函数奇偶性经典讲义-新

合集下载

专题:函数的奇偶性讲义(教师用)

专题:函数的奇偶性讲义(教师用)

函数的奇偶性一、函数奇偶性设函数y =)(x f 的定义域为D ,如果对于D 任意一个x ,都有D x ∈-,且)(x f -=-)(x f ,那么这个函数叫做奇函数.设函数y =)(x g 的定义域为D ,如果对于D 任意一个x ,都有D x ∈-,且)(x g -=)(x g ,那么这个函数叫做偶函数.奇函数)(x f 的图象关于原点成中心对称图形. 偶函数)(x g 的图象关于y 轴成轴对称图形. 二、方法归纳1.函数的定义域D 是关于原点的对称点集(即对x ∈D 就有-x ∈D ),是其具有奇偶性的必要条件.2.在公共定义域:两个偶函数的和、差、积、商均为偶函数;两个奇函数的和、差是奇函数,积、 商是偶函数; 偶函数与奇函数的积、商是奇函数.3.判断函数的奇偶性应把握:① 若为具体函数,严格按照定义判断,注意定义域D 的对称性和变换中的等价性. ② 若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性和合理性.4.定义在关于原点的对称点集D 上的任意函数)(x f ,总可以表示成一个偶函数与一个奇函数的和. 即)(x f =)(x F +)(x G ,其中)(x F =2)()(x f x f -+为偶函数, )(x G =2)()(x f x f --为奇函数.5.奇(偶)函数性质的推广:若函数)(x f 的图象关于直线a x =对称,则)2()(a x f x f +=-; 若函数)(x f 的图象关于点)0,(a 对称,则)2()(a x f x f +-=-; 三、典型例题精讲[例1](1)函数)(x f =111122+++-++x x x x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线x =1对称解析:由=-)(x f 111122+-+--+x x x x , ∴ =-)(x f =11111122+++-++xx xx =)1(1)1(122x x x x +++++- =-)(x f∴ )(x f 是奇函数,图象关于原点对称. 答案:C【技巧提示】 用定义判定函数的奇偶性需要对函数解析式进行恒等变形,不要轻易断定是非奇非偶函数. (2)分段函数奇偶性的判定又例:函数⎩⎨⎧>-+-<++=0,320,32)(22x x x x x x x f 的奇偶性. 解析:当0>x 时,0<-x3)(2)()(2+-+-=-x x x f =322+-x x =)(x f -;当0<x 时,0>-x3)(2)()(2--+--=-x x x f =322---x x =)(x f -∴)(x f 是奇函数.[例2]已知)(x f 是偶函数而且在(0,+∞)上是减函数,判断)(x f 在(-∞,0)上的增减性并加以证明. 解析:函数)(x f 在(-∞,0)上是增函数.设x 1<x 2<0,因为)(x f 是偶函数,所以)(1x f -=)(1x f ,)(2x f -=)(2x f ,由假设可知-x 1>-x 2>0,又已知)(x f 在(0,+∞)上是减函数,于是有)(1x f -<)(2x f -, 即)(1x f <)(2x f ,由此可知,函数)(x f 在(-∞,0)上是增函数.【技巧提示】 具有奇偶性的函数,其定义域D 关于原点的对称性,使得函数在互为对称的区间的单调性具有对应性.“偶函数半增半减,奇函数一增全增”.[例3]定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在区间[0,+∞)上的图象与)(x f 的图象重合,设a >b >0,给出下列不等式:(1)f (b )-f (-a )>g (a )-g (-b ); (2)f (b )-f (-a )<g (a )-g (-b ); (3)f (a )-f (-b )>g (b )-g (-a ); (4)f (a )-f (-b )<g (b )-g (-a ). 其中成立的是( )A . (1)与(4)B . (2)与(3)C . (1)与(3)D . (2)与(4) 解析:根据函数)(x f 、)(x g 的奇偶性将四个不等式化简,得: (1)f (b )+f (a )>g (a )-g (b ); (2)f (b )+f (a )<g (a )-g (b ); (3)f (a )+f (b )>g (b )-g (a ); (4)f (a )+f (b )<g (b )-g (a ).再由题义,有 )(a f =)(a g >)(b f =)(b g >0)0()0(==g f .显然(1)、(3)正确,故选C .【技巧提示】 具有奇偶性的函数可以根据某个区间的单调性判定其对称的区间的单调性,因而往往与不等式联系紧密.又例:偶函数)(x f 在定义域为R ,且在(-∞,0]上单调递减,求满足)3(+x f >)1(-x f 的x 的集合. 解析:偶函数)(x f 在(-∞,0]上单调递减,在[0,+∞)上单调递增.根据图象的对称性,)3(+x f >)1(-x f 等价于|3|+x >|1|-x .解之,1->x ,∴ 满足条件的x 的集合为(-1,+∞).[例4]设)(x f 是(-∞,+∞)上的奇函数,)2(+x f =-)(x f ,当0≤x ≤1时,)(x f =x ,x 则)5.7(f 等于( )A .0.5B . -0.5C . 1.5D . -1.5解析:)5.7(f =)25.5(+f =-)5.5(f =-)25.3(+f =)5.3(f =)25.1(+f =-)5.1(f =-)25.0(+-f =)5.0(-f =-)5.0(f =-0.5.答案:B【技巧提示】 这里反复利用了)(x f =-)(x f 和)2(+x f =-)(x f ,后 面的学习我们会知道这样的函数具有周期性.又例:如果函数)(x f 在R 上为奇函数,且在(-1,0)上是增函数,试比较)31(f ,)32(f ,)1(f 的大小关系_________. 解析:∵)(x f 为R 上的奇函数,∴ )31(f =-)31(-f ,)32(f =-)32(-f ,)1(f =-)1(-f ,又)(x f 在(-1,0)上是增函数且-31>-32>-1. ∴ )31(-f >)32(-f >)1(-f ,∴ )31(f <)32(f <)1(f .答案:)31(f <)32(f <)1(f .[例5]函数)(x f 的定义域为D ={}0≠∈x R x ,且满足对于任意D x x ∈21,,有1212()()()f x x f x f x ⋅=+ (1)求(1)f 的值; (2)判断函数)(x f 的奇偶性,并证明;解:(1)令121x x ==,得()10f =;(2)令121x x ==-,得()10f -=,令121,x x x =-=,得()()()1f x f f x -=-+∴ ()()f x f x -=,即)(x f 为偶函数.【技巧提示】 赋值法是解决抽象函数问题的切入点.常赋值有0,1,―1,2,―2,等等.[例6]已知函数)(x f 在(-1,1)上有定义,)21(f =-1,当且仅当0<x <1时)(x f <0,且对任意x 、y ∈(-1,1)都有)(x f +)(y f =)1(xyyx f ++,试证明: (1) )(x f 为奇函数;(2) )(x f 在(-1,1)上单调递减. 证明:(1) 由)(x f +)(y f =)1(xyyx f ++,令x =y =0,得)0(f =0, 令y =-x ,得)(x f +)(x f -=)1(2x xx f --=)0(f =0,∴ )(x f =-)(x f -, ∴)(x f 为奇函数. (2)先证)(x f 在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<21121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴ )(x f 在(0,1)上为减函数,又)(x f 为奇函数且f (0)=0.∴)(x f 在(-1,1)上为减函数.【技巧提示】 这种抽象函数问题,往往需要赋值后求特殊的函数值,如(0),(1),(2)f f f ±±等等,一般(0)f 的求解最为常见.赋值技巧常为令0==y x 或y x -=等。

函数的奇偶性(精辟讲解)精品PPT课件

函数的奇偶性(精辟讲解)精品PPT课件
f(x)=-f(-x). (2)可用定义法,也可以用特殊值代入,如 f(1)=f(-1), 再验证. (3)可考虑 f(x)在[-2,2]上的单调性.
解 (1)∵f(x)是定义在 R 上的奇函数, ∴f(0)=0,当 x<0 时,-x>0, 由已知 f(-x)=(-x)2-(-x)-1=x2+x-1=-f(x). ∴f(x)=-x2-x+1.
所以 f(x)在(0,+∞)内单调递增.
故|lg x|>1,即 lg x>1 或 lg x<-1,
解得
x>10

1 0<x<10.
点评 解决本题的关键在于利用函数的奇偶性把不等
式两边的函数值转化到同一个单调区间上,然后利用函
数的单调性脱掉符号“f”.
题型三 函数的奇偶性与周期性 例 3 设 f(x)是定义在 R 上的奇函数,且对任意实数 x,
域是否关于原点对称.若对称,再验证 f(-x)=±f(x)或
其等价形式 f(-x)±f(x)=0 是否成立.
解 (1)由x32--x32≥≥0
,得 x=±3.∴f(x)的定义域为{-3,3}.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.即 f(x)=±f(-x).
∴f(x)既是奇函数,又是偶函数.
基础自测
1.下列函数中,所有奇函数的序号是__②__③____.
①f(x)=2x4+3x2;②f(x)=x3-2x; ③f(x)=x2+x 1;④f(x)=x3+1. 解析 由奇偶函数的定义知:①为偶函数;②③为奇函
数;④既不是偶函数,也不是奇函数. 2.若函数 f(x)=2x+2 1+m 为奇函数,则实数 m=_-__1__.
f (x) 0x2 x 1

新高考A版讲义:第三章函数 第3节 函数的基本性质奇偶性

新高考A版讲义:第三章函数 第3节 函数的基本性质奇偶性

第3节 函数的基本性质:奇偶性知识点一 函数奇偶性 1.奇偶性的几何特征一般地,图象关于y 轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数. 2.函数奇偶性的定义(1)偶函数:函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数.(2)奇函数:函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数.3.奇(偶)函数的定义域特征:奇(偶)函数的定义域关于原点对称.题型一、函数奇偶性的判断 例1 判断下列函数的奇偶性.(1)f (x )=1x ;(2)f (x )=x 2(x 2+2);(3)f (x )=xx -1;(4)f (x )=x 2-1+1-x 2.解 (1)f (x )=1x 的定义域为(-∞,0)∪(0,+∞),∵f (-x )=1-x=-1x =-f (x ),∴f (x )=1x 是奇函数.(2)f (x )=x 2(x 2+2)的定义域为R .∵f (-x )=f (x ),∴f (x )=x 2(x 2+2)是偶函数. (3)f (x )=xx -1的定义域为(-∞,1)∪(1,+∞), ∵定义域不关于原点对称,∴f (x )=xx -1既不是奇函数,也不是偶函数.(4)f (x )=x 2-1+1-x 2的定义域为{-1,1}.∵f (-x )=f (x )=-f (x )=0,∴f (x )=x 2-1+1-x 2既为奇函数,又为偶函数. 反思感悟 判断函数奇偶性的方法(1)定义法:①定义域关于原点对称;②确定f (-x )与f (x )的关系. (2)图象法.跟踪训练1 判断下列函数的奇偶性.(1)f (x )=x ;(2)f (x )=1-x 2x ;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解(1)函数f(x)的定义域为[0,+∞),不关于原点对称,所以f(x)=x是非奇非偶函数.(2)f(x)的定义域为[-1,0)∪(0,1],关于原点对称.f(-x)=1-x2-x=-f(x),所以f(x)为奇函数.(3)f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x>0时,-x<0,则f(-x)=(-x)2-(-x)=x2+x=f(x);当x<0时,-x>0,则f(-x)=(-x)2+(-x)=x2-x=f(x),所以f(x)是偶函数.题型二、奇、偶函数图象的应用例2定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.解(1)先描出(1,1),(2,0)关于原点的对称点(-1,-1),(-2,0),连线可得f(x)的图象如图.(2)xf(x)>0即图象上横坐标、纵坐标同号.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).延伸探究把本例中的“奇函数”改为“偶函数”,重做该题.解(1)f(x)的图象如图所示:(2)xf(x)>0的解集是(-∞,-2)∪(0,2).反思感悟可以用奇(偶)函数图象关于原点(y轴)对称这一特性去画图,求值,解不等式等.跟踪训练2已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.解(1)如图,在[0,5]上的图象上选取5个关键点O,A,B,C,D.分别描出它们关于原点的对称点O ′,A ′,B ′,C ′,D ′, 再用光滑曲线连接即得.(2)由(1)图可知,当且仅当x ∈(-2,0)∪(2,5)时,f (x )<0. ∴使f (x )<0的x 的取值集合为{x |-2<x <0或2<x <5}. 题型三、利用函数的奇偶性求参数值例3 (1)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.解析 因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13.又函数f (x )=13x 2+bx +b +1为二次函数,结合偶函数图象的特点,易得b =0.(2)已知函数f (x )=ax 2+2x 是奇函数,则实数a =________.解析 由奇函数定义有f (-x )+f (x )=0,得a (-x )2+2(-x )+ax 2+2x =2ax 2=0,故a =0. 反思感悟 利用奇偶性求参数的常见类型(1)定义域含参数:奇偶函数f (x )的定义域为[a ,b ],根据定义域关于原点对称,利用a +b =0求参数.(2)解析式含参数:根据f (-x )=-f (x )或f (-x )=f (x )列式,比较系数利用待定系数法求解. 跟踪训练3 (1)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 解析 方法一 显然x ∈R ,由已知得f (-x )=(-x )2-|-x +a |=x 2-|x -a |. 又f (x )为偶函数,所以f (x )=f (-x ),即x 2-|x +a |=x 2-|x -a |, 即|x +a |=|x -a |.又x ∈R ,所以a =0.方法二 由题意知f (-1)=f (1),则|a -1|=|a +1|,解得a =0.(2)已知函数f (x )是奇函数,当x ∈(-∞,0)时,f (x )=x 2+mx .若f (2)=-3,则m 的值为________. 解析 ∵f (-2)=-f (2)=3,∴f (-2)=(-2)2-2m =3,∴m =12.知识点二 奇偶性与单调性若函数f (x )为奇函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相同的单调性;若函数f (x )为偶函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相反的单调性.题型一、利用奇偶性求解析式 命题角度1 求对称区间上的解析式例1 函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求当x <0时,f (x )的解析式. 解 设x <0,则-x >0,∴f (-x )=-(-x )+1=x +1,又∵函数f (x )是定义域为R 的奇函数,∴当x <0时,f (x )=-f (-x )=-x -1.反思感悟 求给定哪个区间的解析式就设这个区间上的变量为x ,然后把x 转化为-x ,此时-x 成为了已知区间上的解析式中的变量,通过应用奇函数或偶函数的定义,适当推导,即可得所求区间上的解析式.跟踪训练1已知f (x )是R 上的奇函数,且当x ∈(0,+∞)时,f (x )=x (1+x ),求f (x )的解析式. 解 因为x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-x [1+(-x )]=x (x -1). 因为f (x )是R 上的奇函数,所以f (x )=-f (-x )=-x (x -1),x ∈(-∞,0).f (0)=0.所以f (x )=⎩⎪⎨⎪⎧x (1+x ),x ≥0,-x (x -1),x <0.命题角度2 构造方程组求解析式例2 设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式.解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ), 由f (x )+g (x )=1x -1.①,用-x 代替x ,得f (-x )+g (-x )=1-x -1,∴f (x )-g (x )=1-x -1,② (①+②)÷2,得f (x )=1x 2-1;(①-②)÷2,得g (x )=xx 2-1.反思感悟 f (x )+g (x )=1x -1对定义域内任意x 都成立,所以可以对x 任意赋值,如x =-x .利用f (x ),g (x )一奇一偶,把-x 的负号或提或消,最终得到关于f (x ),g (x )的二元方程组,从中解出f (x )和g (x ).跟踪训练2设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+2x ,求函数f (x ),g (x )的解析式. 解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ), 由f (x )+g (x )=2x +x 2.①用-x 代替x ,得f (-x )+g (-x )=-2x +(-x )2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.题型二、利用函数的奇偶性与单调性比较大小例3设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)解析因为函数f(x)为R上的偶函数,所以f(-3)=f(3),f(-2)=f(2).又当x∈[0,+∞)时,f(x)是增函数,且π>3>2,所以f(π)>f(3)>f(2),故f(π)>f(-3)>f(-2).反思感悟利用函数的奇偶性与单调性比较大小(1)自变量在同一单调区间上,直接利用函数的单调性比较大小;(2)自变量不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.跟踪训练3(1)已知偶函数f(x)在[0,+∞)上单调递减,则f(1)和f(-10)的大小关系为() A.f(1)>f(-10) B.f(1)<f(-10)C.f(1)=f(-10) D.f(1)和f(-10)关系不定答案A解析∵f(x)是偶函数,且在[0,+∞)上单调递减,∴f(-10)=f(10)<f(1).(2)定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,设a>b>0,下列不等式中成立的有________.(填序号)①f(a)>f(-b);②f(-a)>f(b);③g(a)>g(-b);④g(-a)<g(b);⑤g(-a)>f(-a).解析f(x)为R上奇函数,增函数,且a>b>0,∴f(a)>f(b)>f(0)=0,又-a<-b<0,∴f(-a)<f(-b)<f(0)=0,∴f(a)>f(b)>0>f(-b)>f(-a),∴①正确,②错误.x∈[0,+∞)时,g(x)=f(x),∴g(x)在[0,+∞)上单调递增,∴g(-a)=g(a)>g(b)=g(-b),∴③正确,④错误.又g(-a)=g(a)=f(a)>f(-a),∴⑤正确.题型三、利用函数的奇偶性与单调性解不等式例4(1)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数.若f(-3)=0,则f(x)x<0的解集为________.解析∵f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数,∴f(x)在区间(0,+∞)上是减函数.∴f(3)=f(-3)=0.当x>0时,由f(x)<0,解得x>3;当x<0时,由f(x)>0,解得-3<x<0.故所求解集为{x |-3<x <0或x >3}.(2)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围为( ) A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23 D.⎣⎡⎭⎫12,23 解析 由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝⎛⎭⎫13, 即-13<2x -1<13,解得13<x <23.反思感悟 利用函数奇偶性与单调性解不等式,一般有两类 (1)利用图象解不等式; (2)转化为简单不等式求解.①利用已知条件,结合函数的奇偶性,把已知不等式转化为f (x 1)<f (x 2)或f (x 1)>f (x 2)的形式; ②根据奇函数在对称区间上的单调性一致,偶函数在对称区间上的单调性相反,脱掉不等式中的“f ”转化为简单不等式(组)求解.跟踪训练4 设定义在[-2,2]上的奇函数f (x )在区间[0,2]上是减函数,若f (1-m )<f (m ),求实数m 的取值范围.解 因为f (x )是奇函数且f (x )在[0,2]上是减函数,f (x )在[-2,2]上是减函数. 所以不等式f (1-m )<f (m )等价于⎩⎪⎨⎪⎧1-m >m ,-2≤m ≤2,-2≤1-m ≤2,解得-1≤m <12.1.下列函数中奇函数的个数为( ) ①f (x )=x 3; ②f (x )=x 5; ③f (x )=x +1x;④f (x )=1x2.A .1B .2C .3D .4 答案 C2.已知f (x )是定义在R 上的奇函数,f (-3)=2,则下列各点中一定在函数f (x )的图象上的是( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3) 答案 A解析 f (-3)=2即点(-3,2)在奇函数的图象上, ∴(-3,2)关于原点的对称点(3,-2)必在f (x )的图象上.3.设f (x )是定义在R 上的一个函数,则函数F (x )=f (x )-f (-x )在R 上一定( ) A .是奇函数 B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 答案 A解析 F (-x )=f (-x )-f (x )=-[f (x )-f (-x )]=-F (x ). ∴F (x )为奇函数4.若f (x )=3x 3+5x +a -1为奇函数,则a 的值为( ) A .0 B .-1 C .1 D .2 答案 C解析 ∵f (x )为R 上的奇函数, ∴f (0)=0得a =1.5.如图,给出奇函数y =f (x )的局部图象,则f (-2)+f (-1)的值为( )A .-2B .2C .1D .0答案 A解析 f (-2)+f (-1)=-f (2)-f (1) =-32-12=-2.6.若f (x )=(x +a )(x -4)为偶函数,则实数a =________. 答案 4解析 f (x )=x 2+(a -4)x -4a 是偶函数,∴a =4.7.已知y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (3)=6,则a 的值为________. 答案 5解析 因为f (x )是奇函数, 所以f (-3)=-f (3)=-6,所以(-3)2+a (-3)=-6,解得a =5.8.若f (x )为R 上的奇函数,给出下列四个说法: ①f (x )+f (-x )=0; ②f (x )-f (-x )=2f (x );③f(x)·f(-x)<0;④f(x)f(-x)=-1.其中一定正确的为________.(填序号)答案①②解析∵f(x)在R上为奇函数,∴f(-x)=-f(x).∴f(x)+f(-x)=f(x)-f(x)=0,故①正确.f(x)-f(-x)=f(x)+f(x)=2f(x),故②正确.当x=0时,f(x)·f(-x)=0,故③不正确.当x=0时,f(x)f(-x)分母为0,无意义,故④不正确.9.判断下列函数的奇偶性:(1)f(x)=x3+x5;(2)f(x)=|x+1|+|x-1|;(3)f(x)=2x2+2x x+1.考点函数的奇偶性判定与证明题点判断简单函数的奇偶性解(1)函数的定义域为R.∵f(-x)=(-x)3+(-x)5=-(x3+x5)=-f(x),∴f(x)是奇函数.(2)f(x)的定义域是R.∵f(-x)=|-x+1|+|-x-1|=|x-1|+|x+1|=f(x),∴f(x)是偶函数.(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f(x)是非奇非偶函数.10.(1)如图①,给出奇函数y=f(x)的局部图象,试作出y轴右侧的图象并求出f(3)的值.(2)如图②,给出偶函数y=f(x)的局部图象,试作出y轴右侧的图象并比较f(1)与f(3)的大小.解(1)由奇函数的性质可作出它在y轴右侧的图象,图③为补充后的图象.易知f(3)=-2.(2)由偶函数的性质可作出它在y 轴右侧的图象,图④为补充后的图象,易知f (1)>f (3).11.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =-2x答案 B解析 对于函数y =|x |+1,f (-x )=|-x |+1=|x |+1=f (x ), 所以y =|x |+1是偶函数,当x >0时,y =x +1, 所以在(0,+∞)上单调递增.另外,函数y =x 3不是偶函数,y =-x 2+1在(0,+∞)上单调递减,y =-2x 不是偶函数.故选B.12.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .f (x )+|g (x )|是偶函数 B .f (x )-|g (x )|是奇函数 C .|f (x )|+g (x )是偶函数 D .|f (x )|-g (x )是奇函数 考点 函数的奇偶性判定与证明 题点 判断抽象函数的奇偶性 答案 A解析 由f (x )是偶函数,可得f (-x )=f (x ), 由g (x )是奇函数可得g (-x )=-g (x ), 故|g (x )|为偶函数, ∴f (x )+|g (x )|为偶函数.13.函数f (x )=4-x 22-|x +2|的定义域为________,为______函数(填“奇”或“偶”).答案 [-2,0)∪(0,2] 奇解析 依题意有⎩⎪⎨⎪⎧4-x 2≥0,2-|x +2|≠0,解得-2≤x ≤2且x ≠0, ∴f (x )的定义域为[-2,0)∪(0,2].∵f (x )=4-x 22-|x +2|=4-x 2-x=-4-x 2x ,定义域关于原点对称,∴f (-x )=4-x 2x =-f (x ),∴f (x )为奇函数.14.函数f (x )=ax 3+bx +cx +5满足f (-3)=2,则f (3)的值为________.答案 8解析 设g (x )=f (x )-5=ax 3+bx +cx (x ≠0),∵g (-x )=-ax 3-bx -cx =-g (x ),∴g (x )是奇函数,∴g (3)=-g (-3)=-[f (-3)-5] =-f (-3)+5=-2+5=3, 又g (3)=f (3)-5=3, ∴f (3)=8.15.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.考点 函数图象的对称性 题点 中心对称问题 答案 43解析 根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.16.设函数f (x )=ax 2+1bx +c 是奇函数(a ,b ,c ∈Z ),且f (1)=2,f (2)<3,求a ,b ,c 的值.解 由条件知f (-x )+f (x )=0, ∴ax 2+1bx +c +ax 2+1c -bx =0,∴c =0. 又f (1)=2,∴a +1=2b .∵f (2)<3,∴4a +12b <3,∴4a +1a +1<3,解得-1<a <2,∴a =0或1. ∴b =12或1,由于b ∈Z ,∴a =1,b =1,c =0.1.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,g (x ),x <0,且f (x )为偶函数,则g (-2)等于( ) A .6 B .-6 C .2 D .-2考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 A解析 g (-2)=f (-2)=f (2)=22+2=6.2.如果奇函数f (x )在区间[-3,-1]上是增函数且有最大值5,那么函数f (x )在区间[1,3]上是( )A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-5答案 A解析 f (x )为奇函数,∴f (x )在[1,3]上的单调性与[-3,-1]上一致且f (1)为最小值, 又已知f (-1)=5,∴f (-1)=-f (1)=5,∴f (1)=-5,故选A.3.已知函数y =f (x )是R 上的偶函数,且f (x )在[0,+∞)上是减函数,若f (a )≥f (-2),则a 的取值范围是( )A .a ≤-2B .a ≥2C .a ≤-2或a ≥2D .-2≤a ≤2答案 D解析 由f (a )≥f (-2)得f (|a |)≥f (2),∴|a |≤2,∴-2≤a ≤2.4.已知函数y =f (x )是偶函数,其图象与x 轴有4个交点,则方程f (x )=0的所有实根之和是( )A .4B .2C .1D .0答案 D解析 y =f (x )是偶函数,所以y =f (x )的图象关于y 轴对称,所以f (x )=0的所有实根之和为0.5.设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( )A .f (-x 1)>f (-x 2)B .f (-x 1)=f (-x 2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案A解析∵x1<0,x1+x2>0,∴x2>-x1>0,又f(x)在(0,+∞)上是减函数,∴f(x2)<f(-x1),∵f(x)是偶函数,∴f(-x2)=f(x2)<f(-x1).6.设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)+f(0)=________.答案-5解析由题意知f(-2)=-f(2)=-(22+1)=-5,f(0)=0,∴f(-2)+f(0)=-5.7.已知奇函数f(x)在区间[0,+∞)上单调递增,则满足f(x)<f(1)的x的取值范围是________.考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案(-∞,1)解析由于f(x)在[0,+∞)上单调递增,且是奇函数,所以f(x)在R上单调递增,f(x)<f(1)等价于x<1.8.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)从小到大的排列是________.答案f(-2)<f(1)<f(0)解析∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(m-1)x2-6mx+2=(m-1)x2+6mx+2恒成立,∴m=0,即f(x)=-x2+2.∵f(x)的图象开口向下,对称轴为y轴,在[0,+∞)上单调递减,∴f(2)<f(1)<f(0),即f(-2)<f(1)<f(0).9.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.考点 单调性与奇偶性的综合应用题点 求奇偶函数的单调区间解 (1)因为函数f (x )的图象关于原点对称,所以f (x )为奇函数,则f (0)=0.设x <0,则-x >0,因为当x >0时,f (x )=x 2-2x +3.所以当x <0时,f (x )=-f (-x )=-(x 2+2x +3)=-x 2-2x -3.于是有f (x )=⎩⎪⎨⎪⎧ x 2-2x +3,x >0,0,x =0,-x 2-2x -3,x <0.(2)先画出函数在y 轴右侧的图象,再根据对称性画出y 轴左侧的图象,如图.由图象可知函数f (x )的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).10.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数,且满足f (1)=52,f (2)=174. (1)求a ,b ,c 的值;(2)试判断函数f (x )在区间⎝⎛⎭⎫0,12上的单调性并证明. 考点 单调性与奇偶性的综合应用题点 判断或证明奇偶函数在某区间上的单调性解 (1)∵f (x )为奇函数,∴f (-x )=-f (x ),∴-ax -b x +c =-ax -b x-c , ∴c =0,∴f (x )=ax +b x. 又∵f (1)=52,f (2)=174, ∴⎩⎨⎧ a +b =52,2a +b 2=174.∴a =2,b =12.综上,a =2,b =12,c =0.(2)由(1)可知f (x )=2x +12x .函数f (x )在区间⎝⎛⎭⎫0,12上为减函数.证明如下:任取0<x 1<x 2<12,则f (x 1)-f (x 2)=2x 1+12x 1-2x 2-12x 2=(x 1-x 2)⎝⎛⎭⎫2-12x 1x 2=(x 1-x 2)4x 1x 2-12x 1x 2.∵0<x 1<x 2<12,∴x 1-x 2<0,2x 1x 2>0,4x 1x 2-1<0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在⎝⎛⎭⎫0,12上为减函数.11.设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为() A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)答案 C解析 ∵f (x )为奇函数,f (x )-f (-x )x <0,即f (x )x <0,∵f (x )在(0,+∞)上为减函数且f (1)=0,∴当x >1时,f (x )<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f (x )为减函数且f (-1)=0,即x <-1时,f (x )>0.综上使f (x )x<0的解集为(-∞,-1)∪(1,+∞). 12.已知f (x +y )=f (x )+f (y )对任意实数x ,y 都成立,则函数f (x )是( )A .奇函数B .偶函数C .既是奇函数,也是偶函数D .既不是奇函数,也不是偶函数答案 A解析 令x =y =0,所以f (0)=f (0)+f (0),所以f (0)=0.又因为f (x -x )=f (x )+f (-x )=0,所以f (-x )=-f (x ),所以f (x )是奇函数,故选A.13.已知y =f (x )+x 2是奇函数且f (1)=1,若g (x )=f (x )+2,则g (-1)=________. 考点 函数奇偶性的应用题点 利用奇偶性求函数值答案 -1解析 ∵y =f (x )+x 2是奇函数,∴f (-x )+(-x )2=-[f (x )+x 2],∴f (x )+f (-x )+2x 2=0,∴f (1)+f (-1)+2=0.∵f (1)=1,∴f (-1)=-3.∵g (x )=f (x )+2,∴g (-1)=f (-1)+2=-3+2=-1.14.已知定义在R 上的函数f (x )满足f (1-x )=f (1+x ),且f (x )在[1,+∞)上为单调减函数,则当x =________时,f (x )取得最大值;若不等式f (0)<f (m )成立,则m 的取值范围是________. 答案 1 (0,2)解析 由f (1-x )=f (1+x )知,f (x )的图象关于直线x =1对称,又f (x )在(1,+∞)上单调递减,则f (x )在(-∞,1]上单调递增,所以当x =1时f (x )取到最大值.由对称性可知f (0)=f (2),所以f (0)<f (m ),得0<m <2,即m 的取值范围为(0,2).15.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( )A .-3B .-1C .1D .3考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 C解析 ∵f (x )-g (x )=x 3+x 2+1,∴f (-x )-g (-x )=-x 3+x 2+1.∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ).∴f (x )+g (x )=-x 3+x 2+1.∴f (1)+g (1)=-1+1+1=1.16.设f (x )是定义在R 上的奇函数,且对任意a ,b ∈R ,当a +b ≠0时,都有f (a )+f (b )a +b>0. (1)若a >b ,试比较f (a )与f (b )的大小关系;(2)若f (1+m )+f (3-2m )≥0,求实数m 的取值范围.解 (1)因为a >b ,所以a -b >0,由题意得f (a )+f (-b )a -b>0, 所以f (a )+f (-b )>0.又f (x )是定义在R 上的奇函数,所以f (-b )=-f (b ),所以f (a )-f (b )>0,即f (a )>f (b ).(2)由(1)知f (x )为R 上的单调递增函数,因为f (1+m )+f (3-2m )≥0,所以f (1+m )≥-f (3-2m ),即f (1+m )≥f (2m -3),所以1+m ≥2m -3,所以m ≤4.所以实数m 的取值范围为(-∞,4].。

函数奇偶性讲义

函数奇偶性讲义

函数的性质要求层次重点难点单调性C①概念和图象特征 ②熟知函数的性质和图象①函数单调性的证明和判断②简单函数单调区间的求法奇偶性 B简单函数奇偶性的判断和证明①复合函数的奇偶性判断与证明*②抽象函数的奇偶性周期性 B简单函数周期性的判断和证明①复合函数的周期性判断与证明*②抽象函数的周期性板块一:函数的单调性 (一)知识内容1.函数单调性的定义:①如果函数()f x 对区间D 内的任意12,x x ,当12x x <时都有()()12f x f x <,则称()f x 在D 内是增函数;当12x x <时都有()()12f x f x >,则()f x 在D 内时减函数.②设函数()y f x =在某区间D 内可导,若()0f x '>,则()y f x =为x D ∈的增函数;若()0f x '<,则()y f x =为x D ∈的减函数.2.单调性的定义①的等价形式:设[]12,,x x a b ∈,那么()()()12120f x f x f x x x ->⇔-在[],a b 是增函数; ()()()12120f x f x f x x x -<⇔-在[],a b 是减函数;()()()12120x x f x f x --<⎡⎤⎣⎦()f x ⇔在[],a b 是减函数.3.复合函数单调性的判断:“同增异减”4.函数单调性的应用.利用定义都是充要性命题.高考要求函数的基本性质知识精讲即若()f x 在区间D 上递增(递减)且1212()()f x f x x x <⇔<(1x 2,x D ∈); 若()f x 在区间D 上递递减且1212()()f x f x x x <⇔>.(1x 2,x D ∈). ①比较函数值的大小②可用来解不等式.③求函数的值域或最值等(二)主要方法1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;2.判断函数的单调性的方法有: ⑴用定义用定义法证明函数单调性的一般步骤:①取值:即设1x ,2x 是该区间内的任意两个值,且12x x <②作差变形:通过因式分解、配方,有理化等方法,向有利于判断差的符号的方向变形.③定号:确定差12()()f x f x -(或21()()f x f x -)的符号,若符号不确定,可以进行分类讨论. ④下结论:即根据定义得出结论,注意下结论时不要忘记说明区间. ⑵用已知函数的单调性; ⑶利用函数的导数;⑷如果()f x 在区间D 上是增(减)函数,那么()f x 在D 的任一非空子区间上也是增(减)函数; ⑸图象法;⑹复合函数的单调性结论:“同增异减” ; 复合函数的概念:如果y 是u 的函数,记作()y f u =,u 是x 的函数,记为()u g x =,且()g x 的值域与()f u 的定义域的交集非空,则通过u 确定了y 是x 的函数[()]y f g x =,这时y 叫做x 的复合函数,其中u 叫做中间变量,()u f u =叫做外层函数,()u g x =叫做内层函数.注意:只有当外层函数()f u 的定义域与内层函数()g x 的值域的交集非空时才能构成复合函数[()]f g x . ⑺在公共定义域内,增函数()f x +增函数()g x 是增函数;减函数()f x +减函数()g x 是减函数;增函数()f x -减函数()g x 是增函数;减函数()f x -增函数()g x 是减函数.⑻函数(0,0)by ax a b x =+>>在,,b b a a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭或上单调递增;在,00b b a a ⎡⎫⎛⎤-⎪ ⎢⎥⎪ ⎣⎭⎝⎦或,上是单调递减.(三)典例分析【例1】根据函数单调性的定义,证明函数3()1f x x =-+在(,)-∞+∞上是减函数.【例2】证明函数()f x x =-在定义域上是减函数.【例3】讨论函数2()23f x x ax =-+在(2,2)-内的单调性.【例4】函数21x y x =-(x ∈R ,1x ≠)的递增区间是( )A .2x ≥B .0x ≤或2x ≥C .0x ≤D .12x -≤或2x ≥【例5】求下列函数的单调区间:⑴ |1|y x =-;⑵ 1y x x=+(0x >).【例6】作出函数2||y x x =-的图象,并结合图象写出它的单调区间.【例7】若()f x 是R 上的减函数,且()f x 的图象经过点(03)A ,和点(31)B -,,则不等式|(1)1|2f x +-<的解集为( ) A .(3)-∞,B .(2)-∞,C .(03),D .(12)-,【例8】求函数1()f x x x=+,0x >的最小值.【例9】已知()f x 是定义在+R 上的增函数,且()()()x f f x f y y=-.⑴求证:(1)0f =,()()()f xy f x f y =+; ⑵若(2)1f =,解不等式1()()23f x f x -≤-.【例10】已知给定函数()f x 对于任意正数x ,y 都有()f xy =()f x ·()f y ,且()f x ≠0,当1x >时,()1f x <.试判断()f x 在(0,)+∞上的单调性,并说明理由.板块二:函数的奇偶性 (一) 主要知识:1.奇函数:如果对于函数()y f x =的定义域D 内任意一个x ,都有x D -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数;2.偶函数:如果对于函数()y g x =的定义域D 内任意一个x ,都有x D -∈,都有()()g x g x -=,那么函数()g x 就叫做偶函数.3.图象特征:如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形,反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数; 如果一个函数是偶函数,则它的的图象是以y 轴为对称轴的轴对称图形,反之,如果一个函数的图象关于y 轴对称,则这个函数是偶函数.4.奇偶函数的性质: ⑴函数具有奇偶性的必要条件是其定义域关于原点对称;⑵()f x 是偶函数⇔()f x 的图象关于y 轴对称;()f x 是奇函数⇔()f x 的图象关于原点对称;⑶奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性. ⑷()f x 为偶函数()()(||)f x f x f x ⇔=-=. ⑸若奇函数()f x 的定义域包含0,则(0)0f =.(二)主要方法:1.判断函数的奇偶性的方法:⑴定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; ⑵图象法; ⑶性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇; ②若某奇函数若存在反函数,则其反函数必是奇函数;2.判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-. (三)典例分析:【例11】判断下列函数的奇偶性:1()(1)1xf x x x+=--【例12】⑴ 若()f x 是定义在R 上的奇函数,则(0)f =__________;⑵若()f x 是定义在R 上的奇函数,(3)2f =,且对一切实数x 都有(4)()f x f x +=,则(25)f =__________;⑶设函数()y f x =(R x ∈且0x ≠)对任意非零实数12,x x 满足1212()()()f x x f x f x ⋅=+,则函数()y f x =是___________(指明函数的奇偶性)【例13】设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,3()(1)f x x x =+,那么当(,0)x ∈-∞时,()f x =_________.【例14】()y f x =图象关于1x =对称,当1x ≤时,2()1f x x =+,求当1x >时()f x 的表达式.【例15】已知()f x是奇函数,()g x是偶函数,且1()()1f xg xx-=+,求()f x、()g x.【例16】设函数322||2()2||x x x xf xx x+++=+的最大值为M,最小值为m,则M与m满足().A.2M m+=B.4M m+= C.2M m-=D.4M m-=【例17】函数22()||a xf xx a a-=+-为奇函数,则a的取值范围是().A.10a-<≤或01a<≤B.1a-≤或1a≥C.0a>D.0a<【例18】已知()y f x=为()-∞+∞,上的奇函数,且在(0)+∞,上是增函数.⑴求证:()y f x=在(0)-∞,上也是增函数;⑵若1()12f=,解不等式41(log)0f x-<≤,习题1. 试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.习题2. 判断下列函数的奇偶性并说明理由:⑴()11f x x x =-+-;⑵2()5||f x x x =+.习题3. 已知函数()f x 为R 上的奇函数,且当0x >时()(1)f x x x =-.求函数()f x 的解析式.习题4. 已知()f x 是奇函数,()g x 是偶函数并且()()1f x g x x +=+,则求()f x 与()g x 的表达式.习题5. 设函数()y f x =(x ∈R 且0)x ≠对任意非零实数12,x x ,恒有1212()()()f x x f x f x =+,⑴求证:(1)(1)0f f =-=;家庭作业⑵求证:()y f x =是偶函数;⑶已知()y f x =为(0,)+∞上的增函数,求适合1()()02f x f x +-≤的x 的取值范围.一、抽象函数例题由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

函数的奇偶性讲义

函数的奇偶性讲义

函数的奇偶性【知识要点】1.函数奇偶性的定义:一般地,对于函数f (x)定义域内的任意一个X,都有f (-x) = f (x), 那么函数f (x)叫偶函数(even function).如果对于函数定义域内的任意一个x,都有f(-x) = -f(x),那么函数f(x)叫奇函数(odd function).2.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之亦真.由此,可由函数图象的对称性判断函数的奇偶性,也可由函数的奇偶性作函数的图象.3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别 f (-x) 与f (x)的关系;⑴奇函数o f (-x)=- f (x)o f--)+f (x)=0 o 釜=-1(fx)) 0);(2)偶函数o f (-x)= f (x)o f (- x)- f (x)= 0 o4.函数奇偶性的几个性质:(1)奇偶函数的定义域关于原点对称,在判断函数奇偶性时,应先考察函数的定义域;(2)奇偶性是函数的整体性质,对定义域内任意一个x都必须成立;(3)若奇函数f Q)在原点有意义,则f (0)= 0;(4)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数,又不是偶函数;(5)在公共的定义域内:两个奇(偶)函数的和与差仍是奇(偶)函数;两个奇(偶)函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数;(6)函数f Q)与函数有相同的奇偶性.5 .奇偶性与单调性: (1)奇函数在两个关于原点对称的区间L b ,- j a ,4上有相同的单调性;(2)偶函数在两个关于原点对称的区间L b ,- j a ,4上有相反的单调性.【典例精讲】 类型一函数奇偶性的判断 例1判断下列函数的奇偶性:x 2 + 2x + 3, x < 0,(6)f (x )= {a x = 0, -x 2 + 2x - 3, x > 0.变式 判断下列函数的奇偶性:11 ⑴f(x)=x 4; (2)f(x)=X 5;⑶ f (x)=x+x 2 ;(4) f(x)= - x 2(5) f (x )= x 3- 2x(6) f (x ) = 2 x 4 4十 一x 2,、b ,,(7) y = ax H ——(a > 0,b > 0) x(8) x (k > 0)y -例2已知/ Q)是R 上的奇函数,且当X > 0时,f Q)= x 3+ 2 x 2-1,求f Q)的表达式。

函数的奇偶性讲义

函数的奇偶性讲义

函数的奇偶性爱护环境,从我做起,提倡使用电子讲义~ 第 1页 ~第四讲 函数的奇偶性【知识要点归纳】 1.定义 2.性质:3.判断函数的奇偶性的方法: (1)定义法 (2)图象法 (3)性质法 【经典例题】例1:判断下列函数的奇偶性、①x x x x f −+−=11)1()( ②22)1lg()(22−−−=x x x f ③⎩⎨⎧>+−<+=)0()0()(22x x x x x x x f ④33)(22−+−=x x x f ⑤2)(2+−−=a x x x f ⑥22)(+−−=x x x f例2:定义在实数集上的函数f (x ),对任意x ,y ∈R ,有f (x +y )+f (x -y )=2f (x )·f(y )且f (0)≠0①求证:f (0)=1 ②求证:y =f (x )是偶函数例3:已知函数f (x ),当x <0时,f (x )=x 2+2x -1①若f (x )为R 上的奇函数,能否确定其解析式?请说明理由. ②若f (x )为R 上的偶函数,能否确定其解析式?请说明理由. 例4:(2010山东文数)设()f x 为定义在R 上的奇函数,当0x ≥时,()22x f x x b =++(b 为常数),则(1)f −=A .-3B .-1C .1D .3例5:设奇函数f (x )的定义域是[-5,5].当x ∈[]05,时,f (x )的图象如图1,则不等式f (x)<0的解是______________.变式:已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0. 第 2页例6:已知f (x )是定义在R上的偶函数,且在),0[+∞上为减函数,若)12()2(2−>−−a f a a f ,求实数a 的取值范围. 【课堂练习】1.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的 条件.2.设函数f (x )=(x +1)(x +a )为偶函数,则a = .3.已知函数y =f(x )是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号). ①y =f (|x |);②y =f(-x );③y =x ·f (x );④y =f (x )+x .4.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3,则f (-2)= .5.(09辽宁文)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x −<1()3f 的x 取值范围是6.(09陕西卷文)定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x −<−.则f (3),f (-2),f (1)三者大小的关系为7.(2010天津文数)下列命题中,真命题是 A .m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 B .m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 C .m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数D .m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数8.(2010北京文数)若a ,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅−是 A .一次函数且是奇函数 B .一次函数但不是奇函数C .二次函数且是偶函数D .二次函数但不是偶函数 9.(2010广东文数)若函数xxx f −+=33)(与xxx g −−=33)(的定义域均为R ,则A .)(x f 与)(x g 与均为偶函数B .)(x f 为奇函数,)(x g 为偶函数C .)(x f 与)(x g 与均为奇函数D .)(x f 为偶函数,)(x g 为奇函数10.已知g (x )是奇函数,815)3(2)()1(log )(22=−++−+=f x g x x x f x 且,求f (3)答案1、充分不必要2、-13、②④4、-15、32,31( 6、(3)(2)(1)f f f <−< 7、A 8、A 9、D10、简解:⎪⎩⎪⎨⎧+−++=−++−+=−x x x g x x x f x g x x x f 2)()1(log )(2)()1(log )(2222相加得:)(22)(x f x f x x −−+=−3)3(22)3(33=−−+=∴−f f。

奇偶性讲义

奇偶性讲义

1.奇偶性(1)定义。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2 确定f (-x )与f (x )的关系;○3 作出相应结论。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;定义在R 上的奇函数必过(0,0)点。

②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇1. 若2()(0)f x a x b x c a =++≠是偶函数,则32()(0)f x ax bx cx a =++≠是( ) A. 奇函数 B. 偶函数 C. 非奇非偶函数 D.既是奇函数又是偶函数。

2. 若函数(1)()y x x a =+-为偶函数,则a 等于__________。

3. 判断下列函数的奇偶性:(1)()f x = (2)()f x =(3)()|2|2f x x =+- (4)323231,0()31,0x x x f x x x x ⎧-+>=⎨+-<⎩(5)1,0()1,01,0x x f x x x x +>⎧⎪==⎨⎪-+<⎩4. 已知()f x 是定义在{|0}x x ≠上的偶函数,当0x >时,2()f x x x =-,则当0x <是()f x =__. 5. 已知()f x 是定义在R 上的奇函数且当0x >时,3()1f x x x =++,则()f x =_______。

6. 函数(),()f x g x 都是定义在(,1)(1,1)(1,)-∞-⋃-⋃+∞上,()f x 是偶函数,()g x 是奇函数且1()()1f xg x x +=-,求(),()f x g x 。

函数的奇偶性讲义

函数的奇偶性讲义
[-1,1]关于原点的对称区间为[-1,1]
二、奇函数与偶函数
(一)奇函数的定义:对于任意函数f(x)在其对称区间(关于原点对称)内,对于x∈A,都有f(-x)=-f(x),则f(x)为奇函数。
(二)偶函数的定义:对于任意函数f(x)在其对称区间(关于原点对称)内,对于x∈A,都有f(-x)=f(x),则f(x)为偶函数。
如果函数f(x)是奇函数或是偶函数,则我们就说函数f(x)具有奇偶性。
(三)判断函数奇偶性的步骤:
(1)求函数f(x)的定义域;
(2)若函数的定义域不关于原点对称,则该函数不具备奇偶性,此时函数既不是奇函数,也不偶函数;若函数f(x)的定义域关于原点对称,再进行下一步;
(3)求f(-x);
(4)根据f(-x)与f(x)之间的关系,判断函数f(x)的奇偶性;①若f(-x)=-f(x),函数是奇函数;②若f(-x)=f(x),函数f(x)是偶函数;③若f(-x)≠±f(x),则f(x)既不是奇函数,也不是偶函数;④若f(-x)=-f(x),且f(-x)=f(x),则f(x)既是奇函数,也是偶函数。【即f(x)=0,即定义域关于原点对称的常数函数f(x)= ;当 ≠0时,常数函数是偶函数;当 =0时,常数函数既是奇函数,也是偶函数。】
【解析】:f(2)=-26
变式练习5:已知函数f(x)= ,则f( )+f( )=__________。
【解析】:令f(x)= ,g(x)是奇函数,故f(-x)= ,f(-x)= ,故f(x)+f(-x)=6
例6:已知f(x)是定义在(-1,1)上的奇函数且是减函数,满足f(1- )+f(1-2 )>0,求 的取值范围。
【解析】:f(x)=
变式练习:已知f(x)是定义在R上的奇函数,,当x>0时,f(x)=x2-2x-3,求f(x)的解析式。

《奇偶性》 讲义

《奇偶性》 讲义

《奇偶性》讲义在数学的广阔天地中,奇偶性是一个既基础又重要的概念。

它看似简单,却蕴含着丰富的规律和应用,就像一把神奇的钥匙,能为我们打开许多数学问题的大门。

让我们先来明确一下什么是奇数和偶数。

能被 2 整除的整数称为偶数,比如 0、2、4、6 等等;不能被 2 整除的整数则称为奇数,像是 1、3、5、7 这样。

奇偶性有一些非常基本的性质。

首先,偶数+偶数=偶数,比如2 + 4 = 6;奇数+奇数=偶数,比如3 + 5 = 8;而偶数+奇数=奇数,例如 2 + 3 = 5。

这几条性质在计算和判断结果的奇偶性时非常有用。

我们再来看乘法的情况。

偶数×偶数=偶数,例如 2×4 = 8;奇数×奇数=奇数,比如 3×5 = 15;偶数×奇数=偶数,像 2×3 = 6。

这些基本性质有什么用呢?其实在解决很多数学问题时,它们能帮我们快速判断结果的大致情况,或者简化计算过程。

比如说,在数列中,如果一个数列的通项公式是关于 n 的一次式,且 n 为自然数,那么通过判断 n 的奇偶性,我们就能知道这个数列中奇数项和偶数项的一些规律。

再看代数运算中的应用。

如果我们要化简一个含有未知数的式子,判断其奇偶性可以帮助我们简化计算。

比如,有一个函数 f(x) = x^3 3x,我们想判断它的奇偶性。

先来看f(x) =(x)^3 3(x) = x^3 + 3x =(x^3 3x) = f(x),所以这个函数是奇函数。

在实际生活中,奇偶性也有不少应用。

比如说,安排座位的时候,如果座位总数是奇数,那么必然会有一排的座位数和其他排不一样;在电路设计中,利用奇偶性可以优化电路布局,提高效率和稳定性。

接下来,我们深入探讨一下奇偶性在方程中的应用。

考虑一个方程 x^2 5x + 6 = 0 ,我们可以通过因式分解得到(x 2)(x 3) = 0 ,从而解得 x = 2 或 x = 3 。

函数的单调性与奇偶性讲义

函数的单调性与奇偶性讲义

地址:凤凰路中段468号鑫苑小区2栋2单元2号(柏杨小学旁)函数的单调性与奇偶性讲义【一】基础知识1.函数的单调性(1) 定义:(2)判定方法(i )定义法 (ii )图象法 (iii )根据已知函数的单调性 (iv )导数法(3)复合函数的单调性2. 函数的奇偶性(1) 定义(2)性质:偶函数的图象关于y 轴对称,奇函数的图象关于原点对称。

(2) 判断方法:(i )定义法 (ii )图象法(iii)若两个函数的定义域相同,则a. 两个偶函数的和为偶函数;b. 两个奇函数的和为奇函数;c. 两个奇函数的积为偶函数;d. 两个偶函数的积为偶函数;e. 一个奇函数和一个偶函数的积是奇函数。

(3) 定义域关于原点对称是一个函数为偶函数或奇函数的必要条件。

【二】例题讲析例1.判断下列函数的奇偶性(1)11log )(2+-=x x x f (2)11)(-+-=x x x f (3)11)(22-+-=x x x f (4))21121()(+-=x x x f例2.已知函数是偶函数,其图象与x 轴有四个交点,则方程的所有实根之和是 ( )(A) 4 (B) 2 (C) 6 (D)0例3.(1)设f(x)是偶函数,且在[)+∞,0上为增函数,则其在(]0,∞-上单调性如地址:凤凰路中段468号鑫苑小区2栋2单元2号(柏杨小学旁)何?奇函数呢?(2)设)(x f 为偶函数,且在[)+∞,0上存在最大值,则在(]0,∞-上有最大值吗?奇函数呢?例4.设f(x)在R 上是偶函数,在区间)0,(-∞上递增,且)12(2++a a f ),123(2+-<a a f 求a 的取值范围。

例5.已知)(x f 是奇函数,且0>x 当时,),2()(-=x x x f 求0<x 时,)(x f 的表达式。

例6.求函数)34(log 221+-=x x y 的单调递增区间。

例7.求函数5223++-=x x x y 的单调区间。

函数的单调性和奇偶性精品讲义

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性一、知识点归纳函数的单调性〔1〕定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔f (x 1)>f (x 2)〕,那么就说f (x )在区间D 上是增函数〔减函数〕,区间D 为函数y =f (x )的增区间〔减区间〕概括起来,即1212121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ⎧⎧<>⎧⎪⎪⎨⎨<>⎪⎩⎪⎩⎨⎧<>⎧⎪⎪⎨⎨⎪><⎪⎩⎩⎩增函数或“同增异减”减函数或 〔2〕函数单调性的证明的一般步骤:①设1x ,2x 是区间D 上的任意两个实数,且12x x < ②作差12()()f x f x -,并通过因式分解、配方、通分、有力化等方法使其转化为易于判断正负的式子;③确定12()()f x f x -的符号;④给出结论证明函数单调性时要注意三点:①1x 和2x 的任意性,即从区间D 中任取1x 和2x ,证明单调性时不可随意用量额特殊值代替;②有序性,即通常规定12x x <;③同区间性,即1x 和2x 必须属于同一个区间。

〔3〕设复合函数()[]x g f y =是定义区间M 上的函数,假设外函数f(x)与内函数g(x)的单调性相反,那么()[]x g f y =在区间M 上是减函数;假设外函数f(x)与内函数g(x)的单调性相同,那么()[]x g f y =在区间M 上是增函数。

概括起来,即“同增异减II 号〞 〔4〕简单性质: ①()f x()f x 与()f x -及1()f x 单调性相反 ②在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

函数的奇偶性 - 高中数学讲义与经典例题解析版

函数的奇偶性 - 高中数学讲义与经典例题解析版

函数的奇偶性知识讲解一、函数奇偶性的定义1.奇函数:设函数()y f x =的定义域为D ,如果对于D 内的任意一个x ,都有x D -∈,且()()f x f x -=-,则这个函数叫做奇函数.2.偶函数:设函数()y f x =的定义域为D ,如果对于D 内的任意一个x ,都有x D -∈,且()()f x f x -=,则这个函数叫做偶函数.二、奇偶函数的图象特征1.函数()y f x =是偶函数⇔()y f x =的图象关于y 轴对称;2.函数()y f x =是奇函数⇔()y f x =的图象关于原点对称.三、判断函数奇偶性的方法1.定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x -=-或()()f x f x -=是否为恒等式.定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-.2.图象法3.性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;四、奇偶函数的性质1.函数具有奇偶性⇒其定义域关于原点对称;2.函数()y f x =是偶函数⇔()y f x =的图象关于y 轴对称;3.函数()y f x =是奇函数⇔()y f x =的图象关于原点对称.4.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.5.若奇函数()y f x =的定义域包含0,则(0)0f =.五、常见函数的奇偶性1.正比例函数(0)y kx k =≠是奇函数;2.反比例函数(0)k y k x=≠是奇函数;3.函数(00)y kx b k b =+≠≠,是非奇非偶函数;4.函数2(0)y ax c a =+≠是偶函数;5.常函数y c =是偶函数;6.对勾函数(0)k y x k x=+≠是奇函数;经典例题一.填空题(共12小题)1.给定四个函数:①y=x3+3;②y=1(x>0);③y=x3+1;④y=2+1.其中是奇函数的有①④(填序号).【解答】解::①函数的定义域为R,则f(﹣x)=﹣(x3+3)=﹣f(x),则函数f(x)是奇函数;②函数的定义域关于原点不对称,则函数f(x)为非奇非偶函数;③函数的定义域为R,f(0)=0+1=1≠0,则函数f(x)为非奇非偶函数;④函数的定义域为(﹣∞,0)∪(0,+∞),f(﹣x)=2+1−=﹣2+1=﹣f (x),则函数f(x)是奇函数,故答案为:①④2.f(x)是定义在R上的奇函数,当x<0时,f(x)=x2﹣3x,则当x>0时,f(x)=﹣x2﹣3x.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),若x>0,则﹣x<0,∵x<0时,f(x)=x2﹣3x,∴当﹣x<0时,f(﹣x)=x2+3x=﹣f(x),∴f(x)=﹣x2﹣3x,故答案为:x2﹣3x,3.已知f(x)是R上偶函数,且在[0,+∞)上递减,比较o−34)与f(1+a+a2)的大小关系为f(1+a+a2)≤f(﹣34).【解答】解:根据题意,1+a+a2=(14+a+a2)+34=(a+12)2+34≥34,则又由f (x )在[0,+∞)上递减,则有f (1+a +a 2)≤f (34),又由f (x )是R 上偶函数,则有f (1+a +a 2)≤f (﹣34),故答案为:f (1+a +a 2)≤f (﹣34).4.已知f (x )是定义在(﹣1,1)上的奇函数,且在定义域上为增函数,若f (a ﹣2)<f (4﹣a 2),求a 2).【解答】解:因为f (x )是定义在(﹣1,1)上的奇函数,且在定义域上为增函数.所以f (a ﹣2)<f (4﹣a 2)等价于−1<−2<1−1<4−2<1−2<4−2,化简可得1<<33<2<5−3<<2解可得3<a <2.故答案为(3,2).5.设函数f (x )在R 上是偶函数,在区间(﹣∞,0)上递增,且f (2a 2+a +1)<f (2a 2﹣2a +3),则a 的取值范围=(23,+∞).【解答】解:根据题意,2a 2+a +1=2(a 2+12a +116)+78=2(a +12)2+78≥78,而2a 2﹣2a +3=2(a 2﹣a +14)+52=2(a ﹣12)2+52≥52;由f (x )在R 上是偶函数,在区间(﹣∞,0)上递增,可知f (x )在(0,+∞)上递减.若f (2a 2+a +1)<f (2a 2﹣2a +3),则2a 2+a +1>2a 2﹣2a +3,即3a ﹣2>0,解可得a >23,则a 的取值范围(23,+∞);故答案为:23,+∞).6.已知定义在R上的奇函数f(x)满足f(x)=x2+2x(x≥0),若f(3﹣a2)>f(2a﹣a2),则实数a的取值范围是a<32.【解答】解:∵函数f(x)=x2+2x(x≥0)是增函数,且f(0)=0,f(x)是奇函数∴f(x)是R上的增函数.由f(3﹣a2)>f(2a﹣a2),于是3﹣a2>2a﹣a2,因此,解得a<32.故答案为:a<32.7.若f(x)=ax3+bx+1﹣b是定义在区间[﹣4+a,a]的奇函数,则a+b= 3.【解答】解:∵f(x)=ax3+bx+1﹣b是定义在区间[﹣4+a,a]的奇函数,∴﹣4+a+a=0,f(0)=0.解得a=2,b=1.∴a+b=3.故答案为:3.8.若f(a+b)=f(a)•f(b)且f(1)=2.则o2)o1)+o3)o2)+…+o2012)o2011)=4022.【解答】解:令b=1.∴f(a+1)=f(a)f(1)or1)op=f(1)=2o2)o1)=2.o3)o2)=2. (2012)o2011)=2o2)o1)+o3)o2)+…+o2012)o2011)=2011×2=4022.答案:4022.9.已知函数f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(72)=3p+2q.【解答】解:由题意可知:f(6)=f(2)+f(3)=p+q∴f(18)=f(6)+f(3)=p+q+q=p+2q∴f(36)=f(18)+f(2)=p+2q+p=2p+2q∴f(72)=f(36)+f(2)=2p+2q+p=3p+2q故答案为:3p+2q.10.已知函数f(x)的定义域D=(0,+∞),且对于任意x1,x2∈D,均有f(x1•x2)=f(x1)+f(x2)﹣1,且当x>1时,f(x)>1(1)求f(1)的值;(2)求证:f(x)在(0,+∞)上是增函数;(3)若f(16)=3,解不等式f(3x+1)≤2.【解答】解:(1)令x1=x2=1,∴f(1)=f(1)+f(1)﹣1∴f(1)=1,(2):设令0<x1<x2,21>1,当x>1时,f(x)>1∴f(21)>1,∴f(21•x1)=f(x2)=f(21)+f(x1)﹣1>f(x1),∴f(x)在(0,+∞)上是增函数;(3)令x1=x2=4,∴f(16)=f(4)+f(4)﹣1=3∴f(4)=2,∴f(3x+1)≤2=f(4),∵f(x)在(0,+∞)上是增函数;∴3+1>03+1≤4,解得−13<x≤1,故不等式f(3x+1)≤2的解集为(−13,1].11.已知f(x)是定义域在(0,+∞)上的单调递增函数.且满足f(6)=1.f(x)﹣f(y)=f()(x>0,y>0).则不等式f(x+3)<f(12的解集是(0,−3+3172).【解答】解:∵f(x)﹣f(y)=f()(x>0,y>0),令x=36,y=6,得f(36)﹣f(6)=f(6)∴f(36)=2f(6)=2,∵f(x+3)<f(1)+2,∴f(x+3)﹣f(1)=f(x(x+3))<2=f(36),∵f(x)是定义域在(0,+∞)上的单调递增函数,+3>0>0o+3)<36∴0<x−3+3172故不等式f(x+3)<f(1)+2的解集是(0,−3+3172),故答案为:(0−3+3172),12.已知函数f(x),对任意实数x1,x2都有f(x1+x2)=f(x1)+f(x2),且当x>0时f(x)>0,f(2)=1.解不等式f(2x2﹣1)<2的解集为[﹣102,102].【解答】解:∵f(x1+x2)=f(x1)+f(x2),设x1=x2=0,可得f(0)=2f(0),解得f(0)=0,令x1+x2=0,可得f(0)=f(x1)+f(x2),即有f(﹣x)=﹣f(x),即f(x)为奇函数;令x1<x2,即有x2﹣x1>0,f(x2﹣x1)>0,即为f(x2)=f(x1+x2﹣x1)=f(x1)+f(x2﹣x1)>f(x1),即有f(x)在R上为增函数;令x1=x2=2,可得f(4)=2f(2),解得f(4)=2,∵不等式f(2x2﹣1)<2=f(4)∴2x2﹣1<4,102<x<102102,102].102,102].二.解答题(共6小题)13.设函数y=f(x)(x∈R)对任意实数均满足f(x+y)=f(x)+f(y),求证f(x)是奇函数.【解答】证明:定义域关于原点对称,令x=y=0,代入f(x+y)=f(x)+f(y)得f(0)=0,令y=﹣x得:f(0)=f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),∴f(x)是奇函数.14.判断并证明下列函数的奇偶性.(Ⅰ)f(x)=|x|+12;(Ⅱ)f(x)=x2+2x;(Ⅲ)f(x)=x+1.【解答】解:(Ⅰ)可得x≠0f(﹣x)=|﹣x|+1(−p2=f(x),故函数为偶函数;(Ⅱ)函数的定义域为R,且f (x )=x 2+2x 的图象为抛物线,对称轴为x=﹣1,不关于y 轴对称,也不关于原点对称,故函数非奇非偶;(Ⅲ)可得x ≠0,f (﹣x )=﹣x ﹣1=﹣f (x ),故函数为奇函数.15.判断下列函数的奇偶性:(1)f (x )=3,x ∈R ;(2)f (x )=5x 4﹣4x 2+7,x ∈[﹣3,3];(3)f (x )=|2x ﹣1|﹣|2x +1|;(4)f (x )=1−2,>00,=02−1,<0.【解答】解:(1)由f (﹣x )=3=f (x ),x ∈R ,可得函数f (x )为偶函数;(2)f (﹣x )=5(﹣x )4﹣4(﹣x )2+7=5x 4﹣4x 2+7=f (x ),x ∈[﹣3,3],可得函数f (x )为偶函数;(3)定义域为R ,f (﹣x )=|﹣2x ﹣1|﹣|﹣2x +1|=|2x +1|﹣|2x ﹣1|=﹣f (x ),可得f (x )为奇函数;(4)f (x )=1−2,>00,=02−1,<0,定义域为R ,当x >0时,﹣x <0,可得f (﹣x )=(﹣x )2﹣1=x 2﹣1=﹣f (x ),当x=0可得f (0)=0;当x <0时,﹣x >0,可得f (﹣x )=1﹣(﹣x )2=1﹣x 2=﹣f (x ),即有f(﹣x)=﹣f(x),可得f(x)为奇函数.16.判断下列函数的奇偶性(1)f(x)=a(a∈R)(2)f(x)=(1+x)3﹣3(1+x2)+2(3)f(x)=o1−p,<0o1+p,>0.【解答】解:(1)由奇偶性定义当a=0时,f(x)=0既是奇函数又是偶函数,当a≠0时,f(x)=f(﹣x)=a,故是偶函数;(2)f(x)=(1+x)3﹣3(1+x2)+2=x3+3x,由于f(x)+f(﹣x)=x3+3x+(﹣x)3+3(﹣x)=0,故f(x)=(1+x)3﹣3(1+x2)+2是奇函数.(3)当x<0时,﹣x>0,f(﹣x)=﹣x(1﹣x)=﹣f(x);当x>0时,﹣x<0,f(﹣x)=﹣x(1+x)=﹣f(x);由上证知,在定义域上总有f(﹣x)=﹣f(x);故函数f(x)=o1−p,<0o1+p,>0是奇函数.17.已知函数op=B2+23r是奇函数,且o2)=53.(1)求实数a,b的值;(2)判断函数f(x)在(﹣∞,﹣1]上的单调性,并加以证明.【解答】解:(1)函数op=B2+23r是奇函数,且o2)=53,可得f(﹣x)=﹣f(x),B2+2−3r=﹣B2+23r,可得﹣3x+b=﹣3x﹣b,解得b=0;4r26=53,解得a=2;(2)函数f(x)=22+23在(﹣∞,﹣1]上单调递增;理由:设x1<x2≤﹣1,则f(x1)﹣f(x2)=23(x1+11)﹣23(x2+12)=23(x1﹣x2)(1﹣112),由x1<x2≤﹣1,可得x1﹣x2<0,x1x2>1,即有1﹣112>0,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),则f(x)在(﹣∞,﹣1]上单调递增.18.已知f(x)=1+.(1)求f(x)+f(1)的值;(2)求f(1)+f(2)+…+f(7)+f(1)+f(12)+…+f(17)的值.【解答】解:(1)∵f(x)=1+.∴f(x)+f(1)=1++11+1=1++11+=1,(2)由(1)得:f(1)+f(2)+…+f(7)+f(1)+f(12)+…+f(17)=7.。

高一上册数学第一章4《函数的奇偶性》讲义

高一上册数学第一章4《函数的奇偶性》讲义

知识点一:函数奇偶性的定义1、函数奇偶性的定义(1)如果对于函数()f x 定义域内任意一个x ,都有()()f x f x -=,则函数()f x 就叫做偶函数;(2)如果对于函数()f x 定义域内任意一个x ,都有()()f x f x -=-,则函数()f x 就叫做奇函数;(3)如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性。

2、具有奇偶性的函数图象特点:一般地,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称, 那么这个函数是奇函数;偶函数的图象关于y 轴对称,反过来,如果一个函数的图象关于y 轴对称,那么这个函数 是偶函数。

【题型一】概念应用例1、已知函数2()3f x ax bx a b =+++为偶函数,其定义域为[2,1]a a -,则函数的值域为 。

变式:已知函数()f x 为偶函数,且其图象与x 轴有四个交点,则方程()0f x =的所有实根之和为 。

【题型二】判断奇偶性例2、下列函数是否具有奇偶性.(1) 3()35f x x x =- (2) 2()3||1f x x x =--(3) 22()22f x x x =-+-; (4) 2|2|2()1x f x x --=-(5) 22230()230x x x f x x x x ⎧++<=⎨-+->⎩ (6)1()(1)1x f x x x +=--例3、已知函数()y f x =是定义在R 上的奇函数,则下列函数中是奇函数的是 . ① ()||y f x =; ②()y f x =-; ③()·y x f x =; ④()y f x x =+.【题型三】利用奇偶性求值例4、若函数3()7f x ax bx =++,有(5)3f =,则(5)f -= 。

变式1:(),()f x g x 都是定义在R 上的奇函数,且()()()35g 2F x f x x =++,若()F a b =,则()F a -= 。

《奇偶性》 讲义

《奇偶性》 讲义

《奇偶性》讲义在数学的广阔天地中,奇偶性是一个既基础又重要的概念。

它看似简单,却蕴含着深刻的逻辑和广泛的应用。

接下来,让我们一起深入探索奇偶性的奇妙世界。

一、奇偶性的定义首先,我们来明确一下什么是奇数和偶数。

能被 2 整除的整数称为偶数,通常表示为 2n(n 为整数);不能被 2 整除的整数称为奇数,通常表示为 2n + 1(n 为整数)。

从函数的角度来看,如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做奇函数;如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做偶函数。

二、奇偶性的性质1、偶数加偶数等于偶数,奇数加奇数等于偶数,偶数加奇数等于奇数。

例如:4 + 6 = 10(偶数),3 + 5 = 8(偶数),2 + 3 = 5(奇数)2、偶数乘以任何整数都是偶数,奇数乘以奇数等于奇数。

比如:4 × 5 = 20(偶数),3 × 5 = 15(奇数)3、两个奇函数的和或差为奇函数,两个偶函数的和或差为偶函数,一个奇函数与一个偶函数的和或差为非奇非偶函数。

4、奇函数与奇函数的乘积是偶函数,奇函数与偶函数的乘积是奇函数,偶函数与偶函数的乘积是偶函数。

5、若 f(x) 为奇函数,且在 x = 0 处有定义,则 f(0) = 0。

三、奇偶性的判断方法1、定义法根据奇偶函数的定义,判断 f(x) 与 f(x) 的关系。

2、图象法奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称。

四、奇偶性的应用1、简化计算在一些复杂的运算中,利用奇偶性可以简化计算过程。

例如,计算 1 + 3 + 5 ++ 2019 的和。

因为这是一个奇数项的求和,我们可以利用奇偶性的性质,先计算 1 + 2 + 3 ++ 2019 +2020 的和,再减去偶数项 2 + 4 + 6 ++ 2020 的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ⅰ复习提问(一)奇偶函数的定义(二)、函数按奇偶分类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数也不是偶函数(非奇非偶)(三)、奇偶函数的性质: 1、奇函数的反函数也是奇函数2、奇偶函数的加减:±±±奇奇=奇,偶偶=偶,奇偶=非奇非偶;奇偶函数的乘除:同偶异奇3、奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反。

4、定义在R 上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和()()()()()()()22f x f x f x f x f x --+-=+奇偶 (四)、函数奇偶性的做题方法与步骤。

第一步,判断函数的定义域是否关于原点对称;第二步,求出()f x -的表达式;第三步,比较()()f x f x -与的关系()()()()f x f x f x f x -⎧⎪⎨-⎪⎩与相等,函数为偶与互为相反数,函数为奇函数Ⅱ 题型与方法归纳题型与方法()()()()()0,0,020,===f x f x f x f x ⎧+-=⎧⎪→⎪⎨--=⎪⎪⎩⎨±±±⎧⎪⎨⎪⎩⎩则是奇函数定义法:1)看定义域是否关于对称,)若则是偶函数奇偶加减:奇奇奇,偶偶偶,奇偶非奇非偶快速判定奇偶乘除:同偶异奇。

一、判定奇偶性例1:判断下列函数的奇偶性1) ()()21f x x x =+ 2)()112log x x f x -⎛⎫ ⎪+⎝⎭= 3)()f x =4)()f x =)()2211021102x x f x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩解:1)()f x 的定义域为R ,()()()()2211f x x x x x -=--+=+()f x =所以原函数为偶函数。

2)()f x 的定义域为11x x-+0>即11x -<<,关于原点对称()()()111122log log x x x x f x ⎛⎫--+⎛⎫⎪ ⎪ ⎪+--⎝⎭⎝⎭-==()21log 1x f x x -⎛⎫=-=- ⎪+⎝⎭,所以原函数为奇函数。

3) ()f x 的定义域为221010x x ⎧-≥⎪⎨-≥⎪⎩即1x =±,关于原点对称,又()()110f f -==即()()()()1111f f f f -=-=-且 ,所以原函数既是奇函数又是偶函数。

4)()f x 的定义域为2020x x -≥⎧⎨-≥⎩ 即2x =,定义域不关于原点对称,所以原函数既不是奇函数又不是偶函数。

5)分段函数()f x 的定义域为()(),00,-∞⋃+∞关于原点对称, 当0x >时,0x -<,()()()222111111222f x x x x f x ⎛⎫-=---=--=-+=- ⎪⎝⎭ 当0x <时,0x -> ,()()()222111111222f x x x x f x ⎛⎫-=-+=+=---=-⎪⎝⎭综上所述,在()(),00,-∞⋃+∞上总有()()f x f x -=- 所以原函数为奇函数。

注意:在判断分段函数的奇偶性时,要对x 在各个区间上分别讨论,应注意由x 的取值范围确定应用相应的函数表达式。

练习1:判断下列函数的奇偶性1)()()()()2616x x f x x x -+=- 2)()22f x x =+- 3)()f x = 4)()22f x x x =++- 5)()2200x xx f x x xx ⎧+<⎪=⎨-+>⎪⎩二、利用奇偶性求函数解析式:例2:设()f x 是R 上是奇函数,且当[)0,x ∈+∞时()(1f x x =,求()f x 在R 上的解析式 解:当[)0,x ∈+∞时有()(1f x x =,设(),0x ∈-∞, 则()0,x -∈+∞,从而有()()((11f x x x -=-=- ,()f x 是R 上是奇函数,∴()()f x f x -=-所以()()(1f x f x x =--= ,因此所求函数的解析式为()((1010x x f x x x ⎧+≥⎪=⎨<⎪⎩注意:在求函数的解析式时,当球自变量在不同的区间上是不同表达式时,要用分段函数是形式表示出来。

练习2:已知()y f x =为奇函数,当0x ≥时,()22f x x x =-+,求()f x 的表达式。

练习3、已知()f x 为奇函数,()g x 为偶函数,且()()x f x g x e +=,求函数()f x 的表达式。

例3:设函数()f x 是定义域R 上的偶函数,且图像关于2x =对称,已知[2,2]x ∈-时,()21f x x =-+ 求[]6,2x ∈--时()f x 的表达式。

解:图像关于2x =对称,()()22f x f x ∴-=+, ()()()22f x f x =-- =()()()4[4]4f x f x f x -=--=- ()()4f x f x =+ 4T ∴= []6,2x ∈--[]42,2x +=- ∴()()()2441f x x f x +=-++= 所以[]6,2x ∈--时()f x 的表达式为()f x =()241x -++练习3:已知函数 ()f x 为奇函数,当0x ≥时,()223f x x x =-,求()f x 的表达式。

例4:已知函数()538f x x ax bx =++-且()210f -=,求()2f 的值解:令()53g x x ax bx =++,则()()8f x g x =- ()()()22810218f g g -=--=⇒-=()g x 为奇函数,∴()()()2218218g g g -=-=∴=- ()()22818826f g =-=--=- 练习4:已知函数()7534f x ax bx cx dx =-+--且()39f -=-,求()3f 的值。

例5:定义在R 上的偶函数()f x 在区间(),0-∞上单调递增,且有()()2221321f a a f a a ++<-+ 求a 的取值范围。

解:2217212048a a a ⎛⎫++=++> ⎪⎝⎭,22123213033a a a ⎛⎫-+=-+> ⎪⎝⎭,且()f x 为偶函数,且在区间(),0-∞单调递增,()f x ∴在区间()0,+∞上为减函数,∴221a a ++>2321a -+⇒03a <<所以a 的取值范围是()0,3。

点评:利用函数的奇偶性及单调性,将函数值之间的大小关系转换为自变量的大小关系,从而应用不等式有关知识求解.练习5:定义在()1,1-上的奇函数()f x 为减函数,且()()2110f a f a -+-<,求实数a 的取值范围。

练习6:定义在[]2,2-上的偶函数()g x ,当0x ≥时,()g x 为减函数,若()()1g m g m -<成立,求m 的取值范围。

三、抽象函数奇偶性的判断解题方法与步骤:(1)设/令 (2)求值 (3)判断 对任意的,x y ,均有()()()f xy xf y yf x =+,是判断函数奇偶性。

解:设y=-1,则()()()1f x xf f x -=--。

令x=y=-1, ()()1112f f -=-,令x=y=1,()10f =, 所以()()f x f x -=-,()f x 是奇函数。

练习1、已知()()()()2,f x y f x y f x f y -++=且()00f ≠,判断函数()f x 的奇偶性。

练习2、()()()f x y f x f y +=+,,x y R ∈,判断函数的奇偶性。

趁热打铁1、判断下列函数的奇偶性.(1)59++=x x y ;(2))1(log 2++=x x y a ;(3)2x x e e y -+=;(4) 2xx e e y --=2、设函数)(x f 定义在],[a a -上,证明:(1))()(x f x f -+为偶函数;(2) )()(x f x f --为奇函数.3、若函数()f x 在区间33,2a a ⎡⎤-⎣⎦上是奇函数,则a=( )A . -3或1 B. 3或-1 C. 1 D. -34、 已知函数()f x =,则它是( )A 奇函数B 偶函数C 即是奇函数又是偶函数D 既不是奇函数又不是偶函数5. ,,x y R ∈ ()()()f xy f x f y =+,判断()f x 的奇偶性。

温故知新 1. 判断下列函数的奇偶性()()()()2412;2sin cos ;13sin cos ;4ln.1y x x y x x xy x x y x=-=+=-=-(5)()()213f x x x =-≤≤ (6)()()()()100010x x f x x x x ->⎧⎪==⎨⎪+<⎩ 2.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ). A.(25)(11)(80)f f f -<< B. (80)(11)(25)f f f <<- C. (11)(80)(25)f f f <<- D. (25)(80)(11)f f f -<<3.已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+的值为( )A .2-B .1-C .1D .24.函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则 ( ) (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数 5、已知函数1()21xf x a =-+.(1)求证:不论a 为何实数()f x 总是为增函数; (2)确定a 的值,使()f x 为奇函数; (3)当()f x 为奇函数时,求()f x 的值域。

6、函数()f x 是定义域为R 的偶函数,且对任意的x R ∈,均有()()2f x f x +=成立。

当[]0,1x ∈时,()()log 2,1a f x x a =->(1)当[]21,21()x k k k Z ∈-+∈时,求()f x 的表达式; (2)若()f x 的最大值为12,解关于x 的不等式()14f x >。

例1.判断下列函数的奇偶性 (1)xx x x f -+-=22)2()( (2))22(,22)2()(<<--+-=x xxx x f (3))1ln()(2++=x x x f(4)xxx f +-=11lg )( 例1 判断函数(x)=3x 2, x的奇偶性。

相关文档
最新文档