存储器的分类

合集下载

计算机存储器的分类

计算机存储器的分类

计算机存储器的分类存储器是指电脑为了保存程序和数据,在计算机系统中必不可少的硬件设备,它的主要作用是让计算机能够以非常快的速度进行操作。

即使当计算机断电或重新启动时,仍然可以存储在存储器中的程序和数据不会丢失,从而保证计算机有一个稳定的运行状态。

一般来说,存储器可以分为内存(Memory)和存储空间(Storage)两种。

二、内存的分类内存分为两种:主存(Main Memory)和高速缓存(Cache)。

1. 主存主存是用于存储程序和数据的最基本的存储器,也叫主存储器,它是计算机内部最重要的存储器,其主要功能是存储和提供程序和数据,可以实现快速存取。

主存大小的计量单位是字,每一个字有16个比特(bits)。

2. 高速缓存高速缓存是一种可以加速计算机运算的存储器,它通常位于计算机的中央处理器和主存之间。

它可以将程序和数据从主存中快速载入,以提高计算机的运算速度。

高速缓存有三种:L1 缓存(Level1 Cache),L2 缓存(Level2 Cache)和L3 缓存(Level3 Cache)。

三、存储空间的分类存储空间也可以分为两种:外部存储器和外部存储器,其中外部存储器是用于存储数据的长期存储器,可以保持存储的数据即使在计算机出现故障或掉电情况下也不会丢失,而外部存储器是一种可以用于储存数据的临时存储器。

1. 外部存储器外部存储器指的是可以存储大量数据的计算机外部存储设备,包括硬盘(Hard Drive),软盘(Floppy disk),记忆棒(Memory Stick),光盘(光碟CD-ROM)等。

外部存储器的容量几乎不受限制,可以大大提高计算机的运行速度。

2. 外部存储器外部存储器是一种比外部存储器更小的临时数据存储设备,其功能是将数据从计算机快速读取或写入,通常包括磁带(Tape),U 盘(USB Flash Drive),移动硬盘(Mobile Hard Drive)等。

存储器

存储器
2、外围电路 (1)地址译码器 (2)I/O缓冲器
AP AP+1 AK
Y译码 A0 A1 X 译 码
存储体 …
AP-1
存储器控 制逻辑
R/W CE RAM的基本组成框图


I/O 缓 冲 … … … …
D0 D1 DN-1
二、静态RAM的例子
典型的静态RAM芯片如: 2114(1k×4位)
6116 (2k×8位)
A12 A11~A8 A7 ~ A4 A3~A0 0000000000000至1111111111111 0000000000000至1111111111111 0000000000000至1111111111111 8k×16B 0000000000000至1111111111111
地址范围(空间) 0000H-1FFFH 2000H-3FFFH 4000H-5FFFH 6000H-7FFFH
单元数扩充:8K × 8 32K ×8
A0-A12 00 A13
Y0 A Y1 01 Y2 10 B 11 Y3 G
A14
C S1 CS2 A0-A12
C S1 CS2 A0-A12
C S1 CS2 A0-A12
C S1 CS2 A0-A12
C S1 CS2
D0-D7
OE
WE
3#
D0-D7
OE
WE
全译码的优点是每个芯片的地址范围 唯一确定,而且各片之间是连续的。 缺点是译码电路比较复杂
二、PROM(可编程的ROM)
三、EPROM(可擦除的 PROM) 四、EEPROM(电子式可清除的PROM)
5.4
存储器连接与扩充
一、存储器芯片选择
静态RAM在与微处理器接口时,一般不需要外围电路,连接比较简 单,故在智能仪器仪表、小型控制系统中,一般采用静态RAM。 动态RAM集成度高,但需要专门的刷新电路,因此与微处理器的接 口设计较为复杂,在需要较大存储器容量的计算机产品中广泛使用。 ROM中的内容掉电不易失,但不能随机写入,故一般用于存储系统 程序(监控程序)和无须在线修改的参数等。其中,掩膜ROM用于 大批量生产的微电子产品或计算机产品中,非批量使用时可用 PROM。在产品研制和小批量生产时,宜选用EPROM等芯片。 EEPROM多用于保存这样一些数据或参数:他们在系统工作过程中 被写入而又需要掉电保护。

存储器的分类与选择

存储器的分类与选择

存储器的分类与选择存储器是计算机系统中重要的组成部分,它用于存储和读取数据。

在计算机发展的过程中,存储器也经历了多个阶段的发展与改进。

本文将介绍存储器的分类及如何选择适合自己需求的存储器。

一、存储器的分类1. 随机存取存储器(Random Access Memory,简称RAM):RAM是计算机中最常见的存储器类型,其特点是可以随机存取数据,并且读写速度快。

目前,常见的RAM包括动态随机存取存储器(Dynamic RAM,简称DRAM)和静态随机存取存储器(Static RAM,简称SRAM)。

2. 只读存储器(Read-Only Memory,简称ROM):ROM是一种只能读取数据而不能写入数据的存储器。

它的内容在制造过程中被固化,无法更改。

常见的ROM包括只读存储器(Read-Only Memory,简称PROM)、可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM)和电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM)。

3. 快闪存储器(Flash Memory):快闪存储器是一种介于RAM和ROM之间的存储器类型。

它有着类似于RAM的读写速度,同时又可以像ROM一样保持数据的稳定性。

快闪存储器被广泛应用于个人电脑、平板电脑、智能手机等电子设备中。

二、如何选择存储器在选择存储器时,我们需要根据自己的需求来确定合适的存储器类型和规格。

1. 容量:首先,我们需要根据自己的需求确定所需的存储容量。

如果只是进行简单的办公、上网等任务,较小的存储容量可能已经足够。

但是,如果需要处理大量的数据、运行复杂的软件或者进行大型游戏,较大的存储容量将更加适合。

2. 读写速度:除了容量外,读写速度也是一个需要考虑的因素。

如果你需要进行大量的数据传输或者执行高性能的任务,选择读写速度较快的存储器将能提升工作效率。

存储器的分类与特点

存储器的分类与特点

存储器的分类与特点在计算机科学领域中,存储器是一个关键的概念,它用于存储和获取数据。

存储器根据其特性和使用场景的不同可以被分为几种不同的类型。

本文将介绍存储器的分类以及各种类型存储器的特点。

一、主存储器主存储器是计算机系统中最重要的一种存储器,它用于存储正在执行的程序和数据。

主存储器又被分为两种类型:随机访问存储器(RAM)和只读存储器(ROM)。

1. 随机访问存储器(RAM)随机访问存储器是一种易失性存储器,其中的数据可以被随机地读取和写入。

RAM的特点是访问速度快,但当电源关闭时,其中的数据将会丢失。

它可以根据存储单元的物理结构进一步分为静态随机访问存储器(SRAM)和动态随机访问存储器(DRAM)。

- 静态随机访问存储器(SRAM):SRAM使用触发器来存储数据,保持数据的稳定性。

由于它不需要刷新电路,所以访问速度比DRAM更快。

然而,SRAM的成本较高,存储密度较低。

- 动态随机访问存储器(DRAM):DRAM使用电容来存储数据,需要周期性地刷新来重新存储数据。

尽管DRAM的速度相对较慢,但它更加节省空间和成本。

2. 只读存储器(ROM)只读存储器是一种非易失性存储器,其中的数据在加电之后仍然保持不变。

ROM的数据通常是由制造商在生产过程中编写好的,用户无法对其进行修改。

它可以分为光盘只读存储器(CD-ROM)和闪存只读存储器(ROM)两种类型。

- 光盘只读存储器(CD-ROM):CD-ROM使用激光技术来读取数据,它通常用于存储大量的音频和视频数据。

- 闪存只读存储器(ROM):ROM可以被多次擦写和编程,相较于传统的EPROM(可擦可编程只读存储器),其擦写操作更加方便。

二、辅助存储器辅助存储器是主存储器之外的一种存储器类型,用于存储和检索大容量的数据和程序。

辅助存储器也可以分为多种类型,例如硬盘驱动器、固态硬盘和闪存驱动器等。

1. 硬盘驱动器硬盘驱动器是计算机系统中最常见的辅助存储器设备。

存储器的基本概念及分类

存储器的基本概念及分类

存储器的基本概念及分类
存储器(Memory)是计算机中用于存储和读取数据的一种硬件设备,是数据和程序的载体。

存储器分为内存和外存,其中内存又可分为读写存储器和只读存储器。

1. 读写存储器(RAM)
读写存储器(Random Access Memory,RAM)是计算机中内存的一种,能够进行随机读写操作,数据可被任意读取。

RAM分为静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)两类。

- 静态随机存取存储器(SRAM):采用Flip-Flop触发器存储数据,速度快,但容量小。

- 动态随机存取存储器(DRAM):采用电容存储数据,速度慢,但容量大,常用于主存储器。

2. 只读存储器(ROM)
只读存储器(Read-Only Memory,ROM)是计算机中用于存放固定数据和程序的一种存储器,数据无法被改变。

ROM分为可编程只读存储器(PROM)、擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)和闪存等。

- 可编程只读存储器(PROM):可以根据需要编程,但只能进行一次,不可擦除重写。

- 擦除可编程只读存储器(EPROM):需要使用紫外线灯进行擦除,可以被重新编程,但擦除次数有限。

- 电可擦除可编程只读存储器(EEPROM):可以通过电信号进行擦除,可重复擦写。

- 闪存:一种快速可擦写非易失性存储器,常用于存储固件和操作系统。

3. 外部存储器
外部存储器(External Storage)用于长时间存放数据,分为磁盘存储器、光盘存储器、固态硬盘等。

它们的特点是容量大,但读写速度较内存慢。

常用于备份数据、扩展存储等方面。

存储器概述

存储器概述

EEPROM芯片2864A
N13根地址线A12~A0 8 根 数 据 线 I/O7 ~
I/O0 片选CE*
读写OE*、WE*
A12 2 A7 3 A6 4 A5 5 A4 6 A3 7 A2 8 A1 9 A0 10 I/O0 11 I/O1 12 I/O2 13 GND 14
动态RAM DRAM 4116 DRAM 2164
1 静态RAM
SRAM的基本存储单元是触发器电路 每个基本存储单元存储二进制数一位 许多个基本存储单元形成行列存储矩阵
SRAM芯片6264 NC 1 A12 2
A7 3
存储容量为8K×8
A6 4 A5 5
28个引脚:
A4 6
13根地址线A12~A0 8根数据线D7~D0
Infineon(英飞菱)的内存条结构剖析
1、PCB板 下图是Infineon原装256MB DDR266,采用单面8颗粒TSOP封装。
2、金手指 这一根根黄色的接触点是内存与主板内存槽接触的部分,数据就是靠它们来传输的,通
常称为金手指。
3、内存芯片(颗粒)内存的芯片就是内存的灵魂所在,内存的性能、速度、容量都是由内 存芯片决定的。
只读存储器ROM
掩膜ROM:信息制作在芯片中,不可更改 PROM:允许一次编程,此后不可更改 EPROM:用紫外光擦除,擦除后可编程;
并允许用户多次擦除和编程 EEPROM(E2PROM):采用加电方法在
线进行擦除和编程,也可多次擦写 Flash Memory(闪存):能够快速擦写的
EEPROM,但只能按块(Block)擦除
28 Vcc 27 A14 26 A13 25 A8
24 A9 23 A11 22 OE 21 A10 20 CE 19 D7 18 D6 17 D5 16 D4 15 D3

存储器的分类和主要性能指标(微机原理)

存储器的分类和主要性能指标(微机原理)

第6章 半导体存储器及接口
⑵实用静态存储器芯片举例 6264芯片是8K×8bit的CMOS SRAM静态存储器. ① 6264存储芯片的引线及其功能
西南大学电子信息工程学院
16
第6章 半导体存储器及接口
② SRAM 6264操作时序图
写操作时序图
读操作时序图
西南大学电子信息工程学院
17
第6章 半导体存储器及接口
∵ UVEPROM 2764和SRAM 6264 都是8K×8的存储器; 而系统存储器都是16KB=16K×8. ∴ ROM和RAM都只需要进行字数扩展,各需要 16K/8K×8/8=2 〔片〕
系统存储器需要地址线: log232K=15 <根> 存储器芯片需要地址线: log28K=13 <根> 用15-13=2根高位地址线译码产生片选信号线.
软/硬磁盘
介质: 光盘
磁带等
西南大学电子信息工程学院
2
第6章 半导体存储器及接口
〔2〕按存储介质划分 磁芯存储器 半导体存储器 磁泡存储器 磁表面存储器 激光存储器等
本章主要讲授半导体存储器. 在微型计算机中,半导体存储器主要作为
内存储器使用.
西南大学电子信息工程学院
3
第6章 半导体存储器及接口
一起,数据线分别连接至系统数据总线的不同位上. 例如: 用4K×4位的SRAM芯片构成4K×8位的存储器.
西南大学电子信息工程学院
21
第6章 半导体存储器及接口
⑵字扩展 当单片存储器的字长满足要求,而存储单元的
个数不能够时,就需要进行字扩展. 字扩展方法:
将每个芯片的地址线、数据线和读/写控制线 等 按信号名称并连在一起,只将选片端分别引到地址 译码器的不同输出端,即用片选信号来区别各个芯 片的地址.

存储器的分类

存储器的分类

由于SAM和DAM的存取时间都与存储体的物理位置有关,所以又可以把它们统称为串行访问存储器。
(5)相联存储器(Content Addressable Memory,CAM)。CAM是一种特殊的存储器,是一种基于数据内容进行访问的存储设备。当对其写入数据时,CAM能够自动选择一个未用的空单元进行存储;当要读出数据时,不是给出其存储单元的地址,而是直接给出该数据或者该数据的一部分内容。CAM对所有的存储单元中的数据同时进行比较并标记符合条件的所有数据以供读取。由于比较是同时、并行进行的,所以这种基于数据内容进行读写的机制,其速度比基于地址进行读写的方式要快许多。
3.1 存储器存放程序和数据。目前,构成存储器的存储介质使用半导体器件和磁性材料。根据存储材料的不同及存储器的使用方法不同,存储器又有多种不同的分类方法。
1.按存储介质分类
如果将存储器按照其存储介质来分类,可以分为如下四类。
(1)磁芯存储器。采用具有矩形磁滞回线的铁氧体磁性材料,利用两种不同的剩磁状态表示1或0。一颗磁芯存放一个二进制位,成千上万颗磁芯组成磁芯体。磁芯存储器的特点是信息可以长期存储,不会因断电而丢失;但磁芯存储器的读出是破坏性读出,即不论磁芯原存的内容为0还是1,读出之后磁芯的内容一律变为0,因此需要再重写一次,这就额外地增加了操作时间。由于磁芯存储器容量小、速度慢、体积大、可靠性低,从20世纪70年代开始,已被半导体存储器逐渐取代。
(2)半导体存储器。采用半导体器件制造的存储器,主要有MOS(金属-氧化物-半导体)型存储器和双极型存储器两大类。MOS型存储器具有集成度高、功耗低、价格便宜、存取速度较慢等特点;双极型存储器具有存取速度快、集成度较低、功耗较大、成本较高等特点。半导体RAM存储的信息会因为断电而丢失。

计算机存储器的分类

计算机存储器的分类

计算机存储器的分类计算机存储器是计算机硬件中重要的组成部分,用于存储和读取数据。

根据存储数据的方式和特点,计算机存储器可以分为主存储器、辅助存储器、高速缓存和寄存器等几种类型。

一、主存储器主存储器(Main Memory)是计算机中最重要的存储器之一,也是CPU直接访问的存储器。

主存储器通常采用半导体存储器芯片制成,常见的有动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)。

主存储器的特点是读写速度快,但容量有限,数据在断电时会丢失。

二、辅助存储器辅助存储器(Auxiliary Memory)用于长期存储大量的数据和程序。

辅助存储器的容量较大,但读写速度相对较慢。

常见的辅助存储器包括硬盘、光盘、磁带等。

硬盘是计算机中最常见的辅助存储器,具有容量大、价格低廉的优点。

三、高速缓存高速缓存(Cache)是位于CPU和主存储器之间的一种存储器,用于提高计算机的运行速度。

由于CPU的运算速度远远快于主存储器的读写速度,所以引入高速缓存可以减少CPU等待数据的时间。

高速缓存分为一级缓存和二级缓存,一级缓存通常集成在CPU中,而二级缓存则位于CPU和主存储器之间。

高速缓存的容量较小,但读写速度非常快。

四、寄存器寄存器(Register)是CPU内部最快的存储器,用于存储指令和数据。

寄存器的容量非常有限,但读写速度极快。

寄存器主要用于存储CPU当前执行的指令和数据,以及临时存储运算结果等。

以上是根据存储器的特点和用途对计算机存储器进行的分类。

在实际应用中,不同类型的存储器相互配合,共同完成计算机的数据存储和读取工作。

主存储器作为计算机的主要存储介质,负责存储正在运行的程序和数据;辅助存储器则用于长期存储大量的数据和程序;高速缓存用于提高计算机的运行速度,减少CPU等待数据的时间;寄存器则承担着临时存储和传输数据的任务。

在计算机存储器的发展中,随着技术的进步,存储器的容量越来越大,读写速度也越来越快。

存储器分类

存储器分类

内存的种类是非常多的,从能否写入的角度来分,就可以分为RAM(随机存取存储器)和ROM(只读存储器)这两大类。

每一类别里面有分别有许多种类的内存。

一、RAM(Random Access Memory,随机存取存储器)RAM的特点是:电脑开机时,操作系统和应用程序的所有正在运行的数据和程序都会放置其中,并且随时可以对存放在里面的数据进行修改和存取。

它的工作需要由持续的电力提供,一旦系统断电,存放在里面的所有数据和程序都会自动清空掉,并且再也无法恢复。

根据组成元件的不同,RAM内存又分为以下十八种:01.DRAM(Dynamic RAM,动态随机存取存储器):这是最普通的RAM,一个电子管与一个电容器组成一个位存储单元,DRAM 将每个内存位作为一个电荷保存在位存储单元中,用电容的充放电来做储存动作,但因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。

存取时间和放电时间一致,约为2~4ms。

因为成本比较便宜,通常都用作计算机内的主存储器。

02.SRAM(Static RAM,静态随机存取存储器)静态,指的是内存里面的数据可以长驻其中而不需要随时进行存取。

每6颗电子管组成一个位存储单元,因为没有电容器,因此无须不断充电即可正常运作,因此它可以比一般的动态随机处理内存处理速度更快更稳定,往往用来做高速缓存。

03.VRAM(Video RAM,视频内存)它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。

它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。

多用于高级显卡中的高档内存。

04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器)改良版的DRAM,大多数为72Pin或30Pin的模块。

传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。

而FRM DRAM 在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。

存储器是计算机的主要组成部件

存储器是计算机的主要组成部件

存储器是计算机的主要组成部件,它主要是用来存储信息的。

存储器的类型有很多,按存储介质分为半导体存储器、磁存储器和光存储器。

半导体存储器芯片内包含大量的存储单元,每个存储单元都有唯一的地址代码加以区分,并能存储一位二进制信息。

本章只讨论半导体存储器。

一、存储器的分类:1.按工作方式不同:分为随机存储器(RAM)和只读存储器(ROM)两大类。

2.按制造工艺不同:RAM、ROM又可分为双极型半导体存储器和单极型MOS存储器。

MOS型RAM又可分为静态RAM和动态RAM两种。

RAM中任何存储单元的内容均能被随机存取。

它的特点是存取速度快,一般用作计算机的主存。

ROM中的内容是在专门的条件下写入的,信息一旦写入就不能或不易修改。

根据信息的写入方式不同,ROM可以分为掩膜ROM、可编程ROM(PROM)、可擦除可编程ROM(EPROM)和电可擦除可编程ROM(E2PROM)四种。

在正常工作时,信息只能读出不能写入,通常用于存放固定信息。

掩膜ROM中的内容是在出厂前已写好的,用户不能改写;PROM可由用户以专用设备将信息写入一次,写后不能改变;EPROM可由用户以专用设备将信息写入,然后用紫外线照射擦除信息;E2PROM采用电气方法擦除信息。

半导体存储器的分类情况如图5-1所示。

二、随机存取存储器(RAM)RAM既可向指定单元写入信息又可从指定单元读出信息,且读写时间与信息所处位置无关。

RAM根据制造工艺的不同可分为双极型RAM和MOS型RAM,双极型RAM较MOS型RAM来说,速度高、功耗大、集成度低。

在断电后,RAM中信息将消失。

1.随机存取存储器(RAM)的结构RAM的一般结构形式包括存储矩阵、地址译码器和读写控制器三部分,并通过数据输入/输出线,地址输入线片选控制线和读写控制线与外界发生联系。

如图5-2所示:解释:存储矩阵由若干存储单元组成,一个存储单元称为存储器的一个字,它所含有的基本存储电路(二进制数)的个数称存储器的字长。

简述计算机存储器的分类

简述计算机存储器的分类

简述计算机存储器的分类
计算机存储器是计算机系统中用于存储数据和指令的设备。

根据功能和性质的不同,计算机存储器可以分为以下几类:
1. 主存储器(主存):也称为内存,是计算机中用于存储当前运行程序和数据的地方。

主存储器读写速度快,容量一般较大,但是断电即丢失数据。

2. 辅助存储器:辅助存储器是用来存储大量的永久性数据的设备。

常见的辅助存储器包括硬盘驱动器(HDD)、固态硬盘(SSD)、光盘、磁带等。

辅助存储器容量大,断电不丢失数据,但是读写速度较主存慢。

3. 高速缓存(缓存):高速缓存是位于主存和中央处理器(CPU)之间的一个存储器层级,用于提高存取速度。

它存储最常用的数据和指令,以减少对主存的访问次数。

高速缓存容量较小,读写速度比主存快。

4. 高速寄存器:高速寄存器位于CPU内部,是最快的存储器
类型。

它用来存储最经常使用的数据和指令,供CPU直接访问。

高速寄存器容量非常有限。

这些存储器类型在计算机系统中共同协作,实现数据的存储和处理。

不同存储器类型的组合,可以根据计算机系统的需求来设计,以达到最佳的性能和成本效益。

存储器系统

存储器系统

位扩展例
• 用8片2164A芯片构成64KB存储器
DB D0 2164A D1 2164A A0~A7 LS158 A0~A7 A8~A15 D7 2164A
AB
位扩展方法:
• 将每片的地址线、控制线并联,数据线 分别引出
• 位扩展特点:
存储器的单元数不变,位数增加
字扩展
• 地址空间的扩展。芯片每个单元中的字长满足, 但单元数不满足
• 扩展原则:
每个芯片的地址线、数据线、控制线并联,仅片 选端分别引出,以实现每个芯片占据不同的地 址范围
字扩展例
• 用两片64K×8位的SRAM芯片构成容量为128KB的存储器
数据总线DB
MEMW MEMR
D0~D7
D0~D7 MEMW MEMR Y3 OR WE 64Kx8 CS A0~A15
A7
×8片
B
S
RAS 0 CAS 0 WE
~
D0
~
D7
三、存储器扩展技术
用多片存储芯片构成一个需要的内存空间, 它们在整个内存中占据不同的地址范围,任 一时刻仅有一片(或一组)被选中——存储 器的扩展。
位扩展 字扩展 字位扩展
位扩展
• 存储器的存储容量等于: 单元数×每单元的位数
字节数 字长
• 当构成内存的存储器芯片的字长小于内 存单元的字长时,就要进行位扩展,使 每个单元的字长满足要求
第五章
存储器系统
1
5-1 概 述
一、存储器的分类 1、按工作性质分类 • 内部存储器 作用:用于存储当前运行所需要的程序和数据, 和CPU直接交换信息。 特点:容量小,工作速度高。 • 外部存储器 作用:用于存放当前不参加运行的程序和数据, 一般和内存交换信息。 特点:容量大,存取速度较慢。

存储器基础知识概览

存储器基础知识概览

存储器基础知识概览存储器是计算机中用于存储和提取数据的设备,也被称为内存。

在计算机系统中,存储器扮演着至关重要的角色,对于计算机的性能和效率有着重要影响。

本文将概览存储器的基础知识,包括存储器的分类、工作原理以及主要的存储器类型。

一、存储器的分类按照存储介质的不同,存储器可以分为两大类:主存储器和辅助存储器。

1. 主存储器:主存储器是计算机中直接与CPU进行数据交互的存储器,常见的主存储器包括随机存取存储器(RAM)和只读存储器(ROM)。

RAM具有读写功能,它能快速地存储和提取数据,但是数据存储是临时的,断电后数据会丢失。

而ROM则用于存储固定的数据和程序,内容不会因断电而丢失。

2. 辅助存储器:辅助存储器用于长期存储数据和程序,主要包括硬盘、固态硬盘、光盘和磁带等。

相较于主存储器,辅助存储器的存储容量更大,但是读写速度较慢。

二、存储器的工作原理存储器的工作原理可以简单描述为:数据从CPU传输到存储器,存储器进行存储或提取操作,然后将数据返回给CPU。

1. 写操作:当CPU需要向存储器写入数据时,它会向存储器发送写操作指令和待写入的数据。

存储器接收到指令后,将数据写入指定的地址中,以便后续读取。

2. 读操作:当CPU需要从存储器读取数据时,它会向存储器发送读操作指令和待读取数据的地址。

存储器接收到指令后,将指定地址的数据读取出来,并发送给CPU进行处理。

三、主要的存储器类型存储器的类型包括RAM、ROM以及一些特殊的存储器,如高速缓存(Cache)和虚拟内存(Virtual Memory)等。

1. RAM(随机存取存储器):RAM是计算机系统中最常见的存储器类型,它具备读和写的功能,并且数据可以快速访问。

RAM又可以分为静态RAM(SRAM)和动态RAM(DRAM)两种类型。

SRAM 的读取速度更快,但成本较高;DRAM的存储密度更高,更适合于大容量存储。

2. ROM(只读存储器):ROM用于存储无需修改的数据和程序,内容通常是出厂时被写入的。

存储器分类及功能大全

存储器分类及功能大全

RAM/ROM存储器ROM和RAM指的都是半导体存储器,RAM是Random Access Memory的缩写,ROM是Read Only Memory的缩写。

ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。

一、 RAM有两大类:1、静态RAM(Static RAM,SRAM),静态的随机存取存储器,加电情况下,不需要刷新,数据不会丢失;而且,一般不是行列地址复用的。

SRAM速度非常快,是目前读写最快的存储设备了,但是它也非常昂贵,所以只在要求很苛刻的地方使用,譬如CPU的一级缓冲,二级缓冲。

但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,而SRAM却需要很大的体积,所以在主板上SRAM存储器要占用一部分面积。

优点:速度快,不必配合内存刷新电路,可提高整体的工作效率。

缺点:集成度低,功耗较大,相同的容量体积较大,而且价格较高,少量用于关键性系统以提高效率。

2、动态RAM(Dynamic RAM,DRAM),动态随机存取存储器,需要不断的刷新,才能保存数据。

而且是行列地址复用的,许多都有页模式。

DRAM利用MOS管的栅电容上的电荷来存储信息,一旦掉电信息会全部的丢失,由于栅极会漏电,所以每隔一定的时间就需要一个刷新机构给这些栅电容补充电荷,并且每读出一次数据之后也需要补充电荷,这个就叫动态刷新,所以称其为动态随机存储器。

由于它只使用一个MOS管来存信息,所以集成度可以很高,容量能够做的很大。

DRAM保留数据的时间很短,速度也比SRAM慢,不过它还是比任何的ROM都要快;DRAM存储单元的结构非常简单,所以从价格上来说它比SRAM要便宜很多,计算机内存就是DRAM的。

DRAM分为很多种,常见的主要有FPRAM/ FastPage、EDORAM、SDRAM、DDRRAM、RDRAM、SGRAM以及WRAM等 I.SDRAM,即Synchronous DRAM(同步动态随机存储器),曾经是PC电脑上最为广泛应用的一种内存类型,即便在今天SDRAM仍旧还在市场占有一席之地。

第五章 存储器

第五章 存储器

A• 4 0• … • 1• 0• … • 1•
A• 3 0• … • 1• 0• … • 1•
A• 2 0• … • 1• 0• … • 1•
A• 1 0• … • 1• 0• … • 1•
A 0 0 … 1 0 … 1
• • • • • •
× • × • × • × • × • × •
9
× • × • × • × • × • × •
线性选择方式、部分译码方式、全译码方式
下面通过举例说明(以8088CPU为例)
1、线性选择方式
片间寻址原则:用CPU高位地址线的一根或某几根
组合形成片选信号。
例5-1:使用SRAM芯片Intel6264 (8K×8位)组成16K×8的存储器 系统,设计6264与8088CPU的硬件 连接图,并分析各芯片的地址范围
刷新地址 计数器 地址 多路器
地址总线
地址
CPU
刷新定时器 读/写 仲裁 电路 RAS 定时 CAS 发生器 WR
DRAM
数据缓冲器
图5-6 DRAM控制器逻辑框图
三、高速缓冲存储器(Cache) 主要由硬件来实现,对程序员是透明的。
理解: •Cache的基本概念; •基本工作原理; •命中率; •Cache的分级体系结构
Vcc /WE CE2 A3 A2 A1 /OE A0 /CE1 IO7 IO6 IO5 IO4 IO3
其中: A12~A0:地址线
IO7~IO0:数据线
/WE:写允许信号,低电平有效
/OE:读允许信号,低电平有效
/CE1,CE2:片选 Vcc:+5V, GND:地
图5-3 6264芯片管脚图
下图为6264芯片与CPU的连接:

计算机存储器的分类及性能比较

计算机存储器的分类及性能比较

计算机存储器的分类及性能比较一、引言计算机存储器作为计算机系统中的关键部件,承担着数据存储和读写的重要任务。

根据存储介质、访问速度和成本等因素的不同,存储器可以分为多种类型。

本文就计算机存储器的分类及其性能进行详细介绍和比较。

二、主存储器1. 内存条(RAM)- 分为动态RAM(DRAM)和静态RAM(SRAM)- DRAM容量大、成本低,但速度慢- SRAM速度快、耗电量少,但成本高2. 虚拟内存(Virtual Memory)- 是主存容量扩展的一种技术- 将较少使用的数据存放在硬盘,节省主存空间- 读写速度较慢,但是大大扩展了主存的实际容量三、辅助存储器1. 硬盘- 常见的机械硬盘(HDD)和固态硬盘(SSD)- HDD容量大、成本低,但读写速度较慢,机械结构易损坏- SSD读写速度快、反应时间小,但容量相对较小且成本高2. 光盘- CD、DVD和蓝光光盘等- 容量较小,适合存储音视频文件,但读写速度相对较慢3. U盘- 轻便、易用,适合携带和传输数据- 容量较小,读写速度受到USB接口限制,但价格相对较低四、性能比较1. 访问速度- 内存条的访问速度最快,几纳秒级别- SSD访问速度较快,毫秒级别- 光盘和U盘的访问速度较慢,几秒到几十秒级别2. 容量- 辅助存储器的容量相对较大,可达数TB- 内存条的容量相对较小,一般几GB至几十GB不等3. 成本- 内存条相对较便宜,按单位容量计算价格相对较低- SSD价格逐年下降,但相对较高- 光盘和U盘价格相对较低,但容量有限五、应用场景和总结1. 内存条适用于运行中的程序和数据存储,适合对速度和实时性要求高的计算任务2. SSD适用于需要快速启动和读写的场景,如操作系统、数据库等3. 光盘和U盘适用于传输、备份和存储一些小型文件和个人资料综上所述,计算机存储器的分类及性能表现各有优劣,根据实际需求选择合适的存储设备,能够满足不同场景的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
存储器的Байду номын сангаас类
按存储介质 半导体存储器:用半导体器件组成的存储器。 磁表面存储器:用磁性材料做成的存储器。 按存储方式 随机存储器:任何存储单元的内容都能被随机存取,且存取时间和存储单元的物理位 置无关。 顺序存储器:只能按某种顺序来存取,存取时间和存储单元的物理位置有关。 按读写功能 只读存储器(ROM):存储的内容是固定不变的,只能读出而不能写入的半导体存储器 。 随机读写存储器(RAM):既能读出又能写入的半导体存储器。 按信息保存性 非永久记忆的存储器:断电后信息即消失的存储器。 永久记忆性存储器:断电后仍能保存信息的存储器。 按用途 根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存 储器、控制存储器等。 为了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,通常采用多级存储 器体系结构,即使用高速缓冲存储器、主存储器和外存储器。 用途特点 高速缓冲存储器Cache 高速存取指令和数据存取速度快,但存储容量小 主存储器内存存放计算机运行期间的大量程序和数据存取速度较快,存储容量不大 外存储器外存存放系统程序和大型数据文件及数据库存储容量大,位成本低
(资料来源:中国联保网)
相关文档
最新文档