立体几何中二面角和线面角
立体几何线面平行垂直,线面角二面角的证明方法
APBCED一:线面平行的证明方法:1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线)看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。
2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行)例一:如图,已知菱形ABCD ,其边长为2,60BAD ∠= ,ABD ∆绕着BD 顺时针旋转120得到PBD ∆,M 是PC 的中点.(1)求证://PA 平面MBD ;(2)求直线AD 与平面PBD 所成角的正弦值.例二:已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.(1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ;(3)求点A 到平面PMB 的距离.例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点,上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .二:线面垂直的证明方法:通过线线垂直,证明线面垂直1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂直等;3) 通过线面垂直,反推线线垂直;4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。
例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点.(1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积.C例五:如图,在四棱锥ABCD P -中,ABCD 是矩形,ABCD PA 平面⊥, 3,1===AB AD PA ,点F 是PD 的中点,点E 在CD 上移动。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
高考数学立体几何中与角有关的四大定理及其证明
则 cosθ = cos2β + cos2γ - 2cosαcosβcosγ sinα
证明:设 ∠HAC = θ1,∠HAB = θ2 ⇒ α = θ1 + θ2,
由三余弦定理得:
cos β cosγ
= =
cosθ cosθ
cosθ1 cosθ2
① ②
由①和②得 cosθ = cosβ = cosγ ③ cosθ1 cosθ2
α
Aβ
γ
P α : 线面角 β : 斜线角 γ : 射影角 则 cosβ = cosαcosγ ⇒ β > α,β > γ
Q
B
证明:cosβ =
AB PA
,cosα =
QA PA
,cosγ =
AB QA
⇒ cosβ = cosαcosγ
·1·
3. 三夹角公式
P
θ
Aβ
γ
α
C H
B
若 θ 为 PA 与平面 ABC 的夹角
⋅
HO BO
AH AO
⋅
BH BO
= cosθ - cosθ1cosθ2 sinθ1sinθ2
注:若 φ =
π 2
,
则该定理退化为三余弦定理
·3·
立体几何中与角有关的四大定理及其证明
1. 三正弦定理
β α
A
γ
B
P
α : 线面角 β : 线棱角 γ : 二面角 则 sinα = sinβsinγ Q ⇒ α ≤ β,α ≤ γ
证明:sinα =
PQ PA
,sinβ =
PB PA
,sinγ =
PQ PB
⇒ sinα = sinβsinγ
专题35 空间中线线角、线面角,二面角的求法-
专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。
线面垂直、线面角、二面角
线面垂直方法的总结我们学习了平面与直线垂直的定义、判定定理和性质定理,大家可以体会线线垂直在证明线面垂直时的重要性,将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法.在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”,同学们下面欣赏常见的线面垂直证明方法.一、 应用勾股定理同学们知道如果一个三角形的边长满足222c ba =+,则这个三角形是直角三角形,可以得到线线垂直的关系.例1:如图1所示,点P 是梯形A B C D 所在平面外一点,⊥PD 平面ABCD ,AB ∥CD ,已知82==AD BD ,54=AB .设M 是PC 上的一点,求证:⊥BD 平面PAD .证明:∵⊥PD 平面ABCD ,⊂BD 平面ABCD∴PD BD ⊥.又∵8=BD ,4=AD ,54=AB ,∴222CD BD AD =+,∴∠︒=90ADB ,∴AD BD ⊥ 又∵⊂PD 平面PAD ,⊂AD PAD ,D AD PD = . ∴⊥BD 平面PAD .二、 应用等腰(等边)三角形三线合一性质所谓三线合一的性质是等腰三角形底边的中线同时是高和角分线,可以很轻松的得到线线垂直,从而为证明线面垂直做了很好的准备工作.例2:如图2所示,已知P A 垂直于O 所在平面,A B 是O 的直径,C 是O 的圆周上异于A 、B 的任意一点,且P A A C =,点E 是线段PC 的中点.求证:A E ⊥平面P B C .证明:∵P A ⊥O 所在平面,BC 是O 的弦,∴B C P A ⊥. 又∵A B 是O 的直径,A C B ∠是直径所对的圆周角,∴B C A C ⊥. ∵,PA AC A PA =⊂ 平面P A C ,A C ⊂平面P A C . ∴B C ⊥平面P A C ,A E ⊂平面P A C ,∴A E B C ⊥.∵P A A C =,点E 是线段PC 的中点.∴A E P C ⊥. ∵PC BC C = ,P C ⊂平面P B C ,B C ⊂平面P B C . ∴A E ⊥平面P B C .此题利用A E 三线合一是解题的关键,在遇到线段的中点时,同学们要注意向三角形的三线合一转化.同时应用了圆的直径所对的圆周角是直角这个重要的结论,这点体现了平面几何对于立体几何的重要性. 三、 应用两条平行线的性质大家知道两条平行线中如果有一条与一个面中的直线垂直,则两条平行线都与平面中的ABCDPM图1ACBPEO图2直线垂直. 在三角形中位线与底边平行,可以得到线线平行的关系,平行四边形对边平行也可以得到线线平行,这样的结论很多,我们可以欣赏体会这样的方法.例3:如图3所示,P 为△A BC 所在平面外一点, ⊥BC 平面PAB ,G 为PB 的中点,M 为PC 的中点,N 在AB 上,NB AN 3=,求证:⊥AB 平面MNG . 证明:取AB 的中点H ,连结PH .∵G 为PB 的中点,M 为PC 的中点,∴GM 为△PBC 的中位线,∴GM ∥BC .∵⊥BC 平面PAB ,⊂AB 平面PAB , ∴⊥BC AB ,∴⊥AB GM .又∵PB PA =,H 为线段AB 的中点,∴AB ⊥PH .∵G 为PB 的中点, N 为HB 的中点,∴PH ∥GN .∴AB ⊥GN .∵GM GN G =,⊂GM 平面MNG ,⊂GN 平面MNG ,∴⊥AB 平面MNG .本题GM 和GN 分别是所在三角形的中位线, 对于证明方法有很大的帮助,同学们在后的解题中要注意根据已知条件找到平行关系是解题的关键. 四、 应用平面图形的几何性质我们都发现在立体几何问题的解决中,平面图形的性质产生了很重要的地位,在学习立体几何的过程中,平面几何的诸多知识点不能推广到三维空间,但同学们要注意平面图形的性质在解决立体几何的时候会发挥很重要的作用. 例4:如图4所示,四边形ABCD 是边长为1的菱形,点P 是菱形A B C D 所在平面外一点,∠︒=60BCD ,E 是CD 的中点,⊥PA 平面ABCD ,求证:BE ⊥平面PAB . 证明:∵⊥PA 平面ABCD ,BE ⊂平面ABCD ,∴PA BE ⊥,如图5所示,∵底面ABCD 是的菱形,∠︒=60BCD , ∴∠︒=60ABD .∵E 是CD 的中点,∴∠︒=30DBE ,∴∠︒=︒+︒=∠+∠=903060DBE BCD ABE , ∴AB BE ⊥.∵A AB PA = ,⊂PA 平面PAB ,⊂AB 平面PAB , ∴BE ⊥平面PAB .本题菱形ABCD 的性质对于解决立体几何的线面垂直有着很重要的作用,类似这样的方法很多,所以同学们要重视平面几何定义、定理、性质的应用.以上解题方法体现了立体几何证明的一个重要的思想方法:立体几何平面化,即转三维问题为二维,可以合理的解决立体几何问题. 五、 利用线面垂直、线线垂直关系线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题。
立体几何中二面角和线面角
⽴体⼏何中⼆⾯⾓和线⾯⾓⽴体⼏何中的⾓度问题⼀、异⾯直线所成的⾓1、如图,在四棱锥ABCD P -中,底⾯ABCD 是矩形,⊥PA 底⾯ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求:(1)三⾓形PCD 的⾯积;(2)异⾯直线BC 与AE 所成的⾓的⼤⼩。
2、如图6,已知正⽅体1111ABCD A B C D -的棱长为2,点E是正⽅形11BCC B 的中⼼,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平⾯11DCC D 内的正投影.(1)求以E为顶点,以四边形FGAE 在平⾯11DCC D 内的正投影为底⾯边界的棱锥的体积;(2)证明:直线11FG FEE ⊥平⾯;(3)求异⾯直线11E G EA 与所成⾓的正弦值⼆、直线与平⾯所成夹⾓1、如图,在四棱锥P ABCD -中,底⾯为直⾓梯形,//AD BC ,90BAD ∠=,PA ⊥底⾯ABCD ,且2P A A D A B B C ===,M N 、分别为PC 、PB的中点。
求CD 与平⾯ADMN 所成的⾓的正弦值。
2、长⽅体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与⾯ AB 1C 1D 所成的⾓的正弦值。
三、⼆⾯⾓与⼆⾯⾓的平⾯⾓问题1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形,且∠DAB=60?,PA PD ==E,F 分别是BC,PC 的中点.(1)证明:AD ⊥平⾯DEF; (2)求⼆⾯⾓P-AD-B 的余弦值.2、如图5,?AEC 是半径为a 的半圆,AC 为直径,点E 为?AC 的中点,点B 和点C 为线段AD 的三等分点,平⾯AEC 外⼀点F 满⾜FB FD ==,EF =。
(1)证明:EB FD ⊥;(2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平⾯BED 与平⾯RQD 所成⼆⾯⾓的正弦值。
2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)
专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
这是空间向量求解的巨大优点,也是缺点,就这么共存着。
其实不建系而直接计算真的很比较锻炼空间想象的能力,方法上也更灵活一些,对于备考的中档学生来说,2种方法都要熟练掌握。
方法介绍一、定义法:交线上取点 等腰三角形共底边时作二面角步骤第一步:在交线l上取一点O第二步:在α平面内过O点作l的垂线OA第三步:在β平面内过O点作l的垂线OB∠AOB即为二面角,余弦定理求角αβl OAB二、三垂线法(先作面的垂直)—后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B作l的垂线OB∠AOB即为二面角且△AOB为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO⊥l第二步:作OB⊥l连接AB,∠AOB即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO⊥l第二步:作AB⊥β(找不到垂足B的位置用等体积求AB长)连接AB,∠AOB即为二面角△AOB为直角三角形,邻比斜五、转换成线线角—计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB,且β平面存在垂线AC则α平面与β平面的夹角等于直线AC与AB的夹角αβlOABαβlOABβαOABCαβlOAB六、投影面积法——面积比(三垂线法进阶)将cos θ=边之比∣面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC , 则平面α与平面ABC 的夹角余弦值1cos A BCABCθ=△△即cos θ=投影原S S补充:即使交线没有画出来也可以直接用例题:一题多解2023汕头二模T20如图在正方体ABCD -A 1B 1C 1D 1中,PQ 是所在棱上的中点.1C 1CD ABA B 1αBCAA 1D(1)求平面APQ 与平面ABCD 夹角的余弦值 (2)补全截面APQ2023全国乙卷数学(理)T9——由二面角求线面角P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1PC 1DABA B 11.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( )A .15B .25C .35D .252021·新高考1卷·T20——由二面角求线段长2.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45︒,求三棱锥A BCD −的体积.题型一 定义法1.如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC . (2)求二面角M—AC—B 的平面角的正切值;2.(湛江期末)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,点M ,N 分别是PB ,AC 的中点,且MN ⊥A C . (1)证明:BC ⊥平面PA C .(2)若PA =4,AC =BC =22,求平面PBC 与平面AMC 夹角的余弦值.(几何法比较简单)3.如图1,在平行四边形ABCD 中,60,2,4A AD AB ∠=︒==,将ABD △沿BD 折起,使得点A 到达点P ,如图2.重点题型·归类精讲(1)证明:平面BCD⊥平面P AD;(2)当二面角D PA B−−的平面角的正切值为6时,求直线BD与平面PBC夹角的正弦值.题型二三垂线法4.(佛山期末)如图,四棱锥P-ABCD中,AB∥CD,∠BAD=90°,12PA AD AB CD===,侧面PAD⊥底面ABCD,E为PC的中点.(1)求证:BE⊥平面PCD;(2)若PA=PD,求二面角P-BC-D的余弦值.5.如图,在四棱锥P -ABCD 中,△P AD 是以AD 为斜边的等腰直角三角形,,,224,23BC AD CD AD AD CD BC PB ⊥====∥ (2023广州一模T19)(1) 求证:AD PB ⊥;(2)求平面P AB 与平面ABCD 交角的正弦值.6.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为2的等边三角形,点E 在棱AD 上,2DE EA =且二面角E BC D −−的大小为60,求三棱锥A BCD −的体积.7.(2023·浙江·统考二模)如图,在三棱柱111ABCA B C 中,底面ABC ⊥平面11AA B B ,ABC 是正三角形,D 是棱BC 上一点,且3CD DB =,11A A A B =.(1)求证:111B C A D ⊥;(2)若2AB =且二面角11A BC B −−的余弦值为35,求点A 到侧面11BB C C 的距离.8.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,3BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由; (2)求平面CDE 与平面ABC 所成的锐二面角的正切值.题型三 作2次交线的垂线9.在三棱锥S ABC −中,底面△ABC 为等腰直角三角形,90SAB SCB ABC ∠=∠=∠=︒. (杭州二模) (1)求证:AC ⊥SB ;(2)若AB =2,22SC =,求平面SAC 与平面SBC 夹角的余弦值.题型四 找交线10.如图,在四棱锥P -ABCD 中,底面ABCI )是平行四边形,∠ABC =120°,AB =1,BC =2,PD ⊥C D . (1)证明:AB ⊥PB ;(2)若平面PAB ⊥平面PCD ,且102PA =,求直线AC 与平面PBC 所成角的正弦值. (广东省二模T19)题型五 转换成线线角湖北省武汉市江汉区2023届高三上学期7月新起点考试11.在直三棱柱111ABC A B C −中,已知侧面11ABB A 为正方形,2BA BC ==,D ,,E F 分别为AC ,BC ,CC 1的中点,BF ⊥B 1D .(1)证明:平面B 1DE ⊥平面BCC 1B 1;(2)求平面BC 1D 与平面1B DE 夹角的余弦值六、 题型六 投影面积法12.(2022·惠州第一次调研)如图,在四棱锥P -ABCD 中,已知//AB CD ,AD ⊥CD ,BC BP =,CD =2AB=4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若2,PA =求平面PBC 与平面PAD 夹角的余弦值13.(2022深圳高二期末)如图(1),在直角梯形ABCD 中,AB //CD ,AB ⊥BC ,且12,2BC CD AB ===取AB 的中点O ,连结OD ,并将△AOD 沿着OD 翻折,翻折后23AC =M ,N 分别是线段AD ,AB 的中点,如图(2).(1)求证:AC⊥OM.(2)求平面OMN与平面OBCD夹角的余弦值.专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
第2讲 立体几何中的空间角问题
(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),
几何法求二面角、线面角与距离(高三一轮复习)
数学 N
— 26 —
思维点睛►
几何法求距离的转化方法 (1)利用线面、面面平行转化:利用线面距、面面距的定义,转化为直线或平面 上的一点到平面的距离; (2)通过换底转化:一般是在三棱锥中,利用等体积法求三棱锥的高,即求顶点 到平面的距离; (3)利用中点转化:如果条件中具有线段的中点,则可将中点到平面的距离转化 为线段的端点到平面的距离.
角度1 轨迹问题 例1 如图, AB是与平面α交于点A的斜线段,点C满足|BC|=λ|AC|(λ>0),且 在平面α内运动,给出以下几个命题:①当λ=1时,点C的轨迹是拋物线;②当λ=1 时,点C的轨迹是一条直线;③当λ=2时,点C的轨迹是圆;④当λ=2时,点C的轨 迹是椭圆;⑤当λ=2时,点C的轨迹是双曲线.其中正确的命题是________.(填序 号)
数学 N
— 29 —
又因为AB=3,BC=4,则AC=5,故在Rt△C1AC中,C1C=AC×tan
30°=
53 3
,在长方体ABCD-A1B1C1D1中,
平面ABCD到平面A1B1C1D1的距离即为棱C1C的
长,即平面ABCD到平面A1B1C1D1的距离为5
3
3 .
数学 N
— 30 —
拓展培优 立体几何中的动态问题
数学 N
— 5—
针对训练
1.已知正方体ABCD-A1B1C1D1,则D1A与平面ABCD所成的角为( A )
A.45°
B.60°
C.90°
D.135°
解析 如图,正方体ABCD-A1B1C1D1,
数学 N
— 6—
DD1⊥平面ABCD,则∠D1AD是直线D1A与平面ABCD所成的角, 在Rt△ADD1中, ∠ADD1=90°,AD=DD1,因此∠D1AD=45°, 所以D1A与平面ABCD所成的角为45°.
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
线线角线面角的向量求法
30 10
2. 线面角
设n为平面 的法向量,直线AB与平面所
成的角为 1 ,向量 AB 与n所成的角为 2 ,
则
1
2
2
1
2
2
(012,02)
而利用 cos 2 AB n
AB n
可求 2 ,
n
B
2 1
从而再求出 1 .
A
n
2. 线面角
设直线l的方向向量为a , 平面
直线 l与平面 所成的角为 (0
平
面
A
B
C
的
法
向
量
平
移
到
A1
B1C
位
1
置
,已知BC NhomakorabeaCA
C
C
,取
1
A1
B1、
A1
C
的
1
中
点
D
、
1
F1,
求
B
D
与
1
A
F1
所
成
的
角
的
余
弦
值
.
F1C1
B1
A1
D1 C
B
A
解:以点C为坐标原点建立空间直角坐标系C x如y z图
所示,设 则C C:1 1
A (1, 0 , 0 ), B (0 ,1, 0 ),
≤的 法≤ 向 量),为则u
,且
2
u
a
a u
s in au
l
a
u
是 练习4: 如图,在四棱锥P-ABCD中,底面ABCD
正方形,侧棱PD⊥底面ABCD,PD=DC=1 ,E是PC
的中点, 求PB与平面EDB所成角的正Z弦值
直线和平面所成的角与二面角
直线和平面所成的角与二面角【高考导航】立体几何中的角大致可分为三种,即线线角,线面角,平面与平面所成的二面角.立体几何计算问题几乎都与三种空间角的计算有关,是高考立体几何检测的热点内容,题型上一般以解答题进行考查,难度适中,如1993全国理5分;1995全国文5分;1996全国4分;2002北京4分;1996上海12分;2002全国理12分;2002新课程12分;2002上海春12分;2003北京春5分;2004北京14分;2004广东12分等.【学法点拨】本节内容有斜线在平面上的射影,斜线与平面所成的角,公式cosθ=cosθ1·cosθ2,最小角定理,二面角的概念,二面角的平面角,两个平面垂直的判定定理及性质定理,对于本节知识的学习要了解线面角、半平面与半平面所成二面角以及异面直线所成角,在求法上一般都是转化为平面的角,具体地,通常应用“线线角抓平移,线面角抓射影,面面角抓平面角,利用向量抓法向量”而达到化归的目的.要注意对平面角的拼求和各种角的定义及取值范围.空间角的计算步骤是“一作,二证,三计算”.“作”即在图形中若无所求空间角的平面角,应先作出来;“证”指明自己所找或所作的角即为所求角;“计算”在平面几何图形内把角求出.在三种角的计算中要特别注意二面角的作法及求法,注意cosθ=cosθ1·cosθ2在线面角求值中的应用,注意利用射影面积公式S′=S·cosθ求二面角,对于平面与平面垂直的判定与性质的学习,可以与直线与直线垂直,直线与平面垂直的判定与性质联系起来,应用时注意三种垂直之间的相互转化.同时在学习中培养空间的想象能力、解决问题的能力以及逻辑推理能力和运算能力.【基础知识必备】一、必记知识精选平面的斜线和平面所成的角.(1)直线与平面所成角①范围:0°≤α≤90°当α=0°时,直线在平面内或直线平行于平面;当α=90°时,直线垂直于平面;当0°<α<90°时,直线与平面斜交.②最小角定理:直线与平面斜交,过斜足在平面内作直线,这些线与斜线所成角中射影与斜线所成角最小.③cosθ=cosθ1·cosθ2.④作法:作出直线和平面所成角,关键是作垂线,找射影.(2)二面角①定义:由一条直线出发的两个半平面组成的图形叫二面角.②二面角的平面角:定义:以二面角的棱上任意一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.对概念的理解要注意:平面角的两边分别在二面角的两个半平面内;平面角的二边都和二面角的棱垂直.③二面角平面角的求法:直接法:所谓直接法即先作出二面角的平面角,经过证明后再进行计算,常用的直接法有三:(a)利用平面角的定义;(b)利用三垂线定理;(c)过一点作棱的垂面.间接法:所谓间接法,就是不作出二面角的平面角,而利用公式cos θ=S S 射影.此方法也叫射影法.也可利用两半平面法向量的夹角求二面角.注意当直接作出二面角的平面角有一定难度时,一般才采用间接法求二面角大小. ④二面角的范围是0°≤θ≤180°,可从两个半平面“重合”、“相交”和“共面”各种情况考虑,重合时θ=0°;相交时,0°<θ<180°;共面时,θ=180°.(3)两个平面垂直的判定①定义:如果两相交平面所成二面角是直二面角,那么这两个平面互相垂直.两个平面互相垂直是两个平面相交的特殊情况,若两个相交平面所成的二面角是直二面角,则称这两个平面互相垂直,它和平面几何里两条直线互相垂直的概念类似.②判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.即⎭⎬⎫⊂⊥βαl l ⇒β⊥α.简言之,“线面垂直⇒面面垂直”.(4)两个平面垂直的性质①如果两个平面互相垂直,那么它们所成二面角的平面角是直角.②性质定理:如果两个平面互相垂直,那么一个平面内垂直于交线的直线垂直于另一个平面.即⎭⎬⎫⊥⊂=⊥l a a l ,,ββαβα ⇒a ⊥α.简言之,“面面垂直⇒线面垂直”. ③如果两个平面互相垂直,那么过一个平面内一点和另一个平面垂直的直线,必在此平面内.④如果一个平面和二个相交平面都垂直,那么它就和它们的交线垂直.(5)从两个平面垂直的判定定理和性质定理中可看出,平面与平面的垂直问题可转化为直线与平面的垂直问题,即从线面垂直可推出面面垂直,反过来,由面面垂直又可推出线面垂直,这说明线面垂直与面面垂直之间有密切关系,可以互相转化.二、重点难点突破本节的重点是斜线在平面上射影的概念,斜线与平面所成角的概念,二面角的概念,两个平而垂直的判定定理.对于斜线在平面上的射影可通过具体作图具体体验,要注意O 点选取的任意性及斜线在平面上的射影是直线不是线段,斜线与平面所成角要紧扣概念,了解范围.本节的难点是cos θ=cos θ1·cos θ2的灵活应用,二面角的平面角.对于二面角的平面角和平面中角的概念作类比,注意化归思想的应用,二面角的考查在1993至2004高考十一年间有十年都有涉及,是考试热点,应重视.三、易错点和易忽略点导析在求二面角时,忽略二面角的范围,用反三角函数表示角出现错误或确定平面角出现错误.【例】 已知∠AOB=90°,过O 点引∠A O B 所在平面的斜线O C ,与O A 、O B 分别成45°、60°角测以O C 为棱的二面角A-O C-B 大小为________.错解:如图9-7-1所示,在O C 上取一点C ,使O C=1.过C 分别作CA ⊥O C 交O A 于A ,CB ⊥O C 交O B 于B.则AC=1,O A=2,BC=3,O B=2.在Rt △A O B 中,AB 2=O A 2+O B 2=6.在△ABC 中,由余弦定理,得cos ∠ACB=-33.∴∠ACB=arccos 33,即二面角A-O C-B 为arccos 33.正确解法:如图9-7-1所示,在O C 上取一点C ,使O C=1,过C 分别作CA ⊥O C 交O A 于A ,CB ⊥O C 交O B 于B ,则AC=1,O A=2,BC=3,O B=2.在Rt △A O B 中,AB 2=O A 2+O B 2=6,得cos ∠ACB=-33.∴∠ACB=π-arccos 33.即二面角A-O C-B 为π-arccos 33.错解分析:混淆了二面角的范围[0,π]与异面直线所成角的范围(0,2π],且对于反三角函数的表示不熟悉.【综合应用创新思维点拨】一、学科内综合思维点拨【例1】 已知D 、E 分别是正三棱柱ABC 一A 1B 1C 1的侧棱AA 1和BB 1上的点,且A 1D=2B 1E=B 1C 1.求过D 、E 、C 1的平面与棱柱的下底面所成二面角的大小.思维入门指导:在图9-7-2上,过D 、E 、C 1的面与棱柱底面只给出一个公共点C 1,而没有画出它与棱柱底面所成二面角的棱,因此还需找出它与底面的另一个公共点,进而再求二面角的大小.解:在平面M 1B 1B 内延长DE 和A 1B 1交于F ,则F 是面DEF 与面A 1B 1C 1的公共点,C 1也是这两个面的公共点,连结C 1F ,C 1F 为这两个面的交线,所求的二面角就是D-C 1F-A 1.∵A 1D ∥B 1E ,且A 1D=2B 1E ,∴E 、B 1分别为DF 和A 1F 的中点.∵A 1B 1=B 1F=B 1C 1,∴FC 1⊥A 1C 1.又面AA 1C 1C ⊥面A 1B 1C 1,FC 1在面A 1B 1C 1内,∴FC 1⊥面AA 1C 1C.而DC 1在面AA 1C 1C 内,∴FC 1⊥DC 1.∴∠DC 1A 1是二面角D-FC 1-A 1的平面角.由已知A 1D=B 1C=A 1C 1,∴∠DC 1A 1=4π.故所求二面角的大小为4π.点拨:当所求的二面角没有给出它的棱时,可通过公理1和公理2,找出二面角的两个面的两个公共点,从而找出它的棱,进而求其平面角的大小.需要注意的是,若利用cos θ=1111DEC C B A SS △△求二面角的大小,作为解答题,高考中是要扣分的,因为它不是定理.【例2】 设△ABC 和△DBC 所在的两个平面互相垂直,且AB=BC=BD ,∠ABC=∠DBC=120°.求:(1)直线AD 与平面BCD 所成角的大小;(2)异面直线AD 与BC 所成的角的大小;(3)二面角A-BD-C 的大小.思维入门指导:本题主要考查对空间三种角的“作一证一求”.在解题时要合理利用题中条件.解:(1)如图9-7-3所示,在平面ABC 内,过A 作AH ⊥BC ,垂足为H ,则AH ⊥平面DBC ,连结DH ,故∠ADH 为直线AD 与平面BCD 所成的角.由题设知,△AHB ≌△DHB ,则DH ⊥BH ,AH=DH.∴∠ADH=45°为所求.(2)∵BC ⊥DH ,且DH 为AD 在平面BCD 上的射影,∴BC ⊥AD ,故AD 与BC 所成的角为90°.(3)过H 作HR ⊥BD ,垂足为R ,连结AR ,则由三垂线定理知AR ⊥BD ,故∠ARH 为二面角A-BD-C 的平面角的补角.设BC=a ,则由题设得AH=DH=23a ,BH=21a ,BD=BC=a.在△HDB 中,求得HR=43a.∴tan ∠ARH=HR AH =2.故二面角A-BD-C 的大小为π-arctan2.点拨:本题是一道中档难度的立体几何综合题.这种试题命题的目的是考查立体几何重点知识,并且使之能覆盖较多的知识点.二、应用思维点拨【例3】 如图9-7-4所示,边长AC=3,BC=4,AB=5的三角形简易遮阳棚,其A ,B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角.试问:遮阳棚ABC 与地面成多大角度时,才能保证遮影面ABD 面积最大?思维入门指导:太阳影子实质可理解为射影面积,从而本题可转化为二面角的有关问题进行探讨,那么首先应作出纯数学图形,结合图形进行分析求解.解:易知△ABC 为直角三角形,由C 点引AB 的垂线,垂足为Q ,连结DQ ,则应有DQ 为CQ 在地面上的斜射影,且AB 垂直于平面CQD ,如图9-7-5.∵太阳光与地面成30°角,∴∠CDQ=30°.在△ABC 中,可算得CQ=512,在△CQD 中,由正弦定理,有︒30sin CQ =QCD QD ∠sin .即QD=524sin ∠QCD.为了使平面ABD 的面积最大,需QD 最大,这只有当∠QCD=90°时才可达到.从而∠CQD=60°.故当遮阳棚ABC 与地面成60°角时,才能保证遮影面ABD 面积最大.点拨:从研究中可看出只有当遮阳棚所在平面与太阳光线垂直时,才能挡住最多的光线,被遮阳的地面面积才能获得最大值.利用这个结论,也很容易得出所求值为60°,参看图9-7-6.三、创新思维点拨【例4】 如图9-7-7,在四面体ABCD 中,AB=AD=3,BC=CD=3,AC=10,BD=2.(1)平面ABD 与平面BCD 是否垂直,证明你的结论;(2)求二面角A-CD-B 的正切值;(3)求异面直线BC 与AD 所成角的余弦值.思维入门指导:(1)判断垂直需要寻找符合面面垂直判定定理的条件.(2)(3)求空间的角要先转化为平面相交直线所成角,然后进行求解.解:(1)平面ABD ⊥平面BCD.证明如下:设BD 的中点为E ,连AE 、CE.∵AB=AD ,∴AE ⊥BD.同理CE ⊥BD.∴AE=22BE AB -=13-=2, CE=22BE BC -=19-=22. 又AC=10,∴AC 2=AF 2+CE 2.∴∠AEC=90°.∴AE ⊥EC.又AE ⊥BD ,∴AE ⊥平面BCD.又AE ⊂平面ABD ,∴平面ABD 上平面BCD.(2)作EF ⊥CD 于F ,连AF.∵AE ⊥平面BCD ,由三垂线定理得,AF ⊥CD ,∴∠AFE 就是二面角A-CD-B 的平面角,EF=ED ·sin ∠EDF=ED ·CD EC=1×322=322.∴tan ∠AFE=EF AE =3222=23.即二面角A-CD-B 的正切值为23.(3)解法一:取AB 的中点M ,AC 的中点N ,连MN 、ME 、NE.则ME ∥21AD ,MN ∥21BC. ∴∠NME 是异面直线BC 与AD 所成角或其补角.∵MN=21BC=23, ME=21AD=23, NE=21AC=210,由余弦定理,cos ∠NME=ME MN NE ME MN ∙-+2222=93>0.∴∠NME 为锐角.∴∠NME 就是异面直线BC 与AD 所成角,其余弦值为93.解法二:在平面BCD 内作□BCGD(如图9-7-8),连结AG ,则DG ∥BC ,∴∠ADG 是直线BC 与AD 所成角或者其补角.∵BD ∥CG ,EC ⊥BD ,∴EC ⊥CG.又∵AE ⊥平面BCD ,∴AC ⊥CG ,CG=BD=2,DG=BC=3.在Rt △ACG 中,AG=22CG AC +=14,cos ∠ADG=DG AD AG DG AD ∙-+2222=3321493∙-+=93.∴直线BC 与AD 所成角的余弦值为93.点拨:本题的(1)设问新颖,属开放式,增加了问题的灵活度,对空间想象能力、推理、判断能力要求更高,近年高考中像这样开放式设问题的试题较多,是高考命题的一个热点.本题的(3)求异面直线所成角,要化归为相交线所成角,解法一利用中位线性质将两异面直线所成角转化为相交直线所成角,解法二过一直线上一点作另一直线的平行线.应注意异面直线所成角一定是锐角或直角.四、高考思维点拨【例5】 (2002,河南、江苏)四棱锥P —ABCD 的底面是边长为a 的正方形PB ⊥面ABCD.(1)若面PAD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积;(2)证明:无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90°. 思维入门指导:解答第(1)问,基本思路是寻找面PAD 与底面ABCD 所成的二面角的平面角,进而求棱锥的高和体积;也可以通过侧面△PDA 在底面的射影面积与二面角的关系求解;还可以补形为正四棱柱求解,但此法较繁琐.解答第(2)问,首先要找出面PAD 与面PCD 所成的二面角的平面角,也即找出一个垂直于PD 的平面,转化为在平面上研究该平面角的大小.(1)解法一:∵PB ⊥面ABCD ,∴BA 是PA 在面ABCD 上的射影.又DA ⊥AB ,∴PA ⊥DA.∴∠PAB 是面PAD 与面ABCD 所成的二面角的平面角.∴∠PAB=60°.而PB 是四棱锥P —ABCD 的高,PB=AB ·tan60°=3a ,∴V 锥=31·3a ·a 2=33a 3.解法二:如图9-7-9,∵PB ⊥面ABCD ,连结BD ,则△ABD 是△APD 在面ABCD 上的射影, ∴APD ABDS S △△=cos60°.又S △ABD =21a 2,∴S △APD =21212a =a 2.由PB ⊥AD ,AD ⊥AB ,得AD ⊥面PAB.∴AD ⊥AP.∴PA=AD S APD 21△=a a 212=2a.在Rt △PAB 中,PB=22)2(a a -=3a ,∵PB 是四棱推P —ABCD 的高,∴V 锥=31·3a ·a 2=33a 3. (2)证法一:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形.作AE ⊥DP ,垂足为E ,连结EC ,如图9-7-10,则△ADE ≌△CDE ,∴AE=CE ,∠CED=90°.故∠CEA 是面PAD 与面PCD 所成的二面角的平面角.设AC 与DB 相交于点O ,连结E O ,则E O ⊥AC ,22a=O A <AE <AD=a ,且AD=2O A.在△AEC 中,cos ∠AEC=EC AE OA EC AE ∙∙-+2)2(222=2)2)(2(AE OA AE OA AE -+<0.所以,面PAD 与PCD所成的二面角恒大于90°.证法二:如图9-7-10,同证法一,得∠CEA 是面PAD 与面PCD 所成的二面角的平面角.设PB=h ,则PA 2=h 2+a 2,PD 2=h 2+2a 2.在Rt △PAD 中,AE=PD ADPA ∙=22222a h a h a ++. 在△AEC 中,∵AE=EC ,∴cos ∠AEC=EC AE AC EC AE ∙-+2222=222AE a AE -=1-22AE a =1-22222a h a h ++=-222a h a +<0.∴∠AEC 是钝角.即面PAD 与面PCD 所成的二面角恒大于90°.点拨:本题以《立体几何》课本的一道复习题为基础,通过题中某个元素的变动,导出某个“恒定”的结论,创设出一个新的问题,与课本的习题一气呵成,构成一个完美的题组,给人以完整、清新、自然的感觉,是一道颇具创意的试题.本题的第(1)题,出自于课本复习参考题九B 组第6组,它只改变问题的表述,并不改变问题的本质,考查线面、线线垂直关系的逻辑推理和解直角三角形、求棱锥体积的运算,是对考生的基本要求.五、经典类型题思维点拨【例6】 如图9-7-11,三棱柱O AB -O 1A 1B 1,平面O BB 1O 1⊥平面O AB ,∠O 1O B=60°,∠A O B=90°,且O B=OO 1=2, O A=3.求:二面角O 1-AB-O 的大小;思维入门指导:根据题意利用二面角的定义,找出二面角的平面角,运用解三角形的知识求出.解:取O B 的中点D ,连结O 1D ,则O 1D ⊥O B.∵平面O BB 1O 1⊥平面O AB ,∴O 1D ⊥平面O AB.过点D 作AB 的垂线,垂足为E ,连结O 1E ,则O 1E ⊥AB.∴∠DE O 1为二面角O 1-AB-O 的平面角.由题设得O 1D=3,sin ∠O BA=22OB OA OA +=721. ∴DE=DB ·sin ∠O BA=721.∵在Rt △O 1DE 中,tan ∠DE O 1=DE DO 1=7.∴∠DE O 1=arctan 7.即二面角O 1-AB-O 的大小为arctan 7.六、探究性学习点拨【例7】 在直角梯形ABCD 中,∠D=∠BAD=90°,AD=DC=21AB=a(如图9-7-12(1)),将△ADC 沿AC 折起,使D 到D ′,记面ACD ′为α,面ABC 为β,面BCD ′为λ.(1)若二面角α-AC-β为直二面角(如图9-7-12(2)),求二面角β-BC-λ的大小;(2)若二面角α-AC-β为60°(如图9-7-12(3)),求三棱锥D ′一ABC 的体积.思维入门指导:本题是一道由平面图形折叠形成的立体几何问题.主要考查空间想象力和图形对应关系,也考查了立体几何的常规计算——二面角计算和体积计算.解:(1)在直角梯形ABCD 中,由已知△DAC 为等腰直角三角形,∴AC=2a ,∠CAB=45°. 由AB=2a ,可推得BC=AC=2a ,∴AC ⊥BC.取AC 的中点E ,连结D ′E ,如图9-7-13,则D ′E ⊥AC.∵二面角α-AC-β为直二面角,∴D ′E ⊥β.又∵BC ⊂平面β,∴BC ⊥D ′E.∴BC ⊥α.而D ′C ⊂α,∴BC ⊥D ′C.∴∠D ′CA 为二面角β-BC-λ的平面角.由于∠D ′CA=45°,∴二面角β-BC-λ为45°.(2)如图9-7-14,取AC 的中点E ,连结D ′E ,再过D ′作D ′O ⊥β,垂足为O ,连结O E.∵AC ⊥D ′E ,∴AC ⊥O E.∴∠D ′E O 为二面角α-AC-β的平面角.∴∠D ′E O =60°.在Rt △D ′OE 中,D ′E=21AC=22a ,D ′O =D ′E ·sin60°=22a ·23=46a.∴V D ′-ABC =31S △ABC ·D ′O =31×21AC ·BC ·D ′O =61×2a ×2a ×46a=126a 3.点拨:本题立意简明,考查了空间图形的基本推理和运算,对于折叠问题,空间图形中大多数数据靠平面图形计算去赋值,这是解决这类问题的通常思考方法,题目难度中档,有一定的区分度.【强化练习题】A 卷:教材跟踪练习题 (60分 45分钟)一、选择题(每小题5分,共30分)1.在正三棱柱ABC -A 1B 1C 1中,若AB=2BB 1;则AB 1与C 1B 所成角的大小为( )A.60°B.90°C.105°D.75°2.直线l 与平面α斜交成n °角,则l 与α内任意直线所成角中,最小与最大的角分别是( )A.n °与90°B.180°-n °与n °C.n °与180°-n °D.以上都不是3.PA 、PB 、PC 是从P 点出发的三条射线,每两条射线的夹角均为60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A.21 B.22C.33D.364.二面角α-AB-β的平面角是锐角,C 是面α内的一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么( )A.∠CEB=∠DEBB.∠CEB >∠DEBC.∠CEB <∠DEBD.∠CEB 与∠DEB 的大小关系不能确定5.在空间四边形ABCD 中,M 、N 分别为AB 、CD 的中点,且AD=4,BC=6,MN=19,则AD 与BC 所成角的余弦值和所成角分别为( ) A.-21,32π B.-21,3π C.21,3π D.21,32π6.已知a 、b 是异面直线,A ,B ∈α,A 1,B 1∈b ,AA 1⊥α,AA 1⊥b ,BB 1⊥b ,且AB=2,A1B1=1,则α与b所成的角等于()A.30°B.45°C.60°D.75°二、填空题(每小题4分,共16分)7.在正方体ABCD--A1B1C1D1中,BD1与平面A1B1C1D1所成角的正切值为________.8.AB∥平面α,AC⊥α于C,BD是α的斜线,D是斜足,若AC=9,BD=63,则BD与α所成的角为________.9.过一个平面的垂线和这个平面垂直的平面有________.10.一条长为a的线段夹在互相垂直的两平面之间,它和这两个平面所成角分别为45°和30°,由这线段的两个端点向两个平面引垂线,那么垂足间的距离是________.三、解答题(每小题7分,共14分)11.如图9-7-15,A是△BCD所在平面外一点,AB=AD,∠ABC=∠ADC=90°.E是BD的中点.求证:平面AEC⊥平面ABD,平面AEC⊥平面BDC.12.设E为正方体ABCD—A1B1C1D1的棱CC1的中点,求平面AB1E和底面A1B1C1D1所成角的余弦值.B卷:综合应用创新练习题(90分 90分钟)一、学科内综合题(10分)1.如图9-7-16,以正四棱锥V—ABCD底面中心O为坐标原点建立空间直角坐标系O一xyz,其中O x∥BC,O y∥AB,E为VC中点,正四棱锥底面边长为2a,高为h.(1)求cos<BE,DE>;(2)记面BCV为α,面DCV为β,若∠BED是二面角α-VC-β的平面角,求∠BED.二、应用题(10分)2.一个气象探测气球以14m/min的垂直分速度由地面上升,经过10min后,由观察点D测得气球在D的正东,仰角为45°;又过10min后,测得气球在D的北偏东60°,仰角为60°.若气球是直线运动,求风向与风速.三、创新题(60分)(一)教材变型题(10分)3.(P46习题9.7第4题变型)山坡与水平面成30°角,坡面上有一条与山底水平线成30°角的直线小路,某人沿小路上坡走了一段路程后升高了100米,则此人行走的路程为________.(二)一题多解(15分)4.如图9-7-17,在正方体ABCD-A1B1C1D1中,E、F分别为AA1、AB之中点,求EF和平面ACC1A1所成角的大小.(三)一题多变(15分)5.如图9-7-18,过正方形ABCD 的顶点A 作PA ⊥平面ABCD ,设PA=AB=a. ①求二面角B-PC-D 的大小;②求平面PAB 和平面PCD 所成二面角的大小.(1)一变:四边形ABCD 是菱形,且∠ABC=60°,其他条件不变,求二面角B-PC-D 的大小.(四)新解法题(1O 分)6.△ABC 的边BC 在平面α内,A 在平面α上的射影为A ′,当∠BAC=60°,AB 、AC 与平面α所成角分别为30°和45°时,求cos ∠BA ′C 的值.(五)新情境题(10分)7.如图9-7-19,在底面是直角梯形的四棱锥S -ABCD 中,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=21.(1)求四棱锥S —ABCD 的体积;(2)求面SCD 与面SBA 所成的二面角的正切值. 四、高考题(10分)8.(2001,京、蒙、皖春)已知VC 是△ABC 所在平面外的一条斜线,点N 是V 在平面ABC 上的射影,如图9-7-20,且在△ABC 的高CD 上,AB=a ,VC 与AB 之间的距离为h ,点M ∈VC.(1)求证:∠MDC 是二面角M-AB-C 的平面角; (2)当∠MDE=∠CVN 时,求证:VC ⊥平面AMB ;(3)若∠MDC=∠CVN=θ(0<θ<2π),求四面体MABC 的体积.加试题:竞赛趣味题(10分)已知正方体ABCD -A ′B ′C ′D ′的棱长为1,在AC 上取一点P ,过P 、A ′,B ′三点作的平面与底面所成二面角为α,过P 、B ′、C ′三点作的平面与底面所成的二面角为β,求α+β的最小值.【课外阅读】巧用向量法求空间角众所周知,解决立体几何问题,“平移是手段,垂直是关键”,向量的运算中:两向量的共线易解决平行问题,向量的数量积则易解决垂直、两向量所成角及线段的长度等问题.一般来说,当掌握了用向量的方法解决立体几何问题这套强有力的工具时,应该说不仅会降低学习的难度,而且增强了可操作性,为学生提供了崭新的视角,丰富了思维结构,消除了学生对立体几何学习所产生的畏惧心理,更有利于新课改、新理念、新教材的教学实验.本文主要是谈利用向量法求解空间角的问题.角这一几何量本质上是对直线与平面位置关系的定量分析,其中转化的思想十分重要,三种空间角都可转化为平面角来计算,可以进一步转化为向量的夹角求解.1.求两条异面直线所成的角异面直线所成的角α利用与它们平行的向量,转化为向量的夹角θ问题,但θ∈[0,π],α∈(0,2π],所以cos α=|cos θ|=ba ba ∙.【例1】 (2002,上海春季)如图9-7-21,三校柱O AB —O 1A 1B I ,平面O B 1⊥平面O AB ,∠O 1O B=60°,∠A O B=90°,且O B=OO 1=2,O A=3,求异面直线A 1B 与A O 1所成角的大小.思维入门指导:用平移A 1B 或A O 1的方法求解,是很困难的,于是我们很自然地想到向量法求解.充分利用∠A O B=90°,建立空间直角坐标系,写出有关点及向量的坐标,将几何问题转化为代数问题计算.解:建立如图9-7-21所示的空间直角坐标系,则O (0,0,0),O 1(0,1,3),A(3,0,0),A 1(3,13),B (0,2,0).∴B A 1=OB -1OA =(-3,1,-3),1OA =OA -1OO =(3,-1,3).设异面直线所成的角为α,则cos α=71.故异面直线A 1B 与A O 1所成的角的大小为arccos 71.点拨:(1)以向量为工具,利用空间向量的坐标表示,空间向量的数量积计算公式,异面直线所成角问题思路自然,解法灵活简便;(2)也可以直接用自由向量OA =a ,OB =b ,1OO =c 表示1OA 与A 1,然后再来解.2.求直线与平面所成的角在求平面的斜线与平面所成的角时,一般有两种思考的途径,如图9-7-22,一种是按定义得∠P O H=<OP ,OH >;另一种方法是利用法向量知识,如图9-7-22,平面α的法向量为n ,先求OP 与n 的夹角,注意P O 与α所成角θ与<OP ,n >的关系,于是就有sin θ=|cos<OP ,n>|.【例2】 (2002,天津、山西、江西)如图9-7-23,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求直线AC 1与侧面AB 1所成的角的大小.思维入门指导:利用正三棱柱的性质,建立适当的空间直角坐标系,写出有关点的坐标,求角时有两种思路,一是由定义找出线面角,取A 1B 1中点M ,连结C 1M ,证明∠C 1AM 是AC 1与面A 1B 所成的角;另一种是利用平面AB 1的法向量n =(λ,x ,y ),求解.解法一:建立如图9-7-23所示的空间直角坐标系,则A(0,0,0),B(0,a ,0),A 1(0,0,2a),C 1(-23a ,2a ,2a),取A 1B 1中点M ,则M(0,2a ,2a),连结AM ,MC 1,有1MC =(-23a ,0,0),=(0,a ,0),1AA =(0,0,2a).由于1MC ·AB =0,1MC ·1AA =0,∴MC 1⊥面AB 1.∴∠C 1AM 是AC 1与侧面AB 1所成的角θ.∵1AC =(-23a ,2a ,2a),AM =(0,2a ,2a),∴1AC ·AM =0+42a +2a 2=492a .而|1AC |=2222443a a a ++=3a ,||=2224a a +=23a ,∴cos<1AC ,AM >=233492a a a ∙=23.∴<1AC ,>=30°,即AC 1与侧面AB 1所成的角为30°.解法二(法向量法):(接法一)1AA =(0,0,2a ).设侧面A 1B 的法向量n =(λ,x ,y).所以n ·AB =0,且n ·1AA =0,∴ax=0,且2ay=0.∴x=y=0,故n =(λ,0,0).∵1AC =(-23a ,2a ,2a),∴cos<1AC ,n >=1=a a 3||23∙∙-λλ=-||2λλ.∴sin θ=|cos<1AC ,n >|=21.∴θ=30°.点拨:充分利用图形的几何特征建立适当的空间直角坐标系.再用向量有关知识求解线面角.解法二给出了一般的方法,先求平面法向量与斜线夹角,再进行换算.3.求二面角利用向量法求二面角的平面角有两种途径,一是根据二面角的平面角的定义,如图9-7-24,AB ⊥l ,CD ⊥l ,AB ⊂α,CD ⊂β,则二面角α- l -β的大小为<AB ,CD >.另一种方法是利用两平面的法向量的夹角求解,但应注意法向量n 1、n 2的夹角与二面角的大小是相等或互补的.【例3】 (2001,全国)如图9-7-25,在底面是一直角梯形的四棱锥S 一ABCD 中,AD∥BC ,∠ABC=90°,SA ⊥平面AC ,SA=AB=BC=1,AD=21,求面SCD 与面SBA 所成的角.思维入门指导:本题是“无棱”的二面角,利用向量法求二面角大小更显示了向量工具的魅力.抓住AD 、AB 、AS 两两互相垂直建立坐标系,用待定系数法求出面SAB 、面SCD 的法向量,再求其夹角.解:如图9-7-25,建立空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(21,0,0),S(0,1,0),得DC =(21,1,0),SD =(21,0,-1),SC =(1,1,-1).设平面SDC 的法向量为n 1=(x 1,y 1,z 1).∵n 1⊥面SDC ,∴n 1⊥DC ,n 1⊥SD ,n 1⊥SC .设平面SAB 的法向量为n 2=(x 2,y 2,z 2),则 SA =(0,0,-1),SB =(0,-1,1).∴⎪⎩⎪⎨⎧=∙=∙.0,022SA n n ∴⎩⎨⎧=+-=-.0,0222z y z∴x 2=y 2=0.∴n 2=(x 2,0,0). ∴cos<n 1,n 2>=||||2121n n n n ∙=||414100221212121x x x x x x ∙++++=||322121x x x x =±36.∵面SAB 与面SCD 所成角的二面角为锐角θ,∴cos θ=|cos<n 1,n 2>|=32=36. ∴θ=arccos 36.故面SCD 与面SBA 所成的角大小为arccos 36.点拨:本题考查了空间向量的坐标表示,空间向量的数量积,空间向量垂直的充要条件,空间向量的夹角公式和直线与平面垂直的判定,考查了学生的运算能力,综合运用所学知识解决问题的能力.参考答案A 卷一、1.B 点拨:如答图9-7-1建立空间直角坐标系O 一xyz.设高为h ,则AB=2h ,可得A(0,-22h ,h),B(0,22h ,h),B 1(0,22h ,0),C 1(26h ,0,0).则1AB =(0,2h ,-h),1BC =(26h ,-22h ,-h). ∵1AB ·1BC =O ×26h+2h ·(-22h)+h 2=0,∴1AB ⊥1BC .2.A 点拨:直线与平面斜交时,斜线和面所成角是斜线与面内所有直线所成角中最小的,且最大角为直角.3.C 点拨:构造正方体如答图9-7-2所示,过点C 作C O ⊥平面PAB ,垂足为O ,则O 是正△ABP 的中心,于是∠CP O 为PC 与平面PAB 所成的角.设PC=a ,则P O =32PD=33a.故cos ∠CP O =PC PO=33.4.B 点拨:结合图形,可先比较tan ∠CEB 与tan ∠DEB 的大小,即可得到答案.5.C 点拨:取BD 的中点P ,连PM 、PN ,则PM=2,PN=3,然后用余弦定理可求得.6.C二、7.22点拨:如答图9-7-3,连结B 1D 1,则∠B 1D 1B 为BD 1与面A 1B 1C 1D 1所成角,tan∠B 1DB=111D B BB =22.8.3π点拨:过B 作BE ⊥α,垂足为E ,如答图9-7-4,连结DE ,则∠BDE 为直线BD 与α所成角.在Rt △BED 中易知∠BDE=60°.9.无数个 点拨:由直线和平面垂直的判定定理可知满足条件有无数个.10.2a三、11.证明:∵AB=AD ,∠ABC=∠ADC=90°,AC=AC , ∴Rt △ABC ≌Rt △ADC.∴BC=CD. 又∵E 为BD 的中点,∴CE ⊥BD.又AB=AD ,且E 为BD 的中点,∴AE ⊥BD ,则BD ⊥平面ACE.又BD ⊂平面ABD ,BD ⊂平面BCD ,∴平面ABD ⊥平面AEC ,平面BDC ⊥平面AEC. 点拨:本题关键证明BD ⊥面ACE.12.解:如答图9-7-5,设正方体的棱长为a ,在△AB 1E 中,AB 1=2a ,B 1E=25a ,AE=23a.∴cos ∠AB 1E=E B AB AE E B AB 11221212∙∙-+=aa a a a 252249452222∙∙-+=1010.∴sin ∠AB 1E=10103.∴S E AB 1△=21·AB 1·B 1E ·sin ∠AB 1E=21×2a ·25a ×10103=43a 2.又S 111C B A △=21·a ·a=21a 2,∴cos θ=E AB C B A S S 1111△△=224321a a =32. 即平面AB 1E 与底面A 1B 1C 1D 1所成角的余弦值为32.B 卷一、1.解:(1)依题意,B(a ,a ,0),C(-a ,a ,0),D(-a ,-a ,0),E(-2a ,2a ,2h),∴=(-23a ,-2a ,2h ),=(2a ,23a ,2h).∴BE ·DE =(-23a ·2a )+(-2a ·23a )+2h ·2h =-232a +42h ,||=222)2()2()23(h a a +-+-=221021h a +,|DE |=222)2()2()23(h a a ++=221021h a +.由向量的数量积公式,有cos<BE ,DE >==22222210211021423h a h a h a +∙++-=2222106h a h a ++-.(2)∵∠BED 是二面角α-VC-β的平面角, ∴BE ⊥CV ,即有BE ·CV =0.又由C (-a ,a ,0),V (0,0,h ),得CV =(a ,-a ,h),且=(-23a ,-2a ,2h), ∴BE ·=-23a +22a +22h =0.即h=a 2,此时有cos<BE ·DE >=2222106h a h a ++-=2222)2(10)2(6a a a a ++-=-31,∴∠BED=<,>=arccos(-31)=π-arccos 31.点拨:应用空间向量注意坐标系的建立及点的坐标的确定. 二、2.解:以水平放置的平面α的地面,根据题意画出空间图形如答图9-7-6所示.10min 后气球位置为A ,又10min 后气球位置为B ,A 、B 在平面α的射影分别为A 1、B 1,且AA 1=14×10=140(m),BB 1=14×20=280(m),∠A 1DB 1=30°,∠A 1DA=45°,∠B 1DB=60°,于是,得A 1D=A 1A=140m ,B 1D=B 1Bcot60°=3280(m). 在△A 1DB 1中,A 1B 21=1402+(3280)2-2·140·3280·23=31402(m). 因此,风速为1011B A =3314(m/min).∵B 1D 2=A 1D 2+A 1B 21,∴∠DA 1B 1=90°. 故风向为正北. 点拨:要使问题得以解决,其关键在于能否建立起一个能表示观察点D 与该气球的相对位置之间关系的几何模型,因为有了几何模型我们就能根据其立体图形进行相关的计算,求。
高考数学专题—立体几何(空间向量求空间角与空间距离)
高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。
直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。
注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。
平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。
二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。
一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。
线线角、线面角,二面角(高考立体几何法宝)
1A 1B 1C 1D ABCD E FG线线角、线面角、二面角的求法1.空间向量的直角坐标运算律:⑴两个非零向量与垂直的充要条件是1122330a b a b a b a b ⊥⇔++=⑵两个非零向量与平行的充要条件是a ·b =±|a ||b | 2.向量的数量积公式若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a ·b =|a ||b | cos θ(2)模长公式:则212||a a a a a =⋅=++2||b b b b =⋅=+(3)夹角公式:2cos ||||a ba b a b a ⋅⋅==⋅+(4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB x ==,A B d =①两条异面直线a 、b 间夹角0,2πα⎛⎫∈ ⎪⎝⎭在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( )A .515arccosB .4π C .510arccosD .2π(向量法,传统法)PBCA例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____.解:(1)向量法(2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB中,即t a n 2PDDBA DB∠==. 点评:本题是将三棱柱补成正方体'''DBCA D B C P -②直线a 与平面α所成的角0,2πθ⎛⎤∈ ⎥⎝⎦(重点讲述平行与垂直的证明)可转化成用向量→a 与平面α的法向量→n 的夹角ω表示,由向量平移得:若ππ(图);若ππ平面α的法向量→n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤:(1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z =(3)根据法向量的定义建立关于x,y,z 的方程组(0a <(4)解方程组,取其中的一组解,即得法向量。
利用向量知识求线线角,线面角,二面角的大小
直线和平面所成的角、二面角都是教学大纲和高考考纲要求掌握的,是立体几何的重点内容,也是高考的必考内容.要熟练掌握它们,需要从以下四个方面入手。
一、1个公式公式12cos cos cos q q q =中涉及三个角,q 是指平面的斜线l 与平面内过斜足且不同于射影的直线m 所在所成的角,1q 是指l 与其射影'l 所成的角,2q 是指'l 与m 所成的角.其中210cos 1,.q q q <<<由此可得最小角定理.二、2个定义1.线面角:一个平面的斜线和它在这个平面内的射影所成的角,叫做斜线和这个平面所成的角(斜线和平面的夹角).如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或直线在平面内,那么说直线和平面所成的角是零度的角.直线和平面所成的角的取值范围为[0,90]鞍,斜线和平面所成角的取值范围为(0,90)鞍.2.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,其中直线、半平面分别叫做二面角的棱和面.一个平面垂直于二面角l a b --的棱l ,且与两个半平面的交线分别是射线OA OB 、,O 为垂足,则AOB Ð叫做二面角l a b --的平面角.它决定着二面角的大小.其中平面角是直角的二面角叫做直二面有,相交成直二面角的两个平面叫做互相垂直的平面.二面角的取值范围为[0,180]鞍.三、3个定理1.最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中最小的角.2.平面与平面垂直的判定定理:如果一个平面过另一个平面的一条垂线,那么这两个平面互相垂直.3.平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面.四、4类求法1.几何法求直线和平面的夹角:根据直线和平面所成角的定义,先找出或作出直线在平面内的射影,然后把直线、射影对应的线段放在三角形中进行求解,其中能够寻找到垂直关系用直角三角形求解更佳.2.向量法求直线和平面的夹角:主要适用于图形比较规则,容易建立空间直角坐标系或容易选择空间向量的基底(要求作为基底的三个向量的模及夹角已知)的题目.(1)平面向量法:在斜线上取向量a 和其射影上取向量'a (注意方向,夹角为锐角),则|'|c o s ,'|||'|a a a a a a ×<>=×,这里a 、'a 形式上在同一个平面内;(2)法向量法:在斜线上取向量a ,并求出平面的法向量n ,所求夹角记为q ,则||sin |cos ,|||||a n a n a n q ×=<>=×,所以||arcsin ||||a n a n q ×=×.需要注意的是,当法向量与坐标平面平行或垂直时,可以直接给出法向量,当法向量与坐标平面不平行也不垂直时,由于法向量不唯一,不妨设横坐标、纵坐标、竖坐标中的某一个坐标为1,而且尽量让1以外的坐标在点乘中与0相乘,这样计算量较小.3.几何法求二面角的大小:(1)定义法(垂面法):过二面角内的一点作棱的垂面,垂面与二个半平面的交线形成所求平面角. (2)等价定义法:在二面角的棱上取一点(中点等特殊点) ,分别在两个半平面内作棱的垂线,得出平面角.(3)三垂线法:先作(或找)出二面角的一个面内一点到另一个面的垂线,用三垂线定理或逆定理作出平面角.(4)射影面积法:利用面积射影公式cos S S q =射投其中 为平面角的大小,特点在于不需要画出平面角,也不需要找出棱,尤其适用于没有画出棱的二面角问题.4.向量法求二面角的大小:图形比较规则,又不容易直接作出平面角的具体顶点时,可采用此法.(1)平面向量法:在棱上取一平面角的顶点,利用向量垂直时点乘等于零,求出平面角顶点的坐标,进而转化为向量夹角问题,此时两个向量形式上在同一个平面内.(2)空间向量法:方法基本同(1),此时两个向量形式上不在同一个平面内,思维量、运算都小一些,试题更具有一般性.(3)法向量法:建立空间直角坐标系后,分别求出两个平面的法向量,,利用公式||||,cos n m ⋅>=<.另外:证明两个平面垂直的关键是面面垂直转化为线面垂直;两个平面垂直的性质应用关键是在一个平面内找出两个平面交线的垂线.利用向量知识求线线角,线面角,二面角的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何中的角度问题一、 异面直线所成的角1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小。
2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值二、直线与平面所成夹角1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥ 底面ABCD ,且2PA AD AB BC ===,M N 、分别为PC 、PB 的中点。
求CD 与平面ADMN 所成的角的正弦值。
2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。
三、二面角与二面角的平面角问题1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.2、如图5,AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足5FB FD a ==,6EF a =。
(1)证明:EB FD ⊥;(2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。
3、如图5所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点 E 在线段PC 上,PC ⊥平面BDE 。
(1) 证明:BD ⊥平面PAC ;(2) 若PA=1,AD=2,求二面角B-PC-A 的正切值;4、如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小.图4ABC A 1C 1B 1DE练习题1、如图5所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE//AD. (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角.2、如图4,在三棱柱111ABC A B C -中,△ABC 是边长为2的等边三角形,1AA ⊥平面ABC ,D ,E 分别是1CC ,AB 的中点.(1)求证:CE ∥平面1A BD ;(2)若H 为1A B 上的动点,当CH 与平面1A AB 所成最大角的正切值为152时,求平面1A BD 与平面ABC 所成二面角(锐角)的余弦值.3、如图6所示,等腰三角形△ABC 的底边AB=CD=3,点E 是线段BD 上异于B 、D 的动点,点F 在BC 边上,且EF ⊥AB ,现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE ,记BE=x ,V (x )表示四棱锥P-ACEF 的体积。
(1)求V(x)的表达式; (2)当x 为何值时,V(x)取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。
F图6P ED CBA立体几何中的角度问题答案一、异面直线所成的角 1、【解析】(1)∵PA ⊥底面ABCD ,∴PA ⊥CD , 又∵CD ⊥AD ,∴CD ⊥平面PAD , ∴CD ⊥PD , 又∵32)22(222=+=PD ,CD=2,∴△PCD 的面积为3232221=⨯⨯。
(2)解法一:取PB 的中点F ,连接EF,AF,则EF ∥BC ,∴∠AEF(或其补角)是异面直线 BC 与AE 所成的角。
在△ADF 中,EF=2、AF=2,AE=2, ∴△AEF 是等腰直角三角形, ∴∠AEF=4π, ∴异面直线BC 与AE 所成的角大小为4π。
解法二:如图所示,建立空间直角坐标系, 则B(2,0,0),C(2,22,0),E(1,2,1),∴AE=(1,2,1),BC =(0,22,0),设AE 与BC 的夹角为θ,则ACAE AC AE =θcos 222224=⨯,, 又∵0<θ≤2π,∴θ=4π。
2、解:(1)依题作点E 、G 在平面11DCC D 内的正投影1E 、1G ,则1E 、1G 分别为1CC 、1DD 的中点,连结1EE 、1EG 、ED 、1DE ,则所求为四棱锥11FG DE E -的体积,其底面11FG DE 面积为111111E DG Rt FG E Rt FG DE S S S ∆∆+= 221212221=⨯⨯+⨯⨯=, 又⊥1EE 面11FG DE ,11=EE ,∴323111111=⋅=-EE S V FG DE FG DE E .(2)以D 为坐标原点,DA 、DC 、1DD 所在直线分别作x 轴,y 轴,z 轴,得)1,2,0(1E 、)1,0,0(1G ,又)1,0,2(G ,)2,1,0(F ,)1,2,1(E ,则)1,1,0(1--=FG ,)1,1,1(-=FE ,)1,1,0(1-=FE ,∴01)1(01=+-+=⋅FE FG ,01)1(011=+-+=⋅FE FG ,即FE FG ⊥1,11FE FG ⊥,又F FE FE =⋂1,∴⊥1FG 平面1FEE .(3))0,2,0(11-=G E ,)1,2,1(--=EA ,则62,cos 111111=⋅>=<EAG E EA G E EA G E ,设异面直线11E G EA 与所成角为θ,则33321sin =-=θ.二、直线与平面所成夹角 1、【解】 (II )取AD 的中点G ,连结BG 、NG , 则//BG CD ,所以BG 与平面ADMN 所成的角和CD 与平面ADMN 所成的角相等.因为PB ⊥平面ADMN ,所以BGN ∠是BG 与平面ADMN 所成的角. 在Rt BNG ∆中,10sin 5BN BGN BG ∠==。
故CD 与平面ADMN 所成的角的正弦值为1052、解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB1C1=V A ﹣BB1C1∴1/3 S △AB1C1·h= 1/3 S △BB1C1·AB ,易得h=12/5设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5A 1C 1D 1H4CB 123BAD图2∴AB 与面AB 1C 1D 所成的角的正弦值为4/5二、二面角与二面角的平面角问题1、法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。
因PA=PD ,有PG AD ⊥,在ABD ∆中,1,60AB AD DAB ==∠=︒,有ABD ∆为 等边三角形,因此,BG AD BG PG G ⊥⋂=,所以AD ⊥平面PBG ,.AD PB AD GB ⇒⊥⊥又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ⋂=,所以 AD ⊥平面DEF 。
(2),PG AD BG AD ⊥⊥,PGB ∴∠为二面角P —AD —B 的平面角,在2227,4Rt PAG PG PA AG ∆=-=中在3Rt ABG ∆⋅︒中,BG=AB sin602227342144cos 27732PG BG PB PGB PG BG +-+-∴∠===-⋅⋅⋅123212cos ,7714n n ∴<>==-⋅2、(1)证明: 连结CF ,因为AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,所以EB AC ⊥。
在RT BCE ∆中,22222EC BC BE a a a =++=。
在BDF ∆中,5BF DF a ==,BDF ∆为等腰三角形,且点C 是底边BD 的中点,故CF BD ⊥。
在CEF ∆中,2222222)(2)6CE CF a a a EF +=+==,所以CEF ∆为Rt ∆,且CF EC ⊥。
因为CF BD ⊥,CF EC ⊥,且CEBD C =,所以CF ⊥平面BED ,而EB ⊂平面BED ,CF EB ∴⊥。
因为EB AC ⊥,EB CF ⊥,且AC CF C =,所以EB ⊥平面BDF ,而FD ⊂平面BDF ,EB FD ∴⊥。
(2)设平面BED 与平面RQD 的交线为DG .由23FQ FE =,23FR FB =,知//QR EB . 而EB ⊂平面BDE ,∴//QR 平面BDE , 而平面BDE平面RQD = DG ,∴////QR DG EB .由(1)知,BE ⊥平面BDF ,∴DG ⊥平面BDF , 而,DR DB ⊂平面BDF ,∴DG DR ⊥,DG DQ ⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角. 在Rt BCF ∆中,2222(5)2CF BF BC a a a =-=-=,22sin 55FC a RBD BF a ∠===,21cos 1sin 5RBD RBD ∠=-∠=. 在BDR ∆中,由23FR FB =知,1533a BR FB ==, 由余弦定理得,222cos RD BD BR BD BR RBD =+-⋅∠2255129(2)()223335a a a a a =+-⋅⋅⋅= 由正弦定理得,sin sin BR RD RDB RBD=∠∠,即529332sin 5aa RDB =∠, 229sin 29RDB ∠=。
故平面BED 与平面RQD 所成二面角的正弦值为22929。
3、4、【答案】(1)在Rt DAC ∆中,AD AC = 得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥(2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H 1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合 且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则122a C O =,1112230C D a C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒【练习题】1、解:(Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB, AD ⊥AF,故∠BAD 是二面角B —AD —F 的平面角,依题意可知,ABCD 是正方形,所以∠BAD =450.即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=FE BD10828210064180||||,cos =⨯++=•>=<FE BD FE BD EF BD 设异面直线BD 与EF 所成角为α,则1082|,cos |cos =><=EF BD α 直线BD 与EF 所成的角为1082arccos(方法二)在平面ADEF 中,DE//AF ,且DE=AF ,所以四边形ODEF 为平行四边形 所以DO//EF 所以根据定义,∠ODB 就是所求的角(或其补角)。