全国高考数学复习微专题:证明等差等比数列
2020年高考数学(理)总复习:等差数列与等比数列(解析版)
2020年高考数学(理)总复习:等差数列与等比数列题型一等差、等比数列的基本运算【题型要点】方程思想在等差(比)数列的基本运算中的运用等差(比)数列的通项公式、求和公式中一共包含a1、d(或q)、n、an与Sn这五个量,如果已知其中的三个,就可以求其余的两个.其中a1和d(或q)是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式,求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.【例1】等比数列{an}的前n项和为Sn,已知a2a5=2a3,且a4与2a7的等差中项为54,则S5等于()A.29B.31C.33 D.36【例2】.an是公差不为0的等差数列,满足a24+a25=a26+a27,则该数列的前10项和S10等于()A.-10B.-5C.0D.5【例3】.已知递增数列{an}对任意n∈N*均满足an∈N*,aan=3n,记bn=a2•3n-1(n ∈N*),则数列{bn}的前n项和等于()A.2n+n B.2n+1-1C.3n+1-3n2D.3n+1-32题组训练一等差、等比数列的基本运算1.设等差数列{an}的前n项和为Sn,若a3+a5=4,S15=60则a20等于()A.4B.6C.10D.122.在等差数列{an}中,2(a1+a3+a5)+3(a8+a10)=36,则a6等于()A.8 B.6 C.4 D.33.已知等比数列{an}的前n项和为Sn,a1+a3=30,S4=120,设bn=1+log3an,那么数列{bn}的前15项和为()A.152 B.135 C.80 D.16题型二等差、等比数列的性质及应用【题型要点】(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.【例4】已知数列{an},{bn}满足bn=log2an,n∈N*,其中{bn}是等差数列,且a8•a2 008=14,则b1+b2+b3+…+b2 015等于()A.log22 015 B.2 015 C.-2 015 D.1 0082.各项均为正数的等比数列{an}的前n项和为Sn,若S4=10,S12=130,则S8等于()A.-30 B.40C.40或-30 D.40或-503.等比数列{an}的首项为32,公比为-12,前n项和为Sn,则当n∈N*时,Sn-1Sn 的最大值与最小值之和为()A.-23 B.-712C.14D.56题组训练二等差、等比数列的性质及应用1.在等比数列{an}中,a3,a15是方程x2-7x+12=0的两根,则a1a17a9的值为()A.23 B.4 C.±22 D.±42.设公差为d的等差数列{an}的前n项和为Sn,若a1=1,-217<d<-19,则当Sn 取最大值时n的值为________.3.若{an}是等差数列,首项a1>0,a2 016+a2 017>0,a2 016•a2 017<0,则使前n 项和Sn>0成立的最大正整数n是()A.2 016B.2 017 C.4 032 D.4 033题型三等差、等比数列的综合问题【题型要点】关于等差、等比数列的综合问题多属于两者运算的综合题以及相互之间的转化,关键是求出两个数列的基本量:首项和公差(或公比),灵活运用性质转化条件,简化运算,准确记忆相关的公式是解决此类问题的关键.【例3】已知等差数列{an}的公差为-1,且a2+a7+a12=-6.(1)求数列{an}的通项公式an与前n项和Sn;(2)将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*,总有Sn<Tm+λ恒成立,求实数λ的取值范围.题组训练三等差、等比数列的综合问题已知数列{an}中,a1=1,an•an+1=,记T2n为{an}的前2n项的和,bn=a2n+a2n -1,n∈N*.(1)判断数列{bn}是否为等比数列,并求出bn;(2)求T2n.题型四数列与其他知识的交汇【题型要点】数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化,特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.【例4】已知等差数列{an}的前n项和为Sn,若OB→=a1OA→+a2 016OC→,且A,B,C三点共线(该直线不过点O),则S2 016等于()A.1 007B.1 008C.2 015D.2 016题组训练四数列与其他知识的交汇1.在由正数组成的等比数列{an}中,若a3a4a5=3π,则sin(log3a1+log3a2+…+log3a7)的值为()A.12B.32C.1 D.-322.已知各项都为正数的等比数列{an}满足a7=a6+2a5,存在两项am,an使得am•an =4a1,则1m+4n的最小值为()A.32B.53C.256D.433.艾萨克•牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f(x)的零点时给出一个数列xn满足xn+1=xn-′,我们把该数列称为牛顿数列.如果函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列xn为牛顿数列,设an=ln xn-2xn-1,已知a1=2,xn>2,则an的通项公式an=________.【专题训练】一、选择题1.等比数列{an}中,a4=2,a7=5,则数列{lg an}的前10项和等于()A.2B.lg 50C.10D.52.在正项等比数列{an}中,已知a3a5=64,则a1+a7的最小值为()A.64 B.32C.16 D.83.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是()A.13 B.12C.11 D.104.在数列{an}中,若a1=2,且对任意正整数m,k,总有am+k=am+ak,则{an}的前n项和Sn等于()A.n(3n-1) +C.n(n+1) +5.记Sn为正项等比数列{an}的前n项和,若S12-S6S6-7•S6-S3S3-8=0,且正整数m,n满足a1ama2n=2a35,则1m+8n的最小值是()A.157B.95C.53D.756.数列an是以a为首项,b为公比的等比数列,数列bn满足bn=1+a1+a2+…+an(n =1,2,…),数列cn满足cn=2+b1+b2+…+bn(n=1,2,…),若cn为等比数列,则a+b 等于()A.2 B.3 C.5 D.6二、填空题7.数列{an}的通项an=n2•,其前n项和为Sn,则S30=________.8.已知数列{an}满足a1=2,且an=2nan-1an-1+n-1(n≥2,n∈N*),则an=________.9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.8日B.9日C.12日D.16日10.数列{logkan}是首项为4,公差为2的等差数列,其中k>0,且k≠1.设cn=anlg an,若{cn}中的每一项恒小于它后面的项,则实数k的取值范围为________.三、解答题11.已知数列an的前n项和为Sn,且Sn=2an-3n(n∈N*).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得数列{an+λ}为等比数列?若存在,求出λ的值和通项公式an;若不存在,请说明理由.12.已知数列{an}的前n项和为Sn,且Sn-1=3(an-1),n∈N*.(1)求数列{an}的通项公式;(2)设数列{bn}满足an+1=an•bn,若bn≤t对于任意正整数n都成立,求实数t的取值范围.2020年高考数学(理)总复习:等差数列与等比数列题型一 等差、等比数列的基本运算 【题型要点】方程思想在等差(比)数列的基本运算中的运用等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式,求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.【例1】等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5等于( )A .29B .31C .33D .36【解析】 法一:设等比数列{a n }的首项为a 1,公比为q ,由题意知⎩⎪⎨⎪⎧a 1qa 1q 4=2a 1q 2a 1q 3+2a 1q 6=2×54,解得⎩⎪⎨⎪⎧q =12a 1=16,所以S 5=a 1(1-q 5)1-q=31,故选B.法二:由a 2a 5=2a 3,得a 4=2.又a 4+2a 7=52,所以a 7=14,所以q =12,所以a 1=16,所以S 5=a 2(1-q 5)1-q=31,故选B.【答案】 B【例2】.{}a n 是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则该数列的前10项和S 10等于( )A .-10B .-5C .0D .5【解析】 由题意,得a 24-a 27=a 26-a 25,即()a 4-a 7()a 4+a 7=()a 6-a 5()a 6+a 5,即-3d ()a 4+a 7=d ()a 6+a 5,又因为d ≠0,所以a 4+a 7=a 6+a 5=0,则该数列的前10项和S 10=10(a 1+a 10)2=5()a 6+a 5=0.故选C.【答案】 C【例3】.已知递增数列{a n }对任意n ∈N *均满足a n ∈N *,aa n =3n ,记b n =a 2·3n -1(n ∈N *),则数列{b n }的前n 项和等于( )A .2n +nB .2n +1-1C.3n +1-3n 2D.3n +1-32【解析】 因为aa n =3n ,所以a 1≤3,若a 1=1,那么a 1=aa 1=3×1=3≠1矛盾,若a 1=2,那么a 2=aa 1=3×1=3成立,若a 1=3,那么a 3=aa 1=3×1=3=a 1矛盾,所以a 2=b 1=2,当aa an =3a n =a 3n ,所以b n =a 2·3n -1=a 3·2·3n -2=3a 2·3n -2=3b n -1,即b n b n -1=3,数列{b n }是首项为2,公比为3的等比数列,所以前n 项和为b 1(1-q n )1-q =3(1-33)1-3=3n +1-32,故选D.【答案】 D题组训练一 等差、等比数列的基本运算1.设等差数列{a n }的前n 项和为S n ,若a 3+a 5=4,S 15=60则a 20等于( ) A .4 B .6 C .10 D .12 【解析】 等差数列{a n }的前n 项和为S n , ∵a 3+a 5=4,S 15=60,∴⎩⎪⎨⎪⎧a 1+2d +a 1+4d =415a 1+15×142d =60, 解得a 1=12,d =12,∴a 20=a 1+19d =12+19×12=10.故选C.【答案】 C2.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6等于( ) A .8 B .6 C .4D .3【解析】 由等差数列的性质可知,2(a 1+a 3+a 5)+3(a 8+a 10)=2×3a 3+3×2a 9=6(a 3+a 9)=6×2a 6=12a 6=36,∴a 6=3.故选D.【答案】 D3.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )A .152B .135C .80D .16【解析】 设等比数列{a n }的公比为q ,由a 1+a 3=30,a 2+a 4=S 4-(a 1+a 3)=90,所以公比q =a 2+a 4a 1+a 3=3,首项a 1=301+q 2=3,所以a n =3n ,b n =1+log 33n=1+n ,则数列{b n }是等差数列,前15项的和为15×(2+16)2=135,故选B. 【答案】 B题型二 等差、等比数列的性质及应用 【题型要点】(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.【例4】已知数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,且a 8·a 2 008=14,则b 1+b 2+b 3+…+b 2 015等于( ) A .log 22 015B .2 015C .-2 015D .1 008【解析】 ∵数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,∴数列{a n }是等比数列,由a 8·a 2 008=14,可得a 21 008=14,即a 1 008=12,∴a 1·a 2 015=a 2·a 2 014=…=a 1 007·a 1 009=a 21 008=14,∴b 1+b 2+b 3+…+b 2 015=log 2(a 1·a 2·…·a 2 015)=log 2201521⎪⎭⎫⎝⎛=-2 015.【答案】C2.各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=10,S 12=130,则S 8等于( ) A .-30 B .40 C .40或-30D .40或-50【解析】 ∵数列{a n }为等比数列且数列{a n }的前n 项和为S n ,∴S 4,S 8-S 4,S 12-S 8也构成等比数列.∴(S 8-S 4)2=S 4·(S 12-S 8),∵S 4=10,S 12=130,各项均为正数的等比数列{a n }, ∴(S 8-10)2=10·(130-S 8),∴S 8=40.故选B. 【答案】 B3.等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56【解析】 依题意得,S n =⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-21121123n=1-n⎪⎭⎫⎝⎛-21.当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n-1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56、-712,其最大值与最小值之和为56-712=312=14,选C.【答案】 C题组训练二 等差、等比数列的性质及应用1.在等比数列{a n }中,a 3,a 15是方程x 2-7x +12=0的两根,则a 1a 17a 9的值为( )A .2 3B .4C .±2 2D .±4【解析】 ∵a 3,a 15是方程x 2-7x +12=0的两根,∴a 3a 15=12,a 3+a 15=7,∵{a n }为等比数列,又a 3,a 9,a 15同号,∴a 9>0,∴a 9=a 3a 15=23,∴a 1a 17a 9=a 29a 9=a 9=2 3.故选A.【答案】 A2.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时n 的值为________.【解析】 因为等差数列{a n }的公差d 为负值,所以{a n }是递减数列.又a 1=1,所以由a n =a 1+(n -1)d >0得n <d -a 1d ,即n <1-1d ,因为-217<d <-19,所以192<1-1d <10,所以n ≤9,即当n ≤9时,a n >0,当n ≥10时,a n <0.所以当S n 取得最大值时n 的值为9.【答案】 93.若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033【解析】 因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032(a 1+a 4 032)2=4 032(a 2 016+a 2 017)2>0,S 4 033=4 033(a 1+a 4 033)2=4 033a 2017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032,故选C.【答案】 C题型三 等差、等比数列的综合问题 【题型要点】关于等差、等比数列的综合问题多属于两者运算的综合题以及相互之间的转化,关键是求出两个数列的基本量:首项和公差(或公比),灵活运用性质转化条件,简化运算,准确记忆相关的公式是解决此类问题的关键.【例3】已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.【解析】 (1)由a 2+a 7+a 12=-6,得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-m =8⎪⎭⎫ ⎝⎛-m )21(1, ∵m⎪⎭⎫⎝⎛21随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-12(n 2-9n )=-12⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-481292n ,故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<8+λ,得λ>2.即实数λ的取值范围为(2,+∞). 题组训练三 等差、等比数列的综合问题已知数列{a n }中,a 1=1,a n ·a n +1=n⎪⎭⎫ ⎝⎛21,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .【解析】 (1)∵a n ·a n +1=n⎪⎭⎫⎝⎛21,∴a n +1·a n +2=121+⎪⎭⎫⎝⎛n ,∴a n +2a n =12,即a n +2=12a n .∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12所以{b n }是公比为12的等比数列.∵a 1=1,a 1·a 2=12,∴a 2=12⇒b 1=a 1+a 2=32.∴b n =32×121-⎪⎭⎫⎝⎛n =32n . (2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列. ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=[]21121121211211-⎪⎭⎫ ⎝⎛-+-⎪⎭⎫⎝⎛-nn =3-32n .题型四 数列与其他知识的交汇 【题型要点】数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化,特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.【例4】 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 016OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 016等于( )A .1 007B .1 008C .2 015D .2 016 【解析】 ∵A 、B 、C 三点共线∴AB →=λAC →∴OB →-OA →=λ(OC →-OA →),OB →=(1-λ)OA →+λOC → 又∵OB →=a 1·OA →+a 2 016OC →,∴a 1=1-λ,a 2 016=λ ∴a 1+a 2 016=1∴S 2 016=2 016(a 1+a 2 016)2=1 008,∴选B.【答案】 B题组训练四 数列与其他知识的交汇1.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32C .1D .-32【解析】 因为a 3a 4a 5=3π=a 34,所以a 4=3π3,即log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 【答案】 B2.已知各项都为正数的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n的最小值为( )A.32B.53C.256D.43【解析】 由a 7=a 6+2a 5,得a 1q 6=a 1q 5+2a 1q 4,整理得q 2-q -2=0,解得q =2或q=-1(不合题意,舍去),又由a m ·a n =4a 1,得a m a n =16a 21,即a 212m+n -2=16a 21,即有m +n-2=4,亦即m +n =6,那么1m +4n =16(m +n )⎪⎭⎫⎝⎛+n m 41=16⎪⎪⎭⎫ ⎝⎛+⋅≥⎪⎭⎫ ⎝⎛++5426154m n n m m n n m =32,当且仅当4m n =n m ,即n =2m =4时取得最小值32.【答案】 A3.艾萨克·牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f (x )的零点时给出一个数列{}x n 满足x n +1=x n -f (x n )f ′(x n ),我们把该数列称为牛顿数列.如果函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{}x n 为牛顿数列,设a n =ln x n -2x n -1,已知a 1=2,x n >2,则{}a n 的通项公式a n =________.【解析】 ∵ 函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,∴⎩⎪⎨⎪⎧ a +b +c =0,4a +2b +c =0, 解得⎩⎪⎨⎪⎧c =2a ,b =-3a . ∴f (x )=ax 2-3ax +2a ,则f ′(x )=2ax -3a .则x n +1=x n -ax 2n -3ax n +2a 2ax n -3a =x n -x 2n -3x n +22x n -3=x 2n -22x n -3,∴x n +1-2x n +1-1=x 2n -22x n -3-2x 2n -22x n -3-1=x 2n -2-2(2x n -3)x 2n -2-(2x n -3)=212⎪⎪⎭⎫⎝⎛--n n x x , 则数列a n 是以2为公比的等比数列,又∵a 1=2 ,∴ 数列{}a n 是以2为首项,以2为公比的等比数列,则a n=2·2n-1=2n.【答案】2n【专题训练】一、选择题1.等比数列{a n}中,a4=2,a7=5,则数列{lg a n}的前10项和等于()A.2B.lg 50C.10D.5【解析】∵等比数列{a n}中,a4=2,a7=5,∴a1a10=a2a9=…=a4a7=10,∴数列{lg a n}的前10项和S=lg a1+lg a2+…+lg a10=lg a1a2…a10=lg 105=5,故选D【答案】 D2.在正项等比数列{a n}中,已知a3a5=64,则a1+a7的最小值为()A.64 B.32C.16 D.8【解析】在正项等比数列{a n}中,∵a3a5=64,∴a3a5=a1a7=64,∴a1+a7≥2a1a7=264=2×8=16,当且仅当a1=a7=8时取等号,∴a1+a7的最小值为16,故选C.【答案】 C3.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是()A.13 B.12C.11 D.10【解析】设等比数列为{a n},其前n项积为T n,由已知得a1a2a3=2,a n a n-1a n-2=4,可得(a1a n)3=2×4,a1a n=2,∵T n=a1a2…a n,∴T2n=(a1a2…a n)2=(a1a n)(a2a n-1)…(a n a1)=(a1a n)n =2n=642=212,∴n=12.【答案】 B4.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( )A .n (3n -1)B.n (n +3)2C .n (n +1)D.n (3n +1)2【解析】 依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),选C.【答案】 C5.记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n满足a 1a m a 2n =2a 35,则1m +8n的最小值是( ) A.157 B.95 C.53D.75【解析】 ∵{a n }是等比数列,设{a n }的公比为q , ∴S 12-S 6S 6=q 6,S 6-S 3S 3=q 3,∴q 6-7q 3-8=0, 解得q =2(负值舍去).又a 1a m a 2n =2a 35,∴a 31·2m+2n -2=2(a 124)3=a 31213,∴m +2n =15,∴1m +8n =115⎪⎭⎫⎝⎛+n m 81(m +2n )=17+2n m +8m n 15≥17+22n m ×8m n 15=53,当且仅当2n m =8mn,即m =3,n =6时等号成立,∴1m +8n 的最小值是53,故选C. 【答案】 C6.数列{}a n 是以a 为首项,b 为公比的等比数列,数列{}b n 满足b n =1+a 1+a 2+…+a n (n =1,2,…),数列{}c n 满足c n =2+b 1+b 2+…+b n (n =1,2,…),若{}c n 为等比数列,则a +b 等于( )A. 2 B .3 C. 5D .6【解析】 由题意知,当b =1时,{c n }不是等比数列,所以b ≠1.由a n =ab n -1,则b n =1+a (1-b n )1-b =1+a 1-b -ab n 1-b ,得c n =2+nb a ⎪⎭⎫ ⎝⎛-+11-a 1-b ·b (1-b n )1-b =2-ab (1-b )2+1-b +a 1-b n +abn +1(1-b )2,要使{}c n为等比数列,必有⎩⎪⎨⎪⎧2-ab(1-b )2=0,1-b +a1-b =0,得⎩⎪⎨⎪⎧a =1,b =2,a +b =3,故选B.【答案】 B 二、填空题7.数列{a n }的通项a n =n 2·⎪⎭⎫ ⎝⎛-3sin 3cos22ππn n ,其前n 项和为S n ,则S 30=________. 【解析】 由题意可知,a n =n 2·cos 2n π3,若n =3k -2,则a n =(3k -2)2·⎪⎭⎫⎝⎛-21=-9k 2+12k -42(k ∈N *);若n =3k -1,则a n =(3k -1)2·⎪⎭⎫ ⎝⎛-21=-9k 2+6k -12(k ∈N *);若n =3k ,则a n =(3k )2·1=9k 2(k ∈N *),∴a 3k -2+a 3k -1+a 3k =9k -52,k ∈N *,∴S 30=9-52+90-522×10=470.【答案】 4708.已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.【解析】 由a n =2na n -1a n -1+n -1,得n a n =n -12a n -1+12,于是n a n -1=12⎪⎪⎭⎫ ⎝⎛---111n a n (n ≥2,n ∈N *). 又1a 1-1=-12,∴数列⎭⎬⎫⎩⎨⎧-1nan 是以-12为首项,12为公比的等比数列,故n a n -1=-12n ,∴a n =n ·2n2n -1(n ∈N *).【答案】 n ·2n2n -19.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A .8日B .9日C .12日D .16日【解析】由题可知,良马每日行程a n 构成一个首项为103,公差13的等差数列,驽马每日行程b n 构成一个首项为97,公差为-0.5的等差数列,则a n =103+13(n -1)=13n +90,b n =97-0.5(n -1)=97.5-0.5n ,则数列{a n }与数列{b n }的前n 项和为1125×2=2250,又∵数列{a n }的前n 项和为n 2×(103+13n +90),数列{b n }的前n 项和为n 2×(97+97.5-0.5n ),n 2(103+3n +90)+n2(97+97.5-0.5n )=2250,整理得:25n 2+775n -9 000=0,即n 2+31n -360=0,解得:n =9或n =-40(舍),即九日相逢.故选B.【答案】B10.数列{log k a n }是首项为4,公差为2的等差数列,其中k >0,且k ≠1.设c n =a n lg a n ,若{c n }中的每一项恒小于它后面的项,则实数k 的取值范围为________.【解析】 由题意得log k a n =2n +2,则a n =k2n +2,∴a n +1a n =k 2(n +1)+2k2n +2=k 2,即数列{a n }是以k 4为首项,k 2为公比的等比数列,c n =a n lg a n =(2n +2)·k 2n +2lg k ,要使c n <c n +1对一切n ∈N *恒成立,即(n +1)lg k <(n +2)·k 2·lg k 对一切n ∈N *恒成立;当k >1时,lg k >0,n +1<(n +2)k 2对一切n ∈N *恒成立;当0<k <1时,lg k <0,n +1>(n +2)k 2对一切n ∈N *恒成立,只需k 2<⎪⎭⎫ ⎝⎛++21n n min .∵n +1n +2=1-1n +2单调递增,∴当n =1时,n +1n +2取得最小值,即⎪⎭⎫⎝⎛++21n n min =23,∴k 2<23,且0<k <1,∴0<k <63.综上,k ∈⎪⎪⎭⎫ ⎝⎛36,0∪(1,+∞).【答案】 ⎪⎪⎭⎫ ⎝⎛36,0∪(1,+∞) 三、解答题11.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *).(1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.【解】 (1)当n =1时,由S 1=2a 1-3×1,得a 1=3; 当n =2时,由S 2=2a 2-3×2,可得a 2=9; 当n =3时,由S 3=2a 3-3×3,得a 3=21.(2)令(a 2+λ)2=(a 1+λ)·(a 3+λ),即(9+λ)2=(3+λ)·(21+λ),解得λ=3. 由S n =2a n -3n 及S n +1=2a n +1-3(n +1),两式相减,得a n +1=2a n +3. 由以上结论得a n +1+3=(2a n +3)+3=2(a n +3),所以数列{a n +3}是首项为6,公比为2的等比数列,因此存在λ=3,使得数列{a n +3}为等比数列,所以a n +3=(a 1+3)×2n -1,a n =3(2n -1)(n ∈N *).12.已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n +1=⎪⎭⎫ ⎝⎛23a n ·b n ,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.【解】 (1)由已知得S n =3a n -2,令n =1,得a 1=1,又a n +1=S n +1-S n =3a n +1-3a n ⇒a n +1=32a n ,所以数列{a n }是以1为首项,32为公比的等比数列,所以a n =123-⎪⎭⎫ ⎝⎛n .(2)由a n +1=⎪⎭⎫⎝⎛23a n ·b n ,得b n =1a n log 32a n +1=(23)n -1log 32(32)n =n ·123-⎪⎭⎫ ⎝⎛n ,所以b n +1-b n =(n +1)·n ⎪⎭⎫ ⎝⎛32-n ·132-⎪⎭⎫ ⎝⎛n =2n -13n (2-n ),所以(b n )max =b 2=b 3=43,所以t ≥43.。
高考数学专项复习13《等差数列与等比数列》
高考数学专项复习13《等差数列与等比数列》牢记概念公式,避免卡壳1.判断等差数列的常用方法(1)定义法:a n+1-a n=d(常数)(n∈N*).(2)中项公式法:2a n+1=a n+a n+2(n∈N*).(3)前n项和公式法:S n=An2+Bn(A,B为常数).2.判断等比数列的常用方法(1)定义法:a n+1a n=q(q是不为0的常数,n∈N*).(2)中项公式法:a2n+1=a n·a n+2(a n·a n+1·a n+2≠0).3.等差数列的通项公式、前n项和公式(1)a n=a1+(n-1)d.(2)S n=n(a1+a n)2=na1+n(n-1)2d.4.等比数列的通项公式、前n项和公式(1)a n=a1q n-1(q≠0).(2)当q≠1时,S n=a1(1-q n)1-q=a1-a n q1-q.活用结论规律,快速抢分1.等差数列{a n}的常用性质(1)a n=a1+(n-1)d=a m+(n-m)d;p+q=m+n⇒a p+a q=a m+a n.(2)S m,S2m-S m,S3m-S2m,…仍成等差数列.(3)若a p=q,a q=p(p≠q),则a p+q=0.2.等比数列的性质与推论(1)a n=a1q n-1=a m q n-m,p+q=m+n⇒a p·a q=a m·a n.(2)连续m项的和(如S m,S2m-S m,S3m-S2m,…)仍然成等比数列(注意:这连续m项的和必须非零才能成立).(3)在等比数列前n项和中,S m+n=S m+q m S n.高效微点训练,完美升级1.在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6 B.12 C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D2.设S n 是等差数列{a n }的前n 项和.若S 3S 6=13,则S 6S 12=( )A.310B.13C.18D.19解析 由等差数列的求和公式得S 3S 6=a 1+d 2a 1+5d =13,即a 1=2d ,且d ≠0,所以S 6S 12=2a 1+5d2(2a 1+11d )=9d 30d =310.答案 A3.已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值为( ) A.16 B.8 C.2 2D.4解析 因为a 4与a 14的等比中项为22, 所以a 4·a 14=a 7·a 11=(22)2=8, 所以2a 7+a 11≥22a 7a 11=22×8=8, 所以2a 7+a 11的最小值为8. 答案 B4.已知公比q ≠1的等比数列{a n }的前n 项和为S n ,a 1=1,S 3=3a 3,则S 5=( ) A.1B.5C.3148D.1116解析 由题意得a 1(1-q 3)1-q=3a 1q 2,解得q =-12或q =1(舍),所以S 5=a 1(1-q 5)1-q =1-⎝ ⎛⎭⎪⎫-1251-⎝ ⎛⎭⎪⎫-12=1116.答案 D5.已知数列{a n }的前n 项和为S n ,若a n =1n +n +1,S n =10,则n =( )A.90B.119C.120D.121解析 ∵a n =1n +n +1=n +1-n ,∴S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=10,∴n +1=121,则n =120. 答案 C 6.已知T n 为数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( ) A.1 026 B.1 025 C.1 024D.1 023解析 ∵2n +12n =1+⎝ ⎛⎭⎪⎫12n,∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013恒成立,∴整数m 的最小值为1 024. 答案 C7.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 020这2 020个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n},则此数列共有()A.98项B.97项C.96项D.95项解析能被3除余1且被7除余1的数就只能是被21除余1的数,故a n=21n-20,由1≤a n≤2 020得1≤n≤97,又n∈N*,故此数列共有97项.答案 B8.杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡(1623~1662)是在1654年发现这一规律的.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角.如图所示,在“杨辉三角”中,去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列前135项的和为()A.218-53B.218-52C.217-53D.217-52解析n次的二项式系数对应“杨辉三角”中的第n+1行.例如(x+1)2=x2+2x+1,系数分别为1,2,1,对应“杨辉三角”中的第3行.再令二项式中的x=1,就可求得该行系数之和.第1行为20,第2行为21,第3行为22,以此类推,可发现,每一行数除1外,第3行和为22-2,第4行和为23-2,第5行和为24-2,…,第18行和为217-2.若去除所有为1的项,则剩下的,从第3行开始,每一行的个数为1,2,3,4,…,可以看出构成一个首项为1,公差为1的等差数列,设等差数列的前n 项和为T n ,则T n =n (n +1)2,可算得当n =16时,T 16=136,前135项到第18行倒数第3个数,而第18行最后两个数为17,1,所以所求前135项的和为22-2+23-2+…+217-2-17=22(1-216)1-2-32-17=218-53. 答案 A9.已知等差数列{a n }前15项的和S 15=30,则a 2+a 9+a 13=________. 解析 设等差数列的公差为d ,{a n }前15项的和S 15=30, 所以15(a 1+a 15)2=30,即a 1+7d =2,则a 2+a 9+a 13=(a 1+d )+(a 1+8d )+(a 1+12d ) =3(a 1+7d )=6. 答案 610.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 611.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解 (1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1. 由S m =63得2m =64,解得m =6. 综上,m =6.12.已知正项等比数列{a n }满足S 2=6,S 4=30. (1)求数列{a n }的通项公式; (2)若b n =log 2a n ,已知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和为T n ,试证明:T n <1恒成立.(1)解 设等比数列{a n }的首项为a 1,公比为q (q >0), 由S 2=6,S 4=30得⎩⎪⎨⎪⎧a 1+a 1q =6,a 1q 2+a 1q 3=24.解得a 1=2,q =2(-2舍去).所以数列{a n }是以2为首项,2为公比的等比数列,其通项公式为a n =2n . (2)证明 由(1)知,a n =2n ,所以b n =log 2a n =log 22n =n , 所以1b n b n +1=1n (n +1)=1n -1n +1,故T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1<1.13.已知数列{a n },a 1=e(e 是自然对数的底数),a n +1=a 3n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =(2n -1)ln a n ,求数列{b n }的前n 项和T n .解(1)由a1=e,a n+1=a3n知,a n>0,所以ln a n+1=3ln a n,数列{ln a n}是以1为首项,3为公比的等比数列,所以ln a n=3n-1,a n=e3n-1(n∈N*).(2)由(1)得b n=(2n-1)ln a n=(2n-1)·3n-1,T n=1×30+3×31+5×32+…+(2n-1)×3n-1,①3T n=1×31+3×32+…+(2n-3)×3n-1+(2n-1)×3n,②①-②,得-2T n=1+2(31+32+33+…+3n-1)-(2n-1)×3n=1+2×3-3n1-3-(2n-1)×3n=-2(n-1)×3n-2.所以T n=(n-1)×3n+1(n∈N*).。
高考数学复习:等差数列与等比数列
Sn=an2+bn(a,b为 常数)
Sn=kqn-k(k≠0,q≠0,1)
证明数列为等差(比)数列一般使用定义法.
例3 (2019·全国Ⅱ)已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an- bn+4,4bn+1=3bn-an-4. (1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)已知函数 f(x)=1+2 x2(x∈R),若等比数列{an}满足 a1a2 020=1,则 f(a1)
+f(a2)+f(a3)+…+f(a2 020)等于
√A.1 D.2
解析 ∵a1a2 020=1,
∴f(a1)+f(a2 020)=1+2 a21+1+2a22 ∵{an}为等比数列,
a3+a4=2,则a6+a7+a8等于
A.12
B.24
√ C.30
D.32
解析 设等比数列{an}的公比为q, 则 q=aa21++aa32++aa43=21=2,
所以a6+a7+a8=(a1+a2+a3)·q5=1×25=32.
(2)已知正项等比数列{an}的前n项和为Sn,且S10=10,S30=130,则S40等于
∴an=2×2n-1=2n. 又∵ak+1+ak+2+…+ak+10=215-25,
∴2k+111--2210=215-25,
即2k+1(210-1)=25(210-1),
∴2k+1=25,∴k+1=5,∴k=4.
(2)(多选)(2020·威海模拟)等差数列{an}的前n项和记为Sn,若a1>0,S10=
证明 由题设得4(an+1+bn+1)=2(an+bn),
即 an+1+bn+1=12(an+bn). 因为a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得4(an+1-bn+1)=4(an-bn)+8, 即an+1-bn+1=an-bn+2. 又a1-b1=1, 所以{an-bn}是首项为1,公差为2的等差数列.
高考数学热点问题专题解析——等差等比数列综合问题
等差等比数列综合问题一、基础知识:1、等差数列性质与等比数列性质:2、等差数列与等比数列的互化:(1)若{}n a 为等差数列,0,1c c >≠,则{}n a c 成等比数列证明:设{}n a 的公差为d ,则11n n n n a a a d a c c c c++-==为一个常数所以{}n a c 成等比数列(2)若{}n a 为正项等比数列,0,1c c >≠,则{}log c n a 成等差数列 证明:设{}n a 的公比为q ,则11log log log log n c n c n c c na a a q a ++-==为常数 所以{}log c n a 成等差数列 二、典型例题:例1:已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A. 1 B. 1-或2 C. 2 D. 1-思路:由“1324,,2a a a 成等差数列”可得:3123122422a a a a a a =+⇒=+,再由等比数列定义可得:23121,a a q a a q ==,所以等式变为:22q q =+解得2q =或1q =-,经检验均符合条件答案:B例2:已知{}n a 是等差数列,且公差d 不为零,其前n 项和是n S ,若348,,a a a 成等比数列,则( )A. 140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <> 思路:从“348,,a a a 成等比数列”入手可得:()()()22438111327a a a a d a d a d =⇒+=++,整理后可得:2135a d d =-,所以135d a =-,则211305a d a =-<,且()2141646025a dS d a d =+=-<,所以B 符合要求 答案:B小炼有话说:在等差数列(或等比数列)中,如果只有关于项的一个条件,则可以考虑将涉及的项均用1,a d (或1,a q )进行表示,从而得到1,a d (或1,a q )的关系例3:已知等比数列{}n a 中的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++=_______________思路:由等比数列性质可得:1011912a a a a =,从而51011912a a a a e ==,因为{}n a 为等比数列,所以{}ln n a 为等差数列,求和可用等差数列求和公式:101112201011ln ln ln ln ln 2010ln 502a a a a a a a ++++=⋅== 答案:50例4:三个数成等比数列,其乘积为512,如果第一个数与第三个数各减2,则成等差数列,则这三个数为___________思路:可设这三个数为,,a a aq q ,则有3=512512aa aq a q⋅⋅⇒=,解得8a =,而第一个数与第三个数各减2,新的等差数列为82,8,82q q--,所以有:()816282q q ⎛⎫=-+- ⎪⎝⎭,即22252520q q q q +=⇒-+=,解得2q =或者12q =,2q =时,这三个数为4,8,16,当12q =时,这三个数为16,8,4 答案: 4,8,16小炼有话说:三个数成等比(或等差)数列时,可以中间的数为核心。
高考数学专题05 等差数列和等比数列的证明问题(第二篇)(原卷版)
备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第二篇数列与不等式专题05 等差数列和等比数列的证明问题【典例1】【2020届广东省中山市高三上学期期末】 设n S 为数列{}n a 的前n 项和,已知23a =,121n n a a +=+. (1)证明{}1n a +为等比数列;(2)判断n ,n a ,n S 是否成等差数列?并说明理由. 【思路引导】(1)由递推关系求得1a ,通过计算1121n n a a ++=+,证得数列{}1n a +为等比数列. (2)由(1)求得数列{}n a 的通项公式,由分组求和法求得n S ,证得2n n n S a +=,所以n ,n a ,n S 成等差数列.【典例2】【江西省名校(临川一中、南昌二中)2019届高三5月联合】已知数列{}n a 有0n a ≠,n S 是它的前n 项和,13a =且22213,2n n n S n a S n -=+≥.(1)求证:数列{}1n n a a ++为等差数列. (2)求{}n a 的前n 项和n S . 【思路引导】(1)先化简已知得21()3n n S S n -+=,21()3(1)n n S S n ++=+,再求出1=6n 3n n a a +++,再证明数列{}1n n a a ++为等差数列;(2)对n 分奇数和偶数两种情况讨论得解.【典例3】【2019年全国统一高考数学试卷(理科)(新课标Ⅱ)】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式. 【思路引导】(1)可通过题意中的1434n n n a a b +-=+以及1434n n n b b a +-=-对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;(2)可通过(1)中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【典例4】【安徽省阜阳市2019-2020学年高三教学质量统测】 已知数列{}n a 满足11a =,且1131n n n n a a a a ++-=+. (1)证明数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)若21nn n b a =+,求数列{}n b 的前n 项和n S .【思路引导】(1)由1131n n n n a a a a ++-=+ ,利用定义能证明11n a ⎧⎫⎨⎬+⎩⎭是以12为公差的等差数列,从而求出21na n =-; (2)由 1221nn n n b n a -==⋅+,利用错位相减法即可求得数列{}n b 的前n 项和.【典例5】【2020届福建省莆田市(第一联盟体)上学期高三联考】在正项数列{}n a 中,已知11121n n n na a a a a ++=-=+,且22n n a b =-.(1)证明:数列{}n b 是等差数列; (2)设{}n b 的前n 项和为n S ,证明:123111134n S S S S +++⋯+<. 【思路引导】(1)由题设条件证明数列{}2n a 是等差数列,并得出数列{}2n a 的通项公式,进而得出21n b n =+,再由等差数列的定义证明即可;(2)由等差数列的前n 项和公式得出n S ,再由裂项求和法证明不等式.【典例6】【2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)】 已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 【思路引导】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用nn a b n=,从而求得11b =,22b =,34b =; (2)利用条件可以得到121n na a n n+=+,从而 可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列;(3)借助等比数列的通项公式求得12n na n-=,从而求得12n n a n -=⋅.【典例7】【河南省名校联盟2019-2020学年高三11月教学质量检测】一种掷骰子走跳棋的游戏:棋盘上标有第0站、第1站、第2站、…、第100站,共101站,设棋子跳到第n 站的概率为n P ,一枚棋子开始在第0站,棋手每掷一次骰子,棋子向前跳动一次.若掷出奇数点,棋子向前跳一站;若掷出偶数点,棋子向前跳两站,直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束(骰子是用一种均匀材料做成的立方体形状的游戏玩具,它的六个面分别标有点数1,2,3,4,5,6). (1)求0P ,1P ,2P ,并根据棋子跳到第n 站的情况,试用2n P -和1n P -表示n P ;(2)求证:1{}12100()n n P P n --=⋯,,,为等比数列; (3)求玩该游戏获胜的概率. 【思路引导】(1) 在第0站是必然事件,所以01P =.棋子跳到第1站,只有一种情形,第一次掷骰子出现奇数点,可求出1P ,棋子跳到第2站,包括两种情形,①第一次掷骰子岀现偶数点,②前两次掷骰子出现奇数点,可求出2P .棋子跳到第(299)n n 站,包括两种情形,①棋子先跳到第2n -站,又掷骰子出现偶数点, ②棋子先跳到第1n -站,又掷骰子出现奇数点,进行求解. (2) 由(1)知,211122n n n P P P --=+,所以112(1)2n n n n P P P P ----=--可证.(3) 该游戏获胜的概率,即求99P ,由(2)用累加法可求解.1. 【2020届湖南省益阳市高三上学期期末】在数列{}n a 中,有()2*1232n a a a a n n n +++⋯+=+∈N .(1)证明:数列{}n a 为等差数列,并求其通项公式; (2)记11n n n b a a +=⋅,求数列{}n b 的前n 项和n T .2. 【2020届广东省东莞市高三期末调研测试】已知数列{}n a 中,11a =且()*12621n n a a n n N +=+-∈(1)求证:数列2n n a ⎧⎫+⎨⎬⎩⎭为等比数列; (2)求数列{}n a 的前n 项和n S .3. 【2020届安徽省皖东县中联盟上学期高三期末】已知数列{}n a 的前n 项和n S ,满足2n n S a n =-,*n ∈N . (1)求证:数列{}1n a +为等比数列; (2)若()2log 1n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 4. 【湖南省衡阳市2019届高三第二次联考(二模)】 已知数列{}n a ,{}n b 满足11a =,112b =,1122n n n a a b +=+,1122n n n b a b +=+. (1)证明:数列{}n n a b +,{}n n a b -为等比数列; (2)记n S 为数列{}n a 的前n 项和,证明:103n S <. 5. 【2020届重庆市高三上学期期末测试卷】已知数列{}n a 的前n 项和为n S ,且22n n S a n =+.(1)证明:数列{}23n a n --是等比数列; (2)设2n n b n a =-,证明:1211123n b b b ++⋅⋅⋅+<. 6. 【湖南省衡阳市衡阳县、长宁、金山区2019-2020学年高三上学期12月联考】 设*n N ∈,向量(31,3)AB n =+,(0,32)BC n =-,n a AB AC =⋅. (1)试问数列{}1n n a a +-是否为等差数列?为什么?(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 7. 【2020届福建省漳州市高三第一次教学质量检测卷】已知数列{}n a 满足13a =,()1211n n a a n n n n +=+++. (1)证明:数列{}n na 为等差数列;(2)设()()122n n n b a a +=--,求数列{}n b 的前n 项和n S . 8. 【2020届黑龙江省第一高级中学高三上学期期末数学】 已知数列{}n a 的前n 项和为n S ,12a =,132n n S S +=+,n *∈N .(1)证明:数列{}1n S +为等比数列;(2)已知曲线()22:191n n C x a y +-=若n C 为椭圆,求n 的值;(3)若33log 22n n n a a b ⎛⎫⎛⎫=⨯⎪ ⎪⎝⎭⎝⎭,求数列{}n b 的前n 项和n T . 9. 【江苏省泰州市2019届高三上学期期末考试数学试题】已知数列{n a }的前n 项和为Sn ,1232a a a +=,且对任意的n ∈N*,n≥2都有1112(25)n n n nS n S S ra +--++=. (1)若1a ≠0,213a a =,求r 的值; (2)数列{n a }能否是等比数列?说明理由; (3)当r =1时,求证:数列{n a }是等差数列. 10.【天津市新华中学2019届高三高考模拟】 已知等比数列{}n a 的前n 项和为n S ,公比22340,22,2q S a S a >=-=-.数列{}n b 满足()2*2114,(1)n n a b nb n b n n n N +=-+=+∈.(1)求数列{}n a 的通项公式; (2)证明数列n b n ⎧⎫⎨⎬⎩⎭为等差数列; (3)设数列{}n c 的通项公式为:24n n n n n a b n c a b n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,其前n 项和为n T ,求2n T .11. 【2019年全国统一高考数学试卷(理科)(新课标Ⅱ)】为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.。
高考数学:证明等差等比数列的解法
高考数学:证明等差等比数列的解法
我们在数列部分常碰到这样的问题:证明某个复杂数列为等差或者等比数列。
比如下面这道题:
从求证出发,我们回顾等比数列的定义:从第2项开始,数列的后一项除以前一项等于同一个不为零的常数,则这个数列为等比数列。
这就是我们证明等比数列的主要办法,也称定义法.即只需证明后项/前项为常数即可。
使用定义法的技巧,就是在化简过程中,保持前项不变,然后后项用题中给定的关系式代入。
道理也是显然的,要使得计算结果为常数,必须要出现消项、约分,所以把后项朝前项去靠近,才能最终通过消项、约分得到常数。
根据条件中给定的关系式,代入上式。
结果还真是一个常数,神奇吗?
其实一点也不神奇,只要方法正确,常数是命题者设计好了的,你不用担心。
下面,增加一点难度,看这一道分段形式给出的数列递推式。
请自觉做题3分钟.不要往下看。
分析:首先来理解数列递推式传递的信息.我们用具体的例子来理解它。
通过这种方式,我们对数列有了一些感性的认识。
不管怎样,还是采用定义法来证明。
还是采用前面介绍的技巧:保持前项不变,把后项用题中给定的关系式代入。
注意看,分子项和分母项的脚标相差2,我们根据题目所给递推式,可以分两步来。
咦!结果又是一个常数。
废话,要不是常数,那就是题目出错了。
总结:定义法来真好用,证明等比显奇功。
高考数学考前专题复习篇 主题四 数列、推理与证明 等差数列、等比数列41 课件
是否为 1 的讨论.
分类突破
一、等差数列的有关问题
例 1 已知{an}是一个等差数列,且 a2=1,a5=-5. (1)求{an}的通项 an;
(2)求{an}的前 n 项和 Sn 的最大值.
解 (1)设{an}的公差为 d,由已知条件,
a1+d=1, a1+4d=-5,
解得 a1=3,d=-2.
=2·3n-1+(-1)n(ln 2-ln 3)+(-1)nnln 3,
2.(2011·天津改编)已知{an}为等差数列,其公差为-2,且 a7 是 a3 与 a9 的等比中项,Sn 为{an}的前 n 项和,n∈N*,则 S10 的值为__1_1_0____.
解析 ∵a3=a1+2d=a1-4,a7=a1+6d=a1-12,a9=a1 +8d=a1-16,又∵a7 是 a3 与 a9 的等比中项, ∴(a1-12)2=(a1-4)·(a1-16),解得 a1=20. ∴S10=10×20+12×10×9×(-2)=110.
由上可知S1n=1+12(n-1)=n+2 1,即 Sn=n+2 1.
所以,当 n≥2 时,bn=Sn-Sn-1=n+2 1-2n=-n(n2+1).
1,
n=1,
因此,bn=-n(n2+1), n≥2.
(2)解 设上表中从第 3 行起,每行的公比都为 q,且 q>0. 因为 1+2+…+12=12×2 13=78,
变式训练 3 (2011·山东)等比数列{an}中,a1,a2,a3 分别是下 表第一、二、三行中的某一个数,且 a1,a2,a3 中的任何两 个数不在下表的同一列.
第一列 第二列 第三列
第一行
3
2
10
第二行
6
高中数学讲义微专题52 证明等差等比数列
微专题52 等差等比数列的证明在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。
一、基础知识:1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差),1n na q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =⋅≠(等比)(3)前n 项和:2n S An Bn =+(等差),nn S k q k =-(等比)(4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比)(2)也可利用等差等比中项来进行证明,即n N *∀∈,均有:122n n n a a a ++=+ (等差) 212n n n a a a ++=⋅ (等比)二、典型例题:例1:已知数列{}n a 的首项1133,,521nn n a a a n N a *+==∈+. 求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在1na 这样的倒数,所以考虑递推公式两边同取倒数:113121213n n n n n na a a a a a +++=⇒=+即112133n n a a +=+,在考虑构造“1-”:112111111333n n n a a a +⎛⎫-=+-=- ⎪⎝⎭即数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列思路二:代入法:将所证数列视为一个整体,用n b 表示:11n nb a =-,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换到n a 的递推公式中,进而可从n b 的递推公式出发,进行证明 解:令11n n b a =-,则11n n a b =+ ∴ 递推公式变为:11311311113211n n n n n b b b b b +++=⇒=+++⋅++1113333n n n n b b b b ++⇒+=+⇒={}n b ∴是公比为13的等比数列。
高考数学专题05 等差数列和等比数列的证明问题(第二篇)(解析版)
备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第二篇数列与不等式专题05 等差数列和等比数列的证明问题【典例1】【2020届广东省中山市高三上学期期末】 设n S 为数列{}n a 的前n 项和,已知23a =,121n n a a +=+. (1)证明{}1n a +为等比数列;(2)判断n ,n a ,n S 是否成等差数列?并说明理由. 【思路引导】(1)由递推关系求得1a ,通过计算1121n n a a ++=+,证得数列{}1n a +为等比数列. (2)由(1)求得数列{}n a 的通项公式,由分组求和法求得n S ,证得2n n n S a +=,所以n ,n a ,n S 成等差数列.解:(1)证明:∵23a =,2121a a =+,∴11a =, 由题意得10n a +≠,1122211n n n n a a a a +++==++,∴{}1n a +是首项为2,公比为2的等比数列.(2)由(1)12nn a +=,∴21n n a =-.∴11222212n n n S n n ++-=-=---,∴()12222210n n n n n S a n n ++-=+----=,∴2n n n S a +=,即n ,n a ,n S 成等差数列.【典例2】【江西省名校(临川一中、南昌二中)2019届高三5月联合】已知数列{}n a 有0n a ≠,n S 是它的前n 项和,13a =且22213,2n n n S n a S n -=+≥.(1)求证:数列{}1n n a a ++为等差数列. (2)求{}n a 的前n 项和n S . 【思路引导】(1)先化简已知得21()3n n S S n -+=,21()3(1)n n S S n ++=+,再求出1=6n 3n n a a +++,再证明数列{}1n n a a ++为等差数列;(2)对n 分奇数和偶数两种情况讨论得解. 解:(1)当2n ≥时,22221113()()3,0n n n n n n n n n S n a S S S S S n a a ---=+-+=≠, 所以21()3n n S S n -+=,21()3(1)n n S S n ++=+,两式对应相减得13(21)n n a a n ++=+,所以11)63(63)6n n n n a a a a n n +-=+-++-=)-(( 又n=2时,2222(3+)129,6a a a =+∴= 所以39a =,所以2231)69(6+3)6a a a a ++=+-=()-(, 所以数列{}1n n a a ++为等差数列. (2)当n 为偶数时,12341()()()3(37(21))n n n S a a a a a a n -=++++++=+++-L L2(321)323()22nn n n +-=⋅=+当n 为奇数时,1231()()n n n S a a a a a L -=+++++21(521)3233(59(21))33(2)322n n n n n -+-=++++-=+=+-+L ()23n n 2=+ 综上:()23S n n 2n =+【典例3】【2019年全国统一高考数学试卷(理科)(新课标Ⅱ)】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式. 【思路引导】(1)可通过题意中的1434n n n a a b +-=+以及1434n n n b b a +-=-对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;(2)可通过(1)中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果. 解:(1)由题意可知1434n n n a a b +-=+,1434n n n b b a +-=-,111a b +=,111a b -=, 所以1144323442n n n n n n n n a b a b b a a b ++=+=--+++-,即()1112n n n n a b a b ++++=, 所以数列{}n n a b +是首项为1、公比为12的等比数列,()112n n n a b -+=, 因为()11443434448n n n n n n n n a b a b b a a b ++---=+-=-+-,所以112n n n n a b a b ++=-+-,数列{}n n a b -是首项1、公差为2的等差数列,21n n a b n -=-. (2)由(1)可知,()112n n n a b -+=,21n n a b n -=-,所以()111222n n n n n n a a b a b n =++-=+-,()111222n n n n n n b a b a b n 轾=+--=-+臌.【典例4】【安徽省阜阳市2019-2020学年高三教学质量统测】 已知数列{}n a 满足11a =,且1131n n n n a a a a ++-=+.(1)证明数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)若21nn n b a =+,求数列{}n b 的前n 项和n S .【思路引导】(1)由1131n n n n a a a a ++-=+ ,利用定义能证明11n a ⎧⎫⎨⎬+⎩⎭是以12为公差的等差数列,从而求出21na n =-; (2)由 1221nn n n b n a -==⋅+,利用错位相减法即可求得数列{}n b 的前n 项和. 解:(1)因为1131n n n n a a a a ++-=+,所以113n n n a a a +-=+, 两边都加上1,得()12113n n n a a a +++=+,所以111211112121n n n a a a +⎛⎫=+=+ ⎪+++⎝⎭,即1111112n n a a +-=++, 所以数列11n a ⎧⎫⎨⎬+⎩⎭是以12为公差的等差数列,且首项是11112a =+,所以112n n a =+,即21n a n=-. (2)因为1221nn n n b n a -==⋅+,所以数列{}n b 的前n 项和1211122322n n S n -=⨯+⨯+⨯+⋅⋅⋅+⋅,① 则12321222322nn S n =⨯+⨯+⨯+⋅⋅⋅+⋅,②由①-②,得()121111212122121n n n n S n n --=⨯+⨯+⨯+⋅⋅⋅+⨯-⋅=--,所以()121nn S n =-⋅+.【典例5】【2020届福建省莆田市(第一联盟体)上学期高三联考】 在正项数列{}n a 中,已知11121n n n na a a a a ++=-=+,且22n n a b =-.(1)证明:数列{}n b 是等差数列;(2)设{}n b 的前n 项和为n S ,证明:123111134n S S S S +++⋯+<. 【思路引导】(1)由题设条件证明数列{}2n a 是等差数列,并得出数列{}2n a 的通项公式,进而得出21n b n =+,再由等差数列的定义证明即可;(2)由等差数列的前n 项和公式得出n S ,再由裂项求和法证明不等式. 解:(1)∵112n n n na a a a ++-=+∴2212n n a a +-=,∴数列{}2n a 是公差为2的等差数列.∵11a =∴()2211121n a a n ==+-,,∴221n a n =-,∴22n n a b =-, ∴22n n b a =+,∴21n b n =+,∴()123211n n b b n n +-=+-+=,∴数列{}n b 是等差数列. (2)由(1)可得∴()()32122n n n S n n ++==+,∴111122n S n n ⎛⎫=- ⎪+⎝⎭,∴1231111nS S S S ++++…, 11111111111232435112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ (1111311131221242124)n n n n ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭. 【典例6】【2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)】 已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 【思路引导】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用nn a b n=,从而求得11b =,22b =,34b =; (2)利用条件可以得到121n na a n n+=+,从而 可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列;(3)借助等比数列的通项公式求得12n na n-=,从而求得12n n a n -=⋅. 解:(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =. 从而11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅. 【典例7】【河南省名校联盟2019-2020学年高三11月教学质量检测】一种掷骰子走跳棋的游戏:棋盘上标有第0站、第1站、第2站、…、第100站,共101站,设棋子跳到第n 站的概率为n P ,一枚棋子开始在第0站,棋手每掷一次骰子,棋子向前跳动一次.若掷出奇数点,棋子向前跳一站;若掷出偶数点,棋子向前跳两站,直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束(骰子是用一种均匀材料做成的立方体形状的游戏玩具,它的六个面分别标有点数1,2,3,4,5,6). (1)求0P ,1P ,2P ,并根据棋子跳到第n 站的情况,试用2n P -和1n P -表示n P ;(2)求证:1{}12100()n n P P n --=⋯,,,为等比数列; (3)求玩该游戏获胜的概率. 【思路引导】(1) 在第0站是必然事件,所以01P =.棋子跳到第1站,只有一种情形,第一次掷骰子出现奇数点,可求出1P ,棋子跳到第2站,包括两种情形,①第一次掷骰子岀现偶数点,②前两次掷骰子出现奇数点,可求出2P .棋子跳到第(299)n n 剟站,包括两种情形,①棋子先跳到第2n -站,又掷骰子出现偶数点, ②棋子先跳到第1n -站,又掷骰子出现奇数点,进行求解. (2) 由(1)知,211122n n n P P P --=+,所以112(1)2n n n n P P P P ----=--可证.(3) 该游戏获胜的概率,即求99P ,由(2)用累加法可求解. 解:(1)棋子开始在第0站是必然事件,所以01P =.棋子跳到第1站,只有一种情形,第一次掷骰子出现奇数点,其概率为12,所以112P =. 棋子跳到第2站,包括两种情形,①第一次掷骰子岀现偶数点,其概率为12;②前两次掷骰子出现奇数点,其概率为14,所以2113244P =+=.棋子跳到第(299)n n 剟站,包括两种情形,①棋子先跳到第2n -站,又掷骰子出现偶数点,其概率为212n P -;②棋子先跳到第1n -站,又掷骰子出现奇数点,其概率为112n P -.故211122n n n P P P --=+.(2)由(1)知,211122n n n P P P --=+,所以112(1)2n n n n P P P P ----=--.又因为1012P P -=-, 所以1{}(1,2,,100)n n P P n --=L 是首项为12-,公比为12-的等比数列. (3)由(2)知,11111222n nn n P P --⎛⎫⎛⎫-=--=- ⎪⎪⎝⎭⎝⎭. 所以9999989897100()()()P P P P P P P P =-+-++-+L 99981111222⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 99111221112⎡⎤⎛⎫⎛⎫---⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=+⎛⎫-- ⎪⎝⎭10021132⎛⎫=- ⎪⎝⎭. 所以玩该游戏获胜的概率为10021132⎛⎫- ⎪⎝⎭.1. 【2020届湖南省益阳市高三上学期期末】在数列{}n a 中,有()2*1232n a a a a n n n +++⋯+=+∈N.(1)证明:数列{}n a 为等差数列,并求其通项公式; (2)记11n n n b a a +=⋅,求数列{}n b 的前n 项和n T .【思路引导】(1)由前n 项和与通项关系,求出{}n a 的通项公式,再利用等差数列的定义,即可证明; (2)求出数列{}n b 的通项公式,用裂项相消法,即可求解. 解:(1)因为()2*1232n a a a a n n n +++⋯+=+∈N,所以当2n ≥时,212312((11))n a a a a n n -+++⋯+=--+,上述两式相减并整理,得21(2)n a n n =+≥.又因为1n =时,211213a =+⨯=,适合上式,所以()*21n a n n =+∈N .从而得到121n an -=-,所以12n n a a --=,所以数列{}n a 为等差数列,且其通项公式为()*12n N a n n +∈=.(2)由(1)可知,111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪⋅+⋅+++⎝⎭.所以12311111111123557792123n n T b b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L 11123233(23)n n n ⎛⎫=-= ⎪++⎝⎭. 2. 【2020届广东省东莞市高三期末调研测试】已知数列{}n a 中,11a =且()*12621n n a a n n N +=+-∈(1)求证:数列2n n a ⎧⎫+⎨⎬⎩⎭为等比数列; (2)求数列{}n a 的前n 项和n S . 【思路引导】(1)根据递推公式可得111133322223222n n n n n n n n a a n a n n n n a a a +++++-++===+++,即可证明; (2)由(1)1322n n na =⨯-,进而利用分组法求得数列的和即可解:(1)证明:∵()12621N*n n a a n n +=+-∈,∴1132n n a a n +=+-, ∴111133322223222n n n n n n n n a a n a n n n n a a a +++++-++===+++, 11131222a +=+=Q ,∴2n n a ⎧⎫+⎨⎬⎩⎭为等比数列,首项为32,公比为3(2)解:由(1)得,13133222n n n n a -+=⨯=⨯,∴1322n n na =⨯-, 123n n S a a a a =++++……()()12311333312322n n =++++-++++…………()()()23133311112132244n n n n n n --++=-=--12334n n n +---= 3. 【2020届安徽省皖东县中联盟上学期高三期末】 已知数列{}n a 的前n 项和n S ,满足2n n S a n =-,*n ∈N . (1)求证:数列{}1n a +为等比数列; (2)若()2log 1n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【思路引导】(1)利用1n n n a S S -=-可得121n n a a -=+,再证明111n n a a -++是定值即可;(2)将1n a +代入()2log 1n n b a =+,然后利用裂项相消法求和. 解:(1)由题可知2n n S a n =-,① 当1n =时,11121a S a ==-,得11a =; 当2n ≥时,()1121n n S a n --=--,② ①-②并整理,得121n n a a -=+, 所以()1121n n a a -+=+,所以数列{}1n a +是首项为2,公比为2的等比数列; (2)由(1)知()22log 1log 2nn n b a n =+==,则()1111111n n b b n n n n +==-++, 所以12233411111n n n T b b b b b b b b +=+++⋅⋅⋅+ 111111111223341n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111n =-+ 1n n =+. 4. 【湖南省衡阳市2019届高三第二次联考(二模)】 已知数列{}n a ,{}n b 满足11a =,112b =,1122n n n a a b +=+,1122n n n b a b +=+. (1)证明:数列{}n n a b +,{}n n a b -为等比数列; (2)记n S 为数列{}n a 的前n 项和,证明:103n S <. 【思路引导】(1)将题中条件分别相加和相减,结合等比数列的定义,即可得证.(2)根据(1)结论可求出1344n nn a ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则前n 项和nS 为两个等比数列的前n 项和之和,代入公式,即可求解. 解:(1)依题:11122122n n n n n n a a b b a b++⎧=+⎪⎪⎨⎪=+⎪⎩,两式相加得:()1134n n n n a b a b +++=+,∴{}n n a b +为等比数列,两式相减得:()1114n n n n a b a b ++-=-, ∴{}n n a b -为等比数列.(2)由上可得:13324n n n a b -⎛⎫+= ⎪⎝⎭①,11124n n n a b -⎛⎫-= ⎪⎝⎭②,两式相加得:1344nnn a ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 1133114444131144nn n S ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭=+--1310441331144<+=--.5. 【2020届重庆市高三上学期期末测试卷】已知数列{}n a 的前n 项和为n S ,且22n n S a n =+.(1)证明:数列{}23n a n --是等比数列; (2)设2n n b n a =-,证明:1211123n b b b ++⋅⋅⋅+<. 【思路引导】(1)由已知当2n ≥时,可得11221n n n n S n S a a --=--+=,整理为[]12322(1)3n n a n a n ---=---,根据等比数列的定义,即可证明结论;(2)由(1)求出n a ,进而求出323nn b =⨯-,根据()111232321nn n b =≤⨯-(1n =取等号),要证1211123n b b b ++⋅⋅⋅+<成立,转化为证等比数列12{}32n ⨯前n 项和小于或等于23,即可证明结论. 解:(1)当2n ≥时,由221122(1)n n n n S a n S a n --⎧=+⎨=+-⎩1221n n a a n -⇒=-+ []12322(1)3n n a n a n -⇒--=---,令1n =1121S a ⇒=+11a ⇒=-, 则12360,230n a a n --=-≠∴--≠,12322(1)3n n a n a n ---=--- 故{}23n a n --为等比数列;(2)由(1)得1236232n nn a n ---=-⋅=-⨯,2332n n a n =+-⨯,323n n b =⨯-,()111232321n n n b =≤⨯-111(132n n -=⨯=时,取等号), 所以原式01111322n -⎡⎤≤⨯+⋅⋅⋅+⎢⎥⎣⎦111211312n ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=⨯-2121323n ⎡⎤⎛⎫=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以1211123n b b b ++⋅⋅⋅+<成立. 6. 【湖南省衡阳市衡阳县、长宁、金山区2019-2020学年高三上学期12月联考】设*n N ∈,向量(31,3)AB n =+u u u r ,(0,32)BC n =-u u u r,n a AB AC =⋅u u u r u u u r .(1)试问数列{}1n n a a +-是否为等差数列?为什么?(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 【思路引导】(1)先求解出AC u u u r的坐标表示,然后根据数量积的坐标表示求解出{}n a 的通项公式,再根据定义判断{}1n n a a +-是否为等差数列;(2)根据(1)中结果求出1n a ⎧⎫⎨⎬⎩⎭的通项公式,然后根据裂项相消法求解出n S 的表达式. 解:(1)(31,31)AC AB BC n n =+=++u u u r u u u r u u u rQ ,2(31)3(31)(31)(34)n a n n n n ∴=+++=++.1(34)(37)(31)(34)6(34)n n a a n n n n n +-=++-++=+Q ,()()21118n n n n a a a a +++∴---=为常数, {}1n n a a +∴-是等差数列.(2)111133134n a n n ⎛⎫=- ⎪++⎝⎭Q, 1111111111347710313434341216n n S n n n n ⎛⎫⎛⎫∴=-+-++-=-= ⎪ ⎪++++⎝⎭⎝⎭L . 7. 【2020届福建省漳州市高三第一次教学质量检测卷】 已知数列{}n a 满足13a =,()1211n n a a n n n n +=+++. (1)证明:数列{}n na 为等差数列;(2)设()()122n n n b a a +=--,求数列{}n b 的前n 项和n S . 【思路引导】(1)在等式()1211n n a a n n n n +=+++两边同时乘以()1n n +,结合等差数列的定义可证明出数列{}n na 为等差数列;(2)结合(1)中的结论求出数列{}n a 的通项公式,进而求出数列{}n b 的通项公式,然后利用裂项求和法求出数列{}n b 的前n 项和n S . 解:(1)由()1211n n a a n n n n +=+++得()112n n n a na ++-=, 又13a =,所以数列{}n na 首项为3,公差为2的等差数列; (2)由(1)得,()32121n na n n =+-=+,所以2112n n a n n+==+. 所以11222n a n n ⎛⎫-=-+=- ⎪⎝⎭,所以1121n a n +-=-+, 所以()()()11112211n n n b a a n n n n +=--==-++,所以1111111111112233445111n n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L . 8. 【2020届黑龙江省第一高级中学高三上学期期末数学】 已知数列{}n a 的前n 项和为n S ,12a =,132n n S S +=+,n *∈N . (1)证明:数列{}1n S +为等比数列;(2)已知曲线()22:191n n C x a y +-=若n C 为椭圆,求n 的值;(3)若33log 22n n n a a b ⎛⎫⎛⎫=⨯⎪ ⎪⎝⎭⎝⎭,求数列{}n b 的前n 项和n T . 【思路引导】(1)利用{}n S 的递推公式证明出111n n S S +++为非零常数,即可得出结论;(2)利用(1)中的结论求出n S ,由n a 与n S 之间的关系求出n a ,结合题意得出190191n n a a ->⎧⎨-≠⎩,可求出n 的值;(3)求出数列{}n b 的通项公式,然后利用错位相减法求出n T . 解:(1)对任意的n *∈N ,132n n S S +=+,则1133311n n n n S S S S +++==++且113S +=, 所以,数列{}1n S +是以3为首项,以3为公比的等比数列;(2)由(1)可得11333n n n S -+=⨯=,31nn S ∴=-.当2n ≥时,()()111313123nn n n n n S a S ---=-=---=⨯,12a =也适合上式,所以,123n n a -=⨯.由于曲线()22:191n n C x a y +-=是椭圆,则190191n n a a ->⎧⎨-≠⎩,即1123192318n n --⎧⨯<⎨⨯≠⎩, n N *∈Q ,解得1n =或2;(3)11333log 3log 3322n n n nn n a a b n --⎛⎫⎛⎫=⨯==⋅⎪ ⎪⎝⎭⎝⎭, 01211323333n n T n -∴=⨯+⨯+⨯++⋅L ,①()12131323133n n n T n n -=⨯+⨯++-⋅+⋅L ,②①-②得()()012111312312333333132n nn n n nn T n n -⨯--⋅--=++++-⋅=-⋅=-L , 因此,()21314n nn T -⋅+=. 9. 【江苏省泰州市2019届高三上学期期末考试数学试题】已知数列{n a }的前n 项和为Sn ,1232a a a +=,且对任意的n ∈N*,n≥2都有1112(25)n n n nS n S S ra +--++=. (1)若1a ≠0,213a a =,求r 的值; (2)数列{n a }能否是等比数列?说明理由; (3)当r =1时,求证:数列{n a }是等差数列. 【思路引导】(1)令2n =,得到321149S S S ra -+=,再将和用项来表示,再结合条件,求得结果;(2)假设其为等比数列,利用21112a a q a q +=,结合10a ≠,得到关于q 的方程,求解得出2q =或1q =-,将其回代检验得出答案;(3)将r =1代入上式,类比着写出()()1114213n n n S n a a ra n --=---≥,两式相减得到()()112233n n n na a n a n +-+=+≥,进一步凑成()1124n n n n a a a a n ----=-≥,结合322112a a a a a -=-=,从而证得数列{}n a 是以1a 为首项,21a 为公差的等差数列. 解:(1)令n =2,得:321149S S S ra -+=, 即:()()321211149a a a a a a ra ++-++=,化简,得:3211454a a a ra --=,因为,1232a a a +=,213a a =, 所以,111145534a a a ra ⨯-⨯-=,解得:r =1.(2)假设{}n a 是等比数列,公比为q ,则21112a a q a q +=,且10a ≠,解得2q =或1q =-,由()111225n n n nS n S S ra +--++=, 可得()11422n n n S na a ra n +=--≥, 所以()()1114213n n n S n a a ra n --=---≥, 两式相减,整理得()11223n n n na a n a +-+=+, 两边同除以1n a -,可得()2231n q q q -=-,因为1q ≠,所以20q q -≠,所以上式不可能对任意3n ≥恒成立,故{}n a 不可能是等比数列. (3)1r =时,令2n =,整理得1231454a a a ra --+=, 又由1232a a a +=可知21313,5a a a a ==,令3n =,可得4321611S S S a -+=,解得417a a =, 由(2)可知()11422n n n S na a a n -=--≥, 所以()()1114213n n n S n a a a n --=---≥,两式相减,整理得()()112233n n n na a n a n +-+=+≥, 所以()()()2121214n n n n a a n a n ---+=+≥,两式相减,可得()()()()()()1111224n n n n n n n n n a a a a a a a a n +-------=---≥, 因为()()43320a a a a ---=,所以()()()11204n n n n a a a a n ------=≥, 即()1124n n n n a a a a n ----=-≥,又因为322112a a a a a -=-=, 所以数列{}n a 是以1a 为首项,21a 为公差的等差数列. 10.【天津市新华中学2019届高三高考模拟】 已知等比数列{}n a 的前n 项和为n S ,公比22340,22,2q S a S a >=-=-.数列{}n b 满足()2*2114,(1)n n a b nb n b n n n N +=-+=+∈.(1)求数列{}n a 的通项公式; (2)证明数列n b n ⎧⎫⎨⎬⎩⎭为等差数列; (3)设数列{}n c 的通项公式为:24n nn n n a b n c a b n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,其前n 项和为n T ,求2n T .【思路引导】(1)由题意分别求得数列的首项和公比即可确定数列的通项公式; (2)由题意结合递推关系证明1n 1n b b n n +-+为定值即可证明数列n b n ⎧⎫⎨⎬⎩⎭为等差数列; (3)首项求得212n n n p c c -=+的表达式,然后结合通项公式的特点错位相减即可确定数列{}n c 的前n 项和n T . 解:(1)∵等比数列{}n a 的前n 项和为n S ,公比22340,22,2q S a S a >=-=-.∴3422a a a =-,可得()2222a q a q =-, ∴220q q --=,解得2q =.∴12222a a a +=-,即121222a a a =-=-,解得12a =.∴2nn a =.(2)证明:∵214a b =,∴11b =∵21(1)n n nb n b n n +-+=+,∴*1n 1,1n b b n N n n +-=∈+,综上,n b n ⎧⎫⎨⎬⎩⎭是首项为111b =,公差是1的等差数列.∵nb n n=,∴2n b n =. (3)令22122221212(21)2(2)2(41)2(41)424n nn n n n n n n p c c n n -----⋅⋅=+=-+=-⋅=-⋅012123474114(41)4n n T n -=⨯+⨯+⨯+⋯⋯+-⋅ 123243474114(41)4n n T n =⨯+⨯+⨯+⋯⋯+-⋅01231233444444444(41)4n n n T n --=⨯+⨯+⨯+⨯+⋯⋯+⋅--⋅,()12161433(41)414n nn T n -⨯--=+--⋅-2164334(41)433nn n T n -=-+⨯--⋅ 277123433nn n T --=-+⋅27127499nn n T -=+⋅.11. 【2019年全国统一高考数学试卷(理科)(新课标Ⅱ)】为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【思路引导】(1)首先确定X 所有可能的取值,再来计算出每个取值对应的概率,从而可得分布列;(2)(i )求解出,,a b c 的取值,可得()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅,从而整理出符合等比数列定义的形式,问题得证;(ii )列出证得的等比数列的通项公式,采用累加的方式,结合8p 和0p 的值可求得1p ;再次利用累加法可求出4p . 解:(1)由题意可知X 所有可能的取值为:1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:(2)0.5α=Q ,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=(i )()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅Q即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7ii i p p p i -+=+=⋅⋅⋅ ()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i i i i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=- ()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+ 4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.。
高中数学优秀讲义微专题52 证明等差等比数列
微专题52 等差等比数列的证明在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。
一、基础知识:1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差),1n na q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =⋅≠(等比)(3)前n 项和:2n S An Bn =+(等差),n n S kq k =-(等比)(4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比)(2)也可利用等差等比中项来进行证明,即n N *∀∈,均有:122n n n a a a ++=+ (等差) 212n n n a a a ++=⋅ (等比)二、典型例题:例1:已知数列{}n a 的首项1133,,521nn n a a a n N a *+==∈+. 求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在1na 这样的倒数,所以考虑递推公式两边同取倒数:113121213n n n n n na a a a a a +++=⇒=+即112133n n a a +=+,在考虑构造“1-”:112111111333n n n a a a +⎛⎫-=+-=- ⎪⎝⎭即数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列思路二:代入法:将所证数列视为一个整体,用n b 表示:11n nb a =-,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换到n a 的递推公式中,进而可从n b 的递推公式出发,进行证明 解:令11n n b a =-,则11n n a b =+ ∴ 递推公式变为:11311311113211n n n n n b b b b b +++=⇒=+++⋅++1113333n n n n b b b b ++⇒+=+⇒={}n b ∴是公比为13的等比数列。
等差数列与等比数列高考考点(基础知识)
等差数列与等比数列高考考点(基础知识)
考点一:等差数列、等比数列的判定与证明
1.等差数列的判定:
2.等比数列的判定:
考点二:通项公式n a 的求法
1.公式法:利用等差(比)数列相关公式列方程组求出首项和公差(比);
2.递推关系:(1)已知n S 求n a :11, 1,2n n
n S n a S S n -=⎧=⎨-≥⎩ (2)累加法,累乘法:11(),
()n n n n
a a a f n f n a ++-== (3)构造等差或等比数列法:
例:①若{}n a 满足,*111,23(2)n n a a a n n N -==+≥∈且,求n a ;
②若{}n a 满足,1112,22n n n a a a ++==+,求n a . 考点三:前n 项和n S 的求法
1.公式法:利用等差(比)数列相关公式列方程组求出首项和公差(比);
2.错位相减法:n n n a b c =
3.裂项相消法:1(1)
n a n n =+,有时会和不等式联系在一起 4.分组求和法:n n n a b c =+
5.并项求和法:(1)(21)n n a n =--,n a 取值具有周期性等
6.倒序相加法:与首末两项等距离的项的和相等。
高考数列基本题型六证明等差与等比数列
高考数列基本题型六.证明等差与等比数列1.(2022年全国甲卷)记S n为数列{a n}的前n项和.已知2S n n+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解答】解:(1)因为2S n n+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n−1+(n−1)2=2(n−1)a n−1+(n−1)②,①−②得,2S n+n2−2S n−1−(n−1)2=2na n+n−2(n−1)a n−1−(n−1),即2a n+2n−1=2na n−2(n−1)a n−1+1,即2(n−1)a n−2(n−1)a n−1=2(n−1),所以a n−a n−1=1,n≥2且n∈N∗,所以{a n}是以1为公差的等差数列.(2)由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即(a1+6)2=(a1+3)⋅(a1+8),解得a1=−12,所以a n=n−13,所以S n=−12n+n(n−1)2=12n2−252n=12�n−252�2−6258,所以,当n=12或n=13时(S n)min=−78.2.(2019•新课标Ⅱ)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n﹣b n+4,4b n+1=3b n ﹣a n﹣4.(1)证明:{a n+b n}是等比数列,{a n﹣b n}是等差数列;(2)求{a n}和{b n}的通项公式.【解答】解:(1)证明:∵4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4;∴4(a n+1+b n+1)=2(a n+b n),4(a n+1﹣b n+1)=4(a n﹣b n)+8;即a n+1+b n+1=12(a n+b n),a n+1﹣b n+1=a n﹣b n+2;又a1+b1=1,a1﹣b1=1,∴{a n+b n}是首项为1,公比为12的等比数列,{a n﹣b n}是首项为1,公差为2的等差数列;(2)由(1)可得:a n+b n=(12)n﹣1,a n﹣b n=1+2(n﹣1)=2n﹣1;∴a n=(12)n+n−12,b n=(12)n﹣n+12.3.(2018•新课标Ⅰ)已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=aa nn nn.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.【解答】解:(1)数列{a n}满足a1=1,na n+1=2(n+1)a n,则:aa nn+1nn+1aa nn nn=2(常数),由于bb nn=aa nn nn,故:bb nn+1bb nn=2,数列{b n}是以b1为首项,2为公比的等比数列.整理得:bb nn=bb1⋅2nn−1=2nn−1,所以:b1=1,b2=2,b3=4.(2)数列{b n}是为等比数列,由于bb nn+1bb nn=2(常数);所以:数列{b n}是以b1为首项,2为公比的等比数列.(3)由(1)得:bb nn=2nn−1,根据bb nn=aa nn nn,所以:aa nn=nn⋅2nn−1.4.(2021•乙卷)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2SS nn+1bb nn=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.【解答】解:(1)证明:当n=1时,b1=S1,由2bb1+1bb1=2,解得b1=32,当n≥2时,bb nn bb nn−1=S n,代入2SS nn+1bb nn=2,消去S n,可得2bb nn−1bb nn+1bb nn=2,所以b n﹣b n﹣1=12,所以{b n}是以32为首项,12为公差的等差数列.(2)由题意,得a1=S1=b1=32,由(1),可得b n=32+(n﹣1)×12=nn+22,由2SS nn+1bb nn=2,可得S n=nn+2nn+1,当n≥2时,a n=S n﹣S n﹣1=nn+2nn+1−nn+1nn=−1nn(nn+1),显然a1不满足该式,所以a n=�32,nn=1−1nn(nn+1),nn≥2.5.(2021•甲卷)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{�SS nn}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.【解答】解:选择①③为条件,②结论.证明过程如下:由题意可得:a2=a1+d=3a1,∴d=2a1,数列的前n项和:SS nn=nnaa1+nn(nn−1)2dd=nnaa1+nn(nn−1)2×2aa1=nn2aa1,故�SS nn−�SS nn−1=nn√aa1−(nn−1)√aa1=√aa1(n≥2),据此可得数列{�SS nn}是等差数列.选择①②为条件,③结论:设数列{a n}的公差为d,则:�SS1=√aa1,�SS2=�aa1+(aa1+dd)=�2aa1+dd,�SS3=�aa1+(aa1+dd)+(aa1+2dd)=�3(aa1+dd),数列{�SS nn}为等差数列,则:�SS1+�SS3=2�SS2,即:(√aa1+�3(aa1+dd))2=(2�2aa1+dd)2,整理可得:d=2a1,∴a2=a1+d=3a1.选择③②为条件,①结论:由题意可得:S2=a1+a2=4a1,∴�SS2=2√aa1,则数列{�SS nn}的公差为dd=�SS2−�SS1=√aa1,通项公式为:�SS nn=�SS1+(nn−1)dd=nn√aa1,据此可得,当n≥2时,aa nn=SS nn−SS nn−1=nn2aa1−(nn−1)2aa1=(2nn−1)aa1,当n=1时上式也成立,故数列的通项公式为:a n=(2n﹣1)a1,由a n+1﹣a n=[2(n+1)﹣1]a1﹣(2n﹣1)a1=2a1,可知数列{a n}是等差数列.6.(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【解答】解:(1)设等比数列{a n}首项为a1,公比为q,则a3=S3﹣S2=﹣6﹣2=﹣8,则a1=aa3qq2=−8qq2,a2=aa3qq=−8qq,由a1+a2=2,−8qq2+−8qq=2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n=aa1(1−qq nn)1−qq=−2[1−(−2)nn]1−(−2)=−13[2+(﹣2)n+1],则S n+1=−13[2+(﹣2)n+2],S n+2=−13[2+(﹣2)n+3],由S n+1+S n+2=−13[2+(﹣2)n+2]−13[2+(﹣2)n+3]=−13[4+(﹣2)×(﹣2)n+1+(﹣2)2×(﹣2)n+1],=−13[4+2(﹣2)n+1]=2×[−13(2+(﹣2)n+1)]=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.7.(2022年北京)已知Q:a1,a2,⋯,a k为有穷整数数列.给定正整数m,若对任意的n∈{1,2,⋯,m},在Q中存在a i,a i+1,a i+2,⋯,a i+j(j≥0),使得a i+a i+1+a i+2+⋯+a i+j=n,则称Q为m−连续可表数列.(1)判断Q:2,1,4是否为5−连续可表数列?是否为6−连续可表数列?说明理由;(2)若Q:a1,a2,⋯,a k为8−连续可表数列,求证:k的最小值为4;(3)若Q:a1,a2,⋯,a k为20−连续可表数列,且a1+a2+⋯+a k<20,求证:k≥7.【解答】解:(1)a2=1,a1=2,a1+a2=3,a3=4,a2+a3=5,所以Q是5−连续可表数列;易知,不存在i,j使得a i+a i+1+⋯+a i+j=6,所以Q不是6−连续可表数列.(2)若k≤3,设为Q:a,b,c,则至多a+b,b+c,a+b+c,a,b,c,6个数字,没有8个,矛盾;当k=4时,数列Q:1,4,1,2,满足a1=1,a4=2,a3+a4=3,a2=4,a1+a2=5,a1+a2+ a3=6,a2+a3+a4=7,a1+a2+a3+a4=8,∴k min=4.(3)Q:a1,a2,⋯,a k,若i=j最多有k种,若i≠j,最多有C k2种,所以最多有k+C k2=k(k+1)2种,若k≤5,则a1,a2,…,a k至多可表5(5+1)2=15个数,矛盾,从而若k<7,则k=6,a,b,c,d,e,f至多可表6(6+1)2=21个数,而a+b+c+d+e+f<20,所以其中有负的,从而a,b,c,d,e,f可表1~20及那个负数(恰21个),这表明a~f中仅一个负的,没有0,且这个负的在a~f中绝对值最小,同时a~f中没有两数相同,设那个负数为−m(m≥1),则所有数之和≥m+1+m+2+⋯+m+5−m=4m+15,4m+15≤19⇒m=1,∴{a,b,c,d,e,f}={−1,2,3,4,5,6},再考虑排序,排序中不能有和相同,否则不足20个,∵1=−1+2(仅一种方式),∴−1与2相邻,若−1不在两端,则"x , -1 , 2 , __,__,__"形式,若x=6,则5=6+(−1)(有2种结果相同,方式矛盾),∴x≠6,同理x≠5,4,3,故−1在一端,不妨为"−1 ,2, A, B, C, D"形式,若A=3,则5=2+3(有2种结果相同,矛盾),A=4同理不行,A=5,则6=−1+2+5(有2种结果相同,矛盾),从而A=6,由于7=−1+2+6,由表法唯一知3,4不相邻,、故只能−1,2,6,3,5,4,①或−1,2,6,4,5,3,②这2种情形,对①:9=6+3=5+4,矛盾,对②:8=2+6=5+3,也矛盾,综上k≠6∴k≥7.。
高考数学中的等差数列和等比数列问题解析
高考数学中的等差数列和等比数列问题解析在高考数学中,等差数列和等比数列问题属于基础难度的部分。
同时,这两个问题对于数学竞赛和日常生活(如财务计划)也有着很大的参考价值。
本文将从定义、基本概念、公式推导以及考点解析等方面,较为全面地探讨这两个问题。
一、等差数列的定义和基本概念等差数列是指一个数列,其每一项与它的前一项之差都相等。
其一般形式为:$ a_{1},a_{2},a_{3},...,a_{n}$,其中$n≥2$,且对于任意$i\inZ^{+}$,满足$a_{i+1}=a_{i}+d$,其中d为公差,$a_{1}$为首项。
等差数列的基本概念包括:1. 公差:相邻项的差值,用d表示。
2. 首项:等差数列的第一项,用$a_{1}$表示。
3. 通项公式:第n项的计算公式,用$a_{n}$表示。
4. 求和公式:等差数列前n项和的计算公式,用$S_{n}$表示。
二、等差数列的公式推导1. 通项公式推导设首项为$a_{1}$,公差为d,则有:$$a_{2}=a_{1}+d,a_{3}=a_{2}+d=a_{1}+2d,...,a_{n}=a_{1}+(n-1)d $$设第n项为an,代入上式得:$$a_{n}=a_{1}+(n-1)d $$于是,通项公式为$a_{n}=a_{1}+(n-1)d$。
2. 求和公式推导等差数列的前n项和为:$$ S_{n}=a_{1}+a_{2}+...+a_{n} $$由通项公式得:$$ S_{n}=\frac{n }{2}(a_{1}+a_{n})=\frac{n }{2}[a_{1}+a_{1}+ (n-1)d]$$$$S_{n}=\frac {n}{2}[2a_{1}+(n-1)d] $$于是,求和公式为$S_{n}=\frac {n}{2}[2a_{1}+(n-1)d]$。
三、等比数列的定义和基本概念等比数列是指一个数列,其每一项与它的前一项之比都相等。
其一般形式为:$a_{1},a_{2},a_{3},...,a_{n }$,其中$n≥2$,且对于任意$i\in Z^{+}$,满足$\frac{a_{i+1}}{a_{i}}=q$,其中q为公比,$a_{1}$为首项。
高考数学专题三数列 微专题21 等差数列、等比数列
设等差数列{an}的公差为d,等比数列{bn}的公比为q,且q>0, 因为 S14=7(a10+3),则 14a1+14×2 13d=7(a1+9d+3),可得 a1+4d= 3,即 a5=3,
因为b5=b=16,则b1q4=(b1q)4=16,可得q=2,b1=1, 因为cn=an+bn, 所以T9=c1+c2+…+c9=(a1+a2+…+a9)+(b1+b2+…+b9) =a1+2 a9×9+b111--qq9=a5×9+11--229 =3×9+11--229=538.
①
由 a1+S11=67,得 12a1+11×2 10d=67,即 12a1+55d=67.
②
由①②解得a1=1,d=1,所以an=n, 于是a3a10=3×10=30,而a30=30,故a3a10是{an}中的第30项.
1 2 3 4 5 6 7 8 9 10
2.(2023·武汉模拟)已知等比数列{an}满足a6=2,且a7,a5,a9成等差数列,
(2)(2023·新高考全国Ⅰ)设等差数列{an}的公差为 d,且 d>1.令 bn=n2a+n n, 记 Sn,Tn 分别为数列{an},{bn}的前 n 项和. ①若 3a2=3a1+a3,S3+T3=21,求{an}的通项公式;
∵3a2=3a1+a3, ∴3d=a1+2d,解得a1=d, ∴S3=3a2=3(a1+d)=6d,
1 2 3 4 5 6 7 8 9 10
3.记 Sn 为等比数列{an}的前 n 项和.若 a5-a3=12,a6-a4=24,则Sann等于
A.2n-1
√B.2-21-n
C.2-2n-1
D.21-n-1
1 2 3 4 5 6 7 8 9 10
方法一 设等比数列{an}的公比为q, 则 q=aa65--aa43=2142=2. 由a5-a3=a1q4-a1q2=12a1=12,得a1=1. 所以 an=a1qn-1=2n-1,Sn=a111--qqn=2n-1, 所以Sann=22n-n-11=2-21-n.
专题28 等差等比数列的证明问题(解析版)
专题28 等差等比数列的证明问题【高考真题】1.(2022·全国甲理文) 记S n 为数列{a n }的前n 项和.已知2S nn +n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值. 1.解析 (1)因为221nn S n a n+=+,即222n n S n na n +=+①, 当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且*n ∈N , 所以{}n a 是以1为公差的等差数列. (2)由(1)可得413a a =+,716a a =+,ABC ∆, 又4a ,7a ,9a 成等比数列,所以2749a a a =⋅, 即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭, 所以,当12n =或13n =时()min 78n S =-. 【方法总结】1.等差数列的四个判定方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (3)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列. (4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列.提醒:(1)定义法和等差中项法主要适合在解答题中使用,通项公式法和前n 项和公式法主要适合在选择题或填空题中使用.(2)若要判定一个数列不是等差数列,则只需判定存在连续三项不成等差数列即可. 2.等比数列的四个判定方法(1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.(3)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. (4)前n 项和公式法:S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.提醒:(1)定义法和等比中项法主要适合在解答题中使用,通项公式法和前n 项和公式法主要适合在选择题或填空题中使用.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可. 【题型突破】1.已知等差数列{a n }的前n 项和为S n ,且a 3=7,a 5+a 7=26. (1)求a n 及S n ;(2)令b n =S nn(n ∈N *),求证:数列{b n }为等差数列.1.解析 (1)设等差数列{a n }的首项为a 1,公差为d ,由题意有⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2,则a n =a 1+(n -1)d =3+2(n -1)=2n +1,S n =n (a 1+a n )2=n [3+(2n +1)]2=n (n +2).(2)因为b n =S n n =n (n +2)n=n +2,又b n +1-b n =n +3-(n +2)=1,所以数列{b n }是首项为3,公差为1的等差数列.2.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.2.解析 (1)因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1.又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 3.在数列{a n }中,a 1=4,na n +1-(n +1)a n =2n 2+2n .(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n .3.解析 (1)证法一:na n +1-(n +1)a n =2n 2+2n 的两边同时除以n (n +1),得a n +1n +1-a n n=2,又a 11=4,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为4,公差为2的等差数列.证法二:因为a n +1n +1-a n n =na n +1-(n +1)a n n (n +1)=2n 2+2n n 2+n=2,a 11=4,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为4,公差为2的等差数列.(2)由(1),得a n n =a 1+2(n -1),即a nn =2n +2,即a n =2n 2+2n ,故1a n =12n 2+2n =12·1n (n +1)=12⎝⎛⎭⎫1n -1n +1, 所以S n =12⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=12⎝⎛⎭⎫1-1n +1=n2(n +1). 4.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .4.解析 (1)由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)由(1)得,a nn =1+(n -1)·1=n ,所以a n =n 2,从而可得b n =n ·3n .S n =1×31+2×32+…+(n -1)×3n -1+n ×3n ①, 3S n =1×32+2×33+…+(n -1)×3n +n ×3n +1 ②. ①-②,得-2S n =31+32+…+3n -n ·3n +1=3·(1-3n )1-3-n ·3n +1=(1-2n )·3n +1-32,所以S n =(2n -1)·3n +1+34.5.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.5.解析 (1)当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1, 因为S n ≠0,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n =2n ,所以S n =12n.当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n =⎩⎨⎧12,n =1,-12n (n -1),n ≥2.6.已知数列{a n }的前n 项和为S n ,且2S n =3a n -3n +1+3(n ∈N *).(1)设b n =a n3n ,求证:数列{b n }为等差数列,并求出数列{a n }的通项公式;(2)设c n =a n n -a n3n ,T n =c 1+c 2+c 3+…+c n ,求T n .6.解析 (1)由已知2S n =3a n -3n +1+3(n ∈N *),① n ≥2时,2S n -1=3a n -1-3n +3,②①-②得:2a n =3a n -3a n -1-2·3n ⇒a n =3a n -1+2·3n , 故a n 3n =a n -13n -1+2,则b n -b n -1=2(n ≥2). 又n =1时,2a 1=3a 1-9+3,解得a 1=6,则b 1=a 13=2.故数列{b n }是以2为首项,2为公差的等差数列,∴b n =2+2(n -1)=2n ⇒a n =2n ·3n . (2)由(1),得c n =2·3n -2n T n=2(3+32+33+…+3n )-2(1+2+…+n )=2·3(1-3n )1-3-2·(1+n )n 2=3n +1-n 2-n -3.7.(2021·全国乙)设S n 为数列{a n }的前n 项和,b n 为数列{S n }的前n 项积,已知2S n +1b n=2.(1)证明:数列{b n }是等差数列; (2)求{a n }的通项公式.7.解析 (1)因为b n 是数列{S n }的前n 项积,所以n ≥2时,S n =b nb n -1,代入2S n +1b n =2可得,2b n -1b n +1b n =2,整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32,故{b n }是以32为首项,12为公差的等差数列. (2)由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1,当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1).故a n =⎩⎨⎧32,n =1,-1n (n +1),n ≥2.8.(2014·全国Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.8.解析 (1)由题设知,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1, 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设知,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得数列{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; 数列{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2, 因此存在λ=4,使得数列{a n }为等差数列.9.设数列{a n }的前n 项和为S n ,且满足a n -12S n -1=0(n ∈N *).(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列{S n +(n +2n )λ}为等差数列?若存在,求出λ的值;若不存在,请说明理由.9.解析 (1)由a n -12S n -1=0(n ∈N *),可知当n =1时,a 1-12a 1-1=0,即a 1=2.又由a n -12S n -1=0(n ∈N *),可得a n +1-12S n +1-1=0,两式相减,得⎝⎛⎭⎫a n +1-12S n +1-1-⎝⎛⎭⎫a n -12S n -1=0,即12a n +1-a n =0,即a n +1=2a n . 所以数列{a n }是以2为首项,2为公比的等比数列,故a n =2n (n ∈N *). (2)由(1)知,S n =a 1(1-q n )1-q=2(2n -1),所以S n +(n +2n )λ=2(2n -1)+(n +2n )λ.若数列{S n +(n +2n )λ}为等差数列,则S 1+(1+2)λ,S 2+(2+22)λ,S 3+(3+23)λ成等差数列,即有2[S 2+(2+22)λ]=[S 1+(1+2)λ]+[S 3+(3+23)λ],即2(6+6λ)=(2+3λ)+(14+11λ),解得λ=-2. 经检验λ=-2时,{S n +(n +2n )λ}成等差数列,故λ的值为-2.10.若数列{b n }对于任意的n ∈N *,都有b n +2-b n =d (常数),则称数列{b n }是公差为d 的准等差数列.如数列c n ,若c n =⎩⎪⎨⎪⎧4n -1,n 为奇数,4n +9,n 为偶数,则数列{c n }是公差为8的准等差数列.设数列{a n }满足a 1=a ,对于n ∈N *,都有a n +a n +1=2n . (1)求证:{a n }是准等差数列; (2)求{a n }的通项公式及前20项和S 20.10.解析 (1)证明:∵a n +a n +1=2n (n ∈N *),①,∴a n +1+a n +2=2(n +1)(n ∈N *),②②-①,得a n +2-a n =2(n ∈N *).∴{a n }是公差为2的准等差数列. (2)∵a 1=a ,a n +a n +1=2n (n ∈N *),∴a 1+a 2=2×1,即a 2=2-a . ∴由(1)得a 1,a 3,a 5,…是以a 为首项,2为公差的等差数列; a 2,a 4,a 6…是以2-a 为首项,2为公差的等差数列. 当n 为偶数时,a n =2-a +⎝⎛⎭⎫n 2-1×2=n -a ;当n 为奇数时,a n =a +⎝⎛⎭⎫n +12-1×2=n +a -1.∴a n =⎩⎪⎨⎪⎧n +a -1,n 为奇数,n -a ,n 为偶数.S 20=a 1+a 2+a 3+a 4+…+a 19+a 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20) =2×1+2×3+…+2×19=2×(1+19)×102=200.11.已知数列{a n }的首项a 1>0,a n +1=3a n 2a n +1(n ∈N *),且a 1=23.(1)求证:⎩⎨⎧⎭⎬⎫1a n-1是等比数列,并求出{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n .11.解析 (1)记b n =1a n -1,则b n +1b n =1a n +1-11a n -1=2a n +13a n -11a n-1=2a n +1-3a n 3-3a n =1-a n 3(1-a n )=13,又b 1=1a 1-1=32-1=12,所以⎩⎨⎧⎭⎬⎫1a n -1是首项为12,公比为13的等比数列.所以1a n -1=12×⎝⎛⎭⎫13n -1,即a n =2×3n -11+2×3n -1.所以数列{a n }的通项公式为a n =2×3n -11+2×3n -1. (2)由(1)知,1a n =12×⎝⎛⎭⎫13n -1+1.所以数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =12⎝⎛⎭⎫1-13n 1-13+n =34⎝⎛⎭⎫1-13n +n . 12.已知数列{a n }的前n 项和为S n ,n ∈N *,a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.12.解析 (1)因为4S n +2+5S n =8S n +1+S n -1,a 1=1,a 2=32,a 3=54,当n =2时,4S 4+5S 2=8S 3+S 1,即4×⎝⎛⎭⎫1+32+54+a 4+5×⎝⎛⎭⎫1+32=8×⎝⎛⎭⎫1+32+54+1,解得a 4=78. (2)由4S n +2+5S n =8S n +1+S n -1(n ≥2),得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2).当n =1时,有4a 3+a 1=4×54+1=6=4a 2,∴4a n +2+a n =4a n +1,∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.13.已知数列{a n }的前n 项和S n 满足S n =2a n +(-1)n (n ∈N *).(1)求数列{a n }的前三项a 1,a 2,a 3;(2)求证:数列⎩⎨⎧⎭⎬⎫a n +23(-1)n 为等比数列,并求出{a n }的通项公式.13.解析 (1)在S n =2a n +(-1)n (n ∈N *)中分别令n =1,2,3,得⎩⎪⎨⎪⎧a 1=2a 1-1,a 1+a 2=2a 2+1,a 1+a 2+a 3=2a 3-1,解得⎩⎪⎨⎪⎧a 1=1,a 2=0,a 3=2.(2)由S n =2a n +(-1)n (n ∈N *),得S n -1=2a n -1+(-1)n -1(n ≥2), 两式相减,得a n =2a n -1-2(-1)n (n ≥2),a n =2a n -1-43(-1)n -23(-1)n =2a n -1+43(-1)n -1-23(-1)n (n ≥2),∴a n +23(-1)n =2⎣⎡⎦⎤a n -1+23(-1)n -1(n ≥2). 故数列⎩⎨⎧⎭⎬⎫a n +23(-1)n 是以a 1-23=13为首项,2为公比的等比数列.∴a n +23(-1)n =13×2n -1,∴a n =13×2n -1-23×(-1)n=2n -13-23(-1)n .14.已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.14.解析 (1)由点A n 在y 2-x 2=1上知a n +1-a n =1,所以数列{a n }是一个以2为首项,1为公差的等差数列, 所以a n =a 1+(n -1)d =2+n -1=n +1.(2)因为点(b n ,T n )在直线y =-12x +1上,所以T n =-12b n +1,①所以T n -1=-12b n -1+1(n ≥2).②①②两式相减得b n =-12b n +12b n -1(n ≥2),所以32b n =12b n -1,所以b n =13b n -1(n ≥2),在①式中令n =1,得T 1=b 1=-12b 1+1,所以b 1=23,所以{b n }是一个以23为首项,以13为公比的等比数列.15.已知数列{a n }满足:a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,2a n ,n 为偶数(n ∈N *),设b n =a 2n -1.(1)求b 2,b 3,并证明b n +1=2b n +2; (2)①证明:数列{b n +2}为等比数列;②若a 2k ,a 2k +1,9+a 2k +2成等比数列,求正整数k 的值.15.解析 (1)∵数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,2a n ,n 为偶数(n ∈N *),b n =a 2n -1,∴b 2=a 3=2a 2=2(a 1+1)=4,b 3=a 5=2a 4=2(a 3+1)=10, 同理,b n +1=a 2n +1=2a 2n =2(a 2n -1+1)=2(b n +1)=2b n +2.(2)①∵b 1=a 1=1,b 1+2≠0,b n +1+2b n +2=2b n +2+2b n +2=2,∴数列{b n +2}为等比数列.②由①知b n +2=3×2n -1,∴b n =3×2n -1-2,∴a 2n -1=3×2n -1-2,a 2n =a 2n -1+1=3×2n -1-1,∵a 2k ,a 2k +1,9+a 2k +2成等比数列, ∴(3×2k -2)2=(3×2k -1-1)(3×2k +8),令2k =t ,得(3t -2)2=⎝⎛⎭⎫32t -1(3t +8), 整理,得3t 2-14t +8=0,解得t =23或t =4,∵k ∈N *,∴2k =4,解得k =2.16.(2019·全国Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.16.解析 (1)由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2.又因为a 1-b 1=1, 所以{a n -b n }是首项为1,公差为2的等差数列.(2)由(1)知,a n +b n =12n -1,a n -b n =2n -1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.17.(2018·全国Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a nn.(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.17.解析 (1)由条件可得a n +1=2(n +1)na n .将n =1代入,得a 2=4a 1,而a 1=1,所以a 2=4.将n =2代入,得a 3=3a 2,所以a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由:由条件可得a n +1n +1=2a nn ,即b n +1=2b n .又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1,n ∈N *.18.已知数列{a n }的前n 项和为S n ,a 1=1,a n >0,S 2n =a 2n +1-λS n +1,其中λ为常数.(1)证明:S n +1=2S n +λ;(2)是否存在实数λ,使得数列{a n }为等比数列,若存在,求出λ;若不存在,说明理由.18.解析 (1)∵a n +1=S n +1-S n ,S 2n =a 2n +1-λS n +1,∴S 2n =(S n +1-S n )2-λS n +1,∴S n +1(S n +1-2S n -λ)=0,∵a n >0,∴S n +1>0,∴S n +1-2S n -λ=0;∴S n +1=2S n +λ. (2)存在λ=1,使得数列{a n }为等比数列,理由如下: S n +1=2S n +λ,S n =2S n -1+λ(n ≥2),相减得a n +1=2a n (n ≥2),∴{a n }从第二项起成等比数列,∵S 2=2S 1+λ,即a 2+a 1=2a 1+λ,∴a 2=1+λ>0,得λ>-1,∴a n =⎩⎪⎨⎪⎧1,n =1,(λ+1)2n -2,n ≥2,若使{a n }是等比数列,则a 1a 3=a 22,∴2(λ+1)=(λ+1)2,∴λ=-1(舍)或λ=1,经检验符合题意. 19.设等差数列{a n }的前n 项和为S n ,a =(a 1,1),b =(1,a 10),若a·b =24,且S 11=143,数列{b n }的前n项和为T n ,且满足12n a -=λT n -(a 1-1)(n ∈N *).(1)求数列{a n }的通项公式及数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和M n ;(2)是否存在非零实数λ,使得数列{b n }为等比数列?并说明理由. 19.解析 (1)设数列{a n }的公差为d ,由a =(a 1,1),b =(1,a 10),a·b =24,得a 1+a 10=24,又S 11=143,解得a 1=3,d =2, 因此数列{a n }的通项公式是a n =2n +1(n ∈N *), 所以1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3,所以M n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3=n6n +9(n ∈N *). (2)因为12n a -=λT n -(a 1-1)(n ∈N *),且a 1=3,所以T n =4n λ+2λ,当n =1时,b 1=6λ;当n ≥2时,b n =T n -T n -1=3·4n -1λ,此时有b nb n -1=4,若{b n }是等比数列,则有b 2b 1=4,而b 1=6λ,b 2=12λ,彼此相矛盾,故不存在非零实数λ使数列{b n }为等比数列. 20.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数).(1)试探究数列{a n +λ}是不是等比数列,并求a n ; (2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n .20.解析 (1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ).又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列,此时a n +λ=a n -1=0,即a n =1;当λ≠-1时,a 1+λ≠0,所以a n +λ≠0,所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ. (2)由(1)知a n =2n -1,所以n (a n +1)=n ×2n , T n =2+2×22+3×23+…+n ×2n ,① 2T n =22+2×23+3×24+…+n ×2n +1,②①-②得:-T n =2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )2n +1-2. 所以T n =(n -1)2n +1+2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差等比数列的证明在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。
一、基础知识:1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差),1n na q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =⋅≠(等比)(3)前n 项和:2n S An Bn =+(等差),n n S kq k =-(等比)(4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比)(2)也可利用等差等比中项来进行证明,即n N *∀∈,均有:122n n n a a a ++=+ (等差) 212n n n a a a ++=⋅ (等比)二、典型例题:例1:已知数列{}n a 的首项1133,,521nn n a a a n N a *+==∈+. 求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在1na 这样的倒数,所以考虑递推公式两边同取倒数:113121213n n n n n na a a a a a +++=⇒=+即112133n n a a +=+,在考虑构造“1-”:112111111333n n n a a a +⎛⎫-=+-=- ⎪⎝⎭即数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列思路二:代入法:将所证数列视为一个整体,用n b 表示:11n nb a =-,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换到n a 的递推公式中,进而可从n b 的递推公式出发,进行证明 解:令11n n b a =-,则11n n a b =+ ∴ 递推公式变为:11311311113211n n n n n b b b b b +++=⇒=+++⋅++1113333n n n n b b b b ++⇒+=+⇒={}n b ∴是公比为13的等比数列。
即数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列小炼有话说:(1)构造法:在构造的过程中,要寻找所证数列形式的亮点,并以此为突破对递推公式进行变形,如例1中就是抓住所证数列有一个“倒数”的特点,进而对递推公式作取倒数的变换。
所以构造法的关键之处在于能够观察到所证数列显著的特点并加以利用(2)代换法:此方法显得模式化,只需经历“换元→表示→代入→化简”即可,说两点:一是代换11n nb a =-体现了两个数列{}{},n n a b 的一种对应关系,且这种对应是同序数项的对应(第n 项对应第n 项);二是经过代换,得到{}n b 的递推公式,而所证n b 是等比数列,那么意味着其递推公式经过化简应当形式非常简单,所以尽管代入之后等式复杂,但坚定地化简下去,通常能够得到一个简单的答案。
个人认为,代入法是一个比较“无脑”的方法,只需循规蹈矩按步骤去做即可。
例2:数列{n a }的前n 项和为n S ,2131(*)22n n S a n n n N +=--+∈(*).设n n b a n =+,证明:数列{}n b 是等比数列,并求出{}n a 的通项公式思路:本题所给等式,n n S a 混合在一起,可考虑将其转变为只含n a 或只含n S 的等式,题目中n n b a n =+倾向于项的关系,故考虑消掉n S ,再进行求解解:213122n n S a n n +=--+ ① ()()()211131112,22n n S a n n n n N --+=----+≥∈ ②∴ ①- ②可得:112121n n n n a a n a a n ---=--⇒=--()()()1112112n n n n a n a n a n a n --∴+=+-⇒+=+-⎡⎤⎣⎦ 即112n n b b -= {}n b ∴是公比为12的等比数列 111b a =+ 令1n = 代入(*)可得:11131122S a +=--+=- 112a ∴=- 112b ∴=111122n n n b b -⎛⎫⎛⎫∴=⋅= ⎪⎪⎝⎭⎝⎭ 12nn n a b n n ⎛⎫∴=-=- ⎪⎝⎭小炼有话说:(1)遇到,n n S a 混合在一起的等式,通常转化为纯n a (项的递推公式)或者纯n S (前n 项和的递推公式),变形的方法如下:① 消去n S :向下再写一个关于1n S -的式子(如例2),然后两式相减(注意n 取值范围变化) ② 消去n a :只需1n n n a S S -=-代换即可(2,n n N ≥∈)(2),n n S a 混合在一起的等式可求出1a ,令1n =即可(因为11S a =)(3)这里体现出n n b a n =+的价值:等差等比数列的通项公式是最好求的:只需一项和公差(公比),构造出等差等比数列也就意味这其通项可求,而通过n n b a n =+也可将n a 的通项公式求出。
这里要体会两点:一是回顾依递推求通项时,为什么要构造等差等比数列,在这里给予了一个解释;二是体会解答题中这一问的价值:一个复杂的递推公式,直接求其通项公式是一件困难的事,而在第一问中,恰好是搭了一座桥梁,告诉你如何去进行构造辅助数列,进而求解原数列的通项公式。
所以遇到此类问题不要只停留在证明,而可以顺藤摸瓜将通项一并求出来例3:已知数列{}n a 满足:1116,690,n n n a a a a n N *--=-+=∈且2n ≥,求证:13n a ⎧⎫⎨⎬-⎩⎭为等差数列 解:设13n n b a =-,则13n na b =+代入11690n n n a a a ---+=可得:11111336390n n n b b b --⎛⎫⎛⎫⎛⎫++-⋅++= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭111133691890n n n n n b b b b b ---⇒+++--+= 111330n n n n b b b b --⇒-+=113n n b b -⇒-= {}n b ∴为等差数列,即13n a ⎧⎫⎨⎬-⎩⎭为等差数列例4:已知曲线:1C xy =,过C 上一点(),n n n A x y 作一斜率为12n n k x =-+的直线交曲线C 于另一点()111,n n n A x y +++(1n n x x +≠且0n x ≠,点列{}n A 的横坐标构成数列{}n x ,其中1117x =. (1)求n x 与1n x +的关系式; (2)令1123n n b x =+-,求证:数列{}n b 是等比数列; 解:(1)曲线1:C y x=()1:2n n n l y y x x x -=--+()11111121n n n n n n n nn y xy y x x x y x ++++⎧=⎪⎪⎪∴-=--⎨+⎪⎪=⎪⎩12n n n x x x +∴=+(2)11121233n n n n b x x b =+⇒=+--,代入到递推公式中可得:11112222111333n n n b b b +⎛⎫⎛⎫ ⎪ ⎪+⋅+=++ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭11111112211111133422=411133333333n n n n n n n n n n b b b b b b b b b b +++++++⎛⎫⎛⎫⎛⎫⎛⎫⋅=+⇒++-+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭---()()11111211444439339n n n n n n n n n b b b b b b b b b +++++⇒+++=-+-++()()1112433n n n n n b b b b b +++⇒+=-+ 12n n b b +⇒=- {}n b ∴是公比为2-的等比数列小炼有话说:本题(2)用构造法比较复杂,不易构造出n b 的形式,所以考虑用代入法直接求解例5:已知数列{}n a 满足()()1146410,21n n n a n a a a n N n *++++==∈+,判断数列221na n +⎧⎫⎨⎬+⎩⎭是否为等比数列?若不是,请说明理由;若是,试求出n a 解:设()221221n n n n a b a n b n +=⇒=+-+ 代入到()14641021n n n a n a n ++++=+可得:()()()14621241023221n n n n b n n b n +++-++⎡⎤⎣⎦+-=+()()()()123214222321812410n n n n b n n n b n n +⇔++--=++--++ ()()()()1232122321n n n n b n n b +⇔++=++12n n b b +⇔=而112233a ab ++==∴① 2a =-时,10b =,{}n b 不是等比数列② 2a ≠-时,{}n b 是等比数列,即221n a n +⎧⎫⎨⎬+⎩⎭为等比数列 11222213n n a a n -++∴=⋅+ ()()1221223n n a n a -++∴=⋅-例6:(2015山东日照3月考)已知数列{}n a 中,111,1,33,n n n a n n a a a n n +⎧+⎪==⎨⎪-⎩为奇数为偶数,求证:数列232n a ⎧⎫-⎨⎬⎩⎭是等比数列 思路:所证数列为232n a ⎧⎫-⎨⎬⎩⎭,可发现要寻找的是{}n a 偶数项的联系,所以将已知分段递推关系转变为2n a 与()21n a -之间的关系,再进行构造证明即可证明:由11,33,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数可得:()2211213n n a a n -=+- ()2122322n n a a n --=-⋅-Q()2221322213n n a a n n -∴=--+-⎡⎤⎣⎦ 22222112221133n n n a a n n a --∴=-++-=+222223111323232n n n a a a --⎛⎫∴-=-=- ⎪⎝⎭∴数列232n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列例7:(2015湖北襄阳四中阶段性测试)已知数列{}n a 满足11a =,且对任意非负整数(),m n m n >均有: ()22112m n m n m n a a m n a a +-++--=+ (1)求02,a a(2)求证:数列{}1m m a a +-是等差数列,并求出n a 的通项公式 解:(1)令m n =可得:202011m m a a a a +-=⇒=再令0n =可得:()201212m m a m a a +-=+ 2423m m a a m ∴=+- 21413a a ∴=-= 021,3a a ∴==(2)思路:考虑证明数列{}1m m a a +-是等差数列,则要寻找1m m a a +-,1m m a a --的关系,即所涉及项为11,,m m m a a a +-,结合已知等式令1n =,利用(1)中的2423m m a a m =+-,将2m a 代换为m a 即可证明,进而求出通项公式 证明:在()22112m n m n m n a a m n a a +-++--=+中令1n =得: ()1122122m m m a a m a a +-++-=+ 11222224m m m a a m a a +-∴++-=+由(1)得22423,3m m a a m a =+-=代入可得:11222442m m m a a m a m +-∴++-=+()()1111222m m m m m m m a a a a a a a +-+-∴+-=⇒---=∴ 数列{}1m m a a +-是公差为2的等差数列()()121212m m a a a a m m +∴-=-+-= ()121m m a a m -∴-=-()-1222m m a a m --=- M 212a a -=()()121211m a a m m m ∴-=+++-=-⎡⎤⎣⎦L()11m a m m ∴=-+例8:(2010 安徽,20)设数列12,,,,n a a a L L 中的每一项都不为0,求证:{}n a 是等差数列的充分必要条件是:对n N *∀∈都有1223111111n n n na a a a a a a a +++++=L思路:证明充要条件要将两个条件分别作为条件与结论进行证明,首先证明必要性,即已知等差数列证明恒等式。