初中八年级数学几何定理符号语言
八年级数学复习必背几何定理定义公式
在八年级数学中,几何定理和定义是学习几何学的基础。
掌握这些定理和定义对解决几何问题至关重要。
下面是八年级数学复习必背的几何定理、定义和公式,供你参考。
一、几何定义1.点:表示位置,没有大小和方向。
2.直线:由无数个点连成的路径,有长度但无宽度和厚度。
任意两点确定一条直线,两条直线的交点是一个点。
3.线段:由两个点和它们之间的路径组成,有长度,有起点和终点。
4.射线:有一个起点,由这个起点出发,沿着相同的方向延伸出去。
射线上的点有无数个,其中一个是起点。
5.角:由两条射线共同点和与这两条射线相交但不在同一条线上的两个点组成。
我们用∠ABC表示角ABC,其中A是角的顶点,B、C分别是角的两边。
6.角分类:锐角(小于90°)、直角(等于90°)、钝角(大于90°)。
7.平行线:在同一个平面内,方向相同或者重合的直线。
8.垂直线:互不平行,且相交90°形成的线。
二、几何定理1.垂直线段定理:如果两条线段互相垂直,则它们的乘积等于两条线段的连线上的线段的乘积。
2.垂直线定理:如果两条线段互相垂直,则它们的斜率的乘积等于-13.同位角定理:如果两条平行线被一条截线所交,那么同位角是相等的。
4.内错角定理:如果两条平行线被一条截线所交,那么内错角互为补角。
5.三角形内角和定理:一个三角形的内角的和等于180°。
6.三角形外角定理:三角形的一个外角等于它对应的两个内角的和。
7.等腰三角形定理:等腰三角形的两底角相等,等腰三角形的两腰边相等。
8.相似三角形定理:如果两个三角形的对应角度相等,那么它们是相似的。
9.相似三角形比例定理:两个相似三角形的任意两条对应边的比值相等。
10.直角三角形勾股定理:直角三角形斜边的平方等于两个直角边平方的和。
11.正方形性质:四边相等,对角线相等且垂直,对边平行且垂直,对角线平分角。
12.等边三角形性质:三边相等,三个内角都是60°,三角形的高、中线和垂心重合。
初中八年级数学几何定理符号语言
八年级上册1、全等三角形的性质:全等三角形的对应边、对应角相等。
FEDABC2、全等三角形的判定方法:(1)边边边:三边对应相等的两个三角形全等。
(SSS ) 几何语言:如图所示∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF(2)边角边:两边和它们的夹角对应相等的两个三角形全等。
(SAS ) 几何语言:如图所示∵AB=DE ,∠A=∠D ,AC=DF ∴△ABC ≌△DEF(3)角边角:两角和它们的夹边对应相等的两个三角形全等。
(ASA ) 几何语言:如图所示∵∠A=∠D ,AB=DE ,∠B=∠E ∴△ABC ≌△DEF(4)角角边:两角和其中一个角的对边对应相等的两个三角形全等。
(AAS ) 几何语言:如图所示∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF(5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。
(HL )【例1】判定两个三角形全等的方法是:⑴ 定义 ;⑵ ;⑶ ;⑷ ;⑸ ;⑹ .全等三角形的性质是对应边、对应角、周长、面积都分别 .【例2】下列命题错误的是( )A .全等三角形对应边上的高相等B .全等三角形对应边上的中线相等C .全等三角形对应角的角平分线相等D .有两边和一个角对应相等的两个三角形全等(可拓展证明全等三角形对应边上的高,对应边上的中线,对应角的平分线相等)3、轴对称:(1)由一个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状、大小完全相同;(2)新图形式的每一点,都是原图形上的某一点关于直线的对称点; (3)连接任意一对对应点的线段被对称轴垂直平分。
轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线。
4、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
5、推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6、角平分线的性质:角的平分线上的点到角的两边的距离相等。
初二几何定理归纳整理
初二几何定理归纳整理
5. 三角形内角和定理:三角形的内角和等于180度。
6. 平行线定理:如果一条直线与两条平行线相交,那么它与另一条直线的对应角相等。
7. 同位角定理:当两条直线被一条截断时,同位角相等。
8. 三角形中位线定理:三角形的三条中位线交于一点,且该点离各顶点的距离是中位线的 2/3。
初二几何定理归纳整理
9. 垂直平分线定理:垂直平分线将一条线段分成两个相等的部分,并且与线段垂直。
10. 圆的角是弧所夹的圆周角 的一半。
这些是初二阶段常见的几何定理,掌握它们可以帮助学生解决与三角形、直线、圆等几何 图形相关的问题。当然,在学习几何定理时,理解其背后的推理过程和证明方法也很重要。
初二几何定理归纳整理
初二阶段的几何定理主要包括以下内容:
1. 直角三角形定理:直角三角形中,两条直角边的平方和等于斜边的平方。
2. 等腰三角形定理:等腰三角形中,两底边相等,两底角相等。
3. 等边三角形定理:等边三角形中,三条边相等,三个角都是60度。
4. 相似三角形定理:如果两个三角形的对应角相等,则它们是相似的;如果两个三角形的 对应边成比例,则它们是相似的。
新华师大版八年级上册初中数学几何语言
初中基本几何语言汇总一、中点的定义、中线的定义∵M是AB的中点∴__________________或____________________________________( )∵CM是△的中线∴__________________或____________________________________( ) 二、角平分线、三角形的角平分线∵OC平分∠AOB∴__________________或____________________________________( ) ∵CM是△ABC的角平分线∴__________________或____________________________________( ) 三、垂直的定义、高的定义∵AB⊥CD∴__________________( )∵AD是△ABC的高∴__________________( )四、平行的性质(同位角F,内错角Z ,同旁内角CM BAU)∵AB∥CD∴______________( )∵AB∥CD∴_____________( )∵AB∥CD∴_____________( ) 五、平行的判定∵∠1=∠2∴_________( )21DCBA∵∠1=∠2∴_________( )∵∠1+∠2 =180°∴_________( )1、垂直于同一条直线的两条直线平行∵∴( )2、平行于同一条直线的两条直线平行2DCBA21DCBA1∵∴b a ∥ ( )六、 全等的性质∵△ABC ≌△DEF ∴__________,__________,__________ ( )___________,__________,__________ ( )七、 全等的判定在△ABC 和△DEF 中∵∴△ABC ≌△DEF ( )在△ABC 和△DEF 中 ∵⎪⎩⎪⎨⎧___________________________∴△ABC ≌△DEF ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )八、其他常见常用几何语言3、同角或等角的余角相等(区分同角等角)∵∠1+∠2 =90°∠1+∠3=90°∴______________( )∵∠1+∠2 =90°∠4+∠3=90°∠1=∠4∴______________( )4、同角或等角的补角相等(区分同角等角)∵∠1+∠2 =180°∠3+∠4=180°∠1=∠3∴______________( ) 九、三角形的内角和及其推论∠ +∠ +∠=180°()∠4=∠ +∠( )十、几种常见的几何语言∠1=∠2 ()AB=AB ()∵AE=CF∴____________________即__________()或∵AC=EF∴____________________即__________()∠A=∠A ()∵∠EAB=∠DAC∴____________________即__________()或∵∠EAC=∠DAB∴____________________即__________()十一、等腰三角形的性质性质1:(简称:)∵AB=AC∴__________()性质2:(简称:)①△ABC 中∵AB=AC ,AD是BC边上的中线,∴∠ =∠,⊥②△ABC中∵AB=AC,AD是∠BAC的平分线,∴⊥,= ③在△ABC中∵AB=AC,AD⊥BC,∴∠ =∠,=十二、等腰三角形的判定1定义法:两边相等的三角形叫等腰三角形2、两角相等的三角形是等腰三角形。
八年级上册数学必背几何定理
八年级上册数学必背几何定理
1. 直线相关的定理
- 直线的性质:直线上任意两点可以确定一条直线。
- 平行线的性质:若两条直线平行,则其上的任意两点的连线也平行于这两条直线。
- 垂线的性质:若一条线段与另一条直线相交且垂直,则这条直线为垂线。
2. 角的相关定理
- 余角定理:两个互补角的度数之和为90°。
- 补角定理:两个补角的度数之和为180°。
- 垂直角定理:两个互相垂直的角的度数之和为90°。
3. 三角形相关定理
- 三角形内角和定理:三角形的三个内角的度数之和为180°。
- 直角三角形定理:直角三角形的两个锐角的正弦和余弦满足
勾股定理。
- 等腰三角形定理:等腰三角形的两个底角相等。
- 等边三角形定理:等边三角形的三个角均为60°。
4. 平行四边形相关定理
- 平行四边形对角线定理:平行四边形的对角线相互平分。
- 对角线分割平行四边形定理:平行四边形的对角线互相相等。
以上是八年级上册数学必背的几何定理,掌握这些定理可以帮
助同学们更好地理解和解决与几何有关的问题。
初中数学符号
有关初中“数学”的常见符号
有关初中“数学”的常见符号如下:
1.代数符号:
●变量:通常用小写字母如a, b, c, x, y, z 表示。
●常数:表示不会改变的量,常用大写字母如A, B, C 或带有下标的字母表示。
●运算符号:+ (加法),- (减法),× (乘法),÷ (除法),= (等于),≠ (不等于),< (小于),>
(大于),≤ (小于等于),≥ (大于等于)。
2.几何符号:
●点:常用大写字母如A, B, C 表示。
●线段:用端点表示,如AB 表示从点A 到点B 的线段。
●角:用顶点和大写字母表示,如∠A 或∠ABC 表示以A 为顶点的角。
●垂线:用符号⊥表示,如AB ⊥CD 表示线段AB 与CD 垂直。
3.函数符号:
●函数:f(x),g(x) 等表示以x 为自变量的函数。
●函数的值:f(x) = y 表示当自变量x 取某个值时,函数f 的值为y。
4.三角学符号:
●三角函数:sin(x),cos(x),tan(x) 等表示三角函数。
●度数和弧度:° 表示角度,rad 表示弧度。
5.统计与概率符号:
●平均值:用符号¯x(x上有一横线)表示。
●方差:用符号s² 或Var(X) 表示。
●概率:用符号P(A) 表示事件A 发生的概率。
数学几何定理符语言
数学几何定理符语言 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】1、基本事实:经过两点有且只有一条直线。
(两点确定一条直线)2、基本事实:两点之间线段最短。
3、补角性质:同角或等角的补角相等。
几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴∠B=∠C(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C∴∠B=∠D(等角的补角相等)4、余角性质:同角或等角的余角相等。
几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C(同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C∴∠B=∠D(等角的余角相等)5、对顶角性质:对顶角相等。
∠1=∠26、过一点有且只有一条直线与已知直线垂直。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短)8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
几何语言:∵ a∥b,a∥c ∴b∥c10、两条直线平行的判定方法:几何语言:如图所示(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
∵∠1=∠2 ∴a∥b ∵∠3=∠4 ∴a∥b(3)同旁内角互补,两直线平行。
∵∠5+∠6=180°∴a∥b11、平行线性质:几何语言:如图所示(1)两直线平行,同位角相等。
∵a∥b ∴∠1=∠2(2)两直线平行,内错角相等。
∵a∥b ∴∠3=∠4(3)两直线平行,同旁内角互补。
∵a∥b ∴∠5+∠6=180°12、平移:(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
初中数学几何公式定理梳理大全老师都收藏了
初中数学几何公式定理梳理大全老师都收藏了一、基本概念和公式1.点:空间中没有大小和形状的事物就是点,用大写字母表示,如A、B、C等。
2.直线:两个不同点之间的路径称为直线,用小写字母表示,如a、b、c等。
3.线段:直线上的两个点及其之间的部分称为线段,用大写字母表示,两点间的距离表示为AB。
4.射线:一条有一个端点和一个方向的直线叫做射线,用大写字母表示,如AB。
5.平面:有无限个点的集合,用大写字母表示,如α、β、γ等。
6.角:由两条射线共享一个端点而形成的,位于同一平面上的两个非共线线段称为角,用大写字母表示,如∠ABC。
7.直角:两条互相垂直的线段所对应的角度称为直角,用⊥表示。
8.同位角:相对于同一条直线,在相交射线的两侧所形成的角称为同位角。
二、三角形1.相等的三角形定理:-边-角-边相等定理(已知两边和夹角相等,可得到相等的三角形)。
-角-边-角相等定理(已知两角和一边相等,可得到相等的三角形)。
-边-边-边相等定理(已知三边相等,可得到相等的三角形)。
2.相似的三角形定理:-边比相似定理(两个三角形对应边的比例相等,则称它们相似)。
-角比相似定理(两个三角形对应角的度数相等,则称它们相似)。
3.直角三角形定理:-勾股定理(直角三角形的两直角边的平方和等于斜边的平方)。
-正弦定理(在任意三角形中,三边的比与对应的正弦的比相等)。
-余弦定理(在任意三角形中,三边的比与对应的余弦的比相等)。
4.中线定理:三角形内的三条中线所交于一个点且相交点距离顶点的距离等于两条中线的长度之和的一半。
三、四边形1.矩形:-对角线相等定理:矩形的两条对角线相等。
-相邻角互补定理:矩形的任意两个相邻角互补。
2.平行四边形:-对边平行定理:一个四边形的两对对边分别平行,则该四边形是平行四边形。
3.正方形:-对角线互相垂直定理:正方形的对角线相互垂直。
-对角线相等定理:正方形的对角线相等。
四、圆1.圆:-圆周长公式:C=2πr,其中r为半径,π≈3.14-圆面积公式:S=πr²,其中r为半径,π≈3.142.弧:-弦切定理:相等弧所对的弦相等,圆心角相等的弧所对的弦相等。
(最新)初中八年级数学几何定理符号语言
正方形
正五边形
正六边形正十二边形
要点诠释:
(2)多边形的对角线
多边形的对角线:连接多边形不相邻的两个顶点的线
段,叫做多边形的对角线•如图2,BD为四边形ABCD的 一条对角线。
(4)多边形的外角和:多边形的外角和等于360°第十二章一、全等来自角形1全等三角形的概念
(1)能够完全重合的两个图形叫做 全等形。
2、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
1判断三条已知线段能否组成三角形
2当已知两边时,可确定第三边的范围。
3证明线段不等关系。
3、三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°。 推论:①直角三角形的两个锐角互余。
•••/ A=Z D,Z B=Z E,Z C=Z F,
AB=DE,BC=EF,AC=DF
(1)边边边:三边对应相等的两个三角形全等。(SSS
几何语言:如图所示 在厶ABC和厶DEF中,
(AB=DE,
v J BC=EF,
AC=DF
•••△ ABC^ADEF (SSS
(2)边角边:两边和它们的夹角对应相等的两个三角形全等。(SAS
几何语言:如图所示在厶ABC和厶DEF中,
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、全等三角形的性质
(1)全等三角形的对应边相等、对应角相等。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
全等三角形的性质:全等三角形的对应边、对应角相等。
数学几何定理符号语言(学生版本)
1、基本事实:经过两点有且只有一条直线 。
(两点确定一条直线)2、基本事实:__________________最短。
________________最短3、补角性质:同角或等角的补角相等 。
几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴__________________(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C∴__________________(等角的补角相等)4、余角性质:同角或等角的余角相等。
几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C (同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C∴__________________(等角的余角相等)5、对顶角性质:对顶角相等。
∠1=∠26、过一点有且只有一条直线与已知直线垂直。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短)8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行 。
几何语言:∵ a ∥b ,a ∥c ∴∴____________10、两条直线平行的判定方法:几何语言:如图所示(1) 同位角相等,两直线平行。
(2)内错角相等,两直线平行。
∵∠1=∠2 ∴____________ ∵∠3=∠4 ∴____________(3)同旁内角互补,两直线平行。
∵∠5+∠6=180°∴________________11、平行线性质:几何语言:如图所示(1) 两直线平行,同位角相等。
∵a ∥b ∴________________(2) 两直线平行,内错角相等。
∵a ∥b ∴________________(3) 两直线平行,同旁内角互补。
∵a ∥b ∴________________12、平移:(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
数学几何定理符号语言
数学几何定理符号语言公司内部档案编码:[OPPTR-OPPT28-OPPTL98-1、基本事实:经过两点有且只有一条直线。
(两点确定一条直线)2、基本事实:两点之间线段最短。
3、补角性质:同角或等角的补角相等。
几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴∠B=∠C(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C∴∠B=∠D(等角的补角相等)4、余角性质:同角或等角的余角相等。
几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C(同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C5、对顶角性质:对顶角相等。
∠1=∠26、过一点有且只有一条直线与已知直线垂直。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短)8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
几何语言:∵ a ∥b ,a ∥c ∴b ∥c 10、两条直线平行的判定方法:几何语言:如图所示(1) 同位角相等,两直线平行。
(2)内错角相等,两直线平行。
∵∠1=∠2 ∴a ∥b∵∠3=∠4 ∴a ∥b(3)同旁内角互补,两直线平行。
∵∠5+∠6=180° ∴a ∥b 11、平行线性质: 几何语言:如图所示(1) 两直线平行,同位角相等。
∵a ∥b ∴∠1=∠2(2) 两直线平行,内错角相等。
∵a ∥b ∴∠3=∠4(3) 两直线平行,同旁内角互补。
∵a ∥b ∴∠5+∠6=180°12、平移:(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
初中几何的符号语言
初中几何的符号语言代数的符号率先出现,最早使用符号的是公元3世纪的家丢番图。
随着科学的迅速发展,作为科学公仆的迫切需要改进表述方式,于是现代数学的符号体系开始在欧洲形成了。
许多数学符号很形象,一看就明了它的含意。
如第一个使用现代符号〝=〞的数学家雷科德就这样说道:〝再也没有别的东西比它们更相等了。
〞他的巧妙构思得到了公认,从而相等符号〝=〞沿用了下来。
最灿烂而美丽的图形科学──几何,为了进一步发展,许多几何符号应运而生。
如平行符号&ldquo 初三;∥〞多么简单又形象,给人们抽象而丰富的,在同一个平面内的两条线段各自向两方无限延长,它们永不相交,揭示了两条直线平行的本质。
数学符号有两个基本功能,一是准确、明了地使别人知道指的是什么概念,二是书写简便。
自觉地引入符号体系的是法国数学家韦达〔1854—1603年〕,而现代数学符号体系却采取笛卡儿〔1596—1650年〕使用的符号,欧拉〔1707一1783〕为符号正规化作出不少贡献。
如用a、b、c表示三角形ABC的三边等等,都应归功于欧拉。
数学中的符号越来越多,往往被人们错误地认为数学是一门难懂而又神秘的科学。
当然,如果不了解数学符号含意的人就看不a 懂大量天书般符号的数学,唯有进了数学大门才能真正发觉数学符号给数学理论的表达和说理带来莫大的方便,甚至感到是必不可少的。
说来也奇怪,地球上不同地区采用不同的文字,可是数学符号却成了世界通用语言。
因此为了学好几何,必须加强几何符号语言的训练。
第一,彻底理解每一个几何符号的含意例如符号A、B、C......没有什么几何意义,只有分别在它们前面或后面写上〝点〞字,才表示图1中的点。
又如AB前面写上〝直线〞〝线段〞或〝射线〞,就分别表示图2中〔a〕、(b〕、〔c〕的几何图形,否那么符号AB就表示线段AB的长度,是一个数,因此3AB和AB分别表示线段AB长度的三倍和三分之一。
再如符号∠ABC和△ABC表示不同的几何图形,前者是角〔图〔3a〕〕,后者是三角形〔图〔3b〕〕。
初中八年级数学几何定理符号语言
初中数学“图形与几何”内容在中考中,几何解答题、几何证明题就是热点内容,在解答过程中经常要用到定义、定理,而具体的过程需要用到符号语言表小,因此学生必须熟练掌握每个定理的几何表小法,下面就把初中阶段八年级涉及的所有几何定理的符号语言归纳出来:初中八年级数学几何定理符号语言初中数学“图形与几何”内容八年级上册20、全等三角形的性质:全等三角形的对应边、对应角相等。
21、全等三角形的判定方法:(1) 边边边:三边对应相等的两个三角形全等。
(SSS 几何语言:如图所示 .• AB=DE,BC=EF,AC=DF 二△ AB(^A DEF(2) 边角边:两边与它们的火角对应相等的两个三角形全等。
(SAS 几何语言:如图所示.• AB=DE, Z A= Z D,AC=DF 二 AAB(^A DEF (3) 角边角:两角与它们的夹边对应相等的两个三角形全等。
(ASA 几何语言:如图所示. Z A= Z D,AB=DE, Z B= Z E . AB(^A DEF(4) 角角边:两角与其中一个角的对边对应相等的两个三角形全等。
(AAS 几何语言:如图所示/ A= Z D, Z B=Z E,BC=EF . AB(^A DEF (5) 斜边、直角边:斜边与一条直角边对应相等的两个直角三角形全等。
(H L)■ 几何语言:如图所示[.• AB=DE,BC=EF(AB=DE,AC=DF) . AB(^A DEF22、角平分线的性质:角的平■分线上的点到角的两边的距离相等。
23、 推论:角的内部到角的两边的距离相等的点在角的平■分线上。
24、 轴对称的性质:如果两个图形关丁某条直线对称,那么对称轴就是任何一对对应 点连线的垂直平■分线。
25、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相LHJ (推论)几何语言: 如图所示 .• EC±PA 丁 C,ED±PB 于 D,EC=ED.••点E 在Z APB 的平■分26、 推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
初中数学几何语言大全
初中数学几何语言大全初中数学几何涉及到一系列的术语和概念,以下是一些常见的初中数学几何的语言大全:1.点(Point):没有大小和形状的位置,用大写字母表示,如A、B。
2.线段(Line Segment):由两个端点和它们之间的所有点组成,用两个端点的字母表示,如AB。
3.射线(Ray):由一个端点和它上面的所有点组成,用端点和另一点的字母表示,如OA。
4.直线(Line):由无数点组成,延伸到无穷远,用两点的字母表示,如AB。
5.角(Angle):由两条射线共享一个端点形成,用三个字母表示,如∠ABC。
6.平行线(Parallel Lines):在同一平面上永远不相交的直线。
7.垂直线(Perpendicular Lines):形成直角的两条相交直线。
8.三角形(Triangle):由三条边和三个角组成的图形。
9.直角三角形(Right Triangle):具有一个直角的三角形。
10.等边三角形(Equilateral Triangle):三条边都相等的三角形。
11.等腰三角形(Isosceles Triangle):至少两条边相等的三角形。
12.梯形(Trapezoid):有两边平行的四边形。
13.平行四边形(Parallelogram):对边平行的四边形。
14.矩形(Rectangle):所有角都是直角的平行四边形。
15.正方形(Square):所有边和角都相等的矩形。
16.菱形(Rhombus):所有边都相等的平行四边形。
17.圆(Circle):平面上所有到圆心距离相等的点的集合。
18.直径(Diameter):通过圆心的两点之间的线段。
19.弧(Arc):圆上的一段。
20.切线(Tangent):与圆相切的直线。
这些是初中数学几何中一些常见的基本概念和术语。
数学公式符号大全
数学公式符号大全
数学公式符号大全包括以下内容:
1.几何符号:⊥(垂直于)、∥(平行于)、∠(角)、⌒(圆弧)、⊙(圆心)、≌(全等)、△(三角形)等。
2.代数符号:∝(成正比)、∧(和)、∨(或)、~(近似于)、∫(积分)、∑(求和)、∪(并集)、∩(交集)等。
3.运算符号:+(加号)、-(减号)、×(乘号或·)、÷(除号)、∪(并集)、∩(交集)、√(根号)、|a|(绝对值)等。
4.关系符号:=(等于号)、≈(近似符号)、≠(不等于号)、>(大于号)、<(小于号)、≥(大于或等于号)、≮(不大于号)、≯
(不小于号)等。
5.推理符号:∵(因为)、∴(所以)、←(向左箭头)、↑(向上箭头)、→(向右箭头)、↓(向下箭头)等。
6.特殊符号:∑、π、⊙、∆、√、√ ̄、∣、∠、≌、∑、≈等。
7.运算符号:∪、∩、∈、∉、⊆、⊄、⊅、∍等。
8.特殊符号:∑、π、∣、√ ̄、△等。
9.运算符号:∪、∩、∈等。
10.推理符号:∵、∴等。
以上是数学公式符号大全的一部分,具体使用时需要根据不同的情况选择合适的符号。
八年级数学复习必背几何定理定义公式
八年级数学复习必背几何定理定义公式班级姓名第一部分相交线、平行线1、直线公理:经过两点有且只有一条直线两点确定一直线;2 、线段公理:两点之间线段最短;3、同角或等角的补角相等,同角或等角的余角相等;4、对顶角相等;5、垂线的性质:①经过一点..有且只有一条直线和已知直线垂直;②直线外一点与直线上各点连接的所有线段中,垂线段最短;简写为:垂线段最短;6、平行线的定义:在同一平面内不相交的两条直线叫作平行线;7、在同一平面中两条直线的位置关系有两种,相交和平行;在空间几何中两条直线的位置关系有三种,相交、平行和异面;8、平行公理:经过直线外一点.....,有且只有一条直线与这条直线平行;7、平行公理的推论:如果两条直线都和第三条直线平行,这两条直线也互相平行;9、平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;10、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补;第二部分三角形1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形,叫作三角形;2、三角形的中线:连接三角形的一个顶点和对边中点的线段叫作三角形的中线;3、三角形的角平分线:三角形的一个内角的平分线与对边相交,顶点和交点之间的线段叫作三角形的角平分线;4、三角形的高:经过三角形的一个顶点向对边所在直线作垂线,顶点和垂足之间的线段叫作三角形的高;5、三角形三边关系定理:三角形两边的和大于第三边,三角形两边的差小于第三边;6、三角形内角和定理:三角形三个内角的和等于180°7、推论:三角形的一个外角等于和它不相邻的两个内角的和;8、真命题:三角形的一个外角大于任何一个和它不相邻的内角;9、多边形的内角和公式:n-2180°10、任意多边的外角和等于360°;11、连接多边形的不相邻顶点的直线叫作对角线;从n 边形n ≥3的一个顶点可以引n-3条对角线,n 边形n ≥3一共有)3(21 n n 条对角线;12、能够完全重合的两个图形叫作全等形;13、能够完全重合的两个三角形叫作全等三角形;全等三角形的对应边、对应角相等 ;14、全等三角形的判定:①边角边SAS :有两边和它们的夹角对应相等的两个三角形全等;②角边角ASA :有两角和它们的夹边对应相等的两个三角形全等 ;③角角边AAS :有两角和其中一角的对边对应相等的两个三角形全等; ④边边边SSS :有三边对应相等的两个三角形全等;⑤斜边、直角边HL :有斜边和一条直角边对应相等的两个直角三角形全等 第三部分 轴对称图形 1、轴对称:如果把一个图形沿着一条直线折叠后能够与另一个图形完全重合,那么这两个图形关于直线成轴对称;2、轴对称图形:如果把一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形是轴对称图形;3、轴对称的性质:①关于某条直线对称的两个图形是全等形;②如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;③两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;④真命题:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;①线段的垂直平分线上的点到线段两端的距离相等;②到线段两端距离相等的点在这条线段的垂直平分线上;③线段的垂直平分线是到线段两端距离相等的所有点的集合;6、角的轴对称性:①角平分线上的点到这个角的两边的距离相等;②在角的内部到一个角的两边的距离相同的点,在这个角的平分线上;③角的平分线是角的内部到角的两边距离相等的所有点的集合;7、等腰三角形的定义:有两条边相等的三角形叫作等腰三角形;8、等腰三角形的性质:①等腰三角形的两个底角相等即等边对等角②三线合一:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合;9、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边10、等边三角形的定义:三边都相等的三角形叫作等边三角形;11、等边三角形的性质:等边三角形的各角都相等,并且每个角都等于60° ;12、等边三角形的判定:①三个角都相等的三角形是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;13、直角三角形的性质:①直角三角形的两个锐角互余;②直角三角形斜边上的中线等于斜边上的一半③勾股定理:直角三角形的两条直角边的平方和等于斜边的平方;④在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半;⑤在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于3014、直角三角形的判定:①两个锐角互余的三角形是直角三角形;②真命题:如果三角形的一边上的中线等于这边长的一半,那么这个三角形是直角三角形;③勾股定理逆定理:如果一个三角形的两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形;第四部分中心对称图形1、中心对称:如果把一个图形绕一个点旋转180°后能够与另一个图形完全重合,那么这两个图形关于这点成中心对称;2、中心对称图形:把一个图形绕一个点旋转180°后能够与自身完全重合,那么这个图形是中心对称图形;3、中心对称的性质:①关于中心对称的两个图形是全等的;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;4、真命题:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称;5、平行四边形的定义:两组对边分别平行的四边形叫作平行四边形;6、平行四边形性质:①平行四边形的对角相等;②平行四边形的对边相等;③平行四边形的对角线互相平分;7、平行四边形判定:①两组对边分别相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④真命题:两组对角分别相等的四边形是平行四边形;⑤真命题:一组对边平行,一组对角相等的四边形是平行四边形;注意:假命题...:一组对边相等,一组对角相等的四边形是平行四边形;×8、矩形的定义:有一个角是直角的平行四边形叫作矩形;9、矩形的性质:①矩形的四个角都是直角;②矩形的对角线相等;10、矩形的判定:①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形;11、菱形的定义:有一组邻边相等的平行四边形叫作菱形;12、菱形的性质:①菱形的四条边都相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角;13、菱形面积等于对角线乘积的一半;推而广之:真命题对角线互相垂直的四边形的面积等于对角线乘积的一半;14、菱形的判定:①四边都相等的四边形是菱形;②对角线互相垂直的平行四边形是菱形;③真命题:一条对角线平分一个内角的平行四边形是菱形;15、正方形的定义:有一个角是直角,并且有一组邻边相等的平行四边形叫作正方形;16、正方形性质:正方形的四个角都是直角,四条边都相等,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;17、正方形的判定:既是矩形,又是菱形的四边形是正方形;18、梯形的定义:有一组对边平行,另一组对边不平行的四边形叫作梯形;19、等腰梯形的定义:两腰相等的梯形叫作等腰梯形;20、等腰梯形性质:①等腰梯形在同一底上的两个角相等;②等腰梯形的两条对角线相等;21、等腰梯形判定:①在同一底上的两个角相等的梯形是等腰梯形;②真命题对角线相等的梯形是等腰梯形;22、三角形的中位线的定义:连接三角形的两边中点的线段叫作三角形的中位线;23、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;24、梯形的中位线:连接梯形的两腰中点的线段叫作梯形的中位线;25、真命题:梯形的中位线平行于两底,并且等于两底之和的一半;26、真命题:梯形的两条对角线的中点的连线平行于两底,并且等于两底之差的一半;27、梯形的面积等于中位线与高的乘积;28、真命题:①连接任意四边形的各边中点所得的四边形是平行四边形;真命题:②连接对角线相等.....的四边形的各边中点所得四边形是矩形;真命题:③连接对角线互相垂直.......的四边形的各边中点所得的四边形是菱形;。
初中八年级数学几何定理符号语言74526
初中数学“图形与几何”内容在中考中,几何解答题、几何证明题是热点内容,在解答过程中经常要用到定义、定理,而具体的过程需要用到符号语言表示,因此学生必须熟练掌握每个定理的几何表示法,下面就把初中阶段八年级涉及的所有几何定理的符号语言归纳出来:初中数学“图形与几何”内容八年级上册20、全等三角形的性质:全等三角形的对应边、对应角相等。
FEDABC21、全等三角形的判定方法:(1)边边边:三边对应相等的两个三角形全等。
(SSS ) 几何语言:如图所示∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF(2)边角边:两边和它们的夹角对应相等的两个三角形全等。
(SAS ) 几何语言:如图所示∵AB=DE ,∠A=∠D ,AC=DF ∴△ABC ≌△DEF(3)角边角:两角和它们的夹边对应相等的两个三角形全等。
(ASA ) 几何语言:如图所示∵∠A=∠D ,AB=DE ,∠B=∠E ∴△ABC ≌△DEF(4)角角边:两角和其中一个角的对边对应相等的两个三角形全等。
(AAS ) 几何语言:如图所示∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF(5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。
(H L )22、角平分线的性质:角的平分线上的点到角的两边的距离相等。
23、推论:角的内部到角的两边的距离相等的点在角的平分线上。
24、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线。
25 、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离E F P A B CD相等。
26、推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
27、轴对称:(1)由一个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状、大小完全相同;(2)新图形式的每一点,都是原图形上的某一点关于直线的对称点;(3)连接任意一对对应点的线段被对称轴垂直平分。
八年级数学复习必背几何定理定义公式
八年级数学复习必背几何定理定义公式班级 姓名第一部分 相交线、平行线1、 直线公理:经过两点有且只有一条直线(两点确定一直线)。
2 、线段公理:两点之间线段最短。
3、 同角或等角的补角相等,同角或等角的余角相等。
4、对顶角相等。
5、垂线的性质:①经过一点..有且只有一条直线和已知直线垂直。
②直线外一点与直线上各点连接的所有线段中,垂线段最短。
(简写为:垂线段最短。
)6、平行线的定义:在同一平面内不相交的两条直线叫作平行线。
7、在同一平面中两条直线的位置关系有两种,相交和平行。
在空间几何中两条直线的位置关系有三种,相交、平行和异面。
8、平行公理:经过直线外一点.....,有且只有一条直线与这条直线平行。
7、平行公理的推论:如果两条直线都和第三条直线平行,这两条直线也互相平行。
9、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
10、平行线的性质:①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
第二部分 三角形1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形,叫作三角形。
2、三角形的中线:连接三角形的一个顶点和对边中点的线段叫作三角形的中线。
3、三角形的角平分线:三角形的一个内角的平分线与对边相交,顶点和交点之间的线段叫作三角形的角平分线。
4、三角形的高:经过三角形的一个顶点向对边所在直线作垂线,顶点和垂足之间的线段叫作三角形的高。
5、三角形三边关系定理:三角形两边的和大于第三边,三角形两边的差小于第三边。
6、三角形内角和定理:三角形三个内角的和等于180°7、推论:三角形的一个外角等于和它不相邻的两个内角的和。
8、真命题:三角形的一个外角大于任何一个和它不相邻的内角。
9、多边形的内角和公式:(n-2)180°10、任意多边的外角和等于360°。
11、连接多边形的不相邻顶点的直线叫作对角线。
八年级数学必背基本定理
八年级数学必背基本定理一、基本几何定理1.全等三角形的判定定理边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。
角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等。
边边边公理(SSS):有三边对应相等的两个三角形全等。
推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。
斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。
2.等腰三角形的性质与判定定理等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
推论:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形。
3. 等边三角形的性质等边三角形的三条边都相等。
等边三角形的三个内角都相等,且每个角都等于60°。
4. 直角三角形中的特殊性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
直角三角形斜边上的中线等于斜边的一半。
5. 轴对称与中心对称轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
中心对称图形的定义:关于中心对称的两个图形是全等的。
6. 垂直平分线与角平分线的性质与判定垂直平分线的定义:经过线段中点而且垂直于这条线段的直线,叫做这条线段的垂直平分线。
垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
角平分线的性质:角的平分线上的点到角的两边的距离相等。
角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。
二、代数与方程定理1.平方差公式:a²-b²=(a+b)(a-b)2.完全平方公式:(a + b)² = a² + 2ab + b²(a - b)^2 = a² - 2ab + b²3. 勾股定理:在直角三角形中,直角边的平方和等于斜边的平方,即a^2 + b^2 = c^2(其中a和b是直角边,c是斜边)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学“图形与几何”内容
在中考中,几何解答题、几何证明题是热点内容,在解答过程中经常要用到定义、定理,而具体的过程需要用到符号语言表示,因此学生必须熟练掌握每个定理的几何表示法,下面就把初中阶段八年级涉及的所有几何定理的符号语言归纳出来:
初中数学“图形与几何”内容
八年级上册
20、全等三角形的性质:全等三角形的对应边、对应角相等。
F
E
D
A
B
C
21、全等三角形的判定方法:
(1)边边边:三边对应相等的两个三角形全等。
(SSS ) 几何语言:如图所示
∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF
(2)边角边:两边和它们的夹角对应相等的两个三角形全等。
(SAS ) 几何语言:如图所示
∵AB=DE ,∠A=∠D ,AC=DF ∴△ABC ≌△DEF
(3)角边角:两角和它们的夹边对应相等的两个三角形全等。
(ASA ) 几何语言:如图所示
∵∠A=∠D ,AB=DE ,∠B=∠E ∴△ABC ≌△DEF
(4)角角边:两角和其中一个角的对边对应相等的两个三角形全等。
(AAS ) 几何语言:如图所示
∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF
(5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。
(H L )
22、角平分线的性质:角的平分线上的点到角的两边的距离相等。
23、推论:角的内部到角的两边的距离相等的点在角的平分线上。
24、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线。
25 、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离
E F P A B C
D
相等。
26、推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
27、轴对称:
(1)由一个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状、大小完全相同;
(2)新图形式的每一点,都是原图形上的某一点关于直线的对称点;
(3)连接任意一对对应点的线段被对称轴垂直平分。
28、用坐标表示轴对称:
点(x ,y)关于x 轴对称的点的坐标为(x ,-y); 点(x ,y)关于y 轴对称的点的坐标为(
-x ,y)。
29、等腰三角形的性质:
(1)等腰三角形的两个底角相等。
(等边对等角) 几何语言:
如图所示,在△ABC 中
∵AB
=AC
∴∠B =∠C (等边对等角)
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
30、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)
几何语言:
如图所示,在△ABC 中
∵∠B =∠C
∴AB =AC (等角对等边)
31、等边三角形的性质定理:
等边三角形的三个内角都相等,并且每一个角都等于60° 。
N M A B C D
C
C C
32、等边三角形的判定定理:
(1)三个角都相等的三角形是等边三角形。
(2)有一个角是60°的等腰三角形是等边三角形。
33、直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
几何语言:如图所示
∵∠C =90°,∠B =30°
∴AC =21
AB (或者AB =2AC )
八年级下册
34、勾股定理:如果直角三角形两直角边分别为a 、b ,斜边为c ,那么a 2+b 2=c 2。
35、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c
2 ,那么这个三角形是直角三角形。
36、平行四边形的性质:
(1)平行四边形的对边平行。
(2)平行四边形的对边相等。
(3
)平行四边形的对角相等。
(4)平行四边形的对角线互相平分。
(1)两组对边分别平行的四边形是平行四边形。
(定义)
(2)两组对边分别相等的四边形是平行四边形。
D
D
E A
B C D
(3)对角线互相平分的四边形是平行四边形。
(4)一组对边平行且相等的四边形是平行四边形。
(5)两组对角分别相等的四边形是平行四边形。
(练习题中)
38、三角形的中位线定理:
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
几何语言:如图所示,在△ABC 中 ∵D 、E 分别是AB 、AC 的中点 ∴DE ∥BC ,DE=2
1
BC 39、两条平行线间的任何一组平行线段相等 。
40、矩形的性质:(平行四边形具有的性质都具有) (1)矩形的四个角都是直角。
(2)矩形的对角线相等。
41、直角三角形的性质:
(1)直角三角形斜边上的中线等于斜边的一半。
(2)直角三角形的两个锐角互余。
42、矩形的判定方法:
(1)有一个是直角的平行四边形是矩形。
(定义) (2)有三个角是直角的四边形是矩形。
(3)对角线相等的平行四边形是矩形。
(判定)几何语言:如图所示, (1)∵AB ∥CD ,AD ∥BC ∴四边形ABCD 是平行四边形 (2)∵AB=CD ,AD=BC ∴四边形ABCD 是平行四边形 (3)∵OA=OC ,OB=OD ∴四边形ABCD 是平行四边形 (4)∵AB CD (或AD BC ) ∴四边形ABCD 是平行四边形 (5)∵∠ABC=∠ADC ,∠ BAD=∠BCD ∴四边形ABCD 是平行四边形 A C D
(性质)几何语言:如图所示, (1)∵四边形ABCD 是矩形 ∴∠ABC=∠BCD =∠CDA =∠DAB =90°
(2)∵四边形ABCD 是矩形 ∴AC=BD
D A
C B (性质)几何语言:如图所示, (1)∵△ABC 是直角三角形,
D 是AB 的中点 ∴C D=21AB (或AB=2CD )
(2)∵△ABC 是直角三角形 ∴∠A+∠B=90° A D
43、菱形的性质:(平行四边形具有的性质都具有) (1)菱形的四条边都相等。
(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
44、菱形的判定方法: (1)一组邻边相等的平行四边形是菱形。
(定义) (2)四边相等的四边形是菱形。
(3)对角线互相垂直的平行四边形是菱形。
45、菱形的面积=对角线(AC 、BD )乘积的一半,即S=2
1
(AC×BD ) 。
46、正方形的性质:(矩形、菱形具有的性质都具有) (1)正方形的四个角都是直角,四条边都相等。
(2)正方形的两条对角线相等,且互相垂直平分,
每条对角线平分一组对角。
(1)有一组邻边相等的矩形是正方形。
(2)有一个内角是直角的菱形是正方形。
(3)对角线相等且互相垂直平分的四边形是正方形。
A B D C
D
48、等腰梯形的性质:
(1)等腰梯形在同一底上的两个角相等。
(2)等腰梯形的两条对角线相等。
49、等腰梯形的判定方法: (1)两腰相等的梯形是等腰梯形。
(2)同一底上的两个角相等的梯形是等腰梯形 。
(3)对角线相等的梯形是等腰梯形。
(教材中没有)
50、重心:
线段的重心是它的中点; 三角形的重心是三条中线的交点; 平行四边形的重心是对角线的交点。
C B B。