典型环节的模拟电路

合集下载

典型环节

典型环节

典型环节的电路模拟1.比例环节当输入端输入一个单位阶跃信号,且比例系数为K时的响应曲线如下:K=1K=2 比例环节的特点是输出不失真、不延迟、成比例地复现输入信号的变化。

KSUiSUoSG==)()()(2.积分环节当输入端输入一个单位阶跃信号,积分系数为T时的输出响应曲线如下图:T=1T=0.1积分环的输出量对时间的积分成正比。

TsSUiSUosG1)()()(==当输入端输入一个单位阶跃信号,且比例系数为K,积分系数为T时的PI输出响应曲线如下图:K=1 T=1K=1 T=0.1这种环节能改善控制系统的稳态性能。

)11(1)()()(21212CSRRRCSRCSRSUiSUosG+=+==当输入端输入一个单位阶跃信号,且比例系数为K为2,微分系数为T时的PD输出响应曲线如下图:K=1 T=0.1K=1 T=1这种环节能预示输入信号的变化趋势,监测动态行为。

)1()1()(112CSRRRTSKsG+=+=5.比例积分微分(PID)环节当输入端输入一个单位阶跃信号,且比例系数为K,微分系数为TD、积分系数为TI时的PID输出响应曲线如下图:K=2 T=1K=1.1 T=0.1STSTKpsG D++=11)(6.惯性环节当输入端输入一个单位阶跃信号,且比例系数为K为1,时间常数为T时的输出响应曲线如下图:K=1 T=1K=1 T=0.1这种环节的响应特点是输出量延缓地反映输入量的变化规律。

1)()()(1+==STKSUiSUosG。

自动控制原理实验一 典型环节的电路模拟与软件仿真

自动控制原理实验一  典型环节的电路模拟与软件仿真

实验一 典型环节的电路模拟与软件仿真一、实验目的1.熟悉THSSC-4型信号与系统·控制理论·计算机控制技术实验箱及上位机软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1.THSSC-4型信号与系统·控制理论·计算机控制技术实验箱;2.PC 机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线;3.双踪慢扫描示波器一台(可选); 三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机仿真界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1.比例(P )环节 图1-1比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:K S U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

图1-22.积分(I )环节积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:TsS U S U s G i O 1)()()(==设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

图1-33.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CSR R R CS R R R CS R CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

实验一--典型环节的电路模拟

实验一--典型环节的电路模拟

自动控制原理实验报告院(系):能源与环境学院专业:热能与动力工程姓名:周宇盛学号: 03010130 同组人员:王琪耀马晓飞实验时间: 2012 年 10 月 23 日实验名称:典型环节的电路模拟一、实验目的1. 熟悉THBDC-1型信号与系统·控制理论及计算机控制技术实验平台及上位机软件的使用;2. 熟悉各典型环节的阶跃响应特性及其电路模拟;3. 测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC机一台(含上位机软件)、数据采集卡、37针通信线1根、16芯数据排线、采接卡接口线;三、实验内容1. 设计并组建各典型环节的模拟电路;2. 测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;一、各典型环节电路图1. 比例(P )环节根据比例环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R 0=200K 。

若比例系数K=1时,电路中的参数取:R 1=100K ,R 2=100K 。

若比例系数K=2时,电路中的参数取:R 1=100K ,R 2=200K 。

2. 积分(I )环节根据积分环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R 0=200K 。

若积分时间常数T=1S 时,电路中的参数取:R=100K ,C=10uF(T=RC=100K ×10uF=1); 若积分时间常数T=时,电路中的参数取:R=100K ,C=1uF(T=RC=100K ×1uF=;3. 比例积分(PI)环节根据比例积分环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R 0=200K 。

若取比例系数K=1、积分时间常数T=1S 时,电路中的参数取:R 1=100K ,R 2=100K ,C=10uF(K= R 2/ R 1=1,T=R 1C=100K ×10uF=1);若取比例系数K=1、积分时间常数T=时,电路中的参数取:R 1=100K ,R 2=100K ,C=1uF(K= R 2/ R 1=1,T=R 1C=100K ×1uF=。

自动控制原理实验一 典型环节的电路模拟与软件仿真

自动控制原理实验一  典型环节的电路模拟与软件仿真

实验一 典型环节的电路模拟与软件仿真一、实验目的1.熟悉THSSC-4型信号与系统·控制理论·计算机控制技术实验箱及上位机软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1.THSSC-4型信号与系统·控制理论·计算机控制技术实验箱;2.PC 机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线;3.双踪慢扫描示波器一台(可选); 三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机仿真界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1.比例(P )环节 图1-1比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:K S U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

图1-22.积分(I )环节积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:TsS U S U s G i O 1)()()(==设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

图1-33.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CSR R R CS R R R CS R CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

典型环节的电路模拟

典型环节的电路模拟

实验报告课程名称:_________控制理论(甲)实验_______指导老师:_____ ____成绩:__________________ 实验名称:_________典型环节的电路模拟______实验类型:________________同组学生姓名:__________ 一、实验目的 二、实验原理 三、实验接线图 四、实验设备 五、实验步骤 六、实验数据记录 七、实验数据分析 八、实验结果或结论一、实验目的1.熟悉THBDC-2型 控制理论·计算机控制技术实验平台及“THBDC-2”软件的使用; 2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

要对系统的设计和分析,必须熟悉这些典型环节的结构及其对阶跃输入的响应。

本实验中的典型环节都是以运放为核心元件构成,原理图如左图 图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1. 积分环节(I )积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:设U i (S)为一单位阶跃信号,当积分系 数为T 时的响应曲线如右图所示。

2. 比例微分环节(PD )比例微分环节的传递函数与方框图分别为:)1()1()(112CS R R R TS K s G +=+= 其中C R T R R K D 112,/==设U i (S)为一单位阶跃信号,右图示出了比例系数(K)为2、微分系数为T D 时PD 的输出响应曲线。

专业: __TsS U S U s G i O 1)()()(==3.惯性环节惯性环节的传递函数与方框图分别为:1)()()(+==TSKSUSUsGiO当U i(S)输入端输入一个单位阶跃信号,且放大系数(K)为1、时间常数为T时响应曲线如右图所示。

三.实验设备1.THBDC-2型控制理论·计算机控制技术实验平台;2.PC机一台(含“THBDC-2”软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。

自动控制原理实验一 典型环节的电路模拟与软件仿真

自动控制原理实验一  典型环节的电路模拟与软件仿真

实验一 典型环节的电路模拟与软件仿真一、实验目的1.熟悉THSSC-4型信号与系统·控制理论·计算机控制技术实验箱及上位机软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备型信号与系统·控制理论·计算机控制技术实验箱;机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线;3.双踪慢扫描示波器一台(可选); 三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机仿真界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1.比例(P )环节 图1-1比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:K S U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

图1-22.积分(I )环节积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:TsS U S U s G i O 1)()()(==设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

图1-33.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CSR R R CS R R R CS R CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

实验一 典型环节的电路模拟

实验一  典型环节的电路模拟

实验一典型环节的电路模拟一、实验目的1. 熟悉THBDC-1型控制理论·计算机控制技术实验平台及上位机软件的使用;2. 熟悉各典型环节的阶跃响应特性及其电路模拟;3. 测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC机一台(含上位机软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。

三、实验内容1. 设计并组建各典型环节的模拟电路;2. 测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;四、实验原理及其步骤自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成。

实验准备:①当u i为一单位阶跃信号时,用上位软件观测,选择“通道1-2”,其中通道AD1接电路的输出u O;通道AD2接电路的输入u。

i②为了更好的观测实验曲线,实验时可适当调节软件上的分频系数(一般调至刻度2以上)和“”按钮(时基自动)。

③如采集卡不能正常采集数据,请更新USB数据采集卡驱动。

具体操作步骤:右击“我的电脑”,点击“管理”-“设备管理器”-“通用串行总线控制器”,找到“UsbCard Device”,右击-“卸载”,确定。

卸载后再次点击“计算机管理”菜单中的“操作”-选择“扫描检测硬件改动”,打开硬件安装向导,选择“从列表或指定位置安装(高级)”,点击“下一步”,点击“浏览”,驱动在D盘THBDC软件文件夹中,选择安装即可。

④实验电路中如使用到电容时,每次试验中需要利用“锁零按钮”对电容进行放电复位处理。

⑤输入阶跃信号幅值调节在±2V 以内。

1. 比例(P )环节根据比例环节,选择实验台上的通用电路单元设计并组建相应的模拟电路,如图1-1所示。

典型环节的电路模拟与软件仿真研究

典型环节的电路模拟与软件仿真研究

典型环节的电路模拟与软件仿真研究一·实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。

2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。

二·实验要求1.设计各种典型环节的模拟电路。

2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。

三·实验原理无上位机时,利用实验箱上的信号源单元U2所输出的周期阶跃信号作为环节输入,即连接箱上U2的“阶跃”与环节的输入端(例如对比例环节即图1.1.2的Ui),同时连接U2的“锁零(G)”与运放的锁零G。

然后用示波器观测该环节的输入与输出(例如对比例环节即测试图1.1.2的Ui和Uo)。

有上位机时,必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。

为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。

四·实验所用仪器PC微机(含实验系统上位机软件)、ACT-I实验箱、USB2.0通讯线五·实验步骤和方法1.设计各种典型环节的模拟电路。

2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。

具体步骤:1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。

注意实验接线前必须先将实验箱上电,以对运放仔细调零。

然后断电,再接线。

接线时要注意不同环节、不同测试信号对运放锁零的要求。

在输入阶跃信号时,除比例环节运放可不锁零(G 可接-15V)也可锁零外,其余环节都需要考虑运放锁零。

实验一 典型环节的电路模拟

实验一  典型环节的电路模拟

实验一 典型环节的电路模拟一、实验目的1. 熟悉THBCC-1型 信号与系统•控制理论及计算机控制技术实验平台及“THBCC-1”软件的使用;2. 熟悉各典型环节的阶跃响应特性及其电路模拟;3. 测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1. THBCC-1型 信号与系统•控制理论及计算机控制技术实验平台;2. PC 机一台(含“THBCC-1”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线; 三、实验内容1. 设计并组建各典型环节的模拟电路;2. 测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响; 四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析十分有益。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1. 比例(P )环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

图1-1 它的传递函数与方框图分别为:K S U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

2. 积分(I )环节 图1-2积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为: 设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

图1-3TsS U S U s G i O 1)()()(==3. 比例积分(PI)环节比例积分环节的传递函数与方框图分别为:其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

图1-44. 比例微分(PD)环节比例微分环节的传递函数与方框图分别为:)1()1()(112CS R R R TS K s G +=+= 其中C R T R R K D 112,/==设U i (S)为一单位阶跃信号,图1-5示出了比例系数(K)为2、微分系数为T D 时PD 的输出响应曲线。

#自动控制原理实验一典型环节电路模拟软件仿真

#自动控制原理实验一典型环节电路模拟软件仿真

实验一典型环节的电路模拟与软件仿真一、实验目的1. 熟习THSSC-4 型信号与系统·控制理论·计算机控制技术实验箱及上位机软件的使用;2.熟习各典型环节的阶跃响应特征及其电路模拟;3.丈量各典型环节的阶跃响应曲线,并认识参数变化对其动向特征的影响。

二、实验设施1.THSSC-4 型信号与系统·控制理论·计算机控制技术实验箱;2.PC 机一台 ( 含上位机软件 >、 USB数据收集卡、 37 针通讯线 1 根、 16 芯数据排线、USB 接口线;3.双踪慢扫描示波器一台 ( 可选 >;三、实验内容1.设计并组建各典型环节的模拟电路;2.丈量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机仿真界面上,填入各典型环节数学模型的实质参数,据此达成它们对阶跃响应的软件仿真,并与模拟电路测试的结果对比较。

四、实验原理自控系统是由比率、积分、微分、惯性等环节按必定的关系组建而成。

熟习这些典型环节的构造及其对阶跃输入的响应,将对系统的设计和剖析是十分有益的。

本实验中的典型环节都是以运放为中心元件组成,其原理框图如图 1-1 所示。

图中 Z1和 Z2表示由 R、 C 组成的复数阻抗。

1. 比率 <P)环节图 1-1比率环节的特色是输出不失真、不延缓、成比率地复现输出信号的变化。

它的传达函数与方框图分别为:G (S) U O(S)K U i (S)当 U (S>输入端输入一个单位阶跃信号,且比率系数为K 时的响应曲线如图1-2 所示。

i图 1-22. 积分 <I )环节积分环节的输出量与其输入量对时间的积分红正比。

它的传达函数与方框图分别为:U O(S) 1G ( s )TsU i ( S )设 U i (S> 为一单位阶跃信号,当积分系数为T 时的响应曲线如图 1-3 所示。

图 1-33.比率积分 (PI> 环节比率积分环节的传达函数与方框图分别为:G(s) U O (S)R 2CS 1R 2 1 R 2 (1 1 )U i (S) R 1CS R 1 R 1CSR 1 R 2 CS此中 T=R 2C , K=R 2/R 1设 U i (S> 为一单位阶跃信号,图 1-4 示出了比率系数 (K>为 1、积分系数为 T 时的 PI 输出响应曲线。

实验一 典型环节的电路模拟与软件仿真研究

实验一  典型环节的电路模拟与软件仿真研究

实验一典型环节的电路模拟与软件仿真研究一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。

2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。

二.实验内容1.设计各种典型环节的模拟电路。

2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

3.在MATLAB软件上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。

三.实验步骤1.熟悉实验装置,利用实验装置上的模拟电路单元,设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。

接线时要注意:先断电,再接线。

接线时要注意不同环节、不同测试信号对运放锁零的要求。

(U3单元的O1接被测对象的输入、G接G1、U3单元的I1接被测对象的输出)。

2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

首先必须在熟悉上位机界面的操作,充分利用上位机提供的虚拟示波器与信号发生器功能。

为了利用上位机提供的虚拟示波器与信号发生器功能。

接线完成,经检查无误,再给实验装置上电后,打开时域特性的程序,启动上位机程序,进入主界面。

软件界面上的操作步骤如下:①按通道接线情况:通过上位机界面中“通道选择”选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的信号发生端口.不同的通道,图形显示控件中波形的颜色将不同。

②硬件接线完毕后,检查USB口通讯连线和实验装置电源后,运行上位机软件程序,如果有问题请求指导教师帮助。

③进入实验模式后,先对显示模式进行设置:选择“X-t模式”;选择“T/DIV”为1s/1HZ 。

④完成上述实验设置,然后设置实验参数,在界面的右边可以设置系统测试信号参数,选择“测试信号”为“周期阶跃信号”,选择“占空比”为50%,选择“T/DIV ”为“1000ms ”, 选择“幅值”为“3V ”,可以根据实验需要调整幅值,以得到较好的实验曲线,将“偏移”设为“0”。

实验一控制系统典型环节的模拟

实验一控制系统典型环节的模拟

实验一 控制系统典型环节的模拟1.实验目的1) 掌握常用控制系统典型环节的电子电路实现方法。

2) 测试典型环节的阶跃响应曲线。

3) 了解典型环节中参数变化对输出动态性能的影响。

2.实验仪器1) TKKL —1实验箱一台 2) 超低频示波器一台,万用表 3) MATLAB 软件,计算机。

3.实验原理控制系统的典型环节数学模型如表1-1所示。

表1-1:典型环节的方块图及传递函数 典型环节名称 方 块 图传递函数 比例 (P )K )s (U )s (Uo i = 积分 (I )TS1)s (U )s (Uo i =比例积分 (PI )TS1K )s (U )s (Uo i += 比例微分 (PD ))TS 1(K )s (U )s (Uo i += 惯性环节 (T )1TS K)s (U )s (Uo i +=比例积分 微分(PID )S T ST 1Kp )s (U )s (Uo d i i ++=以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。

图中Z1和Z2为复数阻抗,它们都是由R 、C 构成。

基于图中A 点的电位为虚地,略去流入运放的电流,则由图1-1得:图1-1 运放的反馈连接121)(Z Zu u s G o -=-=(1) 由上式可求得由下列模拟电路组成典型环节的传递函数及单位阶跃响应。

以下省略反相放大中的“-”号。

(1) 比例环节21/)(R R s G =图1-2 比例环节记录实验所用元件参数、绘制单位阶跃响应曲线(至少记录两组),并进行分析。

(a) .,21Ω=Ω=R R(b) .,21Ω=Ω=R R (2) 惯性环节 1111//)(2121212+=+⋅===Ts K Cs R R R R Cs R Z Z s G (2) 式中 122/,R R K C R T ==。

图1-3 惯性环节记录实验所用元件参数、绘制阶跃响应曲线(至少记录两组),并进行分析。

自动控制原理实验一典型环节的电路模拟与软件仿真

自动控制原理实验一典型环节的电路模拟与软件仿真

实验一 典型环节的电路模拟与软件仿真一、实验目的1.熟悉THSSC-4型信号与系统·控制理论·计算机控制技术实验箱及上位机软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备型信号与系统·控制理论·计算机控制技术实验箱;机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线;3.双踪慢扫描示波器一台(可选); 三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机仿真界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1.比例(P )环节 图1-1 比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:K S U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

图1-22.积分(I )环节积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:TsS U S U s G i O 1)()()(==设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

图1-33.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CSR R R CS R R R CS R CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

实验报告典型环节的电路模拟

实验报告典型环节的电路模拟

东南大学能源与环境学院实验报告课程名称:自动控制原理实验名称:典型环节的电路模拟院(系):能源与环境学院专业:热能与动力工程姓名:李鹏学号:03009414实验室:自动控制实验室实验组别:同组人员:陈兴实验时间:2011年10 月14日评定成绩:审阅教师:目录一.实验目的 (3)二.实验设备 (3)三.实验内容 (3)四.实验曲线 (3)五.实验原理 (5)六.实验结论 (7)七.实验思考题 (7)典型环节的电路模拟(实验报告)姓名:李鹏学号:03009414 班级:030094实验指导老师:__________________ 成绩:____________________一、实验目的1. 熟悉THBDC-1型信号与系统·控制理论及计算机控制技术实验平台及上位机软件的使用;2. 熟悉各典型环节的阶跃响应特性及其电路模拟;3. 测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC机一台(含上位机软件)、数据采集卡、37针通信线1根、16芯数据排线、采接卡接口线三、实验内容1. 设计并组建各典型环节的模拟电路;2. 测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;四、实验数据或曲线图1 实验曲线对应参数如下:1.1 1.22.1 2.23.1 3.24.1 4.25.1 5.2五、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成,其原理框图如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1. 比例(P )环节 图1-1比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:K S U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

典型环节的电路模拟与软件仿真研究中各实验环节的测试数据及响应

典型环节的电路模拟与软件仿真研究中各实验环节的测试数据及响应

典型环节的电路模拟与软件仿真研究一、引言电路模拟与软件仿真是电子工程中重要的研究方法之一,通过计算机模拟电路工作原理和性能,可以节省成本、提高效率。

本文将就典型环节的电路模拟与软件仿真研究展开探讨,包括实验环节的测试数据和响应。

二、实验环节电路模拟与软件仿真的实验环节通常包括以下几个步骤:1. 电路设计在进行电路模拟与软件仿真之前,首先需要对待研究的电路进行设计。

设计过程包括选择器件、确定电路拓扑结构、计算元件参数等。

这一步的目的是为了确定仿真工作的基础。

2. 电路参数设置在进行仿真之前,需要对电路中的元件进行参数设置。

这些参数可以是电阻、电容、电感等,也可以是元件的非线性特性参数。

设置电路参数的准确性直接影响仿真结果的准确性。

3. 仿真软件选择根据电路特点和研究需求,选择合适的仿真软件。

常见的仿真软件有PSPICE、MULTISIM等。

选定仿真软件后,需要根据软件的使用手册熟悉软件使用方法。

4. 参数扫描仿真在进行仿真工作时,可以选择对电路中的某个或某些元件参数进行扫描仿真。

通过改变元件的参数值,可以观察仿真结果对参数变化的响应。

这对于分析电路的稳定性、灵敏度等指标非常有帮助。

三、典型环节的测试数据与响应根据任务名称,本文将对几个典型环节的测试数据与响应进行探讨。

1. 电路稳定性测试电路稳定性是电路设计中非常重要的指标之一。

在进行电路模拟与软件仿真时,可以通过改变输入电压或负载电流等来测试电路的稳定性。

通过观察电路在不同输入条件下的输出波形和稳态响应,可以分析电路的稳定性是否满足设计要求。

2. 电路频率响应测试电路的频率响应是指电路对不同频率信号的响应情况。

在进行电路模拟与软件仿真时,可以通过输入不同频率的信号来测试电路的频率响应特性。

观察电路在不同频率下的幅频特性和相频特性,可以分析电路对不同频率信号的放大、衰减、相位变化等情况。

3. 电路灵敏度测试电路的灵敏度是指电路输出对于输入参数变化的敏感程度。

典型环节的电路模拟与软件仿真研究实验报告

典型环节的电路模拟与软件仿真研究实验报告

典型环节的电路模拟与软件仿真研究实验报告本实验旨在通过电路模拟和软件仿真的方法,研究典型环节的工作原理和特性。

具体内容包括以下部分:
1. 直流电源的模拟与仿真:通过搭建简单的直流电路,模拟和仿真直流电源的工作原理和特性,包括电压、电流、功率等参数的变化规律,以及电路中各组件的作用和影响。

2. 信号放大器的模拟与仿真:通过搭建信号放大器电路,模拟和仿真信号放大器的放大倍数、带宽、噪声等参数的特性,以及电路中各组件的作用和影响。

3. 滤波器的模拟与仿真:通过搭建低通、高通、带通和带阻滤波器电路,模拟和仿真滤波器的截止频率、通带和阻带等参数的特性,以及电路中各组件的作用和影响。

4. 模拟信号的采集与处理:通过搭建模拟信号的采集电路,模拟和仿真模拟信号的采集、放大、滤波和数字化等过程,以及信号处理中各组件的作用和影响。

通过以上实验内容的学习和实践,可以深入理解电路的工作原理和特性,掌握电路模拟和软件仿真的方法,为电路设计和应用提供基础支持和技术保障。

- 1 -。

自动控制原理实验一 典型环节的电路模拟与软件仿真

自动控制原理实验一  典型环节的电路模拟与软件仿真

实验一 典型环节的电路模拟与软件仿真一、实验目的1.熟悉THSSC-4型信号与系统·控制理论·计算机控制技术实验箱及上位机软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备型信号与系统·控制理论·计算机控制技术实验箱;机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线;3.双踪慢扫描示波器一台(可选); 三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机仿真界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1.比例(P )环节 图1-1比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:K S U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

图1-22.积分(I )环节积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:TsS U S U s G i O 1)()()(==设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

图1-33.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CSR R R CS R R R CS R CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

自控典型环节的电路模拟

自控典型环节的电路模拟

自控典型环节的电路模拟
随着现代工业技术的发展和对自动控制系统的高度关注,自控典型环节电路模拟是实现控制工程师的杰出表现的重要方法。

模拟自控典型环节的电路需要各种复杂的装置,可以结合系统的特定要求进行更复杂的模拟和控制。

首先,让我们来看看开关控制电路的模拟环节。

这种电路使用开关来控制不同种类的信号,包括电流、电压等。

因此,在开关控制电路中,需要实现电路中的信号源和负载间的开关控制,以实现信号源和负载之间的分离控制。

用于模拟开关控制电路的元器件包括开关、继电器、控制电路和I / O端口等。

其次,对于增量环节电路的模拟,用于模拟的元器件包括比较器、继电器、可调电阻等。

比较器可以检测两个输入信号之间的偏差,并根据偏差的大小,控制相应的继电器。

继电器的动作则可以用来实现增量控制,通过结合可调电阻,可以实现控制量的可调节。

此外,用于模拟滤波电路环节的元器件包括电容器、继电器、变频器和变压器等。

电容器可以用于实现电路中信号源和负载之间的延迟,从而实现反应的缓冲。

继电器的动作可以用于实现信号时钟的控制,从而实现对信号的滤波处理。

变频器和变压器则可以用于滤波器的调节,以确保滤波器输出信号的质量。

总之,模拟自控典型环节的电路需要很多复杂的装置,包括开关、继电器、比较器、变频器、变压器、光耦合器以及可调电阻等元器件。

按照特定系统的要求,对这些元器件进行综合运用,就可以实现电路模拟的完美操作,以帮助工程师实现更多的设计成就。

最新典型环节的电路模拟汇编

最新典型环节的电路模拟汇编

最新典型环节的电路模拟汇编电路模拟是一种可以将电路在计算机上进行模拟的技术手段,它可以方便地对复杂的电路进行操作和验证。

在最新的电路模拟汇编中,有一些典型的环节,本文将对这些环节进行简要的介绍。

第一步:寄存器设置在进行电路模拟时,首先需要设置寄存器,以便存储数据和指令。

在最新的电路模拟汇编中,一般使用32位寄存器进行数据存储,其中包括8个通用寄存器、栈指针寄存器、堆指针寄存器等。

第二步:指令调用在寄存器设置完成后,需要调用指令。

在最新的电路模拟汇编中,指令调用一般使用指令助记符和操作数的形式进行。

指令助记符表示指令的名称,操作数则表示要进行操作的数据。

第三步:流程控制在指令调用完成后,需要进行流程控制。

在最新的电路模拟汇编中,流程控制一般使用条件跳转和无条件跳转两种方式。

条件跳转是当满足条件时才进行跳转,无条件跳转是无论如何都进行跳转。

第四步:算术运算在流程控制完成后,需要进行算术运算。

在最新的电路模拟汇编中,算术运算一般包括加、减、乘、除等。

运算时需要进行操作数的位置以及是否需要溢出判断。

第六步:存储器操作在位运算完成后,需要进行存储器操作。

在最新的电路模拟汇编中,存储器操作一般包括取数据、存数据等。

在进行存储器操作时需要对存储的地址进行确定,同时也需要进行对数据的读写操作。

总结以上介绍了在最新的电路模拟汇编中的典型环节,包括寄存器设置、指令调用、流程控制、算术运算、位运算和存储器操作。

掌握这些环节可以帮助我们更好地进行电路模拟操作,特别是对于进行电路设计和测试方面的人员来说,这些技巧非常重要。

典型环节的模拟电路

典型环节的模拟电路

1、比例环节的模拟电路及其传递函数如下图
()21/G s R R =-
图1-1 比例环节的模拟电路及其传递函数
2、惯性环节的模拟电路及其传递函数如下图
()1K
G s Ts =-+
212/,K R R T R C ==
图1-2 惯性环节的模拟电路及其传递函数
3、积分环节的模拟电路及传递函数如下图
()1
G s Ts = T R C =
图1-3 积分环节的模拟电路及其传递函数
4、微分环节的模拟电路及传递函数如下图
()G s Ts =- T R C = 图1-4 微分环节的模拟电路及其传递函数
5、比例+微分环节的模拟电路及传递函数如下图(未标明的C=0.01f )。

()()
2121/,G s K Ts K R R T R C =-+==
图1-5 比例+微分环节的模拟电路及其传递函数
6、比例+积分环节的模拟电路及传递函数如如下图
()()
2121/,G s K Ts K R R T R C =-+==
图1-6 比例+积分环节的模拟电路及其传递函数
7、重点:典型环节在阶跃输入信号作用下的输出特性测试。

8、难点:掌握典型环节的电模拟方法及其参数测试方法,测量典型环节的阶跃响应曲线,了解参数变化对动态特性的影响。

难点:参数变化对动态特性的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、比例环节的模拟电路及其传递函数如下图
()21/G s R R =-
图1-1 比例环节的模拟电路及其传递函数
2、惯性环节的模拟电路及其传递函数如下图
()1K
G s Ts =-+
212/,K R R T R C ==
图1-2 惯性环节的模拟电路及其传递函数
3、积分环节的模拟电路及传递函数如下图
()1
G s Ts = T R C =
图1-3 积分环节的模拟电路及其传递函数
4、微分环节的模拟电路及传递函数如下图
()G s Ts =- T R C = 图1-4 微分环节的模拟电路及其传递函数
5、比例+微分环节的模拟电路及传递函数如下图(未标明的C=0.01f )。

()()
2121/,G s K Ts K R R T R C =-+==
图1-5 比例+微分环节的模拟电路及其传递函数
6、比例+积分环节的模拟电路及传递函数如如下图
()()
2121/,G s K Ts K R R T R C =-+==
图1-6 比例+积分环节的模拟电路及其传递函数
7、重点:典型环节在阶跃输入信号作用下的输出特性测试。

8、难点:掌握典型环节的电模拟方法及其参数测试方法,测量典型环节的阶跃响应曲线,了解参数变化对动态特性的影响。

难点:参数变化对动态特性的影响。

相关文档
最新文档