.难点:通过根据平方根的意义解形如x2=p的方程,知识迁移到根据平方根的意义解形如(mx+n)2=p (m≠0,p≥0,m,n,p为常数)的方程.三、教学过程知识预备1.什么是平方根?一个数的平方根怎样表示?一般地,如果一个数的平方等于a,那么这个数叫做a的平方根. a(a≥0)的平方根记作:±a. x2=a(a≥0),则根据平方根的定义知,x=±a.2.完全平方式:a2+2ab+b2=(_____)2,a2_________=(a-b)23.练一练:若x2=16,则x=____;x2-6x+9=_______.问题1一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?解:设其中一个盒子的棱长为x dm,则这个盒子的表面积为6x2 dm 2.根据一桶油漆可刷的面积,列出方程10×6x2=1500①整理,得x2=25根据平方根的意义,得x=±5即x1=5,x2=-5可以验证,5和-5是方程①的两个根,因为棱长不能是负值,所以盒子的棱长为5dm.一般地,对于方程x2=p, (Ⅰ)(1) 当p>0时,根据平方根的意义,方程(Ⅰ)有两个不等的实数根x1=p,x2=-p;(2) 当p=0时,方程(Ⅰ)有两个相等的实数根x1=x2=0;(3) 当p<0时,因为对任意实数x,都有x2≥0,所以方程(Ⅰ)无实数根.探究对照前面解方程10×6x2=1500①的过程,你认为应怎样解方程(x+3)2=5及9x2-12x+4=3?在解方程①时,由方程x2=25得x=±5. 由此想到:由方程 (x+3)2=5,②得x+3=±5即x+3=5,或x+3=-5. ③于是,方程(x+3)2=5的两个根为x1=-3+5,x2=-3-5.上面的解法中,由方程②得到③,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程.由方程 9x 2-12x +4=3化成 (3x -2)2=3得 3x -2=±3即 3x -2=3,或3x -2=-3.于是,方程9x 2-12x +4=3的两个根为 3321+=x ,3322-=x 知识梳理●知识点一 直接开平方法方程 x 2=p (p ≥0)的解为x 1=p ,x 2=-p .由方程(mx +n )2=p (p ≥0),可得mx +n =p 或mx +n =-p .●知识点二 降次思想一元二次方程一般通过降次转化成两个一元一次方程来解.直接开平方法是降次的一种方法.练习解下列方程:(1) 2x 2-8=0 (2) 9x 2-5=3 (3) (x +6)2-9=0(4) 3(x -1)2-6=0 (5) x 2-4x +4=5 (6) 9x 2+5=1课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思解:(1)2x 2=8 x 2=4 x =±2 ∴ x 1=2,x 2=-2教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程,同时体会到解一元二次方程过程就是一个“降次”的过程.。

《23.21 一元二次方程的解法——直接开平方法》

《23.21 一元二次方程的解法——直接开平方法》
23.2一元二次方程解法 23.2.1用直接开平方 法解一元二次方程
1.会用直接开平方法解形如 ( x a) b(b 0) 的方程. 2.了解转化、降次思想在解方程中的运用。 合理选择直接开平方法解法较熟练地解一元 二次方程。
2
1.如果
x a(a 0) ,则 x 就叫做a 的
(χ+1)2=4
解: (1)(χ+1)2=4
∴ χ+1=±2 ∴ χ1=1,χ2=-3.
12(2 x) 9 0
2
解:
(2)移项,得
系数化为1,得:
12(2-χ)2=9 9 3 2 (2 x) 12 4
直接开平方,得
3 3 2 x 4 2
3 x 2 2
3 3 即:x1 2 ,x2 2 2 2
2
平方根

2 x 2.如果 a(a 0)
x, 则 =
a
2 x 3.如果 64
x,则 =
8

(1). χ2=4
(2). χ2-1=0
对于方程(1),可以这样想:
∵ ∴ 即: χ2=4 χ= 4 χ=±2 根据平方根的定义可知:χ是4的(平方根 ).
这时,我们常用χ1、χ2来表示未知数为χ的一元 二次方程的两个根。 ∴ 方程 χ2=4的两个根为 χ1=2,χ2=-2.
a b
小结中的两类方程为什么要加条件:a≥0,b≥0呢?
课本第37页习题22.2第1题、第2题。
ቤተ መጻሕፍቲ ባይዱ
——整体思想的运用
32x 5 12 22x 5 4
2 2
3(2x 5) 2(2x 5) 4 12
2 2

一元二次方程的解法教学设计 人教版〔优秀篇〕

一元二次方程的解法教学设计 人教版〔优秀篇〕

一元二次方程及其解法《一元二次方程的解法》教案清江中学钱旭东【教学目标】1.知识与技能:能用直接开平方等方法解简单的一元二次方程.2.过程与方法:经历一元二次方程解法的探究和发现过程,体会转化的思想方法.3.情感态度与价值观:通过对一元二次方程解法由易到难、由简单到复杂的探究,初步养成对知识的探索精神和严谨的治学态度.【重点难点】一元二次方程解法的理解和运用.【教学模式】结合本节课的教学内容和学生的认知情况,采用“问题解决”的教学模式.【辅助手段】教具准备:多媒体课件.【教学过程】一、提出问题有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框多3尺,竖着比门框多1尺,另一个醉汉教他沿着门的两个对角斜着拿杆,这个醉汉一试,不多不少正好进去了。

你能知道竹竿有多长吗?(学生思考)师:数学来源于生活,生活中也处处有数学。

在上面的问题中,如果我们用数学的眼光来看,门可以看成我们熟悉的什么图形?生:矩形.师:那么,醉汉三次摆放的竹竿中存在什么图形?生:直角三角形.师:我们可以把生活问题数学化,将上述醉汉进门的问题转化为我们熟悉的数学问题.师:这是我们熟悉的问题,如果我们设竹竿长为x尺,你能得到相应的数量关系吗?请尝试一下.学生独立完成.师:我们请一位同学说一下他的成果.师:这个结果对不对,这是一元二次方程吗?生:对!是一元二次方程.师:能整理成一般形式吗?试一试.学生很快完成,得到结果x2-8x+10=0.设计说明:以一个古代笑话“醉汉进门”的问题作为本节课的问题情境,生活气息浓厚,趣味性强,学生容易产生兴趣,能够很快进入状态,为后面的学习做好心理上的准备.该情境问题,简单易懂,起点低,且和本课所学内容密切相关,不同学生都可以进行探索,有所收获.师生一起对问题进行探究,将生活问题数学化,进而列出方程,为后面的深入探究打下很好的基础.二、探究新知探索一:从简单开始师:要求出醉汉的竹竿长度,我们必须要求出x2-8x+10=0的解,这是解决前面问题时出现的新问题.师:如果解方程x2-8x+10=0感觉很难的话,我们可以退一步,先从最简单的情况入手.谁能写出一个最简单的一元二次方程?生2:x2=0.师:真是够简单的!大家会解这个方程吗?生:会! x=0.师:很好,我们就从这样的方程开始!请解决下面问题.探索一:A组解下列方程(1)x2=3(2) x2=16(3)2x2=22(4) 0.5x2=-1B组解下列方程(1)(x+1)2=2(2) (x-3)2=8(3)5(2x+3)2=10学生都能很快解决,信心十足.师:这是我们自己发现的解法,给它起个名字吧!生:直接开平方法!发现解法:直接开平方法设计说明:面对探究过程中的出现的新问题,教师可以引导学生退回到最简单的情形去解决,渗透了从简单到复杂,由易到难的解决问题的思想方法.学生在解决简单的一元二次方程前,就已经具备了平方根、开平方等知识,这些知识储备为学生发现直接开平方法提供了可能.教师在教学中要充分运用学生已有的知识经验,为课堂教学服务,从而提高课堂教学效果!探索二:向目标迈进师:我们已经解决了(x+h)2=k这类方程,但是它离我们所要解决的目标x2-8x+10=0还有很大的距离.前面解决的一元二次方程太特殊了,怎么办?生:再复杂一点.师:对,为了离目标近一些,我们把研究的方程再复杂点,从简单的角度看,我们先研究x2-8x=0(常数项为0)呢?还是先研究x2+10=0(一次项为0)呢?生:先研究x2+10=0.师:我们会解方程x2+10=0吗?学生思考,很快有人举手.生3:这个方程无解.师:很好!请看下面问题.探索二:A组解下列方程(1)x2-7=0(2)y2-25=0(3)3t2-45=0学生观察后都能发现,上面三个方程都可以使用直接开平方法解决.师:这类方程大家很快就解决了,它可以转化为我们前面已经解决的类型.现在我们继续探索方程x2-8x=0(常数项为0)的解法.学生思考,过了一会儿,有人发言.生4:方程x2-8x=0可以化为x(x-8)=0,所以解为x1=0,x2=8.师:精彩!类似的,请大家解决下面问题.B组解下列方程(1)x2-x=0(2) y2+5y=0(3)2x2-6x=0(4)x2=3x多数学生很快解决,信心更足.师:这是我们探索过程中发现的有一个解法,也给它起个名字吧!生:提公因式法!师:因为提公因式是因式分解的一种方法,所以我们也可以称这种方法为因式分解法.发现解法:因式分解法设计说明:从简单问题入手,但解决简单问题是为了解决后面的复杂问题,教师通过对一元二次方程的逐步复杂化,让学生的探索逐步深入.虽然方程越来越复杂,但师生一起解决问题的目标没有变,学生的兴趣和信心没有变。

一元二次方程的解法直接开平方法

一元二次方程的解法直接开平方法
6、鼓励学生积极主动的参与“教”与“学”的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心。
教学重难点
重点:用直接开平方法解方程
难点:直开平方法适应的条件
教学过程
教学环节
问题与任务
时间
教师活动
学生活动
引入
新授
练习
小结
谈话导入
强调两个根
培养准确、迅速的解题能力
归纳扩展
4’
5’
5’
5’
5’
(1) ;(2) 。
3.讨论题:
上题中两个方程左边的常数项与一次项系数有何共同关系?你能先设法使下列方程满足这种关系,再按上题方法解下列方程吗?试一试。
(1) ;(2) 。
通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法
思考做

做(个别同学板书)
小结
板书设计
引例例1
解例2
直接开平方法例3
形如 . 常数
作业训练
(自己组编)
1.写出10个能用直接开平方法解的一元二次方程,并求解(要求能巩固所学的知识)。
2.你能不能将下列方程先化为 的形式,再求出未知数的值?
课时教学设计
学校
年(班)级
八年级
人数
日期
学科
数学
课题
一元二次方程的解法
课型
新授
教师
教学目标(三维融通表述)
1、使学生理解直接开平方法的定义和基本思想;
2、学会用直接开平方法解一元二次方程;
3、知道:形如 . 常数 ,的方程都可以用直接开平方法解。
4、培养学生基本的运算技巧和能力;
5、培养学生的观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题。

九年级数学上册第22章一元二次方程的解法1直接开平方法教案(含教学反思)新版华东师大版

九年级数学上册第22章一元二次方程的解法1直接开平方法教案(含教学反思)新版华东师大版

九年级数学上册新版华东师大版:21.2.1 直接开平方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标知识与技能理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.过程与方法提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.情感态度与价值观历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.重、难点1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?BCAQ P 老师点评:问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p )22p.问题2:设x 秒后△PBQ 的面积等于8cm 2则PB=x ,BQ=2x 依题意,得:12x ·2x=8x 2=8根据平方根的意义,得x=±即x 1,x 2可以验证,和都是方程12x ·2x=8的两根,但是移动时间不能是负值.所以秒后△PBQ 的面积等于8cm 2.二、探索新知上面我们已经讲了x 2=8,根据平方根的意义,直接开平方得x=±,如果x 换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x ,那么2t+1=±即,方程的两根为t 1-12,t 212例1:解方程:x 2+4x+4=1分析:很清楚,x 2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1. 解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1,x+2=-1所以,方程的两根x1=-1,x2=-3例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材P6练习.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+12)2=2.56,即(x+32)2=2.56x+32=±1.6,即x+32=1.6,x+32=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=(mx+n)2=p(p≥0),那么mx+n=,达到降次转化之目的.六、布置作业1.教材P16复习巩固1.2.选用作业设计:。

九年级数学上册(人教版)21.2解一元二次方程(直接开平方法)优秀教学案例

九年级数学上册(人教版)21.2解一元二次方程(直接开平方法)优秀教学案例
(二)过程与方法
1.通过举例、讲解等方式,引导学生理解平方根的概念,为学习直接开平方法打下基础。
2.设计多个层次的练习题,让学生在练习中掌握直接开平方法的基本步骤,注意一些易错点。
3.引导学生总结直接开平方法的应用规律,提高解题效率。
在教学过程中,我将采用“问题-探究”的教学方法,引导学生通过举例、观察、分析等方法,自主地发现和总结平方根的概念。然后,我将结合学生的认知规律,设计一系列由浅入深的练习题,让学生在实践中逐步掌握直接开平方法的基本步骤,并注意一些易错点。在学生掌握基本方法后,我将引导学生总结直接开平方法的应用规律,提高他们在解题过程中的效率。
2.直接开平方法:在学生理解平方根的概念后,我会引入直接开平方法。我会通过讲解和示例,引导学生掌握直接开平方法的基本步骤。首先,我会让学生观察和分析一些具体的一元二次方程,使他们能够发现直接开平方法的应用规律。然后,我会引导学生总结直接开平方法的一般步骤,如确定方程的根的性质、求出方程的平方根、检验平方根是否为方程的解等。
(三)学生小组讨论
1.设计讨论问题:我会提出一些与本节课内容相关的问题,让学生进行小组讨论。例如,探讨直接开平方法在实际问题中的应用,讨论解一元二次方程时可能遇到的问题及解决方法等。
2.组织学生进行讨论:我会让学生分组进行讨论,鼓励他们积极发表自己的观点和想法。在讨论过程中,我会巡回指导,给予学生必要的帮助和提示。
二、教学目标
(一)知识与技能
1.理解直接开平方法的概念,掌握其解题步骤。
2.能够运用直接开平方法解一元二次方程。
3.了解直接开平方法在实际问题中的应用。
在教学过程中,我将以生动的语言、形象的比喻和具体的例子,帮助学生理解直接开平方法的概念,使他们能够清晰地认识到直接开平方法的特点和作用。通过大量的练习题,让学生在实践中掌握直接开平方法的解题步骤,使他们能够熟练地运用该方法解决实际问题。

华师版九年级数学上册教案:第22章 一元二次方程2 一元二次方程的解法(5课时)

华师版九年级数学上册教案:第22章 一元二次方程2  一元二次方程的解法(5课时)

22.2 一元二次方程的解法1 直接开平方法和因式分解法(第1课时)一、基本目标1.理解直接开平方法和因式分解法,掌握用两种方法解一元二次方程的一般步骤,并会根据方程的特点灵活选用方法解一元二次方程.2.通过利用已学知识求解一元二次方程,获得成功的体验,体会转化思想的应用. 二、重难点目标 【教学重点】用直接开平方法和因式分解法解一元二次方程. 【教学难点】根据方程特点选择合适的方法解一元二次方程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P20~P25的内容,完成下面练习. 【3 min 反馈】1.直接开平方法:利用__平方根的定义__解一元二次方程的方法. 2.因式分解法:利用__因式分解__求出方程的解的方法.3.因式分解法的依据:如果两个因式的积等于0,那么两个因式中__至少__有一个等于0.反过来,如果两个因式中有一个等于0,那么__它们的积__就等于0.4.方程(x -1)2=1的解为__x 1=2,x 2=0__.5.用因式分解法解一元二次方程(4x -1)(x +3)=0时,可将原方程转化为两个一元一次方程,其中一个方程是4x -1=0,则另一个方程是__x +3=0__.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】用直接开平方法或因式分解法解下列方程: (1)(x +1)2=2; (2)(2x +1)2=2x +1; (3)-x 2=4x ; (4)12(x +5)2=9.【互动探索】(引发学生思考)观察方程的特点,确定解方程的方法及一般步骤. 【解答】(1)直接开平方,得x +1=±2. 故x 1=2-1,x 2=-2-1.(2)移项,得(2x +1)2-(2x +1)=0.方程左边分解因式,得(2x +1)(2x +1-1)=0,所以2x +1=0或2x +1-1=0,得x 1=-12,x 2=0.(3)方程可变形为x 2+4x =0.方程左边分解因式,得x (x +4)=0,所以x =0或x +4=0,得x 1=0,x 2=-4.(4)方程两边同时乘2,得(x +5)2=18.直接开平方,得x +5=±32,所以x 1=32-5,x 2=-32-5.【互动总结】(学生总结,老师点评)(1)用直接开平方法解一元二次方程的一般步骤:①观察方程两边是否符合x 2=b (b ≥0)或(mx +a )2=b (m ≠0,b ≥0)的形式;②直接开平方,得到两个一元一次方程;③解这两个一元一次方程,得到原方程的两个根.(2)用因式分解法解一元二次方程的一般步骤:①移项,将方程的右边化为0;②将方程的左边分解成两个一次因式的积的形式;③令每个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,得到原方程的两个根.活动2 巩固练习(学生独学)1.一元二次方程x 2-16=0的根是( D ) A .x =2 B .x =4 C .x 1=2,x 2=-2D .x 1=4,x 2=-42.在实数范围内定义一种运算“﹡”,其规则为a ﹡b =a 2-b 2,根据这个规则,方程(x +1)﹡3=0的解为__x 1=2,x 2=-4__.【教师点拨】根据新定义,由(x +1)﹡3=0,得(x +1)2-32=0. 3.解下列方程: (1)4x 2=25; (2)x (x +2)=x +2.解:(1)方程可化为x 2=254.直接开平方,得x =±52,所以x 1=52,x 2=-52.(2)移项,得x (x +2)-(x +2)=0.方程左边分解因式,得(x +2)(x -1)=0,所以x +2=0或x -1=0,得x 1=-2或x 2=1.活动3 拓展延伸(学生对学)【例2】由多项式乘法:(x +a )(x +b )=x 2+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x 2+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3). (1)尝试:分解因式:x 2+6x +8=(x +__2__)(x +__4__); (2)应用:请用上述方法解方程:x 2-3x -4=0.【互动探索】理解“十字相乘法”的含义→对方程左边因式分解(十字相乘法)→解方程.【解答】∵x 2-3x -4=0,即x 2+(-4+1)x +(-4)×1=0,∴(x -4)(x +1)=0,则x +1=0或x -4=0,解得x 1=-1,x 2=4.【互动总结】(学生总结,老师点评)解此类题时,要把握新定义的内涵,抓住关键词语,合理套用求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)直接开平方法⎩⎪⎨⎪⎧定义依据:平方根的定义形式:方程x 2=a (a ≥0)的根为x 1=a ,x 2=-a因式分解法⎩⎪⎨⎪⎧定义依据:若ab =0,则a =0或b =0方法:提公因式、完全平方公式、平方差公式请完成本课时对应练习!2 配方法(第2课时)一、基本目标1.理解配方法解一元二次方程的含义,并掌握用配方法解一元二次方程的一般步骤. 2.经历利用完全平方公式推导配方法的过程,掌握新的解一元二次方程的方法——配方法.二、重难点目标 【教学重点】用配方法解一元二次方程. 【教学难点】把一元二次方程通过配方转化为(x ±h )2=k (k ≥0)的形式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P25~P27的内容,完成下面练习. 【3 min 反馈】1. (1)x 2+6x +__9__=(x +__3__)2;(2)x 2-x +__14__=⎝⎛⎭⎫x -!!!!__12__####2; (3)4x 2+4x +__1__=(2x + __1__)2.2.配方法:通过方程的简单变形,将左边配成一个含有未知数的__完全平方式__,右边是一个__非负常数__,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】用配方法解下列方程: (1)x 2-4x -12=0; (2)22x 2+4x -6=0.【互动探索】(引发学生思考)用配方法解一元二次方程的一般步骤是什么? 【解答】(1)原方程可化为x 2-4x =12. 配方,得x 2-4x +4=16,即(x -2)2=16. 直接开平方,得x -2=±4, 所以x 1=-2,x 2=6. (2)移项,得22x 2+4x =6. 两边同除以22,得x 2+211x =311.配方,得x 2+211x +⎝⎛⎭⎫1112=311+⎝⎛⎭⎫1112,即⎝⎛⎭⎫x +1112=34121. 直接开平方,得x +111=±3411,所以x 1=-1+3411,x 2=-1-3411.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的一般步骤:(1)变形:将方程化为一般形式ax 2+bx +c =0(a ≠0);(2)移项:将常数项移到方程的右边;(3)系数化为1:方程的两边同除以二次项的系数,将二次项系数化为1;(4)配方:在方程的两边各加上一次项系数绝对值的一半的平方,把原方程化为(x ±h )2=k 的形式;(5)求解:若k ≥0,则利用直接开平方法求解;若k <0,则原方程无实数根.活动2 巩固练习(学生独学)1.用配方法解下列方程,配方正确的是( D ) A .2y 2-4y -4=0可化为(y -1)2=4 B .x 2-2x -9=0可化为(x -1)2=8 C .x 2+8x -9=0可化为(x +4)2=16 D .x 2-4x =0可化为(x -2)2=42.用配方法解下列方程,其中应在方程左右两边同时加上4的是( C ) A .x 2-2x =5 B .2x 2-4x =5 C .x 2+4x =3D .x 2+2x =53.用配方法解方程2x 2-x =4,配方后方程可化为⎝⎛⎭⎫x -142=__3316__. 4.用配方法解下列方程:(1)x 2+6x +1=0; (2)2x 2-3x +12=0.解:(1)x 1=22-3,x 2=-22-3. (2)x 1=5+34,x 2=-5+34. 活动3 拓展延伸(学生对学)【例2】试用配方法说明:无论x 取何值,代数式x 2-4x +5的值总是正数,并指出当x 取何值时,这个代数式的值最小,最小值是多少?【互动探索】这是一个二次三项式的最值问题→对x 2-4x +5进行配方→确定代数式的最小值.【解答】x 2-4x +5=(x -2)2+1. ∵(x -2)2≥0, ∴(x -2)2+1≥1,∴不论x 为何值,代数式x 2-4x +5的值总是正数,且当(x -2)2=0,即x =2时,代数式x 2-4x +5有最小值,最小值为1.【互动总结】(学生总结,老师点评)已知代数式是一个关于x 的二次三项式且含有一次项,在求它的最值时,通常用配方法将原代数式变形为一个完全平方式加一个常数的形式,再根据一个数的平方是非负数求出原代数式的最值.环节3 课堂小结,当堂达标 (学生总结,老师点评)配方法⎩⎪⎨⎪⎧定义依据:完全平方公式:a 2±2ab +b 2=(a ±b )2形式:方程(x ±h )2=k (k ≥0)的根为x 1=k ±h ,x 2=-k ±h请完成本课时对应练习!3 公式法(第3课时)一、基本目标1.理解求根公式的推导过程,能正确推导出一元二次方程的求根公式.2.理解b 2-4ac ≥0是求根公式使用的前提条件和重要的组成部分,当b 2-4ac <0时,方程无解.3.理解和掌握用公式法解一元二次方程的一般步骤,并能正确运用公式法解一元二次方程.二、重难点目标 【教学重点】用公式法解一元二次方程. 【教学难点】 求根公式的推导过程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P28~P31的内容,完成下面练习. 【3 min 反馈】 1.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是x =__-b ±b 2-4ac 2a(b 2-4ac ≥0)__.将一元二次方程中系数a 、b 、c 的值,直接代入这个公式,就可以求得方程的根.这种解一元二次方程的方法叫做__公式法__.2.用公式法解方程2x 2-3x -1=0时,a =__2__,b =__-3__,c =__-1__,则b 2-4ac =__17__,代入求根公式,得x =__3±174__.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】用公式法解下列方程:(1)5x 2-4x -1=0; (2)3x 2+5(2x +1)=0.【互动探索】(引发学生思考)用公式法解一元二次方程的一般步骤是什么? 【解答】(1)∵a =5,b =-4,c =-1,∴b 2-4ac =(-4)2-4×5×(-1)=16+20=36, ∴x =-b ±b 2-4ac 2a =4±362×5=4±610,∴x 1=1,x 2=-15.(2)将方程化为一般形式,得3x 2+10x +5=0. ∵a =3,b =10,c =5,∴b 2-4ac =102-4×3×5=100-60=40, ∴x =-b ±b 2-4ac 2a =-10±402×3=-5±103,∴x 1=-5+103,x 2=-5-103.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把一元二次方程化为一般形式ax 2+bx +c =0(a ≠0);(2)确定a 、b 、c 的值;(3)求出b 2-4ac 的值;(4)判断b 2-4ac 的符号.当b 2-4ac ≥0时,把a 、b 及b 2-4ac 的值代入求根公式,求出x 1、x 2;当b 2-4ac <0时,b 2-4ac 无意义,此时方程无解.活动2 巩固练习(学生独学)1.以x =b ±b 2+4c2为根的一元二次方程可能是( D )A .x 2+bx +c =0B .x 2+bx -c =0C .x 2-bx +c =0D .x 2-bx -c =02.方程3x 2-5x +1=0的解,正确的是( B ) A .x =-5±136B .x =5±136C .x =-5±133D .x =5±1333.用公式法解下列方程: (1)3x 2-6x -1=0; (2)(x -1)(x +3)=12; (3)x 2-x +3=0.解:(1)x 1=3+233,x 2=3-233.(2)x 1=-5,x 2=3. (3)方程没有实数解. 活动3 拓展延伸(学生对学)【例2】我们规定一种运算:⎪⎪⎪⎪a b c d =ad -bc ,例如:⎪⎪⎪⎪24 35=2×5-3×4=10-12=-2.按照这种运算的规定,当x 取何值时,⎪⎪⎪⎪x 1 0.5-x 2x =0?【互动探索】理解新定义的规则→转化所求式子形式→得一元二次方程→利用公式法解方程.【解答】由⎪⎪⎪⎪x 1 0.5-x 2x =0,得2x 2-1×(0.5-x )=0. 整理,得4x 2+2x -1=0,则a =4,b =2,c =-1,∴b 2-4ac =22-4×4×(-1)=20, ∴x =-2±202×4=-1±54,∴当x =-1+54或-1-54时,⎪⎪⎪⎪x 1 0.5-x 2x =0.【互动总结】(学生总结,老师点评)这是一个关于二元一次方程的新定义问题,解这类题的关键是根据新定义得到方程,再解方程即可.环节3 课堂小结,当堂达标 (学生总结,老师点评)公式法⎩⎪⎨⎪⎧定义—求根式公:-b ±b 2-4ac 2a(b 2-4ac ≥0)推导过程—配方法一般形式—方程ax 2+bx +c =0(a ≠0)的根为x =-b ±b 2-4ac 2a(b 2-4ac ≥0)请完成本课时对应练习!4 一元二次方程根的判别式(第4课时)一、基本目标1.了解根的判别式,掌握由根的判别式符号判断一元二次方程ax 2+bx +c =0(a ≠0)的实数根的情况.2.经历思考、探究一元二次方程ax 2+bx +c =0(a ≠0)的根的过程,学会合作交流,并掌握代数学习的常用方法——分类讨论法.二、重难点目标 【教学重点】由根的判别式符号判断一元二次方程ax 2+bx +c =0(a ≠0)的实数根的情况. 【教学难点】推导一元二次方程ax 2+bx +c =0(a ≠0)的b 2-4ac 的符号与其根的关系.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P31~P32的内容,完成下面练习.【3 min反馈】1.根的判别式:一元二次方程ax2+bx+c=0(a≠0)的__b2-4ac__叫做一元二次方程根的判别式,通常用符号“__Δ__”来表示.2.一元二次方程ax2+bx+c=0(a≠0)根的情况:当Δ__>0__时,方程有两个不相等的实数根;当Δ__=0__时,方程有两个相等的实数根;当Δ<0时,方程__没有__实数根.3.一元二次方程x2-5x-78=0根的情况是__有两个不相等的实数根__.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】不解方程,判定下列方程的根的情况:(1)16x2+8x=-3;(2)9x2+6x+1=0;(3)2x2-9x+8=0;(4)x2-7x-18=0.【互动探索】(引发学生思考)不解方程,要判断方程的根的情况,结合一元二次方程ax2+bx+c=0(a≠0)中Δ的符号与根的关系,各个方程的Δ与0的大小关系是什么?相应的方程根的情况是什么?【解答】(1)原方程可变形为16x2+8x+3=0,则a=16,b=8,c=3.∵Δ=b2-4ac=82-4×16×3=64-192=-128<0,∴方程没有实数根.(2)a=9,b=6,c=1.∵Δ=b2-4ac=62-4×9×1=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8.∵Δ=b2-4ac=(-9)2-4×2×8=81-64=17>0,∴方程有两个不相等的实数根.(4)a=1,b=-7,c=-18.∵Δ=b2-4ac=(-7)2-4×1×(-18)=49+72=121>0,∴方程有两个不相等的实数根.【互动总结】(学生总结,老师点评)不解一元二次方程,由Δ确定方程根的情况的一般步骤:(1)将原方程化为一般形式;(2)确定a、b、c的值;(3)计算b2-4ac的值;(4)判断b2-4ac与0的大小;(5)得出结论.活动2巩固练习(学生独学)1.一元二次方程x2+3x+5=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C .没有实数根D .无法判断2.若关于x 的一元二次方程x 2+x -m =0有实数根,则m 的取值范围是( B ) A .m ≥14B .m ≥-14C .m ≤14D .m ≤-14【教师点拨】若一元二次方程ax 2+bx +c =0(a ≠0)有实数根,则b 2-4ac ≥0. 3.已知方程x 2+px +q =0有两个相等的实数根,则p 与q 的关系是__p 2=4q __. 4.不解方程,试判断下列方程的根的情况: (1)2+5x =3x 2;(2)x 2-(1+23)x +3+4=0. 解:(1)方程有两个不相等的实数根. (2)方程没有实数根.5.已知关于x 的方程kx 2-6x +9=0,问k 为何值时,这个方程: (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?解:(1)当k <1且k ≠0时,方程有两个不相等的实数根. (2)当k =1时,方程有两个相等的实数根. (3)当k >1时,方程没有实数根. 活动3 拓展延伸(学生对学)【例2】已知关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0,其中a 、b 、c 分别为△ABC 三边的长.若方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.【互动探索】方程有两个相等的实数根→得出a 、b 、c 的数量关系→确定三角形的形状. 【解答】△ABC 是直角三角形.理由如下:∵关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0有两个相等的实数根, ∴Δ=0,即(2b )2-4(a +c )(a -c )=0, ∴a 2=b 2+c 2,∴△ABC 是直角三角形.【互动总结】(学生总结,老师点评)解此类题时,先根据根的情况得到判别式的符号,再推出系数之间的关系,进而解决问题.【例3】如果关于x 的方程mx 2-2(m +2)x +m +5=0没有实数根,试判断关于x 的方程(m -5)x 2-2(m -1)x +m =0的根的情况.【互动探索】方程mx 2-2(m +2)x +m +5=0没有实数根→确定m 的取值范围→分类讨论确定方程(m -5)x 2-2(m -1)x +m =0的根的情况.【解答】∵方程mx 2-2(m +2)x +m +5=0没有实数根,∴Δ=[-2(m +2)]2-4m (m +5)=4(m 2+4m +4-m 2-5m )=4(4-m )<0,∴m >4.对于方程(m -5)x 2-2(m -1)x +m =0,当m =5时,方程有一个实数根;当m ≠5时,Δ1=[-2(m -1)]2-4m (m -5)=12m +4.∵m >4,∴Δ1=12m +4>0,∴此时方程有两个不相等的实数根.综上,当m =5时,方程(m -5)x 2-2(m -1)x +m =0有一个实数根;当m >4且m ≠5时,方程(m -5)x 2-2(m -1)x +m =0有两个不相等的实数根.【互动总结】(学生总结,老师点评)解此题时,不要忽略对方程(m -5)x 2-2(m -1)x +m =0是否为一元二次方程进行讨论,此方程可能是一元一次方程.环节3 课堂小结,当堂达标(学生总结,老师点评)一元二次方程根的判别式⎩⎪⎨⎪⎧ 定义——Δ=b 2-4ac 与ax 2+bx +c =0(a ≠0)实数根的关系⎩⎪⎨⎪⎧ Δ>0↔有两个不相等的实数根Δ=0↔有两个相等的实数根Δ<0↔没有实数根请完成本课时对应练习!5 一元二次方程的根与系数的关系(第5课时)一、基本目标1.理解并掌握一元二次方程的根与系数的关系.2.能利用一元二次方程根与系数的关系解决相关问题.二、重难点目标【教学重点】一元二次方程两根之和及两根之积与方程系数之间的关系.【教学难点】一元二次方程的根与系数的关系的推导及其应用.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P33~P35的内容,完成下面练习.【3 min 反馈】1.一元二次方程根与系数的关系:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则有x 1+x 2=__-b a __,x 1x 2=__c a __. 特殊形式:若x 2+px +q =0的两根为x 1、x 2,则x 1+x 2=__-p __,x 1x 2=__q __.2.已知x 1、x 2是一元二次方程x 2-6x -15=0的两根,则x 1+x 2=__6__,x 1x 2=__-15__.3.已知实数x 1、x 2满足x 1+x 2=11,x 1x 2=30,则以x 1、x 2为根的一元二次方程是__x 2-11x +30=0__.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】已知x 1、x 2是方程x 2+6x +3=0的两实数根,不解方程,求下列代数式的值.(1)(x 1-x 2)2; (2)x 2x 1+x 1x 2. 【互动探索】(引发学生思考)方程x 2+6x +3=0的根与系数的关系怎样?所求代数式与它们的关系有什么联系?【解答】∵x 1、x 2是方程x 2+6x +3=0的两实数根,∴x 1+x 2=-6,x 1x 2=3.(1)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-6)2-4×3=24.(2)x 2x 1 + x 1x 2=x 22 + x 21x 1x 2=(x 1 + x 2)2-2x 1x 2x 1x 2=(-6)2-2×33=10. 【互动总结】(学生总结,老师点评)(1)解此类题时,先根据根与系数的关系得到两根和与两根积,再把所求代数式变形,最后利用整体代入法计算即可.(2)常见的与一元二次方程根的和、积有关系的代数式变形:①x 21 + x 22=(x 1 + x 2)2-2x 1x 2; ②(x 1-x 2)2=(x 1+x 2)2-4x 1x 2;③1x 1+1x 2=x 1+x 2x 1x 2; ④x 2x 1+x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2; ⑤(x 1+k )(x 2+k )=x 1x 2+k (x 1+x 2)+k 2;⑥|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.活动2巩固练习(学生独学)1.方程x2-6x+10=0的根的情况是(C)A.两个实根和为6B.两个实根之积为10C.没有实数根D.有两个相等的实数根2.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是(C) A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x+2=0 D.x2-2x+3=03.已知关于x的方程5x2+kx-6=0的一个根2,则k=__-7__,另一个根为__-35__.4.设a、b是方程x2+2x-2019=0的两个不相等的实数根.(1)a+b=__-2__,ab=__-2019__,2a2+4a=__4038__;(2)求代数式a2+3a+b的值.解:a2+3a+b=a2+2a+a+b=2019-2=2017.5.请利用一元二次方程的根与系数关系解决下列问题:(1)若x2+bx+c=0的两根为-2和3,求b和c的值;(2)设方程2x2-3x+1=0的两根为x1、x2,不解方程,求1x1+1x2的值.解:(1)b=-1,c=-6.(2)1x1+1x2=3.活动3拓展延伸(学生对学)【例2】设一元二次方程x2-6x+k=0的两根分别为x1、x2.(1)若x1=2,求x2的值;(2)若k=4,且x1、x2分别是Rt△ABC的两条直角边的长,试求Rt△ABC的面积.【互动探索】(1)已知方程一根→利用根与系数的关系得方程的另一个根.(2)分析法:Rt△的面积→与两直角边的乘积相关,即x1x2的乘积关系→根与系数的关系,确定x1x2的值.【解答】(1)∵x1、x2是一元二次方程x2-6x+k=0的两根,且x1=2,∴x1+x2=-(-6),即2+x2=6,∴x2=4.(2)∵x1、x2是一元二次方程x2-6x+k=0的两根,k=4,∴x1·x2=k=4.又∵x1、x2分别是Rt△ABC的两条直角边的长,∴S Rt△ABC=12x1·x2=12×4=2.【互动总结】(学生总结,老师点评)求(2)问时,弄清直角三角形的面积与方程两实根的关系是解决问题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程的根与系数的关系:ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则x 1+x 2=-b a ,x 1x 2=c a. 特殊地,x 2+px +q =0的两根为x 1、x 2,则x 1+x 2=-p ,x 1x 2=q .请完成本课时对应练习!。

部优:《直接开平方法解一元二次方程》教学设计

部优:《直接开平方法解一元二次方程》教学设计

《直接开平方法解一元二次方程》教学设计一、教学内容分析一元二次方程的求解是初中代数学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视.教材曲浅入深地呈现问题,实际背景引入T从已有经验中总结解方程的一般思想方法(化归为一元一次方程)T类比解二元一次方程组的消元法得到解一元二次方程的思路(降次),即从简单、具体、特殊的一元二次方程(如x2=169, 10x6x^1500;(2X-1)2=5等)入手探索降次的一般方法(直接开平方法).其中,方程/二p, (mx+n)2二p的解法具有奠基作用,特别是对p的分类讨论,蕴含了对判别式的分类讨论,所以要认真体会分类讨论是山平方根的运算法则决定的.进一步再探究用直接开平方法解形如(mx+n)2 = (qx + k)2 , mx'+2mnx+n‘二p 的一元二次方程.整个探究过程,非常好地渗透了整体、转化和分类讨论的数学思想.因此这不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课.二、学情分析学生已经学习了数的开方,知道平方根的意义,学习了一元一次方程的解法和实际应用,知道可以利用运算律、等式的基本性质,通过去括号、移项、合并同类项等求解•学生还学过二元一次方程组以及三元一次方程组的解法和实际应用,知道可以通过消元将它们转化为一元一次方程.这为学生学习解一元二次方程打下了方法基础.通过类比学习,学生可以很自然地接受解一元二次方程的降次思想.与一元一次方程、二元一次方程组的解法相比,一元二次方程的解法涉及更多的知识,学生可以根据方程的具体特点,选择相关的知识和方法进行求解.这为培养学生的思维品质,特别是思维的敬捷性、灵活性、深刻性,提供了很好的机会.三、教学目标1.理解直接开平方法解一元二次方程的依据是平方根的意义.2.会用直接开平方法解形如x-p, (mx+n)2二p的一元二次方程.3.会用直接开平方法解形如(mx+n)2 = (qx + k)2 , mx,+2mnx+n'二p的一元二次方程.4.通过对直接开平方法的探索,体会整体、转化、降次、分类讨论的基本思想.•重点难点根据平方根的意义,会用直接开平方法解形如X?二p, (mx+n)-p的一元二次方程;会用直接开平方法解形如(mx+n)2 = (qx + k)2 , mx'+2mnx+二p的一元二次方程.四、评价设计学习评价量表巩固方法加深理解练习1用直接开平方法解下列一元二次方程:(1)(2X-1)2=5;(2)(x+2)2二0;(3)x'+4二0:(4 ) 16(2x+l)2 二(x-3)2;(5) x'+6x+9二16.在练习1中,教师应关注学生对整体思想的运用,以及对平方根的理解.练习2将下列一元二次方程转化为形如(mx+ n)2二p的形式,再利用直接开平方法求解.(1)xJlOx+25二0;(2)4X2+16X+16=1;(3)x2x + —=1;2 16(4)9X2+6X+1=9.1•先独立完成各题,再互相纠错,弄清原因,将方程(2x-l )2 二5中的2xT看作一个整体,根据平方根的概念,得到2x-l=- 这样,我们只需解2x-l=>/5 ,2x-l=- 巧这两个一元一次方程.对于方程(X-2)2 二0,根据平方根的概念可知x+2=±J市,此时方程有两个相等的实数根X|二X2二-2.对于方程X2+4=0,将其变形为x?二-4.我们发现,根据平方根的概念,任何一个实数的平方都不可能是负数.也就是说,没有一个实数能使得方程左右两边相等,所以此方程没冇实数根.检验学生对直接开平方法解一元二次方程的掌握情况,同时检验学生对整体思想以及完全平方公式的掌握程度.的解法,依据的都是平方根的概念,将它们直接开平方求解,共同点是最终都转化为解一元一次方程,策略是通过开平方降次.时对解一元二次方程的策略降次,有感性的认识,为后续的学习打下基础,同时培养学生的概括能力. 六.板书设计直接开平方法解一元二次方程直接开平方法:例1: •将形如ax2+c二0的一元二次方程变形为X?二p,利用平方根的概念得到P20时一元二次方程的解:x二土例2:…x2二p ◄------------ (m+n )2二p(mx+n )2 = (qx+k)2mx2 +2mnx + n2=p七、达标检测与作业A级1.用直接开平方法解下列一元二次方程:(1) 4x2-9二0;(2) 3x2-1 二5;(5) (x-2)2+8=0;(6) 1(3X-1)2-8=O;(3) (2x+l)2二6;(4) (x+l)2=O;2(7) 4(X+1)2=(X-1)2;(8) X2+10X+25=3.B级2.将下列一元二次方程转化为形如(ax+b)?二c的形式,再利用直接开平方法求解.(1) X2+4X+4=2;(2) x2+x+l=l;(3) x2-6x+9=3;(4) x2+3x+-=l.4 43•某渔船出海捕鱼,2016年平均每次捕鱼量为10 t, 2018年平均每次捕鱼量为&1 t,求这两年平均每次捕鱼量的年平均下降率.4.若方程(x・a)2二b的解是x产1和X2=3,求d与b的值.C级5.解下列关于x的一元二次方程.(1) (2x-b)2=5;(2) (ax+3)2 =4;(3) (x+l)2=c.八.教学反思这节课以学生的原有知识结构为增长点和发展点,符合学生的认知规律,以学生为主体进行教学.问题的难度呈阶梯形递增,由一元二次方程X?二p到(mx+ n)2二p 再到(mx+n)2 = (qx + k)2 , mx'+2mnx+n'=p,整个探究过程非常好地渗透了整体、转化和分类讨论的数学思想.整节课课堂结构严谨,教学内容山浅入深;在课堂教学中渗透转化的数学思想,通过合作学习、师生互动探究的方式来完成教学任务;教师积极鼓励学生学习,抓住学生的闪光点及时进行评价,并且激励学生探索新知,学生也练得很扎实;多次借助预设错误,造成学生的认知冲突让学生形成能力;分层教学对于优等生、待优生和潜能生有很好的激发学习兴趣、提高做题信心的作用,教学效果良好.需要改进的地方:应该给基础薄弱的学生足够的时间,让他们自己探究,而不是被中等及以上水平的学生掩盖或代替了他们真实的学情.否则学困生体验不到学习的乐趣,长时间就会造成学习懈怠.。

教案:一元二次方程的解法1(直接开平方法)

教案:一元二次方程的解法1(直接开平方法)

教案:一元二次方程的解法1(直接开平方法)一元二次方程及其解法(直接开平方法)一、教学目标:1、知识目标:经历由实际问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界的有效数学模型。

2、能力目标:了解一元二次方程的概念和它的一般形式ax2+bx+c= 0(a≠0),正确理解和掌握一般形式中的a≠0,“项”和“系数”等概念;会根据实际问题列一元二次方程;会用直接开平方法法解一元二次方程。

3、情感目标:体会转化的思想方法。

二、教学重点:正确理解和掌握一般形式中的a≠0,“项”和“系数”等概念;会用直接开平方法法解一元二次方程三、教学难点:理解直接开平方法与平方根的定义的关系,会用直接开平方法解一元二次方程。

四、教学类型:新授。

五、教学过程:一、做一做:1.问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?分析:设长方形绿地的宽为x米,不难列出方程x(x+10)=900整理可得x2+10x-900=0. (1)2.问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册;同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得5x2+10x-2.2=0. (2)3.思考、讨论这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?(学生分组讨论,然后各组交流)共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2 复备区二、一元二次方程的概念上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).2ax通常可写成如下的一般形式:ax+bx+c=0(a、b、c是已知数,a≠0)。

八年级数学下册第17章一元二次方程17.2一元二次方程的解法第1课时直接开平方法教案新版沪科版

八年级数学下册第17章一元二次方程17.2一元二次方程的解法第1课时直接开平方法教案新版沪科版

17.2 一元二次方程的解法第1课时直接开平方法【知识与技能】认识形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c为常数)类型的方程,并会用直接开平方法解.【过程与方法】培养学生准确而简洁的计算能力及抽象概括能力.【情感态度】通过两边同时开平方,将二次方程转化为一次方程,向学生渗透数学新知识的学习往往由未知(新知识)向已知(旧知识)转化,这是研究数学问题常用的方法,化未知为已知. 【教学重点】用直接开平方法解一元二次方程.【教学难点】(1)认清具有(ax+b)2=c(a≠0,c≥0,a,b,c为常数)这样结构特点的一元二次方程适用于直接开平方法;(2)一元二次方程可能有两个不相等的实数解,也可能有两个相等的实数解,也可能无实数解.如:(ax+b)2=c(a≠0,a,b,c常数),当c>0时,有两个不等的实数解,c=0时,有两个相等的实数解,c<0时无实数解.一、创设情境,导入新课1.口答题:4 的平方根是,81的平方根是, 81的算术平方根是 .2.我们曾学习过平方根的意义及其性质,回忆一下:什么叫做平方根?平方根有哪些性质?学生回答:(1)如果一个数的平方等于a,那么这个数就叫做a的平方根.用式子表示:若x2=a,则x叫做a的平方根.(2)平方根有下列性质:①一个正数有两个平方根,这两个平方根是互为相反数的;②零的平方根是零;③负数没有平方根.【教学说明】 以上问题让学生自主完成,教师归纳总结,重点强调正数有两个平方根,负数没有平方根.为后面的学习奠定基础.二、合作探究,探索新知1.教师设问:如何求出适合等式x 2=4的x 的值呢?学生思考,尝试解答2.根据平方根的定义,由x 2=4可知,x 就是4的平方根,因此x 的值为2和-2 即根据平方根的定义,得x 2=4,x =±2即此一元二次方程的解为: x 1=2,x 2 =-23.小结:这种解一元二次方程的方法叫做直接开平方法.【教学说明】根据平方根的求法得到方程的解,让学生将它们对应起来,然后教师将这种方法进行总结,注意方程解的写法.4.提问:怎样解方程(x+1)2=256?让学生说出解法,教师板书.解:直接开平方,得x+1=±16所以原方程的解是x 1=15,x 2=-175.教师小结:对于形如x 2=a (a ≥0)或(x+h )2=a(a ≥0)的一元二次方程可以用直接开平方法求解.解一元二次方程的基本思想是降次,将一元二次方程转化为一元一次方程.【教学说明】 这里教师要对式子进行分析,然后类比上面的解法,进行求解,最后进行总结,用字母的式子表示,便于学生理解和记忆.三、示例讲解,掌握新知例1 解下列方程:(1)x 2=2; (2)4x 2-1=0.【分析】第1题直接用开平方法解;第2题可先将-1移项,再将两边同时除以4化为x 2=a 的形式,再用直接开平方法解之.【教学说明】形如方程ax 2-k=0(a k ≥0)可变形为x 2=a k (ak ≥0)的形式,即方程左边是关于x 的一次式的平方,右边是一个非负常数,可用直接开平方法解此方程.例2 解下列方程:(1)(x +1)2=2;(2)(x -1)2-4 =0;(3)12(3-x )2-3 =0.【分析】 第1小题中只要将(x +1)看成是一个整体,就可以运用直接开平方法求解;第2小题先将-4移到方程的右边,再同第1小题一样的解法;第3小题先将-3移到方程的右边,再两边同除以12,再同第1小题一样去解即可.【教学说明】(1)解形如(x+h )2=k(k ≥0)的方程时,可把(x+h )看成整体,然后直接开平方;(2)注意对方程进行变形,方程左边变为一次式的平方,右边是非负常数;(3)如果变形后形如(x+h )2=k 中的k 是负数,不能直接开平方,说明方程无实数根;(4)如果变形后形如(x+h)2=k 中的k =0这时可得方程两根相等.四、练习反馈,巩固提高1.若8x 2-16=0,则x 的值是 .2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是 .3.如果a 、b 为实数,满足43 a +b 2-12b+36=0,那么ab 的值是 .4.用直接开平方法解下列方程:(1)x2=169;(2)45-x2=0;(3)4x2-16=0;(4)(x+2)2-16=0【答案】1.±2 2.9或-3 3.-8【教学说明】学生易错的是开方时应该是两种情况,学生可能只写一种,所以教师要进行强调.第2题应该先两边除以2,再进行开方求解.五、师生互动,课堂小结1.如果一元二次方程的一边是含有未知数的一次式的平方,另一边是一个非负常数,便可用直接开平方法来解.如(ax+b)2=c(a,b,c为常数,a≠0,c≥0).2.平方根的概念为直接开平方法的引入奠定了基础,同时直接开平方法也为一元二次方程的解法起了一个抛砖引玉的作用.两边开平方实际上是二次方程由二次转化为一次,实现了由未知向已知的转化,由高次向低次的转化,是高次方程解法的一种根本途径.3.一元二次方程可能有两个不同的实数解,也可能有两个相同的实数解,也可能无实数解.【教学说明】教师引导学生自主总结,教师适当渗透相关的解题思想并进行总结,为后面的学习奠定基础.完成同步练习册中本课时的练习.一元二次方程的求解是初中数学学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视.“直接开平方法解一元二次方程”是配方法解一元二次方程的基础;同时这一节的教材编写中还突出体现了“换元”、“转化”等重要的数学思想方法.因此这一节不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课.教学过程中,在合作探究过程中给学生较充分的时间进行独立思考、小组交流,让学生的思维互相启发互相碰撞,让个人智慧与集体智慧充分交融.在探究过程中适当巡视,适时指导点拨,保证各小组探究学习的有效性.同时,及时评价.对学生发现了不同解法时首先给予表扬和肯定,从而激发学生的求知欲.。

《用直接开平方法解一元二次方程》教案

《用直接开平方法解一元二次方程》教案

21.2解一元二次方程21.2.1 用直接开平方法解一元二次方程教案教学目标:1.会利用开平方法解形如x 2=p(p ≥0)的方程;2.初步了解形如(mx +n)2=p (p ≥0)方程的解法;3.能根据具体问题的实际意义检验结果的合理性.教学重点:运用直接开平方法解形如(mx +n)2=p(p ≥0)的一元二次方程.教学难点:通过平方根的意义解形如x 2=p(p ≥0)的方程,将知识迁移到根据平方根的意义解形如(mx +n)2=p(p ≥0)的一元二次方程.教学方法:启发式、小组合作探究法教学用具:多媒体,教学过程:1、 复习回顾:求下列各数的平方根: (1)144 (2)49 (3)24 (4) 自主探究:1、若x 2=p(p ≥0)则x=______;2、若(mx +n)2=p(p ≥0),则x=______;3、若0162=-y ,则y=_______;4、若5)32(2=-y ,则2y-3=____,即y=_______.归纳:一般地,对于方程x 2=p ,(1)当p >0时,根据平方根的意义,方程有两个不相等的实数根,x 1=-,x 2=;(2)当p =0时,根据平方根的意义,方程有两个相等的实数根,x 1=x 2=0;(3)当p <0时,根据平方根的意义,方程无实数根.2、 当堂演练:知识点一:形如x 2=p(p ≥0)的方程的解法:1、下列方程能用直接开平方法求解的是 ( )A 、5x 2+2=0B 、4 x 2-2x+1=0C 、4)2(2=-x D 、3x 2+4=2 2、方程100x 2-1=0的解为 ( ) A 、1011=x ,=2x -101; B 、=1x 10,=2x -10; C 、=1x =2x 101; D 、=1x =2x -101; 3、一元二次方程16 x 2=25的解为=1x ____ , =2x _____. 49364、用直接开平方法解一元二次方程:(1)x 2=16; (2)4 x 2-1=0知识点一:形如(mx +n)2=p(p ≥0)的方程的解法:5、方程4)2(2=-x 的解x=_______;6、对于形如(x +m)2=n 的方程的解,它的解的正确表达式是 ( )A 、x=n ±B 、当n 0≥时,x=m n ±C 、当n 0≥时,x=-m n ±D 、当n 0≥时,x=m n -±7、方程3(1-2x)2-27=0的根为 ( )A 、2B 、-1C 、2或-1D 、1或28、解下列方程:(1)(x-3)2-9=0; (2)2(x-1)2=4(3)4(x+1)2=41 (4)(2x+1)2=25 课堂小结:1、化为形如x 2=p (p ≥0)的形式再求解;2、化为形如 (mx +n)2=p (p ≥0) 的形式再求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课:一元二次方程的解法-----直接开平方法
教学目的:掌握解一元二次方程的直接开平方法;
重点、难点:直接开平方法解一元二次方程
教学过程:
一、探索:
请你和同学一起来探讨如何解下列方程:
(1)x2=4;(2)x2-1=0;
归纳什么是直接开平方法;
二、新课:
例1解下列方程:
(1)x2-2=0; (2)16x2-25=0.
解:(1)移项:(2)
直接开平方:
∴原方程的解是
2、练习:解下列方程:
(1)x2=169;(2)x2-7=0
(3)45-x2=0;(4) 12y2-25=0
(5)16x2-49=0 (6)2x2-32=0
例2解下列方程
(1)(x+1)2-4=0;(2)12(2-x)2-9=0.
分析:两个方程都可以转化为()2=a的形式,从而用直接开平方法求解. 解:(1)(2)
4、练习:解下列方程:
(1)(x +2)2-16=0;(2)(x -1)2-18=0;
(3)(1-3x )2=1;(4)(2x +3)2-25=0.
(5)(2x -3)2=5
(6)(x+1)2-12=0
(7) (x -5)2-36=0
(8) (6x -1)2=25
三、堂上练习:
1、用直接开平方法解下列方程;
(1)012=-x
(2)0162=-x
(3)01212=-y
(4)12822=x
(5)021
22=-x
(6)3432=y
(7)x x x x +=-225
(8)15272-=-x
(9)1652=+)(x (10)49172=+)(x
(11)41732=-)(y (12)010062=-+)(y
四、成果检测:
1、解下列方程
(1)0642=-x
(2)762=+y
(3)3632=x
(4)042=-)(x
(5)16542=-)(y
(6)24362=+)(y
(7)8321
2=-)(x
(8)0101012=-x
(9)01622=-x

10)041212=-+)(x
2、填空:
(1)方程232=x 的根是;
(2)方程02562=-x 的根是;
(3)4122=-+)(y x ,则=+22y x ;
(4)若关于x 的一元二次方程02=+-n a x )(有实数根,则n 的取值范围是;
3、用直接开平方法解方程832=-)(x ,方程的根为( ) A 223+=x B 223-=x C 22322321-=+=x x , D 32332321-=+=x x ,
4、方程042=+x 的根为( )
A ) 2
B )-2
C ) ±2
D )无实根
5、下列方程能用直接开平方法解的是( )
A )042=-x x
B )042=+-x
C )4532=++)(x
D )075252=++-))((y y
6、方程33522+=-y y 的实数根的个数是( )
A )0
B )1
C )2
D )3
7、方程122=-)(x 整理成一般形式后为( )
A )0322=--x x
B )0342=--x x
C )0342=+-x x
D )0542=+-x x 链接中考:(98)方程0542=-x 的根为( )
A )
25 B )25- C )45± D )±25。

相关文档
最新文档