最新平行四边形、菱形、矩形正方形测试题

合集下载

初中数学 矩形、菱形与正方形测试题含答案

初中数学 矩形、菱形与正方形测试题含答案

矩形、菱形与正方形测试题一、选择题1.能判定四边形ABCD为平行四边形的题设是().(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;(C)AB=CD,AD=BC; (D)AB=AD,CB=CD2.在给定的条件中,能画出平行四边形的是().(A)以60cm为一条对角线,20cm、34cm为两条邻边;(B)以6cm、10cm为对角线,8cm为一边;(C)以20cm、36cm为对角线,22cm为一边;(D)以6cm为一条对角线,3cm、10cm为两条邻边3.正方形具有而菱形不一定具有的性质是()(A)对角线互相平分; (B)对角线相等;(C)对角线平分一组对角; (D)对角线互相垂直4.在下列说法中不正确的是()(A)两条对角线互相垂直的矩形是正方形;(B)两条对角线相等的菱形是正方形;(C)两条对角线垂直且相等的平行四边形是正方形;(D)两条对角线垂直且相等的四边形是正方形5.下列说法不正确的是()(A)对角线相等且互相平分的四边形是矩形;(B)对角线互相垂直平分的四边形是菱形;(C)一组对边平行且不等的四边形是梯形;(D)一边上的两角相等的梯形是等腰梯形6.不能判定四边形ABCD为平行四边形的题设是()(A)AB=CD,AD=BC (B)AB//CD(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC7.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的题设是()(A)AO=CO,BO=DO; (B)AO=CO=BO=DO;(C)AO=CO,BO=DO,AC⊥BD; (D)AO=BO=CO=DO,AC⊥BD8.下列说法不正确的是()(A)只有一组对边平行的四边形是梯形;(B)只有一组对边相等的梯形是等腰梯形;(C)等腰梯形的对角线相等且互相平分;(D)在直角梯形中有且只有两个角是直角9.如图1,在□ABCD中,MN分别是AB、CD的中点,BD分别交AN、CM于点P、Q,在结论:①DP=PQ=QB ②AP=CQ ③CQ=2MQ ④S △ADP=14S ABCD中,正确的个数为().(A)1 (B)2 (C)3 (D)4(1) (2) (3)10.如图2,在梯形ABCD中,AD∥CB,AD=2,BC=8,AC=6,BD=8,则梯形ABCD的面积为().(A)24 (B)20 (C)16 (D)12二、填空题11.在□ABCD中,AC与BD交于O,则其中共有_____对全等的三角形.12.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为_______,矩形的面积为________.13.一个菱形的两条对角线长分别为6cm,8cm,这个菱形的边长为_______,•面积S=______.14.如果一个四边形的四个角的比是3:5:5:7,则这个四边形是_____形.15.如图3,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.16.如图4,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_______.(4) (5) (6)17.在长为1.6m,宽为1.2m的矩形铅板上,剪切如图5所示的直角梯形零件(•尺寸单位为mm),则这块铅板最多能剪出______个这样的零件.18.如图6,ABCD中,过对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,则四边形CDFE周长为________.19.已知等腰梯形的一个锐角等于60•°,•它两底分别为15cm,•49cm,•则腰长为_______.20.已知等腰梯形ABCD中AD∥BC,BD平分∠ABC,BD•⊥DC,•且梯形ABCD•的周长为30cm,则AD=_____.三、计算题21.如图,已知等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,AD=3cm,BC=7cm,•DE•⊥BC 于E,试求DE的长.四、证明题22.如图,已知四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是菱形.23.已知如图,梯形ABCD中,AD∥BC,AM=MB,DN=NC.求证:MN∥BC,MN=12(BC+AD).答案:1.(C) 2.(C) 3.(B) 4.(D) 5.(D)6.(C) 7.(D) 8.(C) 9.(C) 10.(A)11.4 12.40cm 4003cm213.5cm 24cm2 14.直角梯形15.15 16.15° •17.12 18.8.6cm 19.34cm20.如图,作AE⊥BC于E,DF⊥BC于F,∴AD=EF,设BE=x.则AB=2x,DC=2x,FC=x,∴BD平分∠ABC,∴∠DBC=30°.∴DC=12BC,∴BC=4x.∴EF=2x=AD.又∵AB+BC+CD+AD=30,∴4x+6x=30,x=3,∴AD=6(cm).21.过D点作DF∥AC,交BC的延长线于点F,则四边形ACFD为平行四边形,•所以AC=DF,AD=CF.因为四边形ABCD为等腰梯形,所以AC=BD,所以BD=DF,又已知AC⊥BD,DF∥AC,•所以BD⊥DF,则△BDF为等腰直角三角形.又因为DF⊥BC,所以DE=12BF=12(BC+CF)=12(BC+AD)=12(7+3)=5(cm).22.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=12AC,HG=12AC,FG=12BD,EH=12BD.∴EF=HG=12AC,FG=EH=12BD.又∵AC=BD,∴EF=HG=FG=EH.∴四边形EFGH是菱形.23.证明:如图,连接AN并延长,交BC的延长线于点E.∵DN=NC,∠1=∠2,∠D=∠3,∴△ADN≌△ECN,∴AN=EN,AD=EC.又AM=MB,∴MN是△ABE的中位线.∴MN∥BC,MN=12BE(三角形中位线定理)∵BE=BC+CE=BC+AD,∴MN=12(BC+AD).。

平行四边形、菱形、矩形、正方形综合测试题

平行四边形、菱形、矩形、正方形综合测试题

平行四边形、菱形、矩形、正方形综合测试题 姓名 得分 一、选择题(5分×5=25分)1、根据下列条件,不能判定四边形是平行四边形的是( )A .一组对边平行且相等的四边形B .两组对边分别相等的四边形C .对角线相等的四边形D .对角线互相平分的四边形2、矩形具有而一般平行四边形不具有的性质是( )A.对角相等B.对边相等C.对角线互相垂直D.对角线相等 3、能够判别一个四边形是正方形的条件是( ) A.对角线相等且互相平分 B.对角线互相垂直平分且相等 C.对角线互相平分D.一组对角相等且一条对角线平分这组对角 4、下列图形中,面积最大的是( ) (A )边长为3的正方形 (B )边长为2、高为1的平行四边形 (C )对角线长分别为4和1的菱形 (D )一边为1,对角线为3的矩形5、矩形ABCD 的周长为20cm,两条对角线相交于O 点,过O 作AC 的垂线EF ,分别交AD 、BC 于E 、F 点,连接EC ,则△CDE 的周长为( ) A.5cm B.8cm C.9cm D.10cm 二、填空题(5分×6=30分)1、矩形ABCD 中,对角线AC 、BD 交于点O ,AE BD⊥于E ,13OE ED =∶∶,AE =则BD = 2、已知平行四边形的面积是144cm 2,相邻两边上的高分别为8cm 和9cm ,则这个平行四边形的周长为________.3、在平行四边形ABCD 中,若∠A+∠C=120°,则∠A=_______,∠B=_________.4、菱形的两个邻角之比为1:2,周长为4a ,则较短的对角线的长为___________.5、如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB=60°,AE 平分∠BAD ,AE 交BC 于E ,则∠BOE 的度数是_______________.6、如图,菱形ABCD 中,BE ⊥AD,BF ⊥CD ,E 、F 分别是垂足,AE=DE ,则∠EBF 是( ) A.75° B.60° C.50° D.45°三、解答题(1至4题每题6分,5至7题每题7分)C 第5题图第6题图 C B3、在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连结BF 。

初中数学特殊的平行四边形50题(含答案)

初中数学特殊的平行四边形50题(含答案)

特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。

平行四边形、矩形、菱形、正方形习题

平行四边形、矩形、菱形、正方形习题

平行四边形 、矩形、菱形、正方形习题平行四边形的性质及判定1.平行四边形的两邻边分别为3、4,那么其对角线必( )A.大于1B.小于7C.大于1且小于7D.小于7或大于12.在ABCD 中,M 为CD 的中点,如DC =2AD ,则AM 、BM 夹角度数是( )A.90°B.95°C.85°D.100°3.如图1,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°.则∠ABC 、∠CAB 的度数分别为( )A.28°,120°B.120°,28°C.32°,120°D.120°,32° 4.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶15.如图2,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3, OF =1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.66.下列条件中不能确定四边形ABCD 是平行四边形的是( )A.AB =CD ,AD ∥BCB.AB =CD ,AB ∥CDC.AB ∥CD ,AD ∥BCD.AB =CD ,AD =BC7.在四边形ABCD 中,AC 与BD 相交于点O ,如果只给出条件“AB ∥CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下六个说法中,正确的说法有( )(1)如果再加上条件“AD ∥BC ”,那么四边形ABCD 一定是平行四边形; (2)如果再加上条件“AB =CD ”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“∠DAB =∠DCB ”那么四边形ABCD 一定是平行四边形; (4)如果再加上“BC =AD ”,那么四边形ABCD 一定是平行四边形; (5)如果再加上条件“AO =CO ”,那么四边形ABCD 一定是平行四边形; (6)如果再加上条件“∠DBA =∠CAB ”,那么四边形ABCD 一定是平行四边形. A.3个B.4个C.5个D.6个8. 如图6所示,在□ABCD 中,E ,F 分别在BC ,AD 上,若想使四边形AFCE 为平行四边形,须添加一个条件,这个条件可以是( )①AF=CF ;②AE=CF ;③∠BAE=∠FCD ;④∠BEA=∠FCE 。

平行四边形矩形菱形正方形单元测试题

平行四边形矩形菱形正方形单元测试题

平行四边形、矩形、菱形、正方形测试题姓名:。

一、选择题(每小题5分,共25分)1、如图,在□ABCD中,已知AD =8㎝, AB=6㎝,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm2、如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )A.AB∥CD,AD∥BCB.OA=OC,OB=ODC、AD=BC,AB∥CD D.AB=CD,AD=BC3、矩形具有而菱形不具有的性质是( )A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4、如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.145、下列命题正确的是()A有一组邻边相等的四边形是菱形 B对角线互相垂直的平行四边形是正方形 C有一个是直角的平行四边形是矩形 D一组对边平行,另一组对边相等的四边形是平行四边形。

二、填空题(每空5分,共30分)6、如图,□ABCD中,对角线AC和BD交于点O,若AC=8,BD=6,则边AB长的取值范围是 .7、如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB=4cm,则AC的长为____cm.8、在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.,你添加的条件是(写出一种即可)9、菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是,面积是。

10、如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是__度三、解答题(45分)1/ 311、(10分)如图,在平行四边形ABCD中,点E、F在对角线AC上,且AE=CF,请你以F为一个端点和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可)(1(3)证明:12、(12分)已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线和CE的延长线交于点F,连接DF.(1)求证:AF=DC;(2)若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论13、(11分)如图所示,已知点D在△ABC的边BC上,DE∥AC,交AB于点E,DF∥AB,交AC于点F。

平行四边形、矩形、菱形、正方形提高题

平行四边形、矩形、菱形、正方形提高题

平行四边形练习 一、选择题1、如图1,在平行四边形ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 的交点P 在BD 上,则图中面 积相等的平行四边形有( )A 0对B 1对C 2对D 3对 2、如图2,边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图中阴影部分的面积为( )A .12B .33C .313-D .314-CBD A图 (1) 图(2) 图(3)3、如图3,正方形ABCD 中,点E 在BC 的延长线上,AE 平分∠DAC,则下列结论:(1)∠E=22.50. (2) ∠AFC=112.50. (3) ∠ACE=1350(4)AC=CE(5) AD ∶CE=1∶2. 其中正确的有( ) A 5个 B 4个 C 3个 D 2个4、如图4,在四边形ABCD 中,E 是AB 上的一点,△ADE 和△BCE 都是等边三角形,点P 、Q 、 M 、N 分别为AB 、BC 、CD 、DA 的中点,则四边形MNPQ 是( ) A 等腰梯形 B 矩形 C 菱形 D 正方形A DEFB C图(5)二、填空题5、如图5,正方形ABCD 中,∠DAF=25°,AF 交对角线BD 于E,交CD 于F, 则∠BEC= 度6、在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,•则△ABO 的周 长为________.7、在矩形ABCD 中,M 是BC 的中点,且MA ⊥MD .•若矩形ABCD•的周长为48cm ,•则矩形ABCD 的 面积为_______c m 2.三、解答题C BB '__D C 'D 'DAAQ E PMN DCBA 图(4)_ E _ F_ B_ C8、已知,如图,矩形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OB 的中点. (1)求证:△ADE ≌△BCF ;(2)若AD=4cm ,AB=8cm ,求OF 的长.10、如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE . ⑴求证:CE =CF ;⑵在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么? ⑶运用⑴⑵解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是AB 上一点, 且∠DCE =45°,BE =2,求DE 的长.6.如图1,在△ABC 中,AB=BC ,P 为AB 边上一点,连接CP ,以PA 、PC 为邻边作□APCD ,AC 与PD 相交于点E ,已知∠ABC=∠AEP=α(0°<α<90°). (1)求证:∠EAP=∠EPA;(2)□APCD 是否为矩形?请说明理由;(3)如图2,F 为BC 中点,连接FP ,将∠AEP 绕点E 顺时针旋转适当的角度,得到∠MEN(点M 、N 分别是∠MEN 的两边与BA 、FP 延长线的交点).猜想线段EM 与EN 之间的数量关系,并证明你的结论.图1ABDCE P 图2ABDCEPM NFB CA G D FEB CA DE图1图2。

(完整版)矩形、菱形与正方形-专题训练(含答案)

(完整版)矩形、菱形与正方形-专题训练(含答案)

矩形、菱形与正方形专题训练(含答案)班级________姓名________成绩________一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.12 3 D.16 3第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( ) A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( )A.矩形B.菱形C.正方形D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( )A.平行四边形B.矩形C.菱形D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( )A.①④⑤B.②⑤⑥C.①②③D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD 的面积为64,△CEF的面积为50,则△CBE的面积为( )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=____度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD 各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为___.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为____________-_,矩形的面积为_______________.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是____cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为____________.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件______________,使▱ABCD是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=____.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为_______________________________.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连结BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.21.(8分)如图所示,矩形ABCD中,AE⊥BD于点E,∠DAE∶∠BAE=3∶1,求∠BAE和∠EAO 的度数.22.(10分)如图,已知菱形ABCD中,AB=AC,E,F分别是BC,AD的中点,连结AE,CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形ABCD的面积.23.(12分)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF,求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.24.(10分)在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点,求证:MN与PQ互相垂直平分.参考答案一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( D )A.12 B.24 C.12 D.16第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( C ) A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( B ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( A )A.矩形B.菱形C.正方形D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( B )A.平行四边形B.矩形C.菱形D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( C )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( C )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( D )A.①④⑤B.②⑤⑥C.①②③D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( B )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD 的面积为64,△CEF的面积为50,则△CBE的面积为( B )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=__72__度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD 各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为__20__.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为__40_cm__,矩形的面积为__400_cm2__.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是__16__cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为__2__.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件__AO=BO(答案不唯一)__,使▱ABCD 是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=__5__.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为__(8,4),(3,4)或(2,4)__.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.解:∵∠AFE +∠AEF =∠AEF +∠CED =90°,∴∠AFE =∠DEC .又∵∠A =∠D =90°,EF =EC ,∴△AEF ≌△DCE ,∴AE =CD .设AE =x ,则CD =x ,∴AD +CD =21×32,即x +4+x =16,∴x =6.即AE =6 cm20.(8分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连结BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求MD 的长.解:(1)∵MN 是BD 的垂直平分线,∴BO =DO ,∠BON =∠DOM =90°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BNO =∠DMO ,∴△BON ≌△DOM (AAS ),∴OM =ON .∵OB =OD ,∴四边形BMDN 是平行四边形.∵MN ⊥BD ,∴▱BMDN 是菱形(2)设MD =x ,则MB =x ,MA =8-x ,在Rt △ABM 中,∵BM 2=AM 2+AB 2,∴x 2=(8-x )2+42,解得x =5.∴MD 的长为521.(8分)如图所示,矩形ABCD 中,AE ⊥BD 于点E ,∠DAE ∶∠BAE =3∶1,求∠BAE 和∠EAO 的度数.解:提示:由∠DAE ∶∠BAE =3∶1,求出∠BAE =22.5°,而∠ABD =90°-∠BAE =90°-22.5°=67.5°,∵∠BAO =∠ABD =67.5°,∴∠EAO =∠BAO -∠BAE =67.5°-22.5°=45°22.(10分)如图,已知菱形ABCD 中,AB =AC ,E ,F 分别是BC ,AD 的中点,连结AE ,CF .(1)证明:四边形AECF 是矩形;(2)若AB =8,求菱形ABCD 的面积.解:(1)∵四边形ABCD 是菱形,∴AB =BC ,又∵AB =AC ,∴△ABC 是等边三角形.∵E 是BC 的中点,∴AE ⊥BC (等边三角形三线合一),∠AEC =90°.同理,CF ⊥AD .∵E ,F 分别是BC ,AD 的中点,∴AF =21AD ,EC =21BC .∵四边形ABCD 是菱形,∴AD 綊BC ,∴AF 綊EC ,∴四边形AECF 是平行四边形(一组对边平行且相等的四边形是平行四边形).又∵∠AEC =90°,∴四边形AECF 是矩形(有一个角是直角的平行四边形是矩形)(2)在Rt △ABE 中,∵AE ==4,∴S 菱形ABCD =8×4=3223.(12分)如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是点E ,F ,并且DE =DF ,求证:(1)△ADE ≌△CDF ;(2)四边形ABCD 是菱形.解:证明:(1)∵四边形ABCD 是平行四边形,∴∠A =∠C ,又∵DE =DF ,DE ⊥AB ,DF ⊥BC ,∴∠DEA =∠DFC =90°,∴△ADE ≌△CDF (AAS ) (2)由(1)知AD =DC ,又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形24.(10分)在四边形ABCD 中,AB =CD ,M ,N ,P ,Q 分别是AD ,BC ,BD ,AC 的中点,求证:MN 与PQ 互相垂直平分.解:证明:连结MP ,NQ ,PN ,MQ ,∵PM 綊21AB ,同理NQ 綊21AB ,∴PM 綊NQ ,∴四边形MPNQ 为平行四边形,又∵PN 綊21CD ,而CD =AB ,∴PN =PM ,∴四边形MPNQ 为菱形,∴MN 与PQ 互相垂直平分。

(完整版)平行四边形与菱形测试卷及答案

(完整版)平行四边形与菱形测试卷及答案

(完整版)平行四边形与菱形测试卷及答案第一部分:选择题(共10题,每题2分)1. 平行四边形是指具有两组对边分别平行的四边形,其特点是:A. 所有角均为直角B. 两组对边长度相等C. 具有一组相等的对边D. 任意两组对边之间的夹角相等2. 在平行四边形ABCD中,两组对边的夹角分别是60°和120°,则该平行四边形是:A. 正方形B. 长方形C. 菱形D. 长方形和菱形3. 菱形是指具有以下特点的四边形:A. 所有角均为直角B. 所有边长相等C. 两组对边长度相等D. 具有一组相等的对边4. 在菱形EFGH中,两组对边之间的夹角分别是60°和120°,则该菱形是:A. 正方形B. 长方形C. 三角形D. 长方形和三角形5. 平行四边形ABCD的对角线AC和BD相交于点O,下列说法正确的是:A. OA = OB = OC = ODB. ∠AOC = ∠BOD = 180°C. ∠AOC = ∠DOB = 90°D. AB = CD6. 菱形EFGH的对角线EG和FH相交于点O,下列说法正确的是:A. OE = OF = OG = OHB. ∠EOG = ∠FOH = 180°C. ∠EOG = ∠FOH = 90°D. EF = GH7. 平行四边形ABCD的一条对边长为6,对面的对边长为8,两个连续的角之和为130°,则该平行四边形的周长是:A. 12B. 20C. 24D. 488. 菱形EFGH的一条边长为10,两个相邻角之和为130°,则该菱形的周长是:A. 10B. 20C. 30D. 409. 平行四边形ABCD的一条对边长为6,对面的对边长为8,两个连续的角之和为130°,则该平行四边形的面积是:A. 15B. 18C. 24D. 4810. 菱形EFGH的一条边长为10,两个相邻角之和为130°,则该菱形的面积是:A. 40B. 50C. 60D. 70第二部分:填空题(共5题,每题4分)11. 若平行四边形ABCD的一组对边长度分别为8cm和12cm,对应的对角线长度分别为____和____.12. 若菱形EFGH的一条边长为10cm,对应的对角线长度分别为____和____.13. 平行四边形ABCD的一组对边长度分别为6cm和7cm,对边的夹角为120°,则该平行四边形的周长为____.14. 菱形EFGH的一条边长为8cm,菱形对角线长度之一为12cm,则该菱形的周长为____.15. 平行四边形ABCD的一组对边长度分别为5cm和7cm,对边的夹角为130°,则该平行四边形的面积为____.第三部分:综合题(共2题,每题10分)16. 平行四边形ABCD的一组对边长度分别为5cm和8cm,对边的夹角为120°.若将该平行四边形的一边长度加倍,另一边长度减半,则新平行四边形的周长为____.17. 菱形EFGH的一条边长为12cm,菱形对角线长度之一为16cm. 若将菱形的边长和对角线长度都加倍,则新菱形的面积为____.答案:1. C2. C3. B4. C5. D6. C7. C8. D9. A10. C11. 10cm, 20cm12. 10cm, 20cm13. 26cm14. 32cm15. 20cm²16. 36cm17. 96cm²。

平行四边形、矩形、菱形-正方形练习题

平行四边形、矩形、菱形-正方形练习题

平行四边形、矩形、菱形、正方形1.已知:如图,在▱ABCD中,点E、F是对角线AC上的两点,且AE=CF.求证:BF∥DE.2.如图,平行四边形ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.~3.如图,四边形ABCD是平行四边形,E、F分别是BC、AD上的点,∠1=∠2.求证:AF=CE.~4.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:(1)AE=AB;(2)如果BM平分∠ABC,求证:BM⊥CE.5.如图,在▱ABCD中,点E、F在BD上,且BE=AB,DF=CD.求证:四边形AECF是平行四边形.-6.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.)7.如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,(1)求证:AE=CE;(2)求证:四边形ABDF是平行四边形;(3)若AB=2,AF=4,∠F=30°,则四边形ABCF 的面积为.!8.如图,在▱ABCD中,E,F分别是AC上两点,BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF为平行四边形.9.已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.|求证:(1)AE=CF;(2)AF∥CE.10.如图所示,▱ABCD中,E,F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.(1)求证:四边形ENFM是平行四边形.、(2)若∠ABC=2∠A,求∠A的度数.11.在▱ABCD中,点E,F分别在AD,BC上,AE=CF,连接EF,BD.(1)求证:四边形EBFD是平行四边形;:(2)若∠C+∠ABE=90°,求证:BD=EF.12.如图,在▱ABCD中,AE⊥BD,CF⊥BD,E,F分别为垂足.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.<13.如图,在△NMB中,BM=6,点A,C,D分别在边MB、BN、MN上,DA∥NB,DC∥MB,∠NDC=∠MDA.求四边形ABCD的周长.;14.在矩形ABCD中,AB=3,BC=4,E,F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为1cm/s,运动时间为t秒,0≤t≤5.(1)AE =,EF=|(2)若G,H分别是AB,DC中点,求证:四边形EGFH是平行四边形.(3)在(2)条件下,当t为何值时,四边形EGFH为矩形.15.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF."(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.)16.如图,▱ABCD中,O是AB的中点,CO=DO.(1)求证:▱ABCD是矩形.(2)若AD=3,∠COD=60°,求▱ABCD的面积.|17.如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD (1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若BE=2,AE=2,求EF的长.,18.如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC 延长线上一点,且CE=3,连结DE.(1)求证:四边形ACED为矩形.(2)连结OE,求OE的长.|19.如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A.(1)求证:四边形ACED是矩形;(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.|20.如图,在△ABC中,BD平分∠ABC交AC于D,作DE∥BC交AB于点E,作DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,CD=,求DE的长.|21.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,DE=2,求CF的长./22.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.](1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积."23.如图,在四边形ABCD中,对角线AC、BD交于点O,AB∥DC,AB=BC,BD平分∠ABC,过点C 作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=2,BD=4,求OE的长.24.如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:四边形ABCD是菱形;}(2)若AB=2,AC=2,求四边形ABCD的面积.25.同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).@(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.!26.如图,EF是平行四边形ABCD的对角线BD的垂直平分线,EF与边AD、BC分别交于点E、F.(1)求证:四边形BFDE是菱形;(2)若ED=5,BD=8,求菱形BFDE的面积.|27.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=12,求AD的长.—28.如图,在▱ABCD中,BC=2AB,点E、F分别是BC、AD的中点,AE、BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若AB=4,∠ABC=60°,求OC的长.<29.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.#(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.30.已知:如图,在矩形ABCD中,E是BC边一点,DE平分∠ADC,EF∥DC交AD边于点F,连结BD.(1)求证:四边形EFCD是正方形;(2)若BE=1,ED=2,求BD的长.{31.如图,正方形ABCD的对角线AC与BD交于点O,分别过点C、点D作CE∥BD,DE∥AC.求证:四边形OCED是正方形.【32.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形《33.如图,正方形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是正方形.\34.E、F、M、N分别是正方形ABCD四条边上的点,AE=BF=CM=DN,四边形EFMN是什么图形证明你的结论.35.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:四边形AECF是平行四边形.;36.如图,矩形ABCD中,对角线AC、BD交于点O,以AD、OD为邻边作平行四边形ADOE,连接BE.求证:四边形AOBE为菱形.>37.如图,在矩形ABCD中,点O为对角线AC的中点,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)连接OB,若AB=8,AF=10,求OB的长.38.如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积./39.如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.>40.如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求AC和BD的长.41.如图,已知菱形ABCD两条对角线BD与AC的长之比为3:4,周长为40cm,求菱形的高及面积.,42.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,~(1)求证:∠DHO=∠DCO.(2)若OC=4,BD=6,求菱形ABCD的周长和面积.】43.如图,菱形ABCD中,对角线AC、BD相交于点O,点E是AB的中点,已知AC=8cm,BD=6cm,(1)求菱形ABCD的面积.(2)求OE的长度.44.在菱形ABCD中,E是AB边的中点,连接DE,DE⊥AB,对角线AC、BD交于点H.(1)求∠ABC的度数;(2)如果菱形的对角线AC=2,求菱形的面积.<¥45.如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.46.如图,小方将一个正方形纸片剪去一个宽为4cm的长方形(记作A)后,再将剩下的长方形纸片剪去一个宽为5cm的长方形(记作B).(1)若A与B的面积均为Scm2,求S的值.(2)若A的周长是B的周长的倍,求这个正方形的边长.47.已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形48.如图,正方形ABCD中,点P,Q分别为AD,CD边上的点,且DQ=CP,连接BQ,AP.求证:BQ =AP.49.如图,已知正方形CDEF的面积为169cm2,且AC⊥AF,AB=3cm,BC=4cm,AF=12cm,试判断△ABC的形状,并说明你的理由.50.如图,正方形ABCD中,AB=AD,G为BC边上一点,BE⊥AG,于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,EF=4,求四边形ABED的面积.。

平行四边形、 菱形、矩形、正方形专项练习(含部分答案)

平行四边形、 菱形、矩形、正方形专项练习(含部分答案)

AFCDB E第9题图 平行四边形、 菱形、矩形、正方形专项练习(一)班级 姓名 一、判断:(正确的打√,错误的打×)⑴一组邻边相等的四边形是菱形。

( ) ⑵对角线互相垂直的四边形是菱形。

( ) ⑶对角线互相垂直且有一组邻边相等的四边形是菱形。

( ) ⑷对角线互相平分且有一组邻边相等的四边形是菱形。

( ) ⑸对角线互相垂直平分的四边形是菱形。

( ) ⑹一条对角线平分一组对角的平行四边形是菱形。

( ) 二、选择1. 在ABCD 中,对角线AC 与BD 交于O 如果AC=12,BD=10,AB=m,那么m 的范围为( ) A .1≤m ≤11 B. 111m << C. 210m ≤≤ D. 111m <≤2.菱形具有而一般平行四边形不具有的性质是( ) A.对角相等 B.对边相等 C.对角线互相垂直 D.对角线相等3.能够判别一个四边形是菱形的条件是( )A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角4.菱形的周长为100 cm ,一条对角线长为14 cm ,它的面积是( )A.168 cm 2B.336 cm 2C.672 cm 2D.84 cm 2 5.菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为( )A.43B.83C.103D.1236.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是( )A.16B.22C.26D.22或267.在正方形ABCD 中,AB =12 cm ,对角线AC 、BD 相交于O ,则△ABO 的周长是( )A.12+122B.12+62C.12+2D.24+628.如图所示,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是… ( )A. 2B. 3C. 4D. 59.(2011年浙江仙居)如图在ABC △中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ∥,DF BA ∥.下列四种说法:①四边形AEDF 是平行四边形; ②如果90BAC ∠=,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有 .(只填写序号) 10.菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16 cm ,BD =12 cm ,则它的高为 。

平行四边形、矩形、菱形、正方形 )

平行四边形、矩形、菱形、正方形 )

O
E
∵∠DAE=3∠BAE , B ∠DAF.+∠BAE=90ο
C
∴∠BAE=22.5ο
∴∠ADO=∠BAE=22.5ο
∴∠EAC=90ο-2×22.5ο=45ο
7.矩形的周长为20cm,一边中点与对边两顶点连 线所夹角为直角,求矩形各边的长.
取AD的中点F,则直线EF是 A 矩形的对称轴,EA=ED
E D
O
G
H
G
OH
B
C BF C
B F
C
解:按要求画如上三图.作法略.
正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,
若EF⊥MN,求证:EF=MN 证明:作DG∥EF交BC于C, A
ED
作CH∥MN交AB于H. M
∵CH∥MN,DG∥EF,
FE⊥MN
H
∴CH⊥DG
又·∵·DC⊥BC ∠BCH=∠CDG
③平行四边形的对角相等;
④平行四边形的对角线互相平分
其中是平行四边形的特征的有(D).
A.1种 B.2种 C.3种 D.4种
9.下列说法中错误的是( D).
A.平行四边形的对角线互相平分 B.对角线互相平分的四边形是平行四边形 C.平行四边形对边相等 D.对边相等的四边形是平行四边形
选择题
A D
D 10.正方形具备而矩形不具备的特征是( ). A.四个角都是直角 B.对角线互相平分
(1)下列判断正确的是
A.一组对边相等,另一组对边平行的四边形 是平行四边形
B.有两个角相等的四边形是平行四边形
C.一组对角相等,一组对边平行的四边形是 平行四边形
D.有两条边相等的四边形是平行四边形

平行四边形、菱形、矩形、正方形测考试试题

平行四边形、菱形、矩形、正方形测考试试题

平行四边形、菱形、矩形、正方形测试题一、选择题(每题3分,共30分)。

1.平行四边形ABCD 中,∠A=50°,则∠D=( )A. 40°B. 50°C. 130°D. 不能确定 2.下列条件中,能判定四边形是平行四边形的是( )A. 一组对边相等B. 对角线互相平分C. 一组对角相等D. 对角线互相垂直3.在平行四边形ABCD 中,EF 过对角线的交点O ,若AB=4,BC=7,OE=3,则四边形EFCD 周长是( )A .14 B. 11 C. 10 D. 17 4.菱形具有的性质而矩形不一定有的是( )A . 对角相等且互补B . 对角线互相平分C . 一组对边平行另一组相等D . 对角线互相垂直5.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线的长分别为( )A .6cm ,8cm B. 3cm ,4cm C. 12cm ,16cm D. 24cm ,32cm 6.如图在矩形ABCD 中,对角线AC 、BD 相交于点O ,则以下说法错误的是( )A .AB=21ADB .AC=BDC . 90===∠=∠CDA BCD ABC DAB D .AO=OC=BO=OD7.如图5连结正方形各边上的中点,得到的新四边形是 ( )A .矩形 B.正方形 C.菱形 D.平行四边形8. 一矩形两对角线之间的夹角有一个是600, 且这角所对的边长5cm,则对角线长为( )A. 5 cmB. 10cmC. 52cmD. 无法确定 9. 当矩形的对角线互相垂直时, 矩形变成( )A. 菱形B. 等腰梯形C. 正方形D.10.如图所示,在ABCD 中,E 、F 分别AB 、CD的中点,连结DE 、EF 、BF ,则图中平行四边形共有( ) A .2个 B .4个 C .6个 D .8个图5二、填空题(每题3分,共24分 )11.□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm. 12.已知:四边形ABCD 中,AB =CD ,要使四边形ABCD 为平行四边形,需要增加__________,(只需填一个你认为正确的条件即可) 你判断的理由是:_____________________________。

平行四边形、矩形、菱形、正方形的判定习题

平行四边形、矩形、菱形、正方形的判定习题

平行四边形、矩形、菱形、正方形的判定习题作业一:1. 如图,平行四边形ABCD 中,EF 为边AD 、BC 上的点,且AE=CF ,连结AF 、EC 、BE 、DF 交于M 、N ,试说明:MFNE 是平行四边形.2.如图,△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交△ABC 的外角∠ACD 的平分线于点F ⑴求证:EO=FO ;⑵试猜想:当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论;3.已知:如图,平行四边形ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H ,求证:四边形EFGH 是矩形4.如图,△ABD, △BCE ,△ACF 均为等边三角形,请回答下列问题,其中(2),(3),(4)小题不用说明理由: (1) 四边形ADEF 是什么四边形?请说明理由(2)当△ABC 满足___________条件时,四边形ADEF 是菱形? (3)当△ABC 满足___________条件时,四边形ADEF 是矩形?(4)当△ABC满足___________条件时,以A 、D 、E 、F 为顶点的四边形不存在?5. 如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q.(1)求证: OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.作业二:1.如图,在△ABC 中,∠C=90°,CD 为AB 边上的高,∠CAB 的平分线交CD 于E ,交CB 于F ,过点F 作FG ⊥AB 于G ,连GE 。

试说明四边形CEGF 为菱形2. .已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.ABCFDGE3.已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E , (1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE4. 已知正方形ABCD 的边长为a ,两条对角线AC 、BD 相交于点O ,P 是射线AB 上任意一点,过P 点分别做直线AC 、BD 的垂线PE 、PF ,垂足为E 、F . (1)如图1,当P 点在线段AB 上时,求PE +PF 的值; (2)如图2,当P 点在线段AB 的延长线上时,求P E -PF 的值.BCDN。

平行四边形、矩形、菱形、正方形练习

平行四边形、矩形、菱形、正方形练习

平行四边形、矩形、菱形、正方形一、填空题⒈平行四边形ABCD中,∠A=500,AB=30cm,则∠B=____,DC=____。

⒉平行四边形的周长为68cm,则它两邻边之和为________,若两邻边之比为2∶3时,其各边的长为________,________,________,________。

⒊平行四边形ABCD中,∠A+∠C=1200,则∠B=________。

⒋菱形的两条对角线与边长相等时,则较大的角为________。

⒌矩形的两条对角线相交成钝角为1200,矩形较短边的长为3.6cm,则对角线的长为________cm。

⒍矩形ABCD的对角线相交于O,AC=2AB,则△COD为________三角形。

⒎已知:正方形的边长为5cm,则对角线的交点到一边的距离为________。

⒏已知:正方形的周长是非曲直6cm,则它的面积为________。

二、选择题⒈关于四边形ABCD ①两组对边分别相等;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()。

A1个B2个C3个D4个⒉能够判定一个四边形是菱形的条件是()。

A对角线相等且互相平分B 对角线互相垂直C对角线相等且一条对角线平分一组对角D对角线相等且对角相等⒊正方形具有而菱形不具有的性质是()。

A内角和为3600B对角线互相垂直平分C对角线相等D对角线平分内角⒋如图:矩形ABCD的对角线AC、BD相交于O,如果△ABC的周长比△AOB的周长大10cm,则矩形边AD的长是()。

A 5cmB 10cmC 7.5cmD 不能确定四、计算题⒈已知菱形的周长为16cm,且一个内角为600,求菱形的面积。

⒉在平行四边形ABCD中,已知∠B=1500,AB=10cm,BC=12cm,平行四边形的面积。

五、证明题⒈如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC⒉矩形ABCD中,AE⊥BD于E,BE∶ED=1∶3,求证:AC=2AB3(1)实验:取长方形纸片ABCD,把它的四个角如图对折,其条折痕围成一个四边形EFGH.(2)观察与猜想:折痕围成的四边形EFGH是一个怎样的特殊四边形?(3)理论与思考:试说明你上面的结论.资料有大小学习网收集。

平行四边形、矩形、菱形、正方形的判定练习题

平行四边形、矩形、菱形、正方形的判定练习题

1. 3.4平行四边形的判定1.下面几组条件中,不一定能判定一个四边形是平行四边形的是(.下面几组条件中,不一定能判定一个四边形是平行四边形的是( )). A A.两组对边相等.两组对边相等.两组对边相等; B ; B ; B.两条对角线互相平分.两条对角线互相平分.两条对角线互相平分 C C C.两组组对边平行.两组组对边平行.两组组对边平行; D ; D ; D.两组对角相等.两组对角相等.两组对角相等 E.E.一组对边平行,一组对角相等一组对边平行,一组对角相等一组对边平行,一组对角相等 F. F. F. 一组对边平行,一组对边相等一组对边平行,一组对边相等一组对边平行,一组对边相等2. BD 是平行四边形ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,可以添加的一个条件是____________..3.3.如图所示,在平行四边形如图所示,在平行四边形ABCD 中,P 1、P 2是对角线BD 的三等分点,求证:的三等分点,求证:••四边形AP 1CP 2是平行四边形.是平行四边形.4.4.如图,平行四边形如图,平行四边形ABCD 中,中,EF EF 为边AD AD、、BC 上的点,且AE=CF AE=CF,连结,连结AF AF、、EC EC、、BE BE、、DF 交于M 、N ,求证:线段MN MN、、EF 互相平分互相平分. .5、如图,点E 、F 、G 、H 分别在□ABCD 的各边上,且AE=CG,BF=DH,AE=CG,BF=DH,求证:求证:求证:EH EH EH∥∥GF.6.6.已知:已知:如图所示,平行四边形ABCD 的对角线AC AC、、BD•BD•相交于点相交于点O ,EF 经过点O 并且分别和AB AB、、CD 相交于点E 、F ,又知G 、H 分别为OA OA、、OC 的中点.求证:四边形EHFG 是平行四边形.是平行四边形.1.3.5矩形的判定1.下列说法错误的是(.下列说法错误的是( )) ((A )有一个内角是直角的平行四边形是矩形)有一个内角是直角的平行四边形是矩形 ((B )矩形的四个角都是直角,并且对角线相等)矩形的四个角都是直角,并且对角线相等 ((C )对角线相等的平行四边形是矩形)对角线相等的平行四边形是矩形 ((D )有两个角是直角的四边形是矩形)有两个角是直角的四边形是矩形 2.平行四边形内角平分线能够围成的四边形是(.平行四边形内角平分线能够围成的四边形是( )) ((A )梯形)梯形 ((B )矩形)矩形 ((C )正方形)正方形 ((D )不是平行四边形)不是平行四边形 3.如图,.如图,E E ,F ,G ,H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是(应具备的条件是( )). ((A )一组对边平行而另一组对边不平行)一组对边平行而另一组对边不平行;;(B )对角线相等)对角线相等(C )对角线互相垂直)对角线互相垂直; ; ; ((D )对角线互相平分)对角线互相平分 4.4.工人师傅做铝合金窗框分下面三个步骤进行:工人师傅做铝合金窗框分下面三个步骤进行:工人师傅做铝合金窗框分下面三个步骤进行: (1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD AB=CD,,EF=GH EF=GH;; (2)摆放成如图②的四边形,则这时窗框的形状是)摆放成如图②的四边形,则这时窗框的形状是_ ___ ___ __形,根据的数学原理是:形,根据的数学原理是:形,根据的数学原理是:______________________________________________________;; (3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,,调整窗框的边框,••当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是,说明窗框合格,这时窗框是_____________________形,根据的数学原理是:形,根据的数学原理是:形,根据的数学原理是:_______________________________________________________________..N MF DAB C EF G D A B CE H5.已知平行四边形ABCD 的对角线AC AC,,BD 交于点O ,△AOB 是等边三角形,是等边三角形,AB=4cm AB=4cm AB=4cm.. ((1)平行四边形是矩形吗?说明你的理由.(2)求这个平行四边形的面积.)求这个平行四边形的面积.6.已知:如图,.已知:如图,BC BC 是等腰△是等腰△BED BED 底边ED 上的高,四边形ABEC 是平行四边形.求证:四边形ABCD 是矩形.是矩形.7.7.如图所示,折叠矩形纸片如图所示,折叠矩形纸片ABCD ABCD,,•先折出折痕(先折出折痕(••对角线)对角线)BD BD BD,再折叠使,再折叠使AD 边与对角线BD 重合,得折痕DG DG.若.若AB=2AB=2,,BC=1BC=1,求,求AG AG..1.3.7菱形的判定1、利用四边形的不稳定性制作的菱形晾衣架,已知其中每个菱形的边长为20cm ,墙上悬挂晾衣架的两个铁钉之间的距203cm ,则菱形的锐角等于(,则菱形的锐角等于( )A .90° B.60° C.45° D.30°2、下列条件中,能判断四边形是菱形的是(、下列条件中,能判断四边形是菱形的是( ) A 、两条对角线相等、两条对角线相等 B 、两条对角线互相垂直、两条对角线互相垂直 C 、两条对角线相等且互相垂直、两条对角线相等且互相垂直 D 、两条对角线互相垂直平分、两条对角线互相垂直平分3、下列图形既是轴对称,又是中心对称的是(、下列图形既是轴对称,又是中心对称的是( )A 、平行四边形、平行四边形 B 、三角形、三角形 C 、菱形、菱形 D 、等腰梯形、等腰梯形4、从四边形内能找到一点,使该点到各边的距离都相等的图形是(、从四边形内能找到一点,使该点到各边的距离都相等的图形是( ) A 、平行四边形、矩形、菱形、平行四边形、矩形、菱形 B 、菱形、矩形、正方形、菱形、矩形、正方形 C 、矩形、正方形、矩形、正方形 D 、菱形、、菱形、 正方形正方形5、如图所示,将宽度为1的两张纸条交叉重叠在一起,得到重叠部分为四边形ABCD ,四边形ABCD 为菱形吗?为什么?为菱形吗?为什么?6、如图,O 是矩形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,DE 和CE 相交于E , 求证:四边形OCED 是菱形。

平行四边形、矩形、菱形正方形练习题

平行四边形、矩形、菱形正方形练习题

M B AFAB 平行四边形.矩形.菱形.正方形演习题 【1 】姓名_________________1.如图,在△ABC 中,∠ACB=900,BC 的垂直等分线DE 交BC 于D,交AB 于E,F 在DE 上,并且AF=CE.(1)求证:四边形ACEF 是平行四边形;(2)当∠B 的大小知足什么前提时,四边形ACEF 是菱形?请答复并证实你的结论.2.半数矩形纸片ABCD,使得AD 与BC 重合,折痕为MN.再一次折叠,使得点B 正好落在MN 的H 处,折痕为AE,延伸EH 交AD 于F.使断定△AEF 的外形.3.已知:如图,两个边长均为a 的正方形,个中一个的极点O 绕着另一个对角线的交点扭转,问重叠部分的面积是否转变?为什么?4.已知四边形ABCD 是正方形,E 是正方形内一点,以BC 为斜边作直角△BCE,又以BE 为直角边作等腰直角△BEF,且∠EBF=90°,衔接AF.(1).问AF 与CE 有什么关系?请解释来由;(2).AF 与BE 的地位关系若何?解释你的猜测?(3).若AFBDEY XDCBA o35=AB ,36=CE BE ,求E 到BC 的距离.5.如图,点O 为平行四边形ABCD 的对角线的交点,AB ⊥AC,BD=10,AC=6, (1)求AB 的长. (2)求BC 的长.6.如图,CD.CE 分离为△ABC 的内角.外角等分线,O 是AC 上的一动点,过点O 且平行于BC 的直线交CD.CE 于D.E.(1)OD 与OE 相等吗?为什么?(2)当O 活动到何处,四边形ADCE 为矩形?并解释来由.(3)当△ABC 为何种外形时,四边形ADCE 为正方形?并解释来由.7.如图,在直角坐标系xoy 中,矩形OABC的两个极点),(、232)0,32(--B A ∠CAO =30°,把矩形OABC 以AC 地点的直线为对称轴翻折,点O 落在D 处,求点D 的坐标;在坐标平面是否消失点P,使得以点P D O A 、、、为极点的四边形为菱形?若消失,求出P 点的坐标;若不消失,解释来由.(2)ED CBA(1)EDCBA8.如图,点E,F 分离是菱形ABCD 的边AB 和BC 的中点,EG ⊥AB 交DC 于G ,假如∠A=100°,试求∠CGF 的度数.9.如图(1),等边ABC ∆中,D 是AB 边上的动点,以CD 为一边,向上作等边EDC ∆,贯穿连接AE.1)DBC ∆和EAC ∆会全等吗?请说说你的来由. 2)试解释AE ∥BC 的来由3)如图(2),将(1)中点D 活动到边BA 的延伸线上,所作仍为等边三角形.请问是否仍有AE ∥BC ?证实你的猜测.10. 如图,在平面直角坐标系中,△AOB 为等腰直角三角形,A (3,3).(1)求B 点坐标;EAGA(3)过点A 作y 轴的垂线交y 轴于E,点F (0,1-),G 在EF 的延伸线上,以EG 为直角边作等腰Rt △EGH,过A 作x 轴垂线交EH 于点M,连AM FM OF =+是否成立?若不成立,请解释来由;若成立,求出11.已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个极点E .F .H 分离在矩形ABCD 边AB .BC .DA 上,AE =2.(1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(2)如图②,当四边形EFGH 为菱形,且BF =a 时,求△GFC 的面积(用含a 的代数式暗示);(3)在(2)的前提下,△GFC 的面积可否等于2?请解释来由.12.某养殖户预备进行大闸蟹与河虾的混杂养殖,他懂得到如下信息:每亩水面的年房钱为600元,水面需按整数亩出租;每亩水面在岁首?年月可混杂投入4kg 蟹苗和20kg 虾苗;个中每千克蟹苗的价钱为75元,豢养费用为525元,当年可获1 500元收益;而每千克虾苗的价钱为15元,其豢养费用为85元,当年可获150元收益,蟹虾混杂养殖成本包含水面年房钱.苗种费用和豢养费用.(1)若租用水面n 亩,则年房钱共需若干元;(2)求每亩水面蟹虾混杂养殖的年利润率;(养殖利润=收益-成本,利润率=%100 成本利润) (3)该养殖户现有资金28000元,他预备再向银行贷不超出30000元款,•用于蟹虾混杂养殖,已知银行贷款的年利率为8%,试问应当租若干亩水面,•并向银行贷款若干元,可使年利润不低于40000元?。

zjq平行四边形、菱形、矩形正方形测试题

zjq平行四边形、菱形、矩形正方形测试题

平行四边形、菱形、矩形、正方形测试题姓名 学号一、选择题(每题2分,共20分)。

( )1.平行四边形ABCD 中,∠A=50°,则∠D=A. 40°B. 50°C. 130°D. 不能确定( )2.下列条件中,能判定四边形是平行四边形的是A. 一组对边相等B. 对角线互相平分C. 一组对角相等D. 对角线互相垂直( )3.在平行四边形ABCD 中,EF 过对角线的交点O ,若AB=4,BC=7,OE=3,则四边形EFCD 周长是A .14 B. 11 C. 10 D. 17( )4.菱形具有的性质而矩形不一定有的是A .对角相等且互补B . 对角线互相平分C . 一组对边平行另一组相等D .对角线互相垂直( )5.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线的长分别为A .6cm ,8cm B. 3cm ,4cm C. 12cm ,16cm D. 24cm ,32cm ( )6.如图在矩形ABCD 中,对角线AC 、BD 相交于点O ,则以下说法错误的是A .AB=21ADB .AC=BDC . 90===∠=∠CDA BCD ABC DABD .AO=OC=BO=OD( )7.如图5连结正方形各边上的中点,得到的新四边形是A .矩形 B.正方形 C.菱形 D.平行四边形( )8. 一矩形两对角线之间的夹角有一个是600, 且这角所对 的边长5cm,则对角线长为( )A. 5 cmB. 10cmC. 52cmD. 无法确定 ( )9. 当矩形的对角线互相垂直时, 矩形变成A. 菱形B. 等腰梯形C. 正方形D. 无法确定. ( )10.如图所示,在 ABCD 中,E 、F 分别AB 、的中点,连结DE 、EF 、BF ,则图中平行四边形共有 A .2个 B .4个 C .6个 D .8个二、填空题(每空2分,共30分 ) 11.□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm.12.已知:四边形ABCD 中,AB =CD ,要使四边形ABCD 为平行四边形,需要增图5加__________,(只需填一个你认为正确的条件即可) 你判断的理由是:_____________________________。

平行四边形矩形菱形正方形测试题

平行四边形矩形菱形正方形测试题

1 下列命题中,正确的是()A.菱形的对角线相等B.平行四边形的对角线相等C.矩形的对角线互相平分且相等D.平行四边形的对角线可以互相垂直2 若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.正方形C.对角线相等的四边形D.对角线互相垂直的四边形4 如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍5 如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()6 如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62° D.72°7 如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()图2-①图2-②A.2B.3C.6D.8 将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当时,如图,().(A)(B)2 (C)(D)9.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)S △AOB =S 四边形DEOF 中正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个10、如图,把正方形ABCD 的对角线AC 分成n 段,以每一段为对角线作正方形,设这n 个小正方形的周长和为p ,正方形ABCD 的周长为S ,则S 与p 的关系式是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形、菱形、矩形、正方形测试题
一、选择题(每题3分,共30分)。

1.平行四边形ABCD 中,∠A=50°,则∠D=( )
A. 40°
B. 50°
C. 130°
D. 不能确定 2.下列条件中,能判定四边形是平行四边形的是( )
A. 一组对边相等
B. 对角线互相平分
C. 一组对角相等
D. 对角线互相垂直
3.在平行四边形ABCD 中,EF 过对角线的交点O ,若AB=4,BC=7,OE=3,
则四边形EFCD 周长是( )
A .14 B. 11 C. 10 D. 17 4.菱形具有的性质而矩形不一定有的是( )
A . 对角相等且互补
B . 对角线互相平分
C . 一组对边平行另一组相等
D . 对角线互相垂直
5.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线
的长分别为( )
A .6cm ,8cm B. 3cm ,4cm C. 12cm ,16cm D. 24cm ,32cm 6.如图在矩形ABCD 中,对角线AC 、BD 相交于点O ,则以下说法错误的是( )
A .AB=2
1
AD
B .AC=BD
C . 90===∠=∠CDA BC
D ABC DAB D .AO=OC=BO=OD
7.如图5连结正方形各边上的中点,得到的新四边形是 ( )
A .矩形 B.正方形 C.菱形 D.平行四边形
8. 一矩形两对角线之间的夹角有一个是600, 且这角所对的边长5cm,则对角线长为( )
A. 5 cm
B. 10cm
C. 52cm
D. 无法确定 9. 当矩形的对角线互相垂直时, 矩形变成( )
A. 菱形
B. 等腰梯形
C. 正方形
D. 10.如图所示,在 ABCD 中,E 、F 分别AB 、CD
的中点,连结DE 、EF 、BF ,则图中平行四边形共有( ) A .2个 B .4个 C .6个 D .8个 二、填空题(每题3分,共24分 )
图5F
A B D C
E
11.□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm. 12.已知:四边形ABCD 中,AB =CD ,要使四边形ABCD 为平行四边形,需要增加__________,(只需填一个你认为正确的条件即可) 你判断的理由是:_____________________________。

13.一个矩形的对角线长10cm ,一边长6cm ,则其周长是 ,面积
是 。

14.已知菱形的两条对角线的长分别是6cm 和8cm, 则其周长为 ,面积为 . 15.正方形的对角线是2,那么边长为_____,周长为____,面积为_______。

16.用两个全等的三角形,能拼成一个平行四边形,这样的平行四边形的周长
取值最多有________个。

17.如图,宽为50cm 的矩形图案由10个全等的小长方形拼
成,其中一个小长方形的面积为_________。

18.如图,矩形ABCD 中,AB =3,BC =4,P 是边AD 上的动点,PE ⊥AC
于点E ,PF ⊥BD 于点F ,则PE +PF 的值为:_________。

三、解答题(共46分)
19.如图9平行四边形ABCD 中,BE ⊥AC 于E ,DF ⊥AC 于F ,求证:BE=DF
(提示:可以用AAS 定理证明:△CFD ≌△AED) (6分)
20.如图8:某菱形的对角线长分别是6cm ,8cm ,求菱
A
B
C
D
F
E
1
2
图9
形周长和面积。

(6分)
21.在□ABCD中,对角线AC平分∠DAB,这个四边形是菱形吗?简述你的理由。

(6分)
22.(8分)已知四边形ABCD,仅从下列条件中任取两个加以组合,能否得到四边形ABCD是平行四边形的结论?试一试,并说明理由(至少写3组)。

①AB=CD ②AB∥CD ③BC∥AD ④BC=AD ⑤∠A=∠C ⑥∠B=∠D
23.小红的房门做好了, 现要检测这房门是否成矩形, 你有什么办法帮他吗? 说说看.(6分)
24.(6分)如图, 在平行四边形ABCD 中,E 、F 是对角线AC
上的点, 且AE=CF, 则四边形EBFD 是平行四边形
吗? 说说你的理由.(7分)
25.(8分)已知,在△ABC 中,AB =AC =a ,M 为底边BC 上任意一点,过点M 分别作AB 、AC 的平行线交AC 于P ,交AB 于Q 。

⑴求四边形AQMP 的周长;
⑵M 位于BC 的什么位置时,四边形AQMP 为菱形?说明你的理由。

全等三角形练习题(4)
一、选择题(每小题4分,共48分)
1.如图,△ABC ≌△DEF ,BC ∥EF ,AC ∥DF ,则∠C 的对应角是( )
A .∠F
B .∠AGF
C .∠AEF
D .∠D
2..下列条件不保证两个三角形全等的是( )
A.三边对应相等;
B.两边一角对应相等;
A D
E
F
B C
C.两角一边对应相等;
D.直角边和一个锐角对应相等。

3.直线a 1,a 2,a 3表示三条相互交叉的公路(如图),现要建一 个货物中转站,•要求它到三条公路的距离相等,则可选择的地址有( )
A .一处
B .二处
C .三处
D .四处 4.在Rt △ABC 与Rt △A ′B ′C ′中,∠C=∠C ′=90°,∠A=∠A ′,AB=A ′B ′,则下面结论正确的是( )
A .AB=A ′C ′
B .BC=B ′
C ′ C .AC=B ′C ′
D .∠A=∠B ′
5.如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE ,CF 交于D ,则: ①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上,•以上结论正确的是( ) A .只有① B .只有②
C .只有①和②
D .①②③
6. 5.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B
F
E
D
C
B
A。

相关文档
最新文档