AHRS6500光纤航姿系统

合集下载

基于天脉1型嵌入式操作系统光纤航姿软件开发

基于天脉1型嵌入式操作系统光纤航姿软件开发

电子产品世界基于天脉1型嵌入式操作系统光纤航姿软件开发Development of AHRS software based on ACoreOS 1.X operating system张 斌 (陕西宝成航空仪表有限责任公司,陕西 宝鸡 721006)摘 要:本文介绍了基于国产天脉1型操作系统的光纤航姿软件开发。

在充分分析国产天脉1型操作系统特点、开发环境和任务调度方式的基础上,结合光纤航姿软件的功能需求和结构组成,重点进行了软件周期的划分、设计和实现。

测试和试验结果表明,基于国产天脉1型操作系统的光纤航姿软件具备强实时、稳定性高并支持多任务的特点。

关键词:光纤航姿软件;天脉1;ACoreOS1.X0 引言斯诺登的棱镜门和中兴事件曝光后,如何在国防装备中采用国产系统以提高装备自主性、安全性,防范可能存在的漏洞和后门,已经成为国防装备战线迫切需要解决的问题。

天脉1 型嵌入式操作系统(简称:天脉1,英文名:ACoreOS1.X)是航空工业西安航空计算所研发的针对航空、航天应用需求而设计的具有完全自主知识版权的嵌入式国产操作系统[1];是在航空、航天等对系统实时性、安全性、可靠性有极高需求的领域中使用的嵌入式操作系统。

目前,天脉1嵌入式操作系统已在我国多型军、民用航空装备上得到广泛应用。

本文介绍了基于天脉1操作系统设计的光纤航姿系统的组成和原理,描述了光纤航姿软件的任务划分、任务调度。

1 天脉1操作系统简介天脉1采用标准C 语言与汇编语言混合开发,按照GJB和DO-178B进行研发和测试,是一款面向多任务应用的强实时嵌入式系统平台,能够协助编程者管理嵌入式系统硬件资源,显著降低应用软件开发和维护难度。

天脉1主要有如下功能:● 采用微内核设计,组件可配置、裁剪;● 支持PPC、x86、ARM等主流处理器,支持龙芯、飞腾等国产处理器;● 采用层次化微结构,微内核和硬件相隔离开来,方便硬件平台的升级;● 存储管理支持MMU存储保护,关键数据区用户可进行防篡改保护;● 采用实时多任务调度,支持优先级抢占和时间片轮转,任务切换以及中断响应可达到微秒级;● 提供消息队列、环形缓冲等多种任务间通信机制,提供信号量、事件等任务同步机制;● 支持对高速数据/指令缓存(CACHE)的管理;● 支持周期任务;● 提供与VxWorks兼容的API接口。

AHRS使用说明

AHRS使用说明

航姿参考系统
系统综述: 该系统为捷联式航姿参考系统,系统采用基于MEMS 技术的陀螺仪、加速度计和磁传感器,集成度高、体积小、重量轻、成本低,可以对运动载体进行全姿态测量,实时输出载体的姿态角(俯仰角、横滚角、航向角)信息。

同时,系统具有很好的抗干扰能
力。

系统主要功能: 实时输出载体的姿态角(俯仰角、横滚角、航向角)信息; 支持欧拉角输出 支持四元数输出
支持传感器(陀螺仪、加速度计、磁传感器)原始数据的输出
系统主要用途: 车辆的导航与控制 船舶姿态的动态测量 平台稳定 机器人 集装箱跟踪
主要技术指标
更新频率:1~100Hz 启动时间:<1s 初始化时间:60s
航向角:
范围:±180°
正常条件下静态精度:<0.5° 全温度的静态精度:<1° 动态精度:1.5°(RMS) 噪声:0.01°(RMS) 分辨率: 0.1°
姿态角(俯仰角、横滚角):
范围:±90°,±180°
在正常条件下静态精度:<0.2° 全温度的静态精度:0.3° 动态精度:0.5°(RMS) 噪声:0.01°(RMS) 分辨率:0.1° 环境:
工作温度:-40°~80° 储存温度:-55°~85°
电气特性:
供电电压:4.5V~40V 功耗:<500mW
数字输出格式:RS-232
物理特性:
大小:50mm * 60mm * 30mm 重量:60g。

AHRS航姿解算中的两种滤波方法的比较研究

AHRS航姿解算中的两种滤波方法的比较研究
DI NG J u n, Z HA0 Z h o n g — h u a
( S c h o o l o f E l e c t r o n i c I n f o r m a t i o n a n d E l e c t r i c a l E n g i n e e r i n g , S h a n g h a i J i a o T o n g U n i v e r s i t y ,S h a n g h a i 2 0 0 2 4 0 , C h i n a )
Co mp a r i s o n a n d S t u d y o n Co mp l e me n t a r y Fi l t e r a n d
Ka l ma n Fi l t e r i n AHR S At t i t ud e Ca l c ul a t i o n
ma g n e t i c s e n s o r C n a b e e a s i l y d i s t u r b e d b y f e r r o ma g n e t i c s u b s t a n c e .S o i t c a u s e s r o l l a n d p i t c h a n g l e e ro s r wh e n U - s i n g t h e a c c e l e r o me t e r me a s u r e me n t s t o c lc a u l a t e,a n d i t t h e n d i r e c t l y i n t r o d u c e s n a e l r o r t o t h e h e a d i n g c lc a u l a t i o n wh i c h u s e s t h e ma g n e t i c s e n s o r me a s u r e me n t s .I n o r d e r t o r e d u c e t h e e r r o r o f a t t i t u d e a n g l e s ,w h i c h a r e c a l c u l a t e d b y t h e a t t i t u d e c a l c u l a t i o n me t h o d b a s e d o n t h e a c c e l e r o me t e r a n d ma g n e t i c s e n s o r ,t h i s p a p e r d e s i g n e d a c o mp l e me n t a r y

基于卡尔曼滤波和互补滤波的AHRS系统研究

基于卡尔曼滤波和互补滤波的AHRS系统研究

本栏目责任编辑:梁书计算机工程应用技术基于卡尔曼滤波和互补滤波的AHRS 系统研究蔡阳,胡杰❋(长江大学计算机科学学院,湖北荆州434023)摘要:AHRS 航姿参考系统中通常需要融合MEMS 传感器数据来进行姿态解算,由于MEMS 传感器自身的一些缺陷导致在姿态解算中会出现较为严重的误差。

AHRS 中常见对加速度计、陀螺仪和磁力计进行卡尔曼滤波、互补滤波的方法,由于使用单一的滤波算法时会出现误差,导致姿态角解算精度不高。

本文采用卡尔曼滤波融合互补滤波的滤波算法,通过卡尔曼滤波对加速度计和陀螺仪起抑制漂移作用,进而得到最优估计姿态角,减小传感器引起的误差,再由估计值和磁力计经过互补滤波滤除噪声,提高姿态角的解算精度。

仿真实验表明:融合滤波算法可以抑制漂移和滤除噪声,在静态和动态条件下,都有良好表现。

关键词:AHRS;MEMS ;姿态解算;卡尔曼滤波;互补滤波中国分类号:TP301文献标识码:A 文章编号:1009-3044(2021)10-0230-03开放科学(资源服务)标识码(OSID ):Research on AHRS System Based on Kalman Filter and Complementary Filter CAI Yang,HU Jie(School of Computer Science,Yangtze University,Jingzhou 434023,China)Abstract:AHRS heading and attitude reference system usually needs to fuse MEMS sensor data for attitude calculation.Due to some defects of MEMS sensor itself,there will be more serious errors in attitude calculation.Kalman filtering and complementary filtering methods for accelerometers,gyroscopes,and magnetometers are common in AHRS.Due to errors when a single filtering al⁃gorithm is used,the accuracy of the attitude angle calculation is not high.In this paper,the Kalman filter fusion complementary fil⁃ter filter algorithm is used to suppress drift of the accelerometer and gyroscope through Kalman filter,and then obtain the optimal estimated attitude angle,reduce the error caused by the sensor,and then pass the estimated value and the ple⁃mentary filtering filters out noise and improves the accuracy of attitude angle calculation.Simulation experiments show that the fu⁃sion filtering algorithm can suppress drift and filter noise,and it performs well under static and dynamic conditions.Keywords:AHRS;MEMS;attitude calculation;Kalman filter;complementary filter航姿参考系统AHRS(Attitude and Heading Reference Sys⁃tem)由MEMS(Micro-Electro Mechanical System)惯性传感器三轴陀螺仪、三轴加速度计和磁力计的数据融合来进行姿态解算[1]。

航姿参考系统中的三种简易四元数平均算法

航姿参考系统中的三种简易四元数平均算法

第28卷第2期 中国惯性技术学报 V ol.28 No.2 2020年04月 Journal of Chinese Inertial Technology Apr. 2020 收稿日期:2019-11-12;修回日期:2020-04-06基金项目:南京邮电大学校级科研基金(NY217138,NY219054);江苏省高等学校自然科学研究面上项目(17KJD535001);江苏省自然科学基金(BK20170898)作者简介:谭彩铭(1987—),男,讲师,从事定位导航研究。

E-mail :********************联 系 人:高翔(1967—),女,教授。

E-mail :**************.cn 文章编号:1005-6734(2020)02-0186-07 doi.10.13695/ki.12-1222/o3.2020.02.008Three simple quaternion averaging algorithms used in attitude andheading reference systemTAN Caiming 1,2, GAO Xiang 1,2, CHEN Sheng 1,2, XU Guozheng 1,2(1. College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2. Robotics Information Sensing and Control ResearchInstitute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)Abstract: Unit quaternion averaging is normally defined as the optimal solution to a constrained minimization problem, which is computationally time-consuming. Considering that there are only two quaternions in an attitude and heading reference system (AHRS) for weighted averaging, three easy two-quaternion averaging formulas are obtained from each minimization-based quaternion averaging algorithm, respectively. The data analysis demonstrates that the quaternions obtained using the three easy two-quaternion averaging formulas are very close, and the angular distances between them are less than 0.04 °. The large angle maneuver experiment confirms that the three two-quaternion averaging formulas can be used in the quaternion-based AHRS. The conclusions provide a reference for the effective application of quaternion averaging algorithm in AHRS and other related fields.Key words: unit quaternion; quaternion averaging; attitude and heading reference system; Kalman filter; complementary filter航姿参考系统中的三种简易四元数平均算法谭彩铭1,2,高 翔1,2,陈 盛1,2,徐国政1,2(1. 南京邮电大学 自动化学院、人工智能学院, 南京 210023; 2. 南京邮电大学 机器人信息感知与控制研究所,南京 210023)摘要:单位四元数平均运算通常被定义为求解约束最小化问题的最优解,在计算上很耗时。

ACGS-01 微型AHRS航姿参考系统

ACGS-01 微型AHRS航姿参考系统

产品介绍产品介绍ACGS-01 是CGSTECH 公司提供的基于MEMS 技术的低成本的,高性能三维运动姿态测量系统。

ACGS-01包含三轴陀螺仪、三轴加速度计(即IMU ),三轴电子罗盘等辅助运动传感器,通过内嵌的低功耗处理器输出校准过的角速度,加速度,磁数据等,通过基于四元数的Motion Sensor Fusion 算法进行数据融合,实时输出以四元数、欧拉角等表示的零漂移三维运动姿态数据。

ACGS-01可广泛应用于航模无人机、机器人、摄像云台、天线云台、地面及水下设备、虚拟现实、人体运动分析等需要低成本、高动态三维姿态测量的产品设备中。

ACGS-01微型AHRS 姿态方位参考系统姿态方位参考系统硬件系统高度集成硬件系统高度集成紧凑的外观设计,方便开发集成到其他的系统和应用中尺寸小,重量轻,功耗低具有高度的可扩展性,提供串口,SPI ,CAN 总线运动姿态捕捉显示系统运动姿态捕捉显示系统CGSTECH Explore 提供图形化的显示界面,使开发者对运动姿态所见即所得,通过使用CGSTECH Explore 内置工具可以迅速完成内置传感器的各种设置校准,包括软铁和硬铁的磁场校准,让开发者工作化繁为简,集中精力于系统设计输出模式输出模式三维全姿态数据(四元数 / 欧拉角 / 旋转矩阵) 三维加速度 / 三维角速度 / 三维地磁场强度可扩展性软件开发 SDKCGSTECH SDK 提供针对不同设备的多层次接口,保证用户不仅在桌面系统还是嵌入式设备都可以进行快速开发,满足系统开发的定制要求,使得用户在使用CGSTECH 系列产品时更加具有自主性特点高精度360 度全方位空间姿态输出。

无需水平静态下启动。

快速动态响应与长时间稳定性(无漂移,无积累误差)相结合。

全固态微型MEMS 惯性器件,三轴加速度、三轴角速度和三轴磁场强度计高度集成9DOF 。

快速更新率,多种可编程的数据输出模式(四元数,欧拉角,旋转矩阵等)。

九轴MEMS微型AHRS设计及其在矢量水听器中的应用

九轴MEMS微型AHRS设计及其在矢量水听器中的应用

九轴MEMS微型AHRS设计及其在矢量水听器中的应用王文龙;田德艳;崔宝龙;袁猛;姜兆祯
【期刊名称】《中国惯性技术学报》
【年(卷),期】2024(32)5
【摘要】为了精确测量矢量水听器的姿态,设计了一种体积为20 mm×20 mm×5 mm、重量为1.8 g的微型航姿参考系统(AHRS)。

利用微机电系统(MEMS)陀螺仪测定角速度,用四元数等效旋转矢量算法求解姿态角;采用扩展卡尔曼滤波器对姿态角估计值进行修正,并估计出MEMS陀螺仪的角速度漂移量。

测试结果表明,所提AHRS的俯仰、横滚和航向角误差均方根值分别为0.04°、0.04°和0.34°。

最后,将AHRS集成到矢量水听器中,并在加窗直方图统计波达方向估计算法中加入姿态修正。

海上实验结果表明,对于航速为8 kn的目标船,经AHRS修正后的单矢量水听器方位角误差均方根值约为3.8°,减小了平台运动导致的方位测量误差。

【总页数】7页(P468-474)
【作者】王文龙;田德艳;崔宝龙;袁猛;姜兆祯
【作者单位】海军潜艇学院;崂山实验室
【正文语种】中文
【中图分类】U666.1
【相关文献】
1.一种压电式MEMS矢量水听器设计
2.硅基压电MEMS球形矢量水听器设计
3.基于MEMS标矢量一体化水听器的浮标系统设计
4.硅基MEMS振速型矢量水听器设计
5.纤毛-硅柱结构MEMS二维矢量水听器设计与制备方法
因版权原因,仅展示原文概要,查看原文内容请购买。

航姿基准系统(AHRS)(英文翻译版)

航姿基准系统(AHRS)(英文翻译版)

Number:CTSO-C201Approved by:Xu ChaoqunChina Civil Aviation Technical Standard OrderAttitude and Heading Reference Systems (AHRS)1. Purpose.This China Civil Aviation Technical Standard Order (CTSO) is for manufacturers applying for Attitude and Heading Reference Systems (AHRS) CTSO authorization (CTSOA). This CTSO prescribes the minimum performance standards(MPS) that Attitude and Heading Reference Systems (AHRS) must first meet for approval and identification with the applicable CTSO marking.2. Applicability.This CTSO affects new application submitted after its effective date. Major design changes to article approved under this CTSO will require a new authorization in accordance with section 21.353 of CCAR-21-R4.3. RequirementsNew models of AHRS identified and manufactured on or after theeffective date of this CTSO must meet the MPS qualification and documentation requirements in sections 2.1, 2.2.1, and 2.2.2 of RTCA Document No. RTCA/DO-334, Minimum Operational Performance Standards (MOPS) for Solid-State Strap-Down Attitude and Heading Reference Systems (AHRS), dated March 21, 2012. If AHRS provides heading, turn and slip, degraded mode, uses aiding, includes a display, or provides information generated by the AHRS to a stand-alone display,then the applicant must also meet the requirements as listed in the table below.Optional Functions/Mode/Source FunctionalQualificationHeading 2.2.3Turn and Slip 2.2.5Degraded Mode 2.2.4Aiding 2.2.6Display 2.5a. Functionality. This CTSO’s standards apply to solid statestrap-down AHRS intended to output pitch and roll attitude that does notuse gimbaled sensors. It also addresses the optional functions of heading,turn, slip and the display of information provided by an AHRS.b. Failure Condition Classifications.There is no standard minimumfailure condition classification for this TSO. The failure condition classification appropriate for the equipment will depend on the intendeduse of the equipment in a specific aircraft. Document the loss of functionand malfunction failure condition classification for which the equipmentis designed.c. Functional Qualification. Demonstrate the required functional performance under the test conditions specified in RTCA/DO-334, Section 2.4. If the AHRS includes a display, demonstrate the required functional performance of the display under the test conditions specified in RTCA/DO-334, Section 2.6.d. Environmental Qualification. Demonstrate the required performance under the test conditions specified in RTCA/DO-334, Section 2.3, using standard environmental conditions and test procedures appropriate for airborne equipment. RTCA/DO-334 requires the use of RTCA/DO-160G; however, the applicant may use a different standard environmental condition and test procedure than RTCA/DO-160G, provided the standard is appropriate for AHRS.Note: The use of RTCA/DO-160D (with Changes 1 and 2 only, incorporated) or earlier versions is generally not considered appropriate and will require substantiation via the deviation process as discussed in paragraph 3.g of this CTSO.e. Software Qualification. If the article includes software, develop the software according to RTCA, Inc. document RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment Certification, dated December 1, 1992 to at least the software level consistent with the failure condition classification defined in paragraph 3.b of this CTSO.Note: The certification liaison process objectives will be considered satisfied after CAAC review of the applicable life cycle data.f. Electronic Hardware Qualification. If the article includes complex custom airborne electronic hardware, develop the component according to RTCA/DO-254, dated April 19, 2000, Design Assurance Guidance for Airborne Electronic Hardware, to at least the design assurance level consistent with the failure condition classification defined in paragraph 3.b of this CTSO. For custom airborne electronic hardware determined to be simple, RTCA/DO-254, paragraph 1.6 applies.Note: The certification liaison process objectives will be considered satisfied after CAAC review of the applicable life cycle data.g. Deviations. For using alternative or equivalent means of compliance to the criteria in this CTSO, the applicant must show that the equipment maintains an equivalent level of safety. Apply for a deviation under the provision of 21.368(a) in CCAR-21-R4.4. Marking.a. Mark at least one major component permanently and legibly with all the information in 21.423(b) of CCAR-21-R4. The marking must include the serial number.b. Also, mark the following permanently and legibly, with at least the manufacturer’s name, subassembly part number, and the CTSOnumber:(1) Each component that is easily removable (without hand tools); and,(2) Each subassembly of the article that manufacturer determined may be interchangeable.c. If the article includes software and/or airborne electronic hardware, then the article part numbering scheme must identify the software and airborne electronic hardware configuration. The part numbering scheme can use separate, unique part numbers for software, hardware, and airborne electronic hardware.d. The applicant may use electronic part marking to identify software or airborne electronic hardware components by embedding the identification within the hardware component itself (using software) rather than marking it on the equipment nameplate. If electronic marking is used, it must be readily accessible without the use of special tools or equipment.5. Application Data Requirements.The applicant must furnish the responsible certification personnel with the related data to support design and production approval. The application data include a statement of conformance as specified in section 21.353(a)(1) in CCAR-21-R4 and one copy each of the followingtechnical data:a. A Manual(s) containing the following:(1) Operating instructions and equipment limitations sufficient to describe the equipment’s operational capability.(2) Describe in detail any deviations.(3) Installation procedures and limitations sufficient to ensure that the AHRS, when installed according to the installation or operational procedures, still meets this CTSO’s requirements. Limitations must identify any unique aspects of the installation. The limitations must include a note with the following statement:“This article meets the minimum performance and quality control standards required by a China civil aviation technical standard order (CTSO). Installation of this article requires separate approval.”(4) For each unique configuration of software and airborne electronic hardware, reference the following:(a) Software part number including revision and design assurance level;(b) Airborne electronic hardware part number including revision and design assurance level; and(c) Functional description.(5) A summary of the test conditions used for environmental qualifications for each component of the article. For example, a form asdescribed in RTCA/DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment, Appendix A.(6) Schematic drawings, wiring diagrams, and any other documentation necessary for installation of the AHRS.(7) List of replaceable components, by part number, that makes up the AHRS. Include vendor part number cross-references, when applicable.b. Instructions covering periodic maintenance, calibration, and repair, for the continued airworthiness of AHRS. Include recommended inspection intervals and service life, as appropriate.c. If the article includes software: a plan for software aspects of certification (PSAC), software configuration index, and software accomplishment summary.d. If the article includes simple or complex custom airborne electronic hardware, a plan for hardware aspects of certification (PHAC), hardware verification plan, top-level drawing, and hardware accomplishment summary (or similar document, as applicable).e. A drawing depicting how the article will be marked with the information required by paragraph 4 of this CTSO.f. Identify functionality or performance contained in the article not evaluated under paragraph 3 of this CTSO (that is, non-CTSO functions). Non-CTSO functions are accepted in parallel with the CTSOauthorization. For those non-CTSO functions to be accepted, the applicant must declare these functions and include the following information with CTSO application:(1) Description of the non-CTSO function(s), such as performance specifications, failure condition classifications, software, hardware, and environmental qualification levels. Include a statement confirming that the non-CTSO function(s) don’t interfere with the article’s compliance with the requirements of paragraph 3.(2) Installation procedures and limitations sufficient to ensure that the non-CTSO function(s) meets the declared functions and performance specification(s) described in paragraph 5.f.(1).(3) Instructions for continued performance applicable to the non-CTSO function(s) described in paragraph 5.f.(1).(4) Interface requirements and applicable installation test procedures to ensure compliance with the performance data defined in paragraph 5.f.(1).(5) Test plans, analysis and results, as appropriate, to verify that performance of the hosting CTSO article is not affected by the non-CTSO function(s).(6) Test plans, analysis and results, as appropriate, to verify the function and performance of the non-CTSO function(s) as described in paragraph 5.f.(1).g. The quality system description required by section 21.358 of CCAR-21-R4, including functional test specifications. The quality system should ensure that it will detect any change to the approved design that could adversely affect compliance with the CTSO MPS, and reject the article accordingly.h. Material and process specifications list.i. List of all drawings and processes (including revision level) that define the article’s design.j. Manufacturer’s CTSO qualification report showing results of testing accomplished according to paragraph 3.c of this CTSO.k. Provide the AHRS modes of operation and attitude, heading, and turn and slip categories for equipment per RTCA/DO-334, section 1.7.1 in installation manual.6. Manufacturer Data Requirements.Besides the data given directly to the authorities, have the following technical data available for review by the authorities:a. Functional qualification specifications for qualifying each production article to ensure compliance with this CTSO.b. Article calibration procedures.c. Schematic drawings.d. Wiring diagrams.e. Material and process specifications.f. The results of the environmental qualification tests conducted according to paragraph 3.d of this CTSO.g. If the article includes software, the appropriate documentation defined in the version of RTCA/DO-178B specified by paragraph 3.e of this CTSO, including all data supporting the applicable objectives in Annex A, Process Objectives and Outputs by Software Level.h. If the article includes complex custom airborne electronic hardware, the appropriate hardware life cycle data in combination with design assurance level, as defined in RTCA/DO-254, Appendix A, Table A-l. For simple custom airborne electronic hardware, the following data: test cases or procedures, test results, test coverage analysis, tool assessment and qualification data, and configuration management records, including problem reports.i. If the article contains non-CTSO function(s), the applicant must also make available items 6.a through 6.h as they pertain to the non-CTSO function(s).7. Furnished Data Requirements.a. If furnishing one or more articles manufactured under this CTSO to one entity (such as an operator or repair station), provide one copy or technical data and information specified in paragraphs 5.a and 5.b of thisEnglish Translation Version for Reference Only CAAC CTSO-C201 CTSO. Add any data needed for the proper installation, certification, use, or for continued compliance with the CTSO, of the AHRS.b. If the article contains declared non-CTSO function(s), include one copy of the data in paragraphs 5.f.(1) through 5.f.(4).8. Availability of Referenced Documents.Order RTCA documents from:Radio Technical Commission for Aeronautics, Inc.1150 18th Street NW, Suite 910, Washington D.C. 20036You may also order them online from the RTCA Internet website at: .- 11 -。

AHRS5600光纤航姿系统

AHRS5600光纤航姿系统

AHRS5600产品简介AHRS5600由三轴一体设计的中等精度光纤陀螺和石英挠性加速度计构成,可作为独立工作的惯性导航系统或捷联罗经。

产品特点结构紧凑的中精度光纤陀螺航姿系统;多种工作模式适用不同应用环境;应用领域大地测绘;车辆定位定向;船用罗经;轨道检测;无人机导航、控制;主要技术指标总体指标:重量:≤2kg;外形:100mm*100mm*96.5mm;供电:9-36V DC;稳态功耗:≤15W;工作温度:-40—+70℃;数据更新频率:200Hz(可定制最高1000Hz);接口:RS422\CAN\网络;连续工作时间:≥12小时;光纤陀螺仪指标:量程:±500°/s;零偏稳定性:≤0.05—0.2°/h(可定制);零偏重复性:≤0.05—0.2°/h(可定制);随机游走系数:≤0.02°/h0.5;标度因数重复性:≤100ppm;标度因数非线性:≤100ppm;带宽:≥500Hz;石英挠性加速度计(含数字采样电路)指标:量程:±10g;零偏稳定性:≤300ug(1秒平均);标度因数稳定性:≤100ppm(-40—+70℃,补后);纯惯性航姿模式指标:初始对准时间:≤5min;初始对准航向精度:0.3°—1°;罗经模式航向精度:0.3°secφ—1°secφ;开环航向保持精度:≤0.1°/h—0.3°/h;水平姿态精度:≤0.05°(RMS)AHRS6500光纤航姿系统产品介绍AHRS6500光纤航姿系统是一款全固态的高精度光纤陀螺航姿参考系统,能够在晃动环境下自主快速初始对准,为运动载体实时提供连续的航向、水平姿态和升沉等信息。

AHRS6500光纤航姿系统可选配内置卫星导航板卡,构成组合航姿系统,也可用于地面车辆、低动态飞行器的定位定向与姿态控制。

产品特点对准时间短;姿态精度高;动态精度高;长期工作性能稳定;应用领域船舶和水下潜器导航;海洋工程测量测绘;船用设备姿态基准;低速飞行器测姿;车辆定位定向;主要技术指标重量:≤3.5kg;外形:140mm*140mm*133mm(不含卫星导航板卡);150mm*140mm*133mm(内置卫星导航板卡);供电:9-36V DC;输出接口:RS422/CAN/以太网;数据更新率:≥200Hz;稳态功耗:≤15W;工作温度:-45—+70℃;工作纬度:南纬70°—北纬70°;启动时间:≤1min;初始对准时间:≤5min;航向精度:≤0.1°(惯性\卫星组合);≤0.06°/h(纯惯性状态);俯仰、横滚精度:≤0.05°(惯性\卫星组合);≤0.03°/h(纯惯性状态);角速率量程:±300°/s;线加速度量程:±10g;MTBF:≥3000h;振动环境:20-2000Hz,6.06g;F1060型光纤陀螺仪F1060型光纤陀螺仪具有启动时间短、体积小、重量轻、高带宽、低功耗、低成本、磁屏蔽性好等优势,在国内同型光纤陀螺仪中综合性能最优。

AHRS

AHRS

AHRS编辑本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!AHRS称为航姿参考系统包括多个轴向传感器,能够为飞行器提供航向,横滚和侧翻信息,这类系统用来为飞行器提供准确可靠的姿态与航行信息。

中文名AHRS称为航姿参考系统包括多个轴向传感器功能提供航向,横滚和侧翻信息目录1概述2特点3输出模式4应用领域5参考产品▪概览▪LPMSCONTROL▪LPMS C++库▪开放式运动分析工具(OPENMAT)▪LPMS-B规格1概述编辑AHRS 航姿参考系统航姿参考系统包括基于MEMS的三轴陀螺仪,加速度计和磁强计。

航姿参考系统与惯性测量单元IMU的区别在于,航姿参考系统(AHRS)包含了嵌入式的姿态数据解算单元与航向信息,惯性测量单元(IMU)仅仅提供传感器数据,并不具有提供准确可靠的姿态数据的功能。

目前常用的航姿参考系统(AHRS)内部采用的多传感器数据融合进行的航姿解算单元为卡尔曼滤波器。

2特点编辑高精度360 度全方位位置姿态输出,采用欧拉角的会具有万向锁,不能全向转动高效的数据融合算法快速动态响应与长时间稳定性(无漂移,无积累误差)相结合3输出模式编辑三维全姿态数据(四元数 / 欧拉角 / 旋转矩阵/原始数据)三维加速度 / 三维角速度 / 三维地磁场强度4应用领域编辑AHRS 原本起源于飞行器相关技术,但是近几年随着成本的器件成本的不断降低也被广泛的应用于机动车辆与无人机,工业设备,摄像与天线云台,地面及水下设备,虚拟现实,生命运动科学分析,虚拟现实,游戏界面,室内定位等需要三维姿态测量的产品中5参考产品编辑AHRS/IMULPMS-B是新型的高精度超小型姿态动作捕捉传感器,它使用蓝牙技术对数据进行无线通信, 高度满足了在机械系统以及人体动作信息测量应用上的高精度计算,无线传输数据的要求,并为用户提供多方面的软件平台支持。

LP-RESEARCH公司的姿态传感器(LPMS系列产品)使用了先进的数据融合算法,为用户提供高精度高稳定性的姿态动作信息以及3轴加速度/角速度/地磁量/方位角等数据。

陀螺仪主要性能指标

陀螺仪主要性能指标

常见的陀螺仪性能指标与解释零偏零偏,又称为零位漂移或零位偏移或零偏稳定性,也可简称零漂或漂移率,英文中称为drift或bias drift。

零偏应理解为陀螺仪的输出信号围绕其均值的起伏或波动,习惯上用标准差(σ)或均方根(RMS)表示,一般折算为等效输入角速率(°/ h)。

在角速度输入为零时,陀螺仪的输出是一条复合白噪声信号缓慢变化的曲线,曲线的峰-峰值就是零偏值(drift),如图2-6所示。

在整个性能指标集中,零偏是评价陀螺仪性能优劣的最重要指标。

分辨率陀螺仪中的分辨率是用白噪声定义的,如图2-6 中所示,可以用角随机游走来表示,可以简化为一定带宽下测得的零偏稳定性与监测带宽的平方根之比,其单位为((°)ℎ−1)√Hz⁄。

角度随机游走表征了长时间累积的角⁄,或简化为(°)√ℎ度误差。

角随机游动系数反映了陀螺在此处键入公式。

的研制水平,也反映了陀螺可检测的最小角速率能力,并间接反映了与光子、电子的散粒噪声效应所限定的检测极限的距离。

据此可推算出采用现有方案和元器件构成的陀螺是否还有提高性能的潜力。

标度因子标度因子是陀螺仪输出量与输入角速率变化的比值,通常用某一特定的直线斜率表示,该斜率是根据整个正(或负)输入角速率范围内测得的输入/输出数据,通过最小二乘法拟合求出的直线斜率。

对应于正输入和负输入有不同的刻度因子称为刻度因子不对称,其表明输入输出之间的斜率关系在零输入点不连续。

一般用刻度因子稳定性来衡量刻度因子存在的误差特性,它是指陀螺在不同输入角速率情况下能够通过标称刻度因子获得精确输出的能力。

非线性往往与刻度因子相关,是指由实际输入输出关系确定的实际刻度因子与标称刻度因子相比存在的非线性特征,有时还会采用线性度,其指陀螺输入输出曲线与标称直线的偏离程度,通常以满量程输出的百分比表示。

动态范围陀螺在正、反方向能检测到的输入角速率的最大值表示了陀螺的测量范围。

该最大值除以阀值即为陀螺的动态范围,该值越大表示陀螺敏感速率的能力越强。

基于卡尔曼滤波器的航姿系统测姿算法研究

基于卡尔曼滤波器的航姿系统测姿算法研究
( o eeo uo ai , otws r o t h i l n esy X ’ 1 19 C ia Clg l fA tm t n N r eenP le nc i rt, i n7 0 2 , hn ) o h t yc a U v i a
Absr c AHRS d e ’ c lu ae p sto n pe d if r to fa g r o t a t: o st a c l t o iin a d s e n o main o y o c mmo l tt a i .T e d i f n y a he s me tme h rf o t AHRS’ y o s rt e i . h n c rirma e v r o o i Sg r si ah rb g W e a re n u e sfra lngtme,h r b e t a tiu e p ro ma c e c nd t e p o l m h tatt d ef r n e d s e s a d e e x a e l a pe r Co n v n e h lswi p a . mmo a iai n ag rt r o g ra p ia l Kama tt c o o t i s l n n vg to lo i hms ae no ln e p l be. l n sae Ve trc n a n c
消失 的问题 , 因此通 常的导航算法 已不再适用 。设计 了一种基于卡尔曼滤波技术 的姿 态算法 , 用重力加速度 在机体系 的分 量 g 和陀螺漂移作 为待估计 的状态量 , 进行卡尔曼滤波的时间更 新过程 , 利用加速 度计 的输 出在一定 条件下作 为观测 量 , 进行 卡尔曼滤波 的量测更新过程。仿真结果 表明 : 此算法考 虑了陀螺 漂移 , 利用 自身 信息对机 动状态进 行 了准确 的判别 , 提高 了

AHRS介绍

AHRS介绍


• • • • • 中断模式下输出一次数据,输入 AHRSreq1, AHRSreq2, AHRSreq3, NMEAreq 后有效 GetDataReq 0xCA AA 55 00 00 07 00 CA D1 00 中断模式NMEA 格式输出: NMEAreq0x89 AA 55 00 00 07 00 89 90 00
% mg√Hz mrad mg Hz
0.1 0.04 0.15 0.1 50
0.1 0.04 0.15 0.1 50
0.2 0.09 0.15 0.2 50
环境 工作温度 存储温度 振动(非工作) 冲击(非工作) MTBF ℃ ℃ g,Hz g,ms h -40~+70 -50~+85 10-50Hz,0.15mm/55-500Hz 2.0g 50g,11ms,半正弦波 55500
0.1
0.3
AHRS-G300-A6-TGA-C1-V1.1
300
6
1
1.5
0.2
0.5
AHRS-G300-A6-TGA-C1-V1.2
300
6
1
1.5
0.2
0.5
AHRS-G1000-A2-TMGA-C1-V1.1 AHRS-G1000-A2-TGA-C1-V1.1
1000 1000
2 2
RS-232
Hz磁场强度等 1~100(可设定) <1 30
航向
范围 分辨率 静态精度(全温) 动态精度 噪声(100Hz输出) ° ° ° ° RMS ° RMS 0.4 0.7 0.03 0~360 0.01 0.7 1.0 0.03 1.0 1.5 0.03
姿态 范围:俯仰,滚动 分辨率 ° ° ± 90,± 180 0.01

AHRS姿态解算说明(加速度陀螺仪磁力计原理及原始数据分析)

AHRS姿态解算说明(加速度陀螺仪磁力计原理及原始数据分析)

AHRS姿态解算说明(加速度陀螺仪磁力计原理及原始数据分析)给51黑论坛的朋友们分享关于MPU6050的超好文章,介绍姿态解算的入门知识,非常通俗易懂.AHRS俗称航姿参考系统,AHRS由加速度计,磁场计,陀螺仪构成,AHRS的真正参考来自于地球的重力场和地球的磁场~~他的静态终精度取决于对磁场的测量精度和对重力的测量精度,而则陀螺决定了他的动态性能。

这就是AHRS~在这种前提下。

说明AHRS离开了地球这种有重力和磁场环境的时候是没法正常工作的~~本章旨在讲解以下内容1.加速度2.陀螺仪3.磁力计一直想写篇文章关于姿态解算原理的,使用尽量通俗的语句说明如何从加速度计和陀螺仪的数据,融合得到载体的姿态角。

无奈自己的水平有限,一直搁置。

淡泊以明志,宁静以致远.人总是要逼自己做些事,才过得心安理得。

那就拿点时间把这方面的资料整合一下吧。

这篇文章的大部分内容都不是本人原创的,感谢网络上无私奉献的人.在此介绍一下实验的姿态板,新一代的mini AHRS,采用STM32F103单片机进行姿态解算,板子上集成有1.MPU6050,三轴的加速度和陀螺仪2.HMC5883 三轴的磁力计3.BMP180 高精度气压高度计这些传感器都通过I2C接口连接到主控制器STM32.不需要额外的ADC电路,直接通过数字接口就可以读取传感器的当前输出.Mini AHRS硬件框图1 加速度计加速度计顾名思义,就是测量加速度的.那么,我们如何认识这个加速度呢?在此用一个盒子形状的立方体来做模型,认识加速度,如下,盒子内的图像。

如果我们把盒子形状的立方体放在一个没引力场的地方,球会保持在盒子的中间.你可以想象,这个盒子是在外太空,远离任何天体,很难找到这样的地方,就想象飞船轨道围绕地球飞,一切都是在失重状态下。

那么六个壁面感受到的压力都是0.如果我们突然将立方体向左侧移动(我们加快加速,1G =9.8米/ S ^ 2),皮球打在了墙上X-。

国内船用光纤陀螺罗经最新技术发展

国内船用光纤陀螺罗经最新技术发展

收 稿 日 期 :20200820;修 回 日 期 :20210220。 基 金 项 目 :国 家 自 然 科 学 基 金 资 助 项 目 (4150622,41876222)。 作 者 简 介 :卞 鸿 巍 (1972- ),男 ,教 授 ,博 士 生 导 师 ,主 要 研 究 方 向 为 惯 性 导 航 技 术 。 通 信 作 者 :马 恒 (1978- ),男 ,讲 师 ,博 士 ,mkggrr2004@aliyun.com。
不可否认,国 内 光 纤 陀 螺 罗 经 的 技 术 发 展 受 到了法国 Octans等 国 外 船 用 产 品 的 有 力 刺 激 和 牵引。由表1可以十分清楚地看到光纤陀螺罗经
2.1 光 纤 陀 螺 技 术 进 一 步 提 高
光纤陀螺是光纤陀螺罗经的核心部件。过去 6年是国内光纤陀螺器件性能提升的关键时期,
≤30 ≤5
≤0.1
≤0.23.01
-15~60
-20~55 -20~55
±78
±85 未说明
40000 Sperry/美
150000 iXBlue/法 100000 iXBlue/法
根据上述分析,为清晰体现设备的功能内涵, 具有高精度、快启动、高可靠性的技术特点。经过 船用光纤陀螺罗 经 可 定 位 为 “船 用 长 航 时 高 精 度 国内惯性技术界 的 不 懈 努 力,目 前 国 内 船 用 光 纤
列罗经(九江441 厂 生 产)属 于 德 国 安 修 斯 罗 经, 经典的 DH 系列电控罗经(上海442厂生产)属于 斯佩里罗经,而 CLP 系 列 电 控 罗 经 (重 庆 455 厂 生产)则属于阿玛布朗罗经 。 [2]
除陀螺罗经 外,早 期 的 水 平 仪 也 采 取 摆 与 陀 螺 的 结 合 ,通 过 摆 测 量 水 平 信 息 反 馈 控 制 陀 螺 ,实 现水平保持 功 能。在 此 基 础 上,由 于 技 术 和 需 求 发 展 ,方 位 仪 与 水 平 仪 二 者 进 行 了 融 合 ,产 生 了 方 位水平仪[3],并最早出现在船用武器系统,应用 于 火炮的稳定控制。1945年 之 后,通 过 与 航 海 罗 经 的 融 合 设 计 ,产 生 了 平 台 罗 经 ,国 外 称 其 为 稳 定 罗 经(stabilizedgyrocompass)[4]。 这 型 罗 经 具 备 三 轴 稳 定 平 台,可 以 指 示 船 舶 三 维 的 航 向 和 姿 态。 随着技术发展,平 台 罗 经 逐 渐 采 用 加 速 度 计 替 代

无人机捷联航姿系统误差分析与补偿

无人机捷联航姿系统误差分析与补偿

无人机捷联航姿系统误差分析与补偿朱燕;崔智军【摘要】针对由三轴磁传感器、三轴微机电系统(MEMS)加速度计和三轴MEMS 速率陀螺构成的无人机捷联航姿参考系统(AHRS),在详细分析3种传感器误差来源的基础上,建立了与之相适应的误差数学模型;根据传感器自身特点和九轴传感器的测量特点提出了相对应的误差补偿算法.试验结果表明:磁通门传感器的航向角最大误差由补偿前15°降低为补偿后1.6°;补偿后加速度计的俯仰角最大误差为0.25°,倾斜角最大误差0.35°;速率陀螺的静态误差补偿在3.5 min之内航向角误差为±0.3°,俯仰角补偿后误差±0.4°,倾斜角补偿后误差±0.4°;当速率小于15°/s时,动态误差控制在±1°.【期刊名称】《传感器与微系统》【年(卷),期】2018(037)008【总页数】5页(P29-32,36)【关键词】航姿参考系统;误差补偿;椭球拟合;位置法;分布补偿【作者】朱燕;崔智军【作者单位】安康学院电子与信息工程学院,陕西安康725000;安康学院电子与信息工程学院,陕西安康725000;西北工业大学电子信息学院,陕西西安710129【正文语种】中文【中图分类】TP2120 引言随着无人机的不断发展,对航向姿态系统的要求越来越高,不仅要实时、准确获取包括俯仰角、倾斜角、航向角等信息,为控制装置提供关键的参数,而且要求其尺寸不断减小、功耗不断降低[1~3]。

另外,由于飞行环境的电磁条件复杂,无人机若要提高系统控制精度,要求传感器采集的数据具有很好的精度,亦要求传感器抗干扰能力强、适应性好[4],因此设计一种微型化、低功耗、高精度的航向姿态参考系统显得尤为重要。

近年来,利用三轴微机电系统(micro-electro-mechanical system,MEMS)陀螺、三轴MEMS加速度计以及三轴磁传感器进行姿态测量成为捷联式低成本全固态姿态测量系统研究的热点之一[5,6]。

asr6500使用手册

asr6500使用手册

asr6500使用手册摘要:一、ASR6500 使用手册简介1.ASR6500 使用手册的目的和适用对象2.ASR6500 使用手册的主要内容二、ASR6500 产品概述1.ASR6500 产品简介2.ASR6500 的主要功能和特点3.ASR6500 的适用场景三、ASR6500 安装与配置1.ASR6500 的硬件安装2.ASR6500 的软件安装与配置3.ASR6500 的初始设置四、ASR6500 基本操作与使用1.ASR6500 的按键功能2.ASR6500 的触摸屏操作3.ASR6500 的遥控器使用五、ASR6500 高级功能与应用1.ASR6500 的网络连接与控制2.ASR6500 的数据存储与分析3.ASR6500 的与其他设备的联动六、ASR6500 的维护与故障排除1.ASR6500 的日常维护2.ASR6500 的故障排查方法3.ASR6500 的常见故障处理正文:【ASR6500 使用手册简介】ASR6500 使用手册是一本针对ASR6500 产品使用的指南,旨在帮助用户快速了解和掌握ASR6500 产品的使用方法。

本手册适用于所有使用ASR6500 的用户,包括系统管理员、操作员和其他相关人员。

本手册共分为六个部分,分别介绍了ASR6500 使用手册的简介、产品概述、安装与配置、基本操作与使用、高级功能与应用以及维护与故障排除。

通过本手册的详细指导,用户可以更好地理解和运用ASR6500,充分发挥其性能优势,提高工作效率。

【ASR6500 产品概述】ASR6500 是一款高性能的设备,具有强大的数据处理和传输能力。

它主要应用于大数据、云计算等领域,为用户提供高速、稳定的数据存储和传输服务。

ASR6500 具有以下特点:1.高性能:ASR6500 采用先进的处理器和高速存储器,具有强大的数据处理能力。

2.高可靠性:ASR6500 采用冗余设计,确保系统在硬件故障时仍能正常运行。

捷联航姿系统加速度计振动噪声平滑技术

捷联航姿系统加速度计振动噪声平滑技术
系统 在 机 载 飞 行 环 境 中 的 姿 态 输 出精 度 。 关键 词 :捷联 航 姿 系统 ; 加 速 度 计 ;噪 声 ; 模 糊 推 理 中 图 分 类 号 :V 2 4 1 文 献 标 识 码 :A 国 家 标 准 学 科 分 类 代 码 :5 9 0 . 3 5
Vi br a t i o n n o i s e s mo o t h t e c hni q u e f o r a c c e l e r o me t e r s o f AH RS
2 . Sh a nx i Ba o c h e n g Av i a t i o n I n s t r u me n t c o . Lt d, Re s e a r c h a n d De v e l o p me nt Ce n t e r , Ba o j i 7 2 1 0 0 6, Ch i n a )
Qi n Gu o q i n g La i J i z h o u Ch e n Z a n g Z e n g Qi n g h u a Z h a n g B i n 。
( 1 . Na v i g a t i o n Re s e a r c h C e n t e r , Na n j i n g Un i v e r s i t y o f Ae r o n a u t i c s g > As t r o n a u t i c s , Na n j i n g 2 1 0 0 1 6 , C h i n a
下 的捷 联 航 姿 系统 惯性 器件 输 出 的 特 性 , 设 计 了一 种 基 于模 糊 推 理 的 自适 应 变 步 长平 滑 滤 波 器 , 最 后 通 过线 性 随 机 振
动试 验对 滤波 器性 能 进 行 了 验 证 。试 验 结 果 表 明 , 设 计 的滤 波 器 可 以有 效 抑 制振 动环 境 加 速 度 计 测 量 噪 声 , 提 高 航 姿
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AHRS6500光纤航姿系统
产品介绍
AHRS6500光纤航姿系统是一款由上海北寻信息科技有限公司推出的全固态的高精度光纤陀螺航姿参考系统,能够在晃动环境下自主快速初始对准,为运动载体实时提供连续的航向、水平姿态和升沉等信息。

AHRS6500光纤航姿系统可选配内置卫星导航板卡,构成组合航姿系统,也可用于地面车辆、低动态飞行器的定位定向与姿态控制。

产品特点
对准时间短;
姿态精度高;
动态精度高;
长期工作性能稳定;
应用领域
船舶和水下潜器导航;
海洋工程测量测绘;
船用设备姿态基准;
低速飞行器测姿;
车辆定位定向;
主要技术指标
重量:≤3.5kg;
外形:140mm*140mm*133mm(不含卫星导航板卡);
150mm*140mm*133mm(内置卫星导航板卡);
供电:9-36V DC;
输出接口:RS422/CAN/以太网;
数据更新率:≥200Hz;
稳态功耗:≤15W;
工作温度:-45—+70℃;
工作纬度:南纬70°—北纬70°;
启动时间:≤1min;
初始对准时间:≤5min;
航向精度:≤0.1°(惯性\卫星组合);
≤0.06°/h(纯惯性状态);
俯仰、横滚精度:≤0.05°(惯性\卫星组合);
≤0.03°/h(纯惯性状态);
角速率量程:±300°/s;
线加速度量程:±10g;
MTBF:≥3000h;
振动环境:20-2000Hz,6.06g;。

相关文档
最新文档