圆锥曲线大题题型归纳演示教学
圆锥曲线专题题型小结ppt课件
2、两条直线 l1 : y k1x b1,l2 : y k2x b2 垂直:则 k1k2 1
3、一元二次方程根与系数的关系:若一元二次方程 ax2 bx c 0(a 0) 有两
个根 x1, x2 ,
则
x1
x2
b a
, x1x2
c a
。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
★ 变式1:过点P(8,1)的直线与双曲线 x2 y2 1
4
相交于A,B两点,且P为AB的中点,这样的直线 AB是否存在,如果存在,求出直线AB的直线方 程,若不存在,请说明理由。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
设
E(xE ,
yE ), F (xF ,
yF ) ,则
xE
(3 2k)2 12 3 4k 2
,
yE
k xE
3 2
k
以 - k代k得:xF
(3 2k)2 12 3 4k 2
,
yF
-k xF
3 2
k
KEF
yF xF
yE xE
k(xF xE ) 2k xF xE
1 2
即直线 EF 的斜率为定值,其值为 1 2
直线与圆锥曲线的位置关系
1.有关位置关系的问题:
例 1:已知直线 l : y kx 1与椭圆 C : x2 y2 1 4m
始终有交点,求 m 的取值范围
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
圆锥曲线解题方法与题型(含解析)
代入 y2=4x 得 x= 1 ,∴Q( 1 ,1 )
4
4
点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。
例 2、F 是椭圆 x 2 + y 2 = 1 的右焦点,A(1,1)为椭圆内一定点,P 为椭圆 43
一动点。
(1) PA + PF 的最小值为 (2) PA + 2 PF 的最小值为
+9 4 x02
= (4x02
+ 1) + 9 −1 4x02 + 1
≥ 2 9 −1 = 5,
y0
≥
5 4
当 4x02+1=3
即
x0 = ±
2 2
时, ( y0 ) min
=
5 4
此时 M (±
2 , 5) 24
法二:如图, 2 MM 2 = AA2 + BB2 = AF + BF ≥ AB = 3
即 y=2 2 (x-1),代入 y2=4x 得 P(2,2 2 ),(注:另一交点为( 1 ,− 2 ),它为直线 AF 与抛物线的另一交点, 2
舍去)
3
圆锥曲线解题方法与题型(解析)
(2)( 1 ,1 ) 4
过 Q 作 QR⊥l 交于 R,当 B、Q、R 三点共线时, BQ + QF = BQ + QR 最小,此时 Q 点的纵坐标为 1,
y AP
F0 F ′
上
H x
分析:PF 为椭圆的一个焦半径,常需将另一焦半径 PF ′ 或准线作出来考虑问题。
解:(1)4- 5 设另一焦点为 F ′ ,则 F ′ (-1,0)连 A F ′ ,P F ′ PA + PF = PA + 2a − PF ′ = 2a − ( PF ′ − PA ) ≥ 2a − AF ′ = 4 − 5
圆锥曲线题型归纳总结精品PPT课件
双曲线的定义:
平面内到两定点 F 1 ,F 2 的距离的差的绝对值等于
常数(小于
F
1
F
)的点的轨迹叫做双曲线,两个定
2
点 F 1 ,F 2 叫做双曲线的焦点,两焦点间的距离叫
做双曲线的焦距.
可以用数学表达式来体现:
设平面内的动点为M,有 MF1MF2 2a (0<2a< F 1 F 2 的常数) 思考:
直线L的距离)
说明:
1、椭圆、双曲线、抛物线统称为圆锥曲线. 2、我们可利用上面的三条关系式来判断动 点M的轨迹是什么!
例1 已知∆ABC中,B(-3,0),C(3,0),
且AB,BC,AC成等差数列。
(1)求证:点A在一个椭圆上运动; (2)写出这个椭圆的焦点坐标。 证:(1)根据条件有AB+AC=2BC,
离相等的点的轨迹是以__F__(0__,1_)_为__焦__点__,______ __直__线__y_=_-_1_为__准__线__的__抛__物__线__.
1、已知∆ABC中,BC长为6,周长为16,那么 顶点A在怎样的曲线上运动?
2、kb P26 3
1.三种圆锥曲线的形成过程 2.椭圆的定义 3.双曲线的定义 4.抛物线的定义
在双曲线的定义中,如果这个常数大于或 等于F 1 F 2,动点M的轨迹又如何呢?
抛物线的定义 :
平面内到一个定点F和一条定直线L(F不在L 上)的距离相等的点轨迹叫做抛物线,定点F叫做 抛物线的焦点,定直线L叫做抛物线的准线.
可以用数学表达式来体现: 设平面内的动点为M ,有 MF=d(d为动点M到
的点的轨迹叫做双曲线,
两个定点F1,F2叫做双
二轮复习Ⅴ3大题考法——直线与圆锥曲线的简单应用及最值范围问题课件(33张)
方法例解 [典例] (2021·全国甲卷)抛物线C的顶点为坐标原点O,焦点在x 轴上,直
线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相切. (1)求C,⊙M的方程; (2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⊙M相切.判断直
2.已知椭圆E:xa22+by22=1(a>b>0)的四个顶点中的三个是边长为2 3的等边三角 形的三个顶点.
(1)求椭圆E的方程;
(2)设直线y=kx+m与圆O:x2+y2=
2b2 3
相切且交椭圆E于M,N两点,求
|MN|的最大值.
解:(1)由题意得,椭圆上、下两顶点与左、右顶点中的一个是边长为2 3 的
所以当―M→Q =3―N→Q ,即y1=3y2时,结合③得a2=2>43,所以椭圆C的方程为x22+y2=1; 当―M→Q =-3―N→Q ,即y1=-3y2时,结合③得a2=12>43,所以椭圆C的方程为1x22+y62=1. 综上,椭圆C的方程为x22+y2=1或1x22 +y62=1.
题型(二) 圆锥曲线中的最值问题
-4(5k2+4)×25=400(k2-1)>0,
故k>1或k<-1.
由根与系数的关系, 得x1+x2=-5-k23+0k4=5k320+k 4,x1x2=5k22+5 4, 进而可得y1+y2=k(x1+x2)-6=-5k22+4 4, y1y2=(kx1-3)(kx2-3)=k2x1x2-3k(x1+x2)+9=356k-2+204k2. 直线AB的方程为y+2=y1x+1 2x,令y=-3, 则x=-y1x+1 2,故点M-y1x+1 2,-3.
2022届数学圆锥曲线题型归纳讲义 (3)
高考中的圆锥曲线问题题型一范围问题例1 已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率e=√32,直线x+√3y-1=0被以椭圆C的短轴为直径的圆截得的弦长为√3.(1)求椭圆C的标准方程;(2)过点M(4,0)的直线l交椭圆于A,B两个不同的点,且λ=|MA|∙|MB|,求λ的取值范围思维总结:解决圆锥曲线中的取值范围问题需要从以下几个方面考虑:(1)利用圆锥曲线的几何关系或判别式构造不等关系,确定参数的取值范围(2)利用已知的范围求新参数范围时,着重去寻找并建立两个参数之间的等量关系式(3)利用题目中隐含的不等关系构造不等式,确定参数的取值范围(4)利用题目中已知的不等关系构造不等式,确定参数的取值范围(5)利用函数中求值域的方法,把需要求的量表示为其他相关变量的函数,求函数的值域,确定出参数的取值范围。
变式1 已知F1,F2是椭圆C:x 2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△PO F2为等边三角形,求C的离心率(2)如果存在点P,是的P F1⊥P F2,且△F1P F2的面积等于16,求b的值和a 的取值范围.题型二最值问题例2(几何法求最值)已知抛物线C1:y²=4x和C2:x²=2py(p>0)的焦点分别为F1,F2,点P(-1,-1)且F1F2⊥OP(O为坐标原点).(1)求抛物线C2的方程;(2)过点O的直线交C1的下半部分于点M,交C2的左半部分于点N,求△PMN 面积的最小值.例3(代数法求最值)在平面直角坐标系中,O为坐标原点,圆O交x轴于点F1,F2,交y轴于点B1,B2,以B1,B2为顶点,F1,F2分别为左右焦点的椭圆E恰好).经过点(1,√22(1)求椭圆E的标准方程;(2)设经过点(-2,0)的直线l与椭圆E交于M、N两点,,求△F2MN面积的最大值.思维总结:圆锥曲线最值问题的两种求解方法1.利用几何法,利用圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2.利用代数法,把要求最值的几何量或代数表达式表示为某个(某些)参数的函数(或解析式),利用函数方法或不等式等方法进行求解.变式2 已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y²=4x上一动点P到直线l1和直线l2的距离之和的最小值是 .变式3 椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√63,短轴一个端点到右焦点的距离为√3.(1)求椭圆C的方程(2)设斜率存在的直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为√32,求△AOB面积的最大值.题型三定点问题例4 已知椭圆C:x 2a2+y2b2=1(a>b>0)的左右焦点分别为F1(−√3,0),F2(√3,0),且经过点A(√3,12).(1)求椭圆C的标准方程;(2)过定点B(4,0)的一条斜率不为0的直线l与椭圆C相交于P、Q两点,记点P关于x轴对称的点为P′,证明:直线P′Q经过x轴上一定点D,并求出定点D的坐标.思维总结:求圆锥曲线综合问题的一般步骤(1)求出圆锥曲线方程(一般根据待定系数法或定义法);(2)设直线方程并于曲线方程联立,得到关于x或y的一元二次方程;(3)写出根与系数的关系(或求出交点坐标);(4)将第三步得出的关系式代入,解决范围、最值或定点、定值等问题;(5)反思回顾,考虑方程有解条件和图形的完备性.变式4 已知椭圆C:x 22+y2=1的右焦点为F,过点F的直线(不与x轴重合)与椭圆C相交于A,B两点,直线l:x=2与x轴相交于点H,过点A作AD⊥l,垂足为D.(1)求四边形QAHB(O为坐标原点)的面积的取值范围;(2)证明:直线BD过定点E,并求出点E的坐标.题型四定值问题例5 设F1,F2为椭圆x 24+y2b2=1(b>0)的左、右焦点,M为椭圆上一点,满足M F1⊥M F2,已知△M F1F2的面积为1.(1)求椭圆C的方程;(2)设C的上顶点为H,过点(2,-1)的直线与椭圆交于R,S两点(异于H),求证:直线HR和HS的斜率之和为定值,并求出这个定值.思维总结:圆锥曲线定值问题的常见类型及解题思路(1)求代数式为定值:根据题意设出条件,得到与代数式中参数相关的等式,代入代数式中,从而化简得出定值.(2)求点到直线的距离为定值:利用点到直线的距离公式得到相关的解析式,利用题设条件化简、变形得出定值.(3)求线段长度为定值:利用长度公式求得解析式,再根据题目中的条件对解析式进行化简、变形得出定值.变式5 已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M、N在C上,且AM⊥AN,AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.题型五证明问题例6 设椭圆E:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过点F1的直线交椭圆E于A,B两点.若椭圆E的离心率为√22,△AB F2的周长为4√6. (1)求椭圆E的方程;(2)设不经过椭圆的中心而平行于弦AB的直线交椭圆E于点C,D,设弦AB,CD的中点分别为M,N,证明:O,M,N三点共线.思维总结:圆锥曲线中证明问题常见的有以下两种:(1)位置关系:如证明直线与曲线相切,直线间的平行,垂直,直线过定点等;(2)数量关系:如存在定值,恒成立,相等等。
圆锥曲线压轴大题五个方程框架十种题型(解析版)
第27讲 圆锥曲线压轴大题十类【题型一】 五个方程题型框架【典例分析】已知圆C 经过两点A (2,2),B (3,3),且圆心C 在直线x -y +1=0上. (1)求圆C 的标准方程;(2)设直线l :y =kx +1与圆C 相交于M ,N 两点,O 为坐标原点,若645OM ON ⋅=,求|MN |的值. 【答案】(1)22(2)(3)1x y -+-=(225【分析】(1)设圆C 的方程为()222()()0x a y b r r -+->=,由已知列出关于a ,b ,r 的方程组求解即可得答案;(2)设1(M x ,1)y ,2(N x ,2)y ,将1y kx =+代入22(2)(3)1x y -+-=,利用根与系数的关系结合向量数量积的坐标运算求出k 值,再利用弦长公式即可求解.(1)解:设所求圆C 的标准方程为()222()()0x a y b r r -+->=,由题意,有222222(2)(2)(3)(3)10a b r a b r a b ⎧-+-=⎪-+-=⎨⎪-+=⎩,解得231a b r =⎧⎪=⎨⎪=⎩,所以圆C 的标准方程为22(2)(3)1x y -+-=;(2)解:设1(M x ,1)y ,2(N x ,2)y ,将1)1y kx =+。
方程( 代入22)(22)(3)1x y -+-=。
方程(, 整理得22)(1)4(1)703k x k x +-++=。
方程(, 所以1224(1)4)1k x x k ++=+。
方程(,1225)71x x k =+。
方程( 0∆>,所以2121212122(1)()14(1)648156)OM ON x x y y k x x k x x k k k ⋅=+=+++++=+=+。
方程(,解得2k =或3k =,检验3k =时,∆<0不合题意,所以2k =,所以12125x x +=,1275x x =,所以2212725||12()455MN =+-⨯【变式演练】1.椭圆C :22143x y +=的左右焦点分别为1F ,2F ,P 为椭圆C 上一点.(1)当P 为椭圆C 的上顶点时,求12F PF ∠;(2)若12F P F P ⊥,求满足条件的点P 的个数;(直接写答案) (3)直线()1y k x =-与椭圆C 交于A ,B ,若165AB =,求k . 【答案】(1)1260F PF ∠=︒(2)0(3)3k =【分析】(1)由椭圆的方程可得122PF PF ==,1223F F =(2)结合(1)的答案可得点P 的个数;(3)联立直线与椭圆的方程消元,利用弦长公式求解即可.解(1)因为椭圆C :22143x y +=的左右焦点分别为1F ,2F ,P 为椭圆C 的上顶点所以()11,0F -,()21,0F ,(3P所以122PF PF ==,122F F =,所以1260F PF ∠=︒ (2)若12F P F P ⊥,满足条件的点P 的个数为0(3)设()()1122,,,A x y B x y ,联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩可得()22224384120k x k x k +-+-= 所以221212228412,4343k k x x x x k k -+==++所以()()()()2222222121222212181648161414343435k k k AB k x x x x k k k k ⎡⎤+⎛⎫-⎡⎤=++-+-==⎢⎥ ⎪⎣⎦+++⎢⎥⎝⎭⎣⎦解得3k =2.已知动点P 到点(0,1)的距离与到直线y =22,动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线y =kx +1与曲线C 交于A ,B 两点,点M (0,2),证明:直线MA ,MB 的斜率之和为0.【答案】(1)2212y x +=(2)证明见解析【分析】(1)根据题意,结合两点间距离公式进行求解即可;(2)直线y =kx +1与曲线C 方程联立,根据一元二次方程根与系数关系,结合斜率公式进行求解即可.解(1)设点P 的坐标为P (x ,y )22(1)2x y +-,整理可得曲线C 的轨迹方程为2212y x +=; (2)证明:设A (x 1,y 1),B (x 2,y 2),与直线方程联立可得:(k 2+2)x 2+2kx ﹣1=0,则:12122221,22k x x x x k k --+==++, 121212122211MA MBy y kx kx k k x x x x ----+=+=+=22121212121222()220kk kx x x x k k x x x x --⋅--+++==, 从而直线MA ,MB 的斜率之和为0.3.设椭圆()222210x y a b a b+=>>的左焦点为F ,离心率为12,过点F 且与x 轴垂直的直线被椭圆截得的线段长为3.(1)求椭圆的方程;(2)设A 为椭圆的下顶点,B 为椭圆的上顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若10AC DB AD CB ⋅+⋅=,求k 的值.【答案】(1)22143x y +=;(2)2k = 【分析】(1)根据椭圆离心率公式,结合代入法进行求解即可;(2)根据平面向量数量积坐标表示公式,结合一元二次方程根与系数关系进行求解即可.【详解】:(1)由题意可得,(c,0)F ,当x c =时,2222222221(1)c y c b y b y a b a a +=⇒=-⇒=±,所以得:22221223c e a b a a b c ⎧==⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得231a b c =⎧⎪=⎨⎪=⎩22143x y +=;(2)由(1)可知,()1,0F -,(0,3A ,(3B ,过点F 且斜率为k 的直线方程为()1y k x =+,联立方程()221143y k x x y ⎧=+⎪⎨+=⎪⎩,可得()22224384120k x k x k +++-=,设()11,C x y ,()22,D x y ,则2122843k x x k +=-+,212241243k x x k -=+,故()()()222121212122911143k y y k x x k x x x x k =++=+++=-+,又(11,3AC x y =,()223DB x y =-,(22,3AD x y =,()113CB x y =-, 所以AC DB AD CB ⋅+⋅ ()()()121212213333x x y y x x y y =-+-+1212622x x y y =--22224129622104343k k k k ⎛⎫-=-⨯-⨯-= ⎪++⎝⎭,整理可得22512243k k +=+,解得2k =± 【题型二】 直线设法【典例分析】已知抛物线2:2C y x =,过点()2,0P 的直线l 交抛物线C 于A ,B 两点. (1)求抛物线的焦点坐标及准线方程; (2)证明:以线段AB 为直径的圆过原点O .【答案】(1)焦点坐标1,02F ⎛⎫ ⎪⎝⎭,准线方程12x =-;(2)证明见解析.【分析】(1)由抛物线的标准方程即可求解.(2)方法一:讨论直线l 斜率存在或不存在,将直线与抛物线联立,证出12120OA OB x x y y ⋅=+=即可证明;方法二:当直线斜率为0或者设:2l x my =+,将直线与抛物线联立,证明0OA OB ⋅=即可证明. 【详解】(1)由抛物线的标准方程:22y x =焦点坐标1,02F ⎛⎫ ⎪⎝⎭,准线方程12x =-.(2)法一:①当直线l 斜率不存在时,:2l x =,()2,2A ,()2,2B -,0OA OB ⋅=. ①当直线l 斜率存在时,设():2l y k x =-,()11,A x y ,()22,B x y ,由()222y x y k x ⎧=⎪⎨=-⎪⎩得()22224240k x k x k -++=,200k ⎧≠⎨∆>⎩得0k ≠,①212242k x x k ++=,124x x =, ①()()()()222212121212121222124OA OB x x y y x x k x x k x x k x x k ⋅=+=+--=+-++()222224241240k k k k k+=+-+=.综上所述0OA OB ⋅=,①OA OB ⊥,故以线段AB 为直径的圆过原点O . 法二:当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,()11,A x y ,()22,B x y ,联立222y xx my ⎧=⎨=+⎩,得2240y my --=,24160m ∆=+>,122y y m +=,124y y =-.①()()()()212121212121222124OA OB x x y y my my y y m y y m y y ⋅=+=+++=++++()()2412240m m m =-+++=.①OA OB ⊥,故以线段AB 为直径的圆过原点O .【变式演练】1.已知椭圆E :过点,且离心率为.22221(a 0)x y b ab 2)22(Ⅰ)求椭圆E 的方程;(Ⅱ)设过点(0,-1)直线交椭圆E 于A ,B 两点,判断点G 与以线段AB 为直径的圆的位置关系,并说明理由.试题解析:解法一:(Ⅰ)由已知得解得所以椭圆E 的方程为..(Ⅱ)设点,则 由所以 从而2.已知双曲线E :()222210,0x y a b a b -=>>的离心率为2,点()2,3P 在E 上,F 为E 的右焦点.(1)求双曲线E 的方程;(2)设Q 为E 的左顶点,过点F 作直线l 交E 于,A B (,A B 不与Q 重合)两点,点M 是AB 的中点,求证:2AB MQ =.【答案】(1)2213y x -=;(2)证明见解析. 【分析】(1)根据离心率和椭圆上的点可构造方程组求得双曲线方程;(2)易知直线l 斜率不为0,设:2l x ty =+,与双曲线方程联立后可得韦达定理的形式,根据向量数量积的坐标运算,结合韦达定理可得0QA QB ⋅=,证得QA QB ⊥,由直角三角形的性质可得结论. 解(1)由已知可得2c e a ==,2222214c b e a a∴==+=,解得:223b a =…①,又点()2,3P 在E 上,22491a b ∴-=…①,由①①可得:21a =,23b =,∴双曲线E 的方程为2213y x -=; (2)当l 的斜率为0时,此时,A B 中有一点与Q 重合,不符合题意. 当l 斜率不为0时,设:2l x ty =+,()11,A x y ,()22,B x y ,9(4-,0)2222,2,2,bca abc 222a b c 22142x y 1122(y ),B(,y ),A x x 112299GA(,),GB (,).44x y x y 22221(m 2)y 230,142x my my x y得12122223y +y =,y y =m 2m 2m ,121212129955GA GB()()(my )(my )4444x x y y y y 22212122252553(m +1)25(m +1)y (y )4162(m 2)m 216m y m y 22172016(m 2)m联立22233x ty x y =+⎧⎨-=⎩得:()22311290t y ty -++=,则22Δ36360310t t ⎧=+>⎨-≠⎩,解得:213t ≠. ∴1221231t y y t -+=-,122931y y t =- ∴()()()()()()1122121212121,1,1133QA QB x y x y x x y y ty ty y y ⋅=+⋅+=+++=+++()()()()2212122291312139903131t t t t y y t y y t t +-=++++=++=--,QA QB ∴⊥,则QAB 是直角三角形,AB 是斜边, 点M 是斜边AB 的中点,12MQ AB ∴=,即2AB MQ =. 3. 如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左右焦点分别为,线段的中点分别为,且△ 是面积为4的直角三角形。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)
题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
高中数学直线和圆锥曲线常考题型汇总及例题解析
高中数学直线和圆锥曲线常考题型汇总及例题解析题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题题型九:四点共线问题题型十:范围问题(本质是函数问题)题型十一:存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)【题型一】数形结合确定直线和圆锥曲线的位置关系【题型二】弦的垂直平分线问题【题型三】动弦过定点的问题【题型四】过已知曲线上定点的弦的问题【题型五】共线向量问题【题型六】面积问题【题型七】弦或弦长为定值问题【题型八】角度问题【题型九】四点共线问题【题型十】范围问题(本质是函数问题)【题型十一】存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)例题&解析集合例1:例2:例3:例4:例5:例6:刷有所得:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.例7:答案:解析:刷有所得:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.例8:解析:定点问题例9:解析:例10:例11:解析:例12:例13:答案:例14:例15:解析:离心率问题例16:答案:D解析:刷有所得:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 例17:答案:C 解析:例18:答案:C解析:刷有所得:求离心率的值或范围就是找的值或关系。
圆锥曲线大题全攻略含答案详解
圆锥曲线大题全攻略含答案详解本文介绍了圆锥曲线中常见的问题和解题技巧,包括求轨迹方程问题、定点问题、定值问题、最值问题、点差法解决中点弦问题、常见几何关系的代数化方法、非对称“韦达定理”问题处理技巧、三点共线问题、巧用曲线系方程解决四点共圆问题、抛物线中阿基米德三角形的常见性质及应用、双切线题型等。
求轨迹方程问题是圆锥曲线中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。
直译法的步骤是设求轨迹的点为P(x,y),由已知条件建立关于x,y的方程,化简整理;相关点法的步骤是设求轨迹的点为P(x,y),相关点为Q(xO,yO),根据点的产生过程,找到(x,y)与(xO,yO)的关系,并将xO,yO用x和y表示,将(xO,yO)代入相关点的曲线,化简即得所求轨迹方程;定义法的步骤是分析几何关系,由曲线的定义直接得出轨迹方程;参数法的步骤是引入参数,将求轨迹的点(x,y)用参数表示,消去参数,研究范围。
本文还给出了四个例题,分别是求点P的轨迹方程、求动点M的轨迹方程、求动点Q的轨迹方程、求AB中点M的轨迹方程。
最后,给出两道专题练题,帮助读者巩固所学知识。
3.抛物线C的焦点为F,点A在抛物线上运动,点P满足AP=-2FA,求动点P的轨迹方程。
改写:已知抛物线C的焦点为F,点A在抛物线上运动,设点P的坐标为(x,y),则有AP=-2FA,求P的轨迹方程。
4.已知定圆M的方程为(x+y+4)^2=100,定点F的坐标为(0,4),动圆P过定点F且与定圆M内切,求动圆圆心P的轨迹方程。
改写:已知定圆M的方程为(x+y+4)^2=100,定点F的坐标为(0,4),设动圆P的圆心坐标为(x,y),则P过定点F且与定圆M内切,求P的轨迹方程。
5.已知定直线l的方程为x=-2,定圆A的方程为(x-4)^2+y^2=16,动圆H与直线l相切,与定圆A外切,求动圆圆心H的轨迹方程。
改写:已知定直线l的方程为x=-2,定圆A的方程为(x-4)^2+y^2=16,设动圆H的圆心坐标为(x,y),则H与直线l相切,与定圆A外切,求H的轨迹方程。
2025高考数学必刷题 第81讲、圆锥曲线拓展题型一(教师版)
第81讲圆锥曲线拓展题型一必考题型全归纳题型一:定比点差法例1.已知椭圆2222:1x y C a b+=(0a b >>)的离心率为2,过右焦点F 且斜率为k (0k >)的直线与C 相交于A ,B 两点,若3AF FB =,求k【解析】由e =,可设椭圆为2224x y m +=(0m >),设11(,)A x y ,22(,)B x y,,0)F ,由3AF FB =,所以12123133013x x y y +=+⎨+⎪=⎪+⎩,1212330x x y y ⎧+=⎪⇒⎨+=⎪⎩.又2221122222(1)4(2)4x y m x y m ⎧+=⎪⎪⎨⎪+=⎪⎩2221122222(1)4(2)9999(3)4x y m x y m λ⎧+=⎪⎪⨯⎨⎪+=⎪⎩ 按配型由(1)-(3)得212121212(3)(3)(3)(3)84x x x x y y y y m +-++-=-128333x x ⇒-=-,又123x x +=1233x m ⇒=236(,33A ⇒±.又,0)Fk ⇒=.例2.已知22194x y +=,过点(0,3)P 的直线交椭圆于A ,B (可以重合),求PA PB 取值范围.【解析】设11(,)A x y ,22(,)B x y ,(0,3)P ,由AP PB λ=,所以12120131x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩121203(1)x x y y λλλ+=⎧⇒⎨+=+⎩.由221122224936(1)4936(2)x y x y ⎧+=⎪⎨+=⎪⎩221122222224936(1)4)936()2(3x y x y λλλ⎧+=⎪⎨+=⎪⨯⎩配比由(1)-(3)得:()()()()()21212121249361x x x x y y y y λλλλλ⇒+-++-=-()()12413y y λλ-⇒-=,又()1231y y λλ+=+11356y λ+⇒=,又[]12,2y ∈-15,5λ⎡⎤⇒∈--⎢⎣⎦,从而1,55PA PB λ⎡⎤=∈⎢⎥⎣⎦.例3.已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ= ,22PF F B μ=若2λ=,求μ的值.【解析】设()00,P x y ,11(,)A x y ,22(,)B x y ,,由11PF F A λ= ,22PF F B μ=得①()1,0F c -满足()0101010111001x x c x x c y y y y λλλλλλλ+⎧-=⎪⎧+=-+⎪⎪+⇒⎨⎨++=⎪⎩⎪=⎪+⎩()2,0F c 满足()0202020211001x x c x x c y y y y μμμμμμμ+⎧=⎪⎧+=-++⎪⎪⇒⎨⎨++=⎪⎩⎪=⎪+⎩②由2200222211221(1)1(2)x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩⇒2200222222211221(1)(3)x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩③由(1)-(3)得:()()()()010101012221x x x x y y y yx a b λλλλ-+-++=-()()()()()()2010*******x x x x a a x x c λλλλλλ-+⇒=⇒-=---+,又()()011x x c λλ+=-+222202a c a c x c c λ-+⇒=-,同理可得222202a c a c x c c μ-+=-+()()2222222222108a c a c a c c c a c λμλμμ-++⇒+=⋅⇒+=⋅=⇒=-.变式1.设1F ,2F 分别为椭圆2213x y +=的左、右焦点,点A ,B 在椭圆上,若125F A F B = ,求点A 的坐标【解析】记直线1F A 反向延长交椭圆于1B ,由125F A F B = 及椭圆对称性得1115AF F B =,设11(,)A x y ,22(,)B x y,(F .①由定比分点公式得12125155015x x y y +⎧=⎪⎪+⎨+⎪=⎪+⎩1212550x x y y ⎧+=-⎪⇒⎨+=⎪⎩②又221122221(1)31(2)3x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩221122221(1)4(2)25252525(3)3x y x y λ⎧+=⎪⎪⨯⎨⎪+=⎪⎩ 按配型③由(1)-(3)得12121212(5)(5)(5)(5)243x x x x y y y y +-++-=-125x x ⇒-=,又125x x +=-10x ⇒=(0,1)A ⇒±.变式2.已知椭圆22:12C x y +=,设过点()2,2P 的直线l 与椭圆C 交于A ,B ,点Q 是线段AB 上的点,且112PA PB PQ+=,求点Q的轨迹方程.【解析】设11(,)A x y ,22(,)B x y ,()00,Q x y 由112PA PB PQ +=22PQ PQ PA AQ PB QB PA PB PA PB-+⇒+=⇒+=0AQ QB PA AQPA PB PB QB -⇒+=⇒=,记()0AP AQ PB QBλλ==> ,即AP PB λ=- ,AQ QB λ=.①AP PB λ=- ,由定比分点得:()()1212121222112121x x x x y y y y λλλλλλλλ-⎧=⎪⎧-=-⎪⎪-⇒⎨⎨--=-⎪⎪⎩=⎪-⎩AQ QB λ= ,由定比分点得()()121201212001111x x x x x x y y y y y y λλλλλλλλ+⎧=⎪⎧+=+⎪⎪+⇒⎨⎨++=+⎪⎪⎩=⎪+⎩②又2211222222(1)22(2)x y x y ⎧+=⎪⎨⎪+=⎩22112222222222(1)22(23())x y x y λλλλ⎧+=⎪⎨⎪⨯+=⎩配比③由(1)-(3)得:()()()()()212121212221x x x x y y y y λλλλλ+⋅-+⋅+⋅-=-()()()()()20021141121x y λλλλλ⇒+⋅-+⋅+⋅-=-00242x y ⇒+=,即()2200002122x y x y +=+<.题型二:齐次化例4.已知抛物线2:4C y x =,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:90POQ ︒∠=.【解析】直线()()1122:4,,,,PQ x my P x y Q x y =+由4x my =+,得14x my-=则由244x my y x =+⎧⎨=⎩,得:244x my y x -=⋅,整理得:210y y m x x ⎛⎫+-= ⎪⎝⎭,即:12121y y x x ⋅=-.所以12121OP OQ y y k k x x ⋅==-,则OP OQ ⊥,即:90POQ ︒∠=.例5.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.【解析】设直线()()1122:(1)1,,,,PQ mx n y P x y Q x y ++=则21m n +=.由22(1)112mx n y x y ++=⎧⎪⎨+=⎪⎩,得:22[(1)1]12x y ++-=.则22(1)2(1)[(1)]02x y y mx n y ++-+++=,故2111(12)202y y n m x x ++⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭.所以1212112221y y m x x n +++==-.即1212112AP AQ y y k k x x +++=+=.例6.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.【解析】设直线:(1)1l mx n y +-=......(1)由22:14x C y +=,得22[(1)1]14x y +-+=即:22(1)2(1)04x y y +-+-=......(2)由(1)(2)得:22(1)2(1)[(1)]04x y y mx n y +-+-+-=整理得:2111(12)204y y n m x x --⎛⎫++⋅+= ⎪⎝⎭则221212112112P A P B y y mk k x x n--+=+=-=-+,则221m n =+,代入直线:(1)1l mx n y +-=,得::(21)2(1)2l n x n y ++-=显然,直线过定点(2,1)-.变式3.已知椭圆22:13x C y +=,()0,1B ,P ,Q 为上的两个不同的动点,23BP BQ k k =,求证:直线PQ过定点.【解析】设直线PQ 方程为:y kx b =+则()2222213163303x y k x kbx b y kx b ⎧+=⎪⇒+++-=⎨⎪=+⎩即12221226133313kb x x k b x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,又因为()()()21212121212121211111123BP BQkx x k b x x b y y kx b kx b k k x x x x x x +-++---+-+-=⋅===化简得()221223b b b -=-⇒=-或1b =(舍去).即PQ 直线为3y kx =-,即直线PQ 过定点()0,3-.题型三:极点极线问题例7.(2024·全国·高三专题练习)椭圆方程2222:1(0)x y a b a b Γ+=>>,平面上有一点00(,)P x y .定义直线方程0022:1x x y y l a b +=是椭圆Γ在点00(,)P x y 处的极线.已知椭圆方程22:143x y C +=.(1)若0(1,)P y 在椭圆C 上,求椭圆C 在点P 处的极线方程;(2)若00(,)P x y 在椭圆C 上,证明:椭圆C 在点P 处的极线就是过点P 的切线;(3)若过点(4,0)P -分别作椭圆C 的两条切线和一条割线,切点为X ,Y ,割线交椭圆C 于M ,N 两点,过点M ,N 分别作椭圆C 的两条切线,且相交于点Q .证明:Q ,X ,Y 三点共线.【解析】(1)由题意知,当01x =时,032y =±,所以3(1,2P 或3(1,2P -.由定义可知椭圆C 在点00(,)P x y 处的极线方程为00143x x y y+=,所以椭圆C 在点3(1,)2P 处的极线方程为142x y+=,即240x y +-=点3(1,2P -处的极线方程为142x y -=,即240x y --=(2)因为00(,)P x y 在椭圆C 上,所以2222000013434120x y x y ++=⇒-=,由定义可知椭圆C 在点00(,)P x y 处的极线方程为00143x x y y+=,当00y =时,02x =±,此时极线方程为2x =±,所以P 处的极线就是过点P 的切线.当00y ≠时,极线方程为00000331434+=⇒=-+x x y y x y x y y .联立00022334143x y x y y x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得20220002021836312094x x x y y x y ⎛⎫-++-= ⎪⎝⎭.()222002002222000036318936()4(3)(12)04142x y x x y y y y ∴⋅--+-=-∆==+.综上所述,椭圆C 在点P 处的极线就是过点P 的切线;(3)设点00(,)Q x y ,11(,)M x y ,22(,)N x y ,由(2)可知,过点M 的切线方程为111:143x x y yl +=,过点N 的切线方程为222:143x x y yl +=.因为1l ,2l 都过点00(,)Q x y ,所以有10102020143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,则割线MN 的方程为000:143x x y yl +=;同理可得过点(4,0)P -的两条切线的切点弦XY 的方程为34:114xl x -=⇒=-.又因为割线MN 过点(4,0)P -,代入割线方程得04114x x -=⇒=-.所以Q ,X ,Y 三点共线,都在直线1x =-上.例8.(2024·全国·高三专题练习)阅读材料:(一)极点与极线的代数定义;已知圆锥曲线G :22220Ax Cy Dx Ey F ++++=,则称点P (0x ,0y )和直线l :()()00000Ax x Cy y D x x E y y F ++++++=是圆锥曲线G 的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x+替换x (另一变量y 也是如此),即可得到点P (0x ,0y )对应的极线方程.特别地,对于椭圆22221x y a b+=,与点P (0x ,0y )对应的极线方程为00221x x y y a b +=;对于双曲线22221x y b b-=,与点P (0x ,0y )对应的极线方程为00221x x y y a b -=;对于抛物线22y px =,与点P (0x ,0y )对应的极线方程为()00y y p x x =+.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系.(二)极点与极线的基本性质、定理①当P 在圆锥曲线G 上时,其极线l 是曲线G 在点P 处的切线;②当P 在G 外时,其极线l 是曲线G 从点P 所引两条切线的切点所确定的直线(即切点弦所在直线);③当P 在G 内时,其极线l 是曲线G 过点P 的割线两端点处的切线交点的轨迹.结合阅读材料回答下面的问题:(1)已知椭圆C :22221(0)x y a b a b +=>>经过点P (4,0)C 的方程并写出与点P 对应的极线方程;(2)已知Q 是直线l :142y x =-+上的一个动点,过点Q 向(1)中椭圆C 引两条切线,切点分别为M ,N ,是否存在定点T 恒在直线MN 上,若存在,当MT TN =时,求直线MN 的方程;若不存在,请说明理由.【解析】(1)因为椭圆22221(0)x y a b a b +=>>过点P (4,0),则2222140a b +=,得4a =,又2c e a ==,所以c =,所以2224b a c =-=,所以椭圆C 的方程为221164x y +=.根据阅读材料,与点P 对应的极线方程为401164x y ⨯+=,即40x -=;(2)由题意,设点Q 的坐标为(0x ,0y ),因为点Q 在直线142y x =-+上运动,所以00142y x =-+,联立221164142x y y x ⎧+=⎪⎪⎨⎪=-+⎪⎩,得28240x x -+=,Δ64424320=-⨯=-<,该方程无实数根,所以直线142y x =-+与椭圆C 相离,即点Q 在椭圆C 外,又QM ,QN 都与椭圆C 相切,所以点Q 和直线MN 是椭圆C 的一对极点和极线.对于椭圆221164x y +=,与点Q (0x ,0y )对应的极线方程为001164x x y y +=,将00142y x =-+代入001164x x y y +=,整理得()0216160x x y y -+-=,又因为定点T 的坐标与0x 的取值无关,所以2016160x y y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以存在定点T (2,1)恒在直线MN 上.当MT TN =时,T 是线段MN 的中点,设()()1122,,M x y N x y ,,直线MN 的斜率为k ,则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,整理得21122112442211616212y y x x x x y y -+⨯=-⋅=-⋅=--+⨯,即12k =-,所以当MT TN = 时,直线MN 的方程为()1122y x -=--,即240x y +-=.例9.(2024秋·北京·高三中关村中学校考开学考试)已知椭圆M :22221x y a b+=(a >b >0)过A (-2,0),B (0,1)两点.(1)求椭圆M 的离心率;(2)设椭圆M 的右顶点为C ,点P 在椭圆M 上(P 不与椭圆M 的顶点重合),直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点S ,求证:直线SQ 过定点.【解析】(1)因为点(2,0)A -,(0,1)B 都在椭圆M 上,所以2a =,1b =.所以c ==所以椭圆M的离心率2c e a ==.(2)由(1)知椭圆M 的方程为2214x y +=,(2,0)C .由题意知:直线AB 的方程为22x y =-.设00(,)P x y (00y ≠,01y ≠±),(22,)Q Q Q y y -,(,0)S S x .因为,,C P Q 三点共线,所以有//CP CQ ,00(2,),(222,)Q Q CP x y CQ y y =-=--,所以00(2)(24)Q Q x y y y -=-.所以000422Q y y y x =-+.所以00000004244(,2222y x y Q y x y x +--+-+.因为,,B S P 三点共线,所以0011s y x x -=-,即001s x x y =-.所以0(,0)1x S y -.所以直线QS 的方程为000000000004242214122y x xy x y xx y y y y x +---+-=+--+,即2200000000044844(1)1x y x y y xx y y y --+-=+--.又因为点P 在椭圆M 上,所以220044x y =-.所以直线QS 的方程为0022(1)21y x x y y --=-+-.所以直线QS 过定点(2,1).变式4.(2024·全国·高三专题练习)若双曲线229x y -=与椭圆2222:1(0)x y C a b a b+=>>共顶点,且它们的离心率之积为43.(1)求椭圆C 的标准方程;(2)若椭圆C 的左、右顶点分别为1A ,2A ,直线l 与椭圆C 交于P 、Q 两点,设直线1A P 与2A Q 的斜率分别为1k ,2k ,且12105k k -=.试问,直线l 是否过定点?若是,求出定点的坐标;若不是,请说明理由.【解析】(1,又两曲线离心率之积为43,所以椭圆的离心;由题意知3a =,所以c =1b =.所以椭圆的标准万程为2219x y +=.(2)当直线l 的斜率为零时,由对称性可知:120k k =-≠,不满足12105k k -=,故直线l 的斜率不为零.设直线l 的方程为x ty n =+,由2219x ty n x y =+⎧⎪⎨+=⎪⎩,得:()2229290t y tny n +++-=,因为直线l 与椭圆C 交于P 、Q 两点,所以()()222244990t n t n ∆=-+->,整理得:2290t n -+>,设()11,P x y 、()22,Q x y ,则12229tn y y t +=-+,212299n y y t -=+,1113y k x =+,2223y k x =-.因为12105k k -=,所以()()()()1121211222121233315333y y x y ty n k x y k y x y ty n x -+-+====+++-,整理得:121245(3)(3)0ty y n y n y +--+=,()1212245(3)(612)ty y n y y n y +-+=-,将12229tn y y t +=-+,212299n y y t -=+代入整理得:()22(2)(3)(2)9t n n n t y --=-+要使上式恒成立,只需2n =,此时满足2290t n -+>,因此,直线l 恒过定点()2,0.变式5.(2024·全国·高三专题练习)已知椭圆2222:1(0)x y E a b a b +=>>且过点⎛ ⎝⎭,A ,B 分别为椭圆E 的左,右顶点,P 为直线3x =上的动点(不在x 轴上),PA 与椭圆E 的另一交点为C ,PB 与椭圆E 的另一交点为D ,记直线PA 与PB 的斜率分别为1k ,2k.(Ⅰ)求椭圆E 的方程;(Ⅱ)求12k k 的值;(Ⅲ)证明:直线CD 过一个定点,并求出此定点的坐标.【解析】(1)由条件可知:221314c e a a b ⎧==⎪⎪⎨⎪+=⎪⎩且222a b c =+,解得2241a b ⎧=⎨=⎩,所以椭圆E 的方程为2214x y +=;(2)因为()()2,0,2,0A B -,设()()3,0P t t ≠,所以()12,32532tt t k k t ====---,所以12155tk k t ==;(3)设()()3,0P t t ≠,所以()():2,:25tPB y t x PA y x =-=+,因为()222544t y x x y ⎧=+⎪⎨⎪+=⎩,所以()222242516161000t x t x t +++-=,所以22164+25C A t x x t +=-,所以22221650824+254+25C t t x t t -=-+=,所以()22025425C C t t y x t =+=+,所以22250820,4+25425t t C t t ⎛⎫- ⎪+⎝⎭,又因为()22244y t x x y ⎧=-⎨+=⎩,所以()2222214161640t x t x t +-+-=,所以221614B D t x x t +=+,所以2222168221414D t t x t t-=-=++,所以()24214D D t y t x t =-=-+,所以222824,1414t t D tt ⎛⎫-- ⎪++⎝⎭,所以222222222508828244+2514:204141442514t t t t t t CD x y t t t t t t ----⎛⎫+-=+ ⎪++⎛⎫⎝⎭--⎪++⎝⎭,所以222282544:14614t t t CD x y t t t --⎛⎫-=+ ⎪++⎝⎭,所以222225454482:661414t t t t CD x y t t t t ---=+⋅+++,所以2544:63t CD x y t -=+,所以直线CD 过定点4,03⎛⎫⎪⎝⎭.题型四:蝴蝶问题例10.(2003·全国·高考真题)如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0,)(0)M r b r >>.(1)写出椭圆的方程,求椭圆的焦点坐标及离心率;(2)直线1y k x =交椭圆于两点()()()11222,,,0C x y D x y y >;直线2y k x =交椭圆于两点()33,G x y ,()()444,0H x y y >.求证:1122341234k x x k x x x x x x =++;(3)对于(2)中的中的在C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =(证明过程不考虑CH 或GD 垂直于x 轴的情形)【解析】(1) 椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心(0,)M r ,∴椭圆方程为2222()1x y r a b -+=焦点坐标为1()F r,2)F r离心率e =(2)证明:将直线CD 的方程1y k x =代入椭圆方程2222()1x y r ab-+=,得2222221()b x a k x r a b +-=整理得22222222211()2()0b a k x k a rx a r a b +-+-=根据韦达定理,得211222212k a r x x b a k +=+,2222122221a r a b x x b a k -=+,所以22121212x x r b x x k r-=+①将直线GH 的方程2y k x =代入椭圆方程2222()1x y r a b -+=,同理可得22343422x x r b x x k r -=+②由①、②得2223411212342k x x k x x r b x x r x x -==++所以结论成立.(3)证明:设点(,0)P p ,点(,0)Q q 由C 、P 、H 共线,得111424x p k x x p k x -=-解得12141124()k k x x p k x k x -=-由D 、Q 、G 共线,同理可得212323x p k x x p k x -=-∴12231223()k k x x q k x k x -=-由1122341234k x x k x x x x x x =++变形得1223121411241223()()k k x x k k x x k x k x k x k x ---=--所以p q =即||||OP OQ =例11.(2024·全国·高三专题练习)已知椭圆2222:1x y C a b +=(0a b >>),四点()11,1P ,()20,1P,31,2P ⎛- ⎝⎭,31,2P ⎛⎫- ⎪ ⎪⎝⎭,41,2P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)蝴蝶定理:如图1,AB 为圆O 的一条弦,M 是AB 的中点,过M 作圆O 的两条弦CD ,EF .若CF ,ED 分别与直线AB 交于点P ,Q ,则MP MQ =.该结论可推广到椭圆.如图2所示,假定在椭圆C 中,弦AB 的中点M 的坐标为10,2⎛⎫⎪⎝⎭,且两条弦CD ,EF 所在直线斜率存在,证明:MP MQ =.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点,又由222211134a b a b +>+知,C 不过点1P ,所以点2P 在C 上,因此222111314b a b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩,故椭圆C 的方程为2214x y +=;(2)因点M 的坐标10,2⎛⎫⎪⎝⎭在y 轴上,且M 为AB 的中点,所以直线AB 平行于x 轴,设()11,C x y ,()22,D x y ,()33,E x y ,()44,F x y ,设直线CD 的方程为112y k x =+,代入椭圆22:14x C y +=,得:221113044k x k x ⎛⎫++-= ⎪⎝⎭,根据韦达定理得:11221441k x x k +=-+,1221341x x k =-+,①同理,设直线EF 的方程为212y k x =+,代入椭圆22:14x C y +=,得:222213044k x k x ⎛⎫++-= ⎪⎝⎭,根据韦达定理得:23422441k x x k +=-+,3422341x x k =-+,②由于C 、P 、F 三点共线,得111142441212P P y x x k x x x k x y --==--,()12141124P k k x x x k x k x -=-,同理,由于E 、Q 、D 三点共线,得:()12231223Q k k x x x k x k x -=-,结合①和②可得:()()1214122311241223P Q k k x x k k x x x x k x k x k x k x --+=--()()()()()()121412231223112411241223k k x x k x k x k k x x k x k x k x k x k x k x --+--=--()()()()12112421341123223411241223k k k x x x k x x x k x x x k x x x k x k x k x k x --+-=--()()()()()12112342341211241223k k k x x x x k x x x x k x k x k x k x -+-+⎡⎤⎣⎦=--()()()1221122222122111241223343441414141k k k k k k k k k k k x k x k x k x ⎛⎫-----⋅-⋅⎪++++⎝⎭=--()()()()()()()12121222221212112412231212414141410k k k k k k k k k k k x k x k x k x ⎛⎫ ⎪-- ⎪++++⎝⎭==--即P Q x x =-,所以P Q x x =,即MP MQ =.例12.(2021·全国·高三专题练习)(蝴蝶定理)过圆AB 弦的中点M ,任意作两弦CD 和EF ,CF 与ED 交弦AB 于P 、Q ,求证:PM QM =.【解析】如图所示,以M 为原点,AB 所在直线为x 轴建立直角坐标系,设圆方程为222()(||)x y b r b r +-=<设直线CD 、EF 的方程分别为1y k x =,2y k x =.将它们合并为()()120y k x y k x --=,于是过点C 、D 、E 、F 的曲线系方程为()()22212()0x y b r y k x y k x λ+--+--=.令0y =,得()2221210k k x b r λ++-=,即过点C 、D 、E 、F 的曲线系与AB 交于点P 、Q 的横坐标是方程()2221210k k x b r λ++-=的两根.由韦达定理得0P Q x x +=,即M 是PQ 的中点,故PM QM =.变式6.(2024·全国·高三专题练习)蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.(1)求证:34121234y y y y y y y y ++=.(2)设CF 交x 轴于点P ,ED 交x 轴于点Q .求证:OP OQ =.【解析】(1)已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,联立()222x y b r x my ⎧+-=⎪⎨=⎪⎩,化简得2222(1)20m y by b r +-+-=,则12221b y y m +=+,221221b r y y m -=+,所以1222122y y b y y b r +=-,同理线x ny =与圆M 交于()33,E x y ,()44,F x y ,联立()222x y b r x ny⎧+-=⎪⎨=⎪⎩化简得2222(1)20n y by b r +-+-=,则12221b y y n +=+,221221b r y y n -=+,所以3422342y y b y y b r +=-,故有34122212342y y y y b y y b r y y ++==-,所以34121234y y y y y y y y ++=成立;(2)不妨设点(,0)P p ,点(,0)Q q ,因为C 、P 、F 三点共线,所以414100y y x p x p --=--,化简得411414x y x y p y y -=-,因为点C 在直线x my =上,所以11x my =,点F 在直线x ny =上,所以44x ny =,则4114141414()ny y my y y y n m p y y y y --==--,同理因为E 、Q 、D 三点共线,所以322300y y x q x q --=--,化简得233232x y x y q y y -=-,因为点D 在直线x my =上,所以22x my =,点E 在直线x ny =上,所以33x ny =,则2332233232()my y ny y y y m n q y y y y --==--,又由34121234y y y y y y y y ++=,可得12341111y y y y +=+,41231111y y y y ∴-=-,即32141423y y y y y y y y --=,所以23141432y y y y y y y y =--,则23141432()()y y m n y y n m y y y y --=---,所以p q =-,所以OP OQ =成立.变式7.(2024·陕西西安·陕西师大附中校考模拟预测)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.【解析】(1)因为AB 4=,椭圆C 离心率为12,所以2222412a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+,直线BN 的方程是()322y x =-.所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得()2223484120k x k x k +-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834k x x k +=+,212241234k x x k-⋅=+.所以直线AM 的方程是()1122y y x x =++.令4x =,得1162=+y y x .直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-.所以()()121212126121622222k x k x y y x x x x ---=-+-+-()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦.()12122258k x x x x =-++⎡⎤⎣⎦()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭.所以点Q 在直线4x =上.变式8.(2024·全国·高三专题练习)已知椭圆C :22x a +22y b=1(a >b >0)的左、右顶点分别为A ,B ,离心率为12,点P 31,2⎛⎫⎪⎝⎭为椭圆上一点.(1)求椭圆C 的标准方程;(2)如图,过点C (0,1)且斜率大于1的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为k 1,直线BN 的斜率为k 2,若k 1=2k 2,求直线l 斜率的值.【解析】(1)因为椭圆的离心率为12,所以a =2c .又因为a 2=b 2+c 2,所以b.所以椭圆的标准方程为224x c +223y c=1.又因为点P 31,2⎛⎫ ⎪⎝⎭为椭圆上一点,所以214c +2943c=1,解得c =1.所以椭圆的标准方程为24x +23y =1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1.设M (x 1,y 1),N (x 2,y 2).联立方程组消去y 可得(3+4k 2)x 2+8kx -8=0.所以由根与系数关系可知x 1+x 2=-2834k k +,x 1x 2=-2834k +.因为k 1=112y x +,k 2=222y x -,且k 1=2k 2,所以112y x +=2222y x -.即()21212y x +=()222242y x -.①又因为M (x 1,y 1),N (x 2,y 2)在椭圆上,所以21y =34(4-21x ),22y =34(4-22x ).②将②代入①可得:1122x x -+=()22422x x +-,即3x 1x 2+10(x 1+x 2)+12=0.所以32834k ⎛⎫- ⎪+⎝⎭+102834k k ⎛⎫- ⎪+⎝⎭+12=0,即12k 2-20k +3=0.解得k =16或k =32,又因为k >1,所以k =32.变式9.(2021秋·广东深圳·高二校考期中)已知椭圆()222210x y C a b a b+=>>:的右焦点是()0F ,过点F 的直线交椭圆C 于A ,B 两点,若线段AB 中点Q的坐标为67⎫-⎪⎪⎝⎭.(1)求椭圆C 的方程;(2)已知()0,P b -是椭圆C 的下顶点,如果直线y =kx +1(k ≠0)交椭圆C 于不同的两点M ,N ,且M ,N 都在以P 为圆心的圆上,求k 的值;(3)过点02a D ⎛⎫ ⎪⎝⎭,作一条非水平直线交椭圆C 于R 、S 两点,若A ,B 为椭圆的左右顶点,记直线AR 、BS 的斜率分别为k 1、k 2,则12k k 是否为定值,若是,求出该定值,若不是,请说明理由.【解析】(1)设11(,)A x y ,22(,)B x y ,直线AB 的斜率显然存在,则12x x ≠,因为线段AB 中点Q的坐标为677⎛⎫- ⎪ ⎪⎝⎭,所以12x x +=,12127y y +=-,直线AB的斜率12126073AB QF y y k k x x ---===-,A ,B 两点在椭圆椭圆C 上,所以2211221x y a b +=,2222221x y a b +=,两式相减得22221212121212122222()()()()0x x y y x x x x y y y y a b a b --+-+-+=+=,即1212122212()0x x y y y y a b x x ++-+⋅=-,21207b =,整理得224a b =,①又c =且222a b c =+,②由①②可解得4a =,2b =,所以椭圆C 的方程为221164x y +=.(2)由2211164y kx x y =+⎧⎪⎨+=⎪⎩得22(14)8120k x kx ++-=,则2814M N k x x k +=-+,21214M N x x k=-+,226448(14)0k k ∆=++>,设M ,N 中点为00(,)E x y ,则024214E F x x k x k +==-+,0021114y kx k =+=+,因为M ,N 都在以P 为圆心的圆上,所以PM PN =,则点P 在线段MN 的垂直平分线上,依题意(0,2)P -,所以线段MN 的垂直平分线方程为12y x k=--,M ,N 中点为00(,)E x y 在此直线上,所以有0012y x k =--,即2211421414k k k k =⋅-++,解得4k =±.所以k的值为4±.(3)依题意有()20D ,,(4,0)A -,(4,0)B ,设直线RS 的方程为2(0)x ty t =+≠,由2221164x ty x y =+⎧⎪⎨+=⎪⎩得22(4)4120t y ty ++-=,则244R S t y y t +=-+,2124R S y y t =-+,124(2)22()24(6)66S R S R S R R S R S S R R S S R R S S R S Sx y ty ty y y ty y y y y k y k x y y ty ty y y ty y y ----++=⋅==++++22222124()2242(4)14412126(4)3()64S S S S t t y t y t t t t y t t y t⋅-+⋅+-+⋅+++===-+⋅+⋅-++,所以12k k 为定值13.变式10.(2024·全国·高三专题练习)如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,A ,B 分别是椭圆C 的左、右顶点,右焦点F ,1BF =,过F 且斜率为(0)k k >的直线l 与椭圆C 相交于M ,N 两点,M 在x轴上方.(1)求椭圆C 的标准方程;(2)记AFM △,BFN 的面积分别为1S ,2S ,若1232S S =,求k 的值;(3)设线段MN 的中点为D ,直线OD 与直线4x =相交于点E ,记直线AM ,BN ,FE 的斜率分别为1k ,2k ,3k ,求213()k k k ⋅-的值.【解析】(1)设椭圆的焦距为2(0)c c >.依题意可得12c e a ==,1a c -=,解得2a =,1c =.故2223b a c =-=.所以椭圆C 的标准方程为22143x y +=.(2)设点1(M x ,1)y ,2(N x ,2)y .若1232S S =,则121||||3212||||2AF y BF y = ,即有212y y =-,①设直线MN 的方程为1(0)x my m =+>,与椭圆方程223412x y +=,可得22(43)690m y my ++-=,则122643m y y m +=-+,122943y y m =-+,②将①代入②可得22843m m =+,解得m =则k =;(3)由(2)得1223243D y y m y m +==-+,24143D D x my m =+=+,所以直线OD 的方程为34m y x =-,令4x =,得3E y m =-,即(4,3)E m -.所以3341m k m -==--.所以2121321211()()()22y y k k k k k m k x x ⋅-=⋅+=⋅+-+,122112211212(2)(3)(2)(2)(3)(1)y y my x y y my my x x my my ++++==+-+-,212221212(1)333m y y my m y y my my ++=-+-2122212122(1)3()34m y y my m y y m y y my ++=-+-+,222222222222229(1)9(1)33343439612(1)4344434343m m my my m m m m m my my m m m++-+-+++===+-+-+-++++.变式11.(2024秋·福建莆田·高二莆田华侨中学校考期末)已知点(1,2-A 在椭圆C :22221(0)x y a b a b +=>>上,O 为坐标原点,直线l:21x a =的斜率与直线OA 的斜率乘积为14-(1)求椭圆C 的方程;(2)不经过点A 的直线l:y x t +(0t ≠且t R ∈)与椭圆C 交于P ,Q 两点,P 关于原点的对称点为R (与点A 不重合),直线AQ ,AR 与y 轴分别交于两点M ,N ,求证:AM AN =.【解析】(Ⅰ)由题意,2212124OA b k k a ⋅=-=-=-,即224a b =①又221314a b+=②联立①①解得21a b =⎧⎨=⎩所以,椭圆C 的方程为:2214x y +=.(Ⅱ)设()11,P x y ,()22,Q x y ,()11,R x y --,由22214y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2210x t +-=,所以240t ∆=->,即22t -<<,又因为0t ≠,所以,()()2,00,2t ∈-⋃,12x x +=,2121x x t ⋅=-,解法一:要证明AM AN =,可转化为证明直线AQ ,AR 的斜率互为相反数,只需证明0AM AN k k +=,即证明0AQ AR k k +=.12122211AQ ARy y k k x x -++=++-()()()()1221121111y x y x x x ⎛⎛-+++ ⎝⎭⎝⎭=+-∴()()()()1221121111x t x x t x x x +-+++⎝⎭⎝⎭=+-()()()12121211x t x x x x +++=+-)()()()2121011t t x x -+==+-∴0AM AN k k +=,∴AM AN =.解法二:要证明AM AN =,可转化为证明直线AQ ,AR 与y 轴交点M 、N 连线中点S 的纵坐标为2-,即AS 垂直平分MN 即可.直线AQ 与AR 的方程分别为:()222:121AQ y l y x x ++=--,()112:121AR y l y x x -+=---,分别令0x =,得2221M y y x -=-1121N y y x -+=-+而21212211M Ny y y y x x --+=+-+,同解法一,可得M N y y +=2M N S y y y +==,即AS 垂直平分MN .所以,AM AN =.变式12.(2022·全国·高三专题练习)极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆222x y r +=,与点()00,x y 对应的极线方程为200x x y y r +=,我们还知道如果点()00,x y 在圆上,极线方程即为切线方程;如果点()00,x y 在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆22221x y a b+=,与点()00,x y 对应的极线方程为00221x x y y a b +=.如上图,已知椭圆C :22143x y +=,()4,P t -,过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,则直线AB 的方程为;直线AB 与OP 交于点M ,则sin PMB ∠的最小值是.【答案】103ty x -+-=(或330x ty -+=);7.【解析】(1)由题得AB :4143x ty -+=,即103ty x -+-=,(2)()4,OP t →=-,3k AB t →=,∴AB →的方向向量(),3n t = ,所以cos ,OP nOP n OP n→→→→→→⋅〈〉=sin PMB∠==47=,即()minsin PMB∠故答案为:103tyx-+-=;7。
2024版高考复习A版数学考点考法PPT讲解:圆锥曲线的综合问题
1
为定值.
λμ
解析
(1)由题意知e= c =
a
1
b2 a2
=
2 ,则a2=2b2,又椭圆C经过点H(-2,1),所
2
以
4 a2
+
1 b2
=1.联立解得a2=6,b2=3,所以椭圆C的方程为
x2 6
+
y2 3
=1.
(2)证明:显然,直线AB的斜率不为0,设直线AB的方程为x=my-3,A(x1,y1),
由
y y
2 16x, k1(x
4)
消去y得
k12
x2-(8
k12
+16)x+16
k12
=0,Δ1=256(
k12+1)>0,
设M(x1,y1),N(x2,y2),则x1+x2=8+16 ,
k12
则y1+y2=k1(x1-4)+k1(x2-4)=16 ,
k1
故A
4
8 k12
,
8 k1
,同理可求得B
B(x2,y2),
x my 3,
由
x
2
6
y2 3
1消x得(m2+2)y2-6my+3=0,所以Δ=36m2-12(m2+2)>0,y1+y2=
6m m2
2
,y1y2=
3 m2
2
,由题意知y1,y2均不为1.设M(xM,0),N(xN,0),由H,M,A三点
共线知
AM
与 MH
共线,所以xM-x1=-y1(-2-xM),化简得xM=
例2
(2021济南二模,21)已知椭圆C:
圆锥曲线大题全攻略含答案详解
《圆锥曲线大题全攻略》系列课程1.求轨迹方程问题2.圆锥曲线中的定点问题3.圆锥曲线中的定值问题4.圆锥曲线中的最值问题5.点差法解决中点弦问题6.常见几何关系的代数化方法7.圆锥曲线中的非对称“韦达定理”问题处理技巧8.圆锥曲线中的三点共线问题9.巧用曲线系方程解决圆锥曲线中的四点共圆问题10.抛物线中阿基米德三角形的常见性质及应用11.圆锥曲线中的双切线题型圆锥曲线中的求轨迹方程问题解题技巧求动点的轨迹方程这类问题可难可易是高考中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。
它们的解题步骤分别如下:1. 直译法求轨迹的步骤:(1)设求轨迹的点为);,(y x P(2)由已知条件建立关于y x ,的方程;(3)化简整理。
2. 相关点法求轨迹的步骤:(1)设求轨迹的点为),(y x P ,相关点为),(O O y x Q ;(2)根据点的产生过程,找到),(y x 与),(O O y x 的关系,并将O O y x ,用x 和y 表示;(3)将),(O O y x 代入相关点的曲线,化简即得所求轨迹方程。
3. 定义法求轨迹方程:(1)分析几何关系;(2)由曲线的定义直接得出轨迹方程。
4. 参数法求轨迹的步骤:(1)引入参数;(2)将求轨迹的点),(y x 用参数表示;(3)消去参数;(4)研究范围。
【例1.】已知平面上两定点),,(),,(2020N M -点P 满足MN MP =•求点P 的轨迹方程。
【例2.】已知点P 在椭圆1422=+y x 上运动,过P 作y 轴的垂线,垂足为Q ,点M 满足,PQ PM 31=求动点M 的轨迹方程。
【例3.】已知圆),,(,)(:0236222B y x A =++点P 是圆A 上的动点,线段PB 的中垂线交PA 于点Q ,求动点Q 的轨迹方程。
【例4.】过点),(10的直线l 与椭圆1422=+y x 相交于B A ,两点,求AB 中点M 的轨迹方程。
圆锥曲线常见题型解法(学校教学)
【知识要点】圆锥曲线常见的题型有求圆锥曲线的方程、几何性质、最值、范围、直线与圆锥曲线的关系、圆锥曲线与圆锥曲线的关系、轨迹方程、定点定值问题等.【方法讲评】题型一求圆锥曲线的方程解题方法一般利用待定系数法解答.【例1】已知椭圆22221x ya b+=(0a b>>)的左、右焦点为12,F F,点A(2,2)在椭圆上,且2AF与x轴垂直.(1)求椭圆的方程;(2)过A作直线与椭圆交于另外一点B,求AOB∆面积的最大值.综上所求:当AB 斜率不存在或斜率存在时:AOB ∆面积取最大值为2.【点评】(1)求圆锥曲线的方程,一般利用待定系数法,先定位,后定量.(2)本题用到了椭圆双曲线的通径公式22b d a=,这个公式很重要,大家要记熟.【反馈检测1】已知椭圆M :22221x y a b+=(0a b >>22,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为642+ (1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A 、B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值.题型二 圆锥曲线的几何性质 解题方法利用圆锥曲线的几何性质解答.【例2】已知椭圆()222210x y a b a b+=>>的左顶点和上顶点分别为A B 、,左、右焦点分别是12,F F ,在线段AB 上有且只有一个点P 满足12PF PF ⊥,则椭圆的离心率的平方为( )A 331- C 551-【点评】求值一般利用方程的思想解答,所以本题的关键就是找到关于e 的方程. 学科.网【反馈检测2】已知双曲线22221x y a b-=(0,0a b >>)的左、右焦点分别为12,F F 以12F F 为直径的圆被直线1x ya b+=6a ,则双曲线的离心率为( ) A .3 B .2 C 3 D 2题型三 圆锥曲线的最值问题解题方法一般利用数形结合和函数的方法解答.【例3】已知椭圆)0(12222>>=+b a b y a x 上任意一点到两焦点21,F F 距离之和为24,离心率为23. (1)求椭圆的标准方程; (2)若直线l 的斜率为12,直线l 与椭圆C 交于B A ,两点.点)1,2(P 为椭圆上一点,求PAB ∆的面积的最大值.【解析】(1)由条件得:⎪⎪⎩⎪⎪⎨⎧+====22223242cb a ac e a ,解得2,6,22===b c a ,所以椭圆的方程为12822=+y x∴224)4()4(552212122222=-+≤-=-⨯⨯==∆m m m m m m d AB S PAB, 当且仅当22=m ,即2±=m 时取得最大值. ∴PAB ∆面积的最大值为2.【点评】圆锥曲线的最值问题一般利用函数和数形结合解答.【反馈检测3】在平面直角坐标系xOy 中,直线l 与抛物线x y 42=相交于不同的两点,A B . (Ⅰ)如果直线l 过抛物线的焦点,求OA OB ⋅的值;(Ⅱ)在此抛物线上求一点P ,使得P 到)0,5(Q 的距离最小,并求最小值.题型四圆锥曲线的范围问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线大题题型归纳
基本方法:
1.待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a、b、c、e、p等等;
2.齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;
3.韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。
要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;
4.点差法:弦中点问题,端点坐标设而不求。
也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式;
5.距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题;
基本思想:
1.“常规求值”问题需要找等式,“求范围”问题需要找不等式;
2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解;
3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关;
4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决;
5.有些题思路易成,但难以实施。
这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;
6.大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。
题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题
例1、已知F1,F2为椭圆
2
100
x
+
2
64
y
=1的两个焦点,P在椭圆上,且∠F1 PF2=60°,则△F1 PF2的面积为多少?
点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。
变式1-1 已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且
12F PF ∠=120︒,求12F PF ∆的面积。
处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明。
例3、(2014秋•市中区校级月考)已知椭圆C :
221x y a b +=(a >b >0),过焦点垂直于长轴的弦长为1,且焦
(I)求椭圆的方程;
(Ⅱ)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,判断λ+μ是否为定值,若是,计算出该定值;不是,说明理由
点评:证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明
变式3-1 (2012秋•沙坪坝区校级月考)已知椭圆
22
22
1
x y
a b
+=(a>b>0)的离心率为
焦距为2.
(1)求椭圆的方程;
(2)过椭圆右焦点且垂直于x轴的直线交椭圆于P,Q两点,C,D为椭圆上位于直线PQ异侧的两个动点,满足∠CPQ=∠DPQ,求证:直线CD的斜率为定值,并求出此定值.
例4、过抛物线24y ax =(a >0)的焦点F 作任意一条直线分别交抛物线于A 、B 两点,如果AOB ∆(O 为原点)
2
S AB 为定值。
的面积是S,求证:
的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率e=
且过椭圆右焦点F2的直线l与椭圆C交于M、N两
2
点.
(1)求椭圆C的方程;
(2)是否存在直线l,使得若存在,求出直线l的方程;若不存在,说明理由
(3)若AB是椭圆C经过原点O的弦,MN∥AB,求证:为定值.
题型三“是否存在”问题
例5、(2012秋•昔阳县校级月考)已知定点A(-2,-4),过点A作倾斜角为45°的直线l,交抛物线y2=2px(p
变式5-1(2013•柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).
(Ⅰ)求抛物线的标准方程;
(Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由
点评:最值问题的方法:几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等。
变式7-1 (2006秋•宁波期末)已知动圆过定点P(0,1),且与定直线y=-1相切.
(1)求动圆圆心的轨迹M的方程;
(2)设过点Q(0,-1)且以为方向向量的直线l与轨迹M相交于A、B两点.若∠APB为钝角,求直线l斜率的取值范围.
变式7-2 (2014•苍南县校级模拟)已知抛物线C :y 2
=4x 焦点为F ,过F 的直线交抛物线C 于A ,B 两点,l 1、l 2
分别过点A 、B 且与抛物线
C 相切,P 为l 1、l 2的交点.
(1)求证:动点P 在一条定直线上,并求此直线方程;
小结
解析几何在高考中经常是两小题一大题:两小题经常是常规求值类型,一大题中的第一小题也经常是常规求值问题,故常用方程思想先设后求即可。
解决第二小题时常用韦达定理法结合以上各种题型进行处理,常按照以下七步骤:
一设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y=kx+b 与x=mmy+n 的区别)二设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”)
三则联立方程组;四则消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单)五根据条件重转化;常有以下类型:
①“以弦AB 为直径的圆过点0”⇔OA OB ⊥ ⇔121K K •=-(提醒:需讨论K 是否存在)⇔0OA OB •=u u u r u u u r ⇔ 12120x x y y +=
②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题”
⇔“向量的数量积大于、等于、小于0问题”⇔1212x x y y +>0;
③“等角、角平分、角互补问题”⇔斜率关系(120K K +=或12K K =);
④“共线问题”(如:AQ QB λ=u u u r u u u r ⇔数的角度:坐标表示法;形的角度:距离转化法);
(如:A 、O 、B 三点共线⇔直线OA 与OB 斜率相等);
⑤“点、线对称问题” ⇔坐标与斜率关系;⑥“弦长、面积问题”
⇔转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);六则化简与计算;
七则细节问题不忽略;①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.。