1质点运动学自测题
力学习题-第1章质点运动学(含答案)
第一章质点运动学单元测验题一、选择题1.一质点沿x 轴运动,加速度与位置的关系为a (x )=2x +4x 2(SI 单位).已知质点在x =0处的速度为2m/s ,则质点在x =3m 处的速度为A.42m/s; B.26m/s ; C.94m/s ; D.34m/s .答案:C 解:根据题意:224dv a x x dt ==+,两边同乘dx 有:2(24)dv dx x x dx dt ⋅=+⋅由dx v dt=,上式化为:2(24)v dv x x dx ⋅=+对上式两边积分得到:223423v x x c =++由x =0,v =2m/s ,确定c =2.则当x =3m 时,解得:v =94m/s.2.一质点沿x 轴做直线运动,其速度v 随时间t 的变化关系如图所示.则下列哪个图可表示质点加速度a 随时间t 变化关系?2-•/s m a 2-•/s m a AB C答案:B 解:依据质点在一维运动时,速度-时间曲线的斜率对应加速度可知B 为加速度曲线.3.质点的运动学方程为33(21)t t =++r i j (SI 单位).则t =1s 时质点的速度为(SI单位)A.ji 6+3; B.j i 3+3; C.j i 6+6; D.j i 3+6.答案:A解:根据题意:33(21)t t =++r i j ,微分得:236d t dt ==+r v i j ,()136=+v i j 4.质点运动学方程为:kbt j t a i t a r +sin +cos =ωω,其中a 、b 、ω均为正的常数.问质点作什么运动?A.平面圆周运动;B.平面椭圆运动;C.螺旋运动;D.三维空间的直线运动.答案:C解:把质点的运动分解到三个方向上:cos sin x a t y a t z bt ωω===,,整理可知:222x y a z bt+==,则质点是以z 5.如图所示,在桌面的一边,—小球作斜抛运动,初速度v 0=4.7m/s.已知桌面宽a =2.0m.欲使小球能从桌面的另—边切过,小球的抛射角θ为A.30°;B.38°;C.50°;D.58°.答案:D 解:根据题意,小球沿x 和y 方向的运动方程为:t v x ⋅=θcos 0,201sin 2y v t gt θ=⋅-由x =2.0m 时,y =0,解得:o 58θ=.6.如图,有一半径为R 的定滑轮,沿轮周绕着一根绳子,悬在绳子一端的物体按s =(1/2)bt 2的规律向下运动.若绳子与轮周间没有相对滑动,轮周上一点A 在任一时刻t 的总加速度大为A.2t b a ;B.222/=R t b a ;C.b a =;D.R t b b a /+=22.答案:A 解:已知221bt s =,微分可得速度大小:t b dtds v ⋅==切向加速度大小:b dt dv a ==τ;法向加速度大小:Rt b R v a n 222==总加速度大小:a ==.7.当蒸汽船以15km/h 的速度向正北方向航行时,船上的人观察到船上的烟囱里冒出的烟飘向正东方向.过一会儿,船以24km/h 的速度向正东方向航行,船上的人则观察到烟飘向正西北方向.若在这两次航行期间风速不变,则风速的大小为A.9km/h; B.17.5km/h ; C.26.9km/h ; D.41km/h.答案:B解:地面为静系,船为动系,风为研究对象,则风对地的速度为绝对速度:风v v =船对地的速度为牵连速度:船牵连v v =风对船的速度为相对速度:风对船牵连v v =由绝对速度、牵连速度和相对速度的关系可得v v v =+船风对船,其矢量几何关系如图所示由此几何关系可得:1cos v v θ=船风,o 2145sin v v ctg v θ-=风船船联立解得:o 31θ=,5.17=v km /h .8.一个自由落体在它运动的最后一秒内所通过的路程等于全程的1/3.则物体通过全程所需的时间为A.3s ;B.6-3s ;C.6+3s ;D.6s答案:C解:设自由落体的全程下落时间和下落的高度分别为t 、S t 。
质点运动学考试题及答案
质点运动学考试题及答案1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式ts d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解 td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v = (B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v = (D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θl h l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v-t 图中求出各段的斜率,即可作出a-t图线.又由速度的定义可知,x-t曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t图应是一直线,而匀变速直线运动所对应的x–t 图为t的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t的位置x,采用描数据点的方法,可作出x-t图.解将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB A B AB t t a v v (匀加速直线运动) 0=BC a (匀速直线运动)2s m 10-⋅-=--=CD C D CD t t a v v (匀减速直线运动) 根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v 由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为 m 91.5d 4d 402=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v o x =-10 m ·s-1 , v o y =15 m ·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v 设v o 与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a 设a 与x 轴的夹角为β,则32tan -==x y a a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m ·s-2上升,当上升速度为2.44 m ·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为。
01质点运动学测试题
第一章 质点运动学 测试题一、选择题1.在下列关于质点运动的表述中,不可能出现的情况是: ( )(A )某质点具有恒定的速率,但却有变化的速度(B )某质点向前的加速度减小了,其前进速度也随之减小(C )某质点加速度值恒定,而其速度方向不断改变(D )某质点具有零速度,同时具有不为零的加速度2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有: ( )(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=3.如图所示,质点作匀速圆周运动,其半径为R ,从A 点出发,经半个圆周而到达B 点,则在下列表达式中,不正确的是 ( )(A ) 速度增量0=v Δ,速率增量0=v Δ (B ) 速度增量j v v 2-=Δ,速率增量0=v Δ(C ) 位移大小R r 2||= Δ,路程R s π= (D ) 位移i R r 2-=Δ,路程R s π=4.质点在xoy 平面内作曲线运动,则质点速率的表达式不正确的是( )(A )dt dr v = (B )dtr d v = (C )dt ds v = (D )22)()(dtdy dt dx +=v 5.一质点作曲线运动时,r 表示位置矢量,s 表示路程,τa 表示切向加速度,下列表达式中正确的是 ( )(A )a dt dv =/ (B )v dt dr =/(C )v dt ds =/ (D )τa dt v d =/6.一质点沿x 轴运动,其运动方程为3224t t x -=(SI ),当质点再次返回原点时,其速度和加速度分别为 ( )(A )8m/s ,16m/s 2 (B )-8m/s ,16m/s 2(C )-8m/s ,-16m/s 2 (D )8m/s ,-16m/s 27.一质点沿半径为R =1m 的圆轨道做圆周运动,其角位置与时间的关系为1212+=t θ(SI ),则质点在t =1s 时,其速度和加速度的大小分别是 ( ) (A )1m/s ,1m/s 2 (B )1m/s ,2m/s 2(C )2m/s ,2m/s 2 (D )1m/s ,2m/s 28.某物体的运动规律为t k dt d 2/v v -=,式中k 为大于零的常数。
质点运动学考试题及答案
质点运动学考试题及答案1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式ts d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解 td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v = (B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v = (D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θl h l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v-t 图中求出各段的斜率,即可作出a-t图线.又由速度的定义可知,x-t曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t图应是一直线,而匀变速直线运动所对应的x–t 图为t的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t的位置x,采用描数据点的方法,可作出x-t图.解将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB A B AB t t a v v (匀加速直线运动) 0=BC a (匀速直线运动)2s m 10-⋅-=--=CD C D CD t t a v v (匀减速直线运动) 根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v 由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为 m 91.5d 4d 402=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v o x =-10 m ·s-1 , v o y =15 m ·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v 设v o 与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a 设a 与x 轴的夹角为β,则32tan -==x y a a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m ·s-2上升,当上升速度为2.44 m ·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O ′x ′y ′坐标系,并采用参数方程x ′=x ′(t )和y ′=y ′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1)如图(B)所示,在O ′x ′y ′坐标系中,因t Tθπ2=,则质点P 的参数方程为t TR x π2sin =',t TR y π2cos -=' 坐标变换后,在O x y 坐标系中有t T R x x π2sin='=, R t T R y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m ·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m ·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1) 由 ⎰⎰=t x x t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1) (2)得v 0=-1 m ·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,BA →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BA tB A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m ·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v(2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t=1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m ·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m ·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为 vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m ·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m ·s-1 及3.44 m ≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为 bs s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m ·s-1.求:(1) 该轮在t ′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t (2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt =t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m ·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v 2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan 221v v v -= 而要使hl αarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m ·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m ·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin,则船到达正对岸所需时间为 s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d ut u l 1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =vt , y =gt 2 /2,质点运动的轨迹为抛物线.若另一观察者O ′以速率v 沿x 轴正向相对于O 运动.试问质点相对O ′的轨迹和加速度如何?。
质点运动学习题库
第一章 质点运动学习题一、选择题1. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ ]2.一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0.(D) -2 m . (E) -5 m.[ ]3.图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短.(C) 到c 用的时间最短.(D) 所用时间都一样. [ ]4.几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜面的倾角应选(A) 60°. (B) 45°.(C) 30°. (D) 15°. [ ]5.一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ ]6.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动. (D) 匀速直线运动. [ ]7. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ]-12Oa p8.一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为(A) t r d d (B) t r d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x9.质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]10.以下五种运动形式中,a保持不变的运动是 (A) 单摆的运动. (B) 匀速率圆周运动. (C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动. [ ] 11.对于沿曲线运动的物体,以下几种说法中哪一种是正确的: (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a为恒矢量,它一定作匀变速率运动. [ ]12. 质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的.(D) 只有(3)是对的. [ ] 13. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ ] 14.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v,那么它运动的时间是 (A)g t 0v v -. (B) gt 20v v - . (C)()gt 2/1202v v -. (D)()gt22/1202v v- . [ ]15.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) td d v. (B).R 2v(C)Rt 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]16.在高台上分别沿45°仰角方向和水平方向,以同样速率投出两颗小石子,忽略空气阻力,则它们落地时速度(A) 大小不同,方向不同. (B) 大小相同,方向不同.(C) 大小相同,方向相同. (D) 大小不同,方向相同. [ ]17. 一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠= [ ] 18. 在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i +2j . (B) -2i+2j .(C) -2i -2j . (D) 2i-2j . [ ]19. 一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km .甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h ;而乙沿岸步行,步行速度也为4 km/h .如河水流速为 2 km/h, 方向从A 到B ,则 (A) 甲比乙晚10分钟回到A . (B) 甲和乙同时回到A . (C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ ]20.一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h ,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h ,方向是(A) 南偏西16.3°. (B) 北偏东16.3°. (C) 向正南或向正北. (D) 西偏北16.3°.(E) 东偏南16.3°. [ ] 21.下列说法哪一条正确? (A) 加速度恒定不变时,物体运动方向也不变. (B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率)()2/21v v v +=. (D) 运动物体速率不变时,速度可以变化. [ ] 22.下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程. (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ ]23.某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°. [ ]选择题答案:1D 、2B 、3D 、4B 、5D 、6C 、7B 、8D 、9B 、10D 、11B 、12D 、13C 、14C 、15D 、16B 、17D 、18B 、19A 、20C 、21D 、22C 、23C二.填空题1. 两辆车A 和B ,在笔直的公路上同向行驶,它们从同一起始线上同时出发,并且由出发点开始计时,行驶的距离 x 与行驶时间t 的函数关系式:x A = 4 t +t 2,x B = 2 t 2+2 t 3 (SI), (1) 它们刚离开出发点时,行驶在前面的一辆车是______________;(2) 出发后,两辆车行驶距离相同的时刻是____________________;(3) 出发后,B 车相对A 车速度为零的时刻是__________________.2.一质点沿x 方向运动,其加速度随时间变化关系为a = 3+2 t (SI) , 如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度v = .3. 一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为 ___________,在t 由0到4s 的时间间隔内质点走过的路程为_________________.4.一质点作直线运动,其坐标x 与时间t的关系曲线如图所示.则该质点在第秒瞬时速度为零;在第 秒至第 秒间速度与加速度同方向.5.质点p 在一直线上运动,其坐标x 与时间t 有如下关系:x =-A sin ω t (SI) (A 为常数)(1) 任意时刻t,质点的加速度a =____________;(2) 质点速度为零的时刻t =______________.6.一质点沿直线运动,其坐标x 与时间t 有如下关系:t A x tωβcos e-= (SI) (A 、β 皆为常数)(1) 任意时刻t质点的加速度a =_______________________;(2) 质点通过原点的时刻t =___________________________.7.一辆作匀加速直线运动的汽车,在6 s 内通过相隔60 m 远的两点,已知汽车经过第二点时的速率为15 m/s ,则(1) 汽车通过第一点时的速率v 1 =__________________;(2) 汽车的加速度a = .58.灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = .9.一物体悬挂在弹簧上,在竖直方向上振动,其振动方程为 y = A sin ω t , 其中A 、ω 均为常量,则(1) 物体的速度与时间的函数关系式为________________________;(2) 物体的速度与坐标的函数关系式为________________________.10. 在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0,加速度2Ct a =(其中C 为常量),则其速度与时间的关系为=v __________,运动学方程为=x __________.11. 在v - t 图中所示的三条直线都表示同一类型的运动:(1) Ⅰ、Ⅱ、Ⅲ三条直线表示的是______________ 运动;(2) __________直线所表示的运动的加速度最大.12. 一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3(SI)则 (1) 质点在t =0时刻的速度=0v__________________;(2) 加速度为零时,该质点的速度=v ____________________.13.一质点作直线运动,其t -v 曲线如图所示,则BC 和CD 段时间内的加速度分别为____________,_______________.14. 一物体在某瞬时,以初速度0v从某点开始运动,在∆ t 时间内,经一长度为S 的曲线路径后,又回到出发点,此时速度为0-v,则在这段时间内:(1) 物体的平均速率是 ;(2) 物体的平均加速度是 .15.一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为:2214πt +=θ (SI) 则其切向加速度为t a =__________________________.t (s)1016. 质点沿半径为R 的圆周运动,运动学方程为 223t +=θ (SI) ,则t时刻质点的法向加速度大小为a n = ;角加速度β= . 17. 在一个转动的齿轮上,一个齿尖P 沿半径为R 的圆周运动,其路程S 随时间的变化规律为2021bt t S +=v ,其中0v 和b 都是正的常量.则t 时刻齿尖P 的速度大小为___________,加速度大小为____________.18.一物体作斜抛运动,初速度0v与水平方向夹角为θ,如图所示.物体轨道最高点处的曲率半径ρ为__________________.19.一物体作如图所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度a t =__________________,轨道的曲率半径ρ =__________________.20.已知质点的运动学方程为j t t i t t r)314()2125(32++-+= (SI)当t = 2 s 时,加速度的大小为a = ;加速度a与x 轴正方向间夹角α = .21.一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规律是β =12t 2-6t (SI), 则质点的角速ω =______________________________;切向加速度 a t =________________________.22. 一质点沿半径为R 的圆周运动,其路程S 随时间t 变化的规律为221ct bt S -= (SI) ,式中b 、c 为大于零的常量,且b 2>Rc. 则此质点运动的切向加速度a t =______________;法向加速度a n =________________.23. 一质点沿半径为 0.1 m 的圆周运动,其角位移θ 随时间t 的变化规律是θ = 2 + 4t 2 (SI).在t =2 s 时,它的法向加速度a n =______________;切向加速度a t =________________.24. 试说明质点作何种运动时,将出现下述各种情况)0(≠v :(1)0,0≠≠n t a a ;___________________________________(2)0≠t a ,a n =0;______________________________________ a t 、a n 分别表示切向加速度和法向加速度.25.在半径为R 的圆周上运动的质点,其速率与时间关系为2ct =v (式中c 为常 量),则从t = 0到t 时刻质点走过的路程S (t ) =________________________;t 时刻质点的切向加速度a t =_________________________________;t 时刻质点的法向加速度a n =________________________.26. 以一定初速度斜向上抛出一个物体,若忽略空气阻力,当该物体的速度 v与水平面的夹角为θ 时,它的切向加速度a t 的大小为______________,法向加速度a n 的大小为___________________.27. 在xy 平面内有一运动质点,其运动学方程为:j t i t r5sin 105cos 10+=(SI )则t 时刻其速度=v;其切向加速度的大小a t ______________;该质点运动的轨迹是_______________________.28.一质点从O 点出发以匀速率1 cm/s 作顺时针转向的圆周运动,圆的半径为1 m ,如图所示.当它走过2/3圆周时,走过的路程是____________________,这段时间内的平均速度大小为__________________,方向是__________.29.已知质点的运动学方程为24t r = i +(2t +3)j (SI),则该质点的轨道方程为__________________________.30. 一质点从静止出发,沿半径R =3 m 的圆周运动.切向加速度=t a 3 m/s 2保持不变,当总加速度与半径成角45 o 时,所经过的时间=t __________,在上述时间内质点经过的路程S =____________________.31. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示θ = 2 + 4t 3 (SI).(1) 当t = 2 s 时,切向加速度a t =______________;(2) 当a t 的大小恰为总加速度a大小的一半时,θ =__________.32. 一质点在Oxy 平面内运动.运动学方程为=x 2 t 和=y 19-2 t 2 , (SI),则在第2秒内质点的平均速度大小=v ________________________,2秒末的瞬时速度大小=2v _______________________.33. 以速度0v 、仰角0θ斜向上抛出的物体,不计空气阻力,其切向加速度的大小 (1) 从抛出到到达最高点之前,越来越________________.(2) 通过最高点后,越来越____________________.34.以初速率0v 、抛射角0θ抛出一物体,则其抛物线轨道最高点处的曲率半径为____________________.35. 飞轮作加速转动时,轮边缘上一点的运动学方程为S = 0.1 t 3 (SI).飞轮半径为2 m .当此点的速率=v 30 m/s 时,其切向加速度为____________________,法向加速度为__________________.36.()t r 与()t t r ∆+为某质点在不同时刻的位置矢量(矢径),()t v 与()t t ∆+v为不同时刻的速度矢量,试在两个图中分别画出r∆,r ∆以及v ∆,v ∆.37. 一质点沿半径为R 的圆周运动,在t = 0时经过P 点,此后它的速率v 按Bt A +=v (A ,B 为正的已知常量)变化.则质点沿圆周运动一周再经过P 点时的切向加速度a t = ___________ ,法向加速度a n = _____________.38.设质点的运动学方程为j t R i t R rsin cos ωω+= (式中R 、ω 皆为常量)则质点的v=___________________,d v /d t =_____________________.39.在水平飞行的飞机上向前发射一颗炮弹,发射后飞机的速度为0v ,炮弹相对于飞机的速度为v .略去空气阻力,则(1) 以地球为参考系,炮弹的轨迹方程为_____________________________,(2) 以飞机为参考系,炮弹的轨迹方程为_____________________________. (设两种参考系中坐标原点均在发射处,x 轴沿速度方向向前,y 轴竖直向下)40. 一船以速度0v 在静水湖中匀速直线航行,一乘客以初速1v在船中竖直向上抛出一石子,则站在岸上的观察者看石子运动的轨迹是_________.取抛出点为原点,x 轴沿0v方向,y 轴沿竖直向上方向,石子的轨迹方程是________________________________.41.小船从岸边A 点出发渡河,如果它保持与河岸垂直向前划,则经过时间t 1到达对岸下游C 点;如果小船以同样速率划行,但垂直河岸横渡到正对岸B 点,则需与A 、B 两点联成的直线成α角逆流划行,经过时间t 2到达B 点.若B 、C 两点间距为S ,则 (1) 此河宽度l =__________________________________;(2) α =______________________________________.ABAB)(t r )(t t r ∆+)(t t ∆+v)(t v OO42.在表达式tr t ∆∆=→∆0lim v 中,位置矢量是_______________;位移矢量是________________________.43. 如图所示,小船以相对于水的速度 v与水流方向成α角开行,若水流速度为u,则小船相对于岸的速度的大小为___________________,与水流方向的夹角为____________________.44.两条直路交叉成α 角,两辆汽车分别以速率1v 和2v 沿两条路行驶,一车相对另一车的速度大小为___________________________________.45. 有一旅客站在沿水平轨道匀速开行的列车最后一节车厢后的平台上,(1) 手拿石块,松手释放;(2) 沿水平方向向车后掷出石块,使石块相对车的速度等于火车相对于地的速度. 则站在铁路路基旁的观察者所见石块的运动是:(1) ______________________________.(2)______________________________. 46.船在水上以相对于水的速度1v 航行,水流速度为2v ,一人相对于甲板以速度3v行走.如人相对于岸静止,则1v 、2v 和3v的关系是___________________.47. 当一列火车以10 m/s 的速率向东行驶时,若相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离竖直方向30°,则雨滴相对于地面的速率是__________;相对于列车的速率是__________.填空题答案:1.A ..........1分,t= 1.19 s.........2分,t= 0.67 s..........2分;2. 23 m/s........3分3. 8 m ,10 m......4分4.3,3,65. t A ωωsin 2-………..1分,()π+1221n (n = 0,1,… )............2分 6. ()[]t t A tωβωωωββsin 2cos e22 +--.........2分()ωπ/1221+n (n = 0, 1, 2,…)...........2分αuv7.5.00 m/s...........2分,1.67 m/s 2 ................2分 8. h 1v /(h 1-h 2);..................3分;9.t A t y ωωcos d /d ==v ,22cos y A t A -==ωωωv ;10. 3/30Ct +v ,400121v Ct t x ++; 11. 匀加速直线 ,Ⅰ;12.5m/s,17m/s ;13.10 m/s 2,-15 m/s 2;14.tS ∆,t ∆-02v ;15.0.1 m/s 2;16. 16 R t 2,4rad /s 217.5m/s,1.67m/s 2 ........4分;18. ρ =v 02cos 2θ /g ;19. -g /2,()g 3/v 322..........4分;20. 2.24 m/s 2,104o ……..4分;21. 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2)…….4分; 22.-c, (b -ct )2/R ……….4分;23.25.6m/s 2,0.8m/s 2...........4分; 24.变速曲线运动............1分,变速直线运动...........2分;25.ct 3/3............2分,2ct............1分,c 2t 4/R............1分;26. g sin θ,g cos θ............4分; 27. )5cos 5sin (50j t i t+- m/s………1分,0……….2分,圆…….1分; 28.4.19m ………..1分,s m /103.143-⨯………2分;与x 轴成60o 角…………1分; 29. x = (y -3)2 ;30.1s ………..3分,1.5m ………….2分;31. 4.8 m/s 2 , 3.15 rad …4分;32. 6.32 m/s ,8.25 m/s………...4分;33.小,大……..4分;34. g /cos 0220θv .........3分;35.6 m/s 2..........3分,450m/s 2 ............2分;36. 答案见图. △r, △r 图2分△v, △v 图2分r∆)t ∆)(t t ∆+Ov37.B, (A 2/R )+4πB………4分;38. -ωR sin ω t i+ωR cos ω t j ...........1分,0……..2分;39.()2022v v +=gx y ,22/21v gx y =….4分; 40.抛物线…….1分,202012v v v gx x y -=...2分;41. 21222/t t S t -….3分,⎥⎥⎦⎤⎢⎢⎣⎡--221221sin t t t 或 ()211/cos t t -………2分; 42.r ,r∆…….4分;43.αcos 222v v u u ++,⎥⎦⎤⎢⎣⎡++ααcos 2sin arcsin 22v v v u u ….4分; 44. αcos 2212221v v v v -+或αcos 2212221v v v v ++…………..3分;45. 平抛运动,抛向火车前进的方向;自由落体运动.…………4分; 46. 0321=++v v v……..3分;47.17.3m/s,20m/s ;三、计算题1. 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.2.一质点从静止开始作直线运动,开始时加速度为a 0,此后加速度随时间均匀增加,经过时间τ后,加速度为2a 0,经过时间2τ后,加速度为3 a 0 ,…求经过时间n τ后,该质点的速度和走过的距离.3.一球从高h 处落向水平面,经碰撞后又上升到h 1处,如果每次碰撞后与碰撞前速度之比为常数,问球在n 次碰撞后还能升多高?4.有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.5. 一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.6.一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.7.(1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i 、j表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2).由(1)导出速度 v 与加速度 a的矢量表示式;(3) 试证加速度指向圆心.8.由楼窗口以水平初速度0v射出一发子弹,取枪口为原点,沿0v方向为x 轴,竖直向下为y 轴,并取发射时刻t 为0,试求:(1) 子弹在任一时刻t 的位置坐标及轨迹方程; (2) 子弹在t 时刻的速度,切向加速度和法向加速度.9.质点M 在水平面内的运动轨迹如图所示,OA 段为直线,AB 、BC 段分别为不同半径的两个1/4圆周.设t =0时,M 在O 点,已知运动学方程为 S =30t +5t 2 (SI) 求t =2 s 时刻,质点M 的切向加速度和法向加速度.10. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.11.如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.12.质点在重力场中作斜上抛运动,初速度的大小为v 0,与水平方向成α角.求质点到达抛出点的同一高度时的切向加速度,法向加速度以及该时刻质点所在处轨迹的曲率半径(忽略空气阻力).已知法向加速度与轨迹曲率半径之间的关系为a n = v 2/ρ .13.一物体以初速度0v 、仰角α 由地面抛出,并落回到与抛出处同一水平面上.求地面上方该抛体运动轨道的最大曲率半径与最小曲率半径.14.河水自西向东流动,速度为10 km/h .一轮船在水中航行,船相对于河水的航向为北偏西30°,相对于河水的航速为20 km/h. 此时风向为正西,风速为10 km/h .试求在船上观察到的烟囱冒出的烟缕的飘向.(设烟离开烟囱后很快就获得与风相同的速度)15.有一宽为l 的大江,江水由北向南流去.设江中心流速为u 0,靠两岸的流速为零.江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比.今有相对于水的速度为0v的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点.16.一男孩乘坐一铁路平板车,在平直铁路上匀加速行驶,其加速度为a ,他向车前进的斜上方抛出一球,设抛球过程对车的加速度a 的影响可忽略,如果他不必移动在车中的位置就能接住球,则抛出的方向与竖直方向的夹角θ 应为多大?17.一质点以相对于斜面的速度gy 2=v 从其顶端沿斜面下滑,其中y 为下滑的高度.斜面倾角为α,它在地面上以水平速度u 向质点滑下的前方运动,求质点下滑高度为h (h 小于斜面高度)时,对地速度的大小和方向.18.一飞机相对于空气以恒定速率v 沿正方形轨道飞行,在无风天气其运动周期为T .若有恒定小风沿平行于正方形的一对边吹来,风速为)1(<<=k k V v .求飞机仍沿原正方形(对地)轨道飞行时周期要增加多少.19.一飞机驾驶员想往正北方向航行,而风以60 km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h ,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.20.当一列火车以36 km/h 的速率水平向东行驶时,相对于地面匀速竖直下落的雨滴,在列车的窗子上形成的雨迹与竖直方向成30°角.(1) 雨滴相对于地面的水平分速有多大?相对于列车的水平分速有多大? (2) 雨滴相对于地面的速率如何?相对于列车的速率如何?21.当火车静止时,乘客发现雨滴下落方向偏向车头,偏角为30°,当火车以35 m/s 的速率沿水平直路行驶时,发现雨滴下落方向偏向车尾,偏角为45°,假设雨滴相对于地的速度保持不变,试计算雨滴相对地的速度大小.22.一小船相对于河水以速率v 划行.当它在流速为u 的河水中逆流而上之时,有一木桨落入水中顺流而下,船上人两秒钟后发觉,即返回追赶,问几秒钟后可追上此桨?23.装在小车上的弹簧发射器射出一小球,根据小球在地上水平射程和射高的测量数据,得知小球射出时相对地面的速度为10 m/s .小车的反冲速度为2 m/s .求小球射出时相对于小车的速率.已知小车位于水平面上,弹簧发射器仰角为 30°.24.一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上? 附:计算题答案如下:1.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 2分 ()x x xd 62d 02⎰⎰+=v v v2分()2 213xx +=v 1分2. 解:设质点的加速度为 a = a 0+α t∵ t = τ 时, a =2 a 0 ∴ α = a 0 /τ即 a = a 0+ a 0 t /τ , 1分由 a = d v /d t , 得 d v = a d tt t a atd )/(d 000τ⎰⎰+=vv∴ 2002t a t a τ+=v 1分 .由 v = d s /d t , d s = v d tt t a t a t s tt s d )2(d d 2000τ+==⎰⎰⎰v 302062t a t a s τ+=1分 t = n τ 时,质点的速度 ττ0)2(21a n n n +=v 1分 质点走过的距离 202)3(61ττa n n s n +=1分3. 解: g h /212v = ;;/21;/21222211 v v g h g h ==g h n n /212v = 1分由题意,各次碰撞后、与碰撞前速度之比均为k ,有v v v v v v 2122212222212/;;/;/-===n n k k k 1分将这些方程连乘得出:nn n n n hkh h h k 2222//=== , v v 1分又v v h h k //12212== 1分故()111//-==n n nn h h h h h h 1分4. 解:(1)5.0/-==∆∆t x v m/s 1分(2) v = d x /d t = 9t - 6t 2 1分 v (2) =-6 m/s 1分 (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2分5. 解: yt y y t a d d d d d d d d v v v v ===又 -=a ky ∴ -k =y v d v / d y 2分⎰⎰+=-=-C ky y ky 222121 , d d v v v 1分已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v 2分6. 解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI) 2分7. 解:(1)j t r i t r j y i x rsin cos ωω+=+= 2分(2) j t r i t r t rcos sin d d ωωωω+-==v 1分j t r i t r ta sin cos d d 22ωωωω--==v 1分(3) ()r j t r i t r asin cos 22ωωωω-=+-=这说明 a 与 r方向相反,即a 指向圆心 1分8.解:(1) 2021gt y t x == , v202/21v g x y = 2分 (2) v x = v 0,v y = g t ,速度大小为: 222022t g y x +=+=v v v v方向为:与x 轴夹角 θ = tg -1( gt /v 0) 1分22202//d d t g t g t a t +==v v 与v 同向. 1分 ()222002/122/t g g a g a tn +=-=v v 方向与t a 垂直. 1分 9. 解:首先求出t =2 s 时质点在轨迹上的位置.S =80 (m) (在大圆上) 1分 各瞬时质点的速率: t t S 1030d /d +==v 1分 故t =2 s 时, v =50 m/s 因此,各瞬时质点的切向加速度和法向加速度:v 10d d d d 22===tS t a t m/s 2ρ2v =n a 2分故t =2 s 时, a t =10 m/s 2 , a n =83.3 m/s 2 1分10. 解: ct b t S +==d /d v 1分c t a t ==d /d v 1分()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -=1分 11. 解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分2s /168/m Rt dt d a t ===v 1分 22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分12.解:运动过程中,质点的总加速度a = g . 1分 由于无阻力作用,所以回落到抛出点高度时 质点的速度大小0v v =,其方向与水平线夹角也是α.1分 故切向加速度 a g a t s i n = 1分法向加速度 a g a n c o s = 1分 因 αρρcos 2022g a a n n v v v ==∴=1分 13.解:以θ 表示物体在运动轨道上任意点P 处其速度与水平方向的夹角, 则有αθcos cos 0v v =, θα22202cos cos v v =又因θcos g a n =故该点 θαρ3222cos cos g a n v v == 3分 因为αθ≤, 所以地面上方的轨道各点均有αθcos cos ≥,上式的分母在αθ=处最小,在0=θ处最大,故()αρcos /20max g v = 1分 g /cos 220min αρv = 1分 14.解: 记水、风、船和地球分别为w , f ,s 和e ,则水-地、风-船、风-地和船-地间的相对速度分别为we V 、fs V 、fe V和se V. 矢量图1分由已知条件we V =10 km/h ,正东方向. fe V =10 km/h ,正西方向. sw V =20 km/h ,北偏西030方向. 根据速度合成法则: se V =sw V +weV由图可得: se V =310 km/h ,方向正北. 2分同理 fs V =fe V -se V , 由于fe V =-we V∴ fs V =sw V , fs V的方向为南偏西30°在船上观察烟缕的飘向即fs V的方向,它为南偏西30°. 2分 15.解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为-y 方向,由题意可得 u x = 0u y = a (x -l /2)2+b 1分令 x = 0, x = l 处 u y = 0, x = l /2处 u y =-u 0代入上式定出a 、b,而得 ()x x l lu u y --=204 2分 船相对于岸的速度v(v x ,v y )明显可知是 2/0v v =x y y u +=)2/(0v v , 将上二式的第一式进行积分,有fewe北东t x 20v =还有,x y t x x y t y y d d 2d d d d d d 0v v ====()x x l l u --20042v 2分 即 ()x x l l u x y--=020241d d v 1分因此,积分之后可求得如下的轨迹(航线)方程:'32020032422x l u x l u x y v v +-= 2分 到达东岸的地点(x ',y ' )为⎪⎪⎭⎫⎝⎛-=='='=003231v , u l y y l x l x 2分 16.解:设抛出时刻车的速度为0v,球的相对于车的速度为/0v ,与竖直方向成θ角.抛射过程中,在地面参照系中,车的位移 20121at t x +=∆v ① 1分 球的位移 ()t x θs i n /002v v +=∆ ② 1分 ()2/0221c o s gt t y -=∆θv ③ 1分小孩接住球的条件 0221=∆∆=∆y x x , 1分即()t at /θsin 2102v = , ()t gt θcos 21/02v =两式相比得 tg /θ=g a ,∴ ()g a /tg 1-=θ 1分17.解:选取如图所示的坐标系,以V表示质点的对地速度,其x 、y 方向投影为:u gy u V x x +=+=αcos 2v , 1分 αsin 2gy V y y ==v 1分 当y =h 时,V的大小为:()2cos 222222αgh u gh u y x ++=+=V V V 2分V的方向与x 轴夹角为γ,ugh gh xy +==--ααγcos 2sin 2tg tg11V V 1分18.解:设正方形边长为L ,则无风时 4/T L v = 1分 在有风天气为使飞机仍在正方形轨道上飞行,飞机在每条边上的航行方向(相对于空气的速度方向)和飞行时间均须作相应调整,如图(图中风速从左向右).令 L =(v +V ) t 1=(v -V ) t 2=v 't 3 1分 γ vV -v'其中 v '2+V 2 =v 2 1分 则新的运动周期为2232122Vv V v V v -+-++=++='LL L t t t T 1分()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++++-≈222211211k k k k k L v 2分⎪⎪⎭⎫ ⎝⎛+=+=4313422k T Lk L v v 1分 ∴ 4/32T k T T T =-'=∆ 1分19.解:设下标A 指飞机,F 指空气,E 指地面,由题可知: 图1分 v FE =60 km/h 正西方向v AF =180 km/h 方向未知 v AE 大小未知, 正北方向 由相对速度关系有:1分 FE AF AE v v v += AE v 、 AF v 、EE v构成直角三角形,可得()()k m /h 17022 v v v =-=FE AF AE 2分() 4.19/tg 1==-AE FE v v θ (飞机应取向北偏东19.4︒的航向). 1分20.解:(1) 题给雨滴相对于地面竖直下落,故相对于地面的水平分速为零.雨滴相对于列车的水平分速与列车速度等值反向为10 m/s ,正西方向. 1分(2) 设下标W 指雨滴,t 指列车,E 指地面,则有WE v = t W v + vtE , v tE =10 m/sv WE 竖直向下,v W t 偏离竖直方向30°,由图求得雨滴相对于地面的速率为 v WE = v tE ctg30o =17.3 m/s 2分 雨滴相对于列车的速率 2030sin ==tEt W v v m/s 2分 21.解:选地为静系,火车为动系. 已知:雨滴对地速度a v的方向偏前30°,火车行驶时,雨滴对火车的相对速度r v偏后45°,火车速度v t =35 m/s ,方向水平.由图可知: t r a v v v =+oo 45sin sin30 2分o o 45cos 30cos r a v v = 2分由此二式解出: 6.2545cos 30cos 45sin 30sin =+=ta v v m/s 1分西北θFEvvAF v v AE vvWtv WEv tEv 30°t22.解:取河水为参照系.相对河水,木桨落入水中是不动的.不论顺水或者逆水,船对水的速率均是v .2秒钟后发现失桨,木桨与船之间距离为S =2v .返回追赶时船速仍为v . 分析3分因此 s 22===vv v S t 2分23.解:以地为静系,小车为动系.已知小球对地速度=a v 10 m/s ,小车反冲速度=t v 2m/s ,方向水平向左. 令小球相对小车的速度为r v,则有r t a v v v+= 1分30cos 2222t r r t a v v v v v -+= 2分 ()7.1130cos 30cos 222=-++=t a t t r v v vv vm/s 2分24.解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 1分 08.420==gt v s 1分r。
力学部分习题
力学部分习题判断题1.、质量、时间、速度和力都是矢量。
( )2. 平动的物体可以被视为质点。
( )3. 力是改变速度的原因。
( )4. 动量守恒和能量守恒的条件相同。
( )5. 碰撞过程动能一定守恒。
( )6. 势能是属于系统的,并且势能的值是相对的。
( )7. 物体受到的冲量越大,动量就越大。
( )8. 运动物体的加速度0=a时,那么该物体一定做匀速直线运动。
( ) 9. 做匀速直线运动的物体动量一定守恒,而角动量不守恒。
( ) 10. 质点系的内力对系统总动量的变化没有影响但对系统总动能的变化可以有影响。
( )选择题:1. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变.2. 如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体(A) 动能不变,动量改变. (B) 动量不变,动能改变.(C) 角动量不变,动量不变. (D) 角动量改变,动量改变. (E) 角动量不变,动能、动量都改变.3.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0.4.如图所示,桌面上有一滑块m ,有一细绳绕过一定滑轮系于小狗的尾巴上,小狗以匀速率0v 前进,设绳不伸长、绳系于狗尾巴处与定滑轮间的高度H 不变,则滑块m 的运动是(A) 匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E )匀速直线运动.m5.一质量为m 的质点,在半径为R 的半球形固定容器中,由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力为N .则质点自A 滑到B 的过程中,摩擦力对其作的功为(A) )3(21mg N R -. (B) )3(21N mg R -. (C) )(21mg N R -. (D))2(21mg N R -. 6.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)02ωmR J J +. (B) ()02ωRm J J+. (C) 02ωmR J . (D) 0ω. 7.两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A . (C) J A =J B . (D) J A 、J B 哪个大,不能确定. 8.一力学系统由两个质点组成,它们之间只有引力作用。
力学习题-第1章质点运动学(含答案)
第一章质点运动学单元测验题一、选择题1.一质点沿x 轴运动,加速度与位置的关系为a (x )=2x +4x 2(SI 单位).已知质点在x =0处的速度为2m/s ,则质点在x =3m 处的速度为A.42m/s; B.26m/s ; C.94m/s ; D.34m/s .答案:C 解:根据题意:224dv a x x dt ==+,两边同乘dx 有:2(24)dv dx x x dx dt ⋅=+⋅由dx v dt=,上式化为:2(24)v dv x x dx ⋅=+对上式两边积分得到:223423v x x c =++由x =0,v =2m/s ,确定c =2.则当x =3m 时,解得:v =94m/s.2.一质点沿x 轴做直线运动,其速度v 随时间t 的变化关系如图所示.则下列哪个图可表示质点加速度a 随时间t 变化关系?2-•/s m a 2-•/s m a AB C答案:B 解:依据质点在一维运动时,速度-时间曲线的斜率对应加速度可知B 为加速度曲线.3.质点的运动学方程为33(21)t t =++r i j (SI 单位).则t =1s 时质点的速度为(SI单位)A.ji 6+3; B.j i 3+3; C.j i 6+6; D.j i 3+6.答案:A解:根据题意:33(21)t t =++r i j ,微分得:236d t dt ==+r v i j ,()136=+v i j 4.质点运动学方程为:kbt j t a i t a r +sin +cos =ωω,其中a 、b 、ω均为正的常数.问质点作什么运动?A.平面圆周运动;B.平面椭圆运动;C.螺旋运动;D.三维空间的直线运动.答案:C解:把质点的运动分解到三个方向上:cos sin x a t y a t z bt ωω===,,整理可知:222x y a z bt+==,则质点是以z 5.如图所示,在桌面的一边,—小球作斜抛运动,初速度v 0=4.7m/s.已知桌面宽a =2.0m.欲使小球能从桌面的另—边切过,小球的抛射角θ为A.30°;B.38°;C.50°;D.58°.答案:D 解:根据题意,小球沿x 和y 方向的运动方程为:t v x ⋅=θcos 0,201sin 2y v t gt θ=⋅-由x =2.0m 时,y =0,解得:o 58θ=.6.如图,有一半径为R 的定滑轮,沿轮周绕着一根绳子,悬在绳子一端的物体按s =(1/2)bt 2的规律向下运动.若绳子与轮周间没有相对滑动,轮周上一点A 在任一时刻t 的总加速度大为A.2t b a ;B.222/=R t b a ;C.b a =;D.R t b b a /+=22.答案:A 解:已知221bt s =,微分可得速度大小:t b dtds v ⋅==切向加速度大小:b dt dv a ==τ;法向加速度大小:Rt b R v a n 222==总加速度大小:a ==.7.当蒸汽船以15km/h 的速度向正北方向航行时,船上的人观察到船上的烟囱里冒出的烟飘向正东方向.过一会儿,船以24km/h 的速度向正东方向航行,船上的人则观察到烟飘向正西北方向.若在这两次航行期间风速不变,则风速的大小为A.9km/h; B.17.5km/h ; C.26.9km/h ; D.41km/h.答案:B解:地面为静系,船为动系,风为研究对象,则风对地的速度为绝对速度:风v v =船对地的速度为牵连速度:船牵连v v =风对船的速度为相对速度:风对船牵连v v =由绝对速度、牵连速度和相对速度的关系可得v v v =+船风对船,其矢量几何关系如图所示由此几何关系可得:1cos v v θ=船风,o 2145sin v v ctg v θ-=风船船联立解得:o 31θ=,5.17=v km /h .8.一个自由落体在它运动的最后一秒内所通过的路程等于全程的1/3.则物体通过全程所需的时间为A.3s ;B.6-3s ;C.6+3s ;D.6s答案:C解:设自由落体的全程下落时间和下落的高度分别为t 、S t 。
质点运动学练习题
班级 学号 姓名 第1-1 质点运动描述(一) 一.选择与填空题1. 一运动质点在某瞬时位于位矢(,)r x y 的端点处,对其速度的大小有四点意见,即:(1)d r dt ;(2)d r dt ;(3)d sdt ;(4⎝ ( ) (A )只有(1)(2)正确; (B )只有(2)正确;(C )只有(2)(3)正确; (D )只有(3)(4)正确。
2.某质点作直线运动的运动学方程为3356x t t =-+(SI ),则该质点作( ) (A )匀加速直线运动,加速度沿x 轴正方向; (B )匀加速直线运动,加速度沿x 轴负方向; (C )变加速直线运动,加速度沿x 轴正方向; (D )变加速直线运动,加速度沿x 轴负方向。
3.一质点在平面上运动,已知质点位置矢量的表达式为22r at i bt j =+(其中a 、b 为常量), 则该质点作 ( )(A ) 匀速直线运动;(B )变速直线运动;(C )抛物线运动;(D )一般曲线运动。
4.一质点沿x 轴运动的规律是542+-=t t x (SI 制)。
则前三秒内它的 ( ) (A )位移和路程都是3m ; (B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。
5.质点的运动方程为2210301520x t t y t t ⎧=-+⎨=-⎩,(式中x ,y 的单位为m ,t 的单位为s ),则该质点的初速度(t=0)0υ= ;初加速度0a = 。
6.路灯距地面高度为H,行人身高为h,若人以匀速V背向路灯行走,人头顶影子的移动速度v为多少?7.质点在XOY平面内的运动方程为x=3t,y=2t2+3。
求:(1)t=2s时质点的位矢、速度和加速度;(2)从t=1s到t=2s这段时间内,质点位移的大小和方向?质点的平均速度?(3)写出轨道方程。
班级 学号 姓名 第1-2 质点运动描述(二) 一.选择与填空题1.一小球沿斜面向上运动,其运动方程为254s t t =+-(SI ),则小球运动到最高点的时刻是 ( )(A )4t s =; (B )2t s =;(C )5t s =;(D )8t s =。
第一章-质点运动学-习题
质点运动学1. 某质点作直线运动的运动学方程为x=3t -5t3+ 6,则该质点作( )(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向.2. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作 ( )(A) 匀速直线运动. (B ) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动.3. 一运动质点在某瞬时位于矢径()y x r ,的端点处, 其速度大小为( )ﻩ(A) t r d d (B) t r d dﻩ(C)trd d (D)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 4. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为( )(A) 2πR /T , 2πR /T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR/T , 0. 5. 一个质点在做匀速率圆周运动时( )(A) 切向加速度改变,法向加速度也改变. (B) 切向加速度不变,法向加速度改变. (C) 切向加速度不变,法向加速度也不变. (D ) 切向加速度改变,法向加速度不变. 6. 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来? ( )(A ) 北偏东30°. (B ) 南偏东30°. (C) 北偏西30°. (D) 西偏南30°.7. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是( )(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D ) 02121v v +-=kt 8.一质点从静止出发,沿半径为1m 的圆周运动,角位移θ=3+92t ,当切向加速度与合加速度的夹角为︒45时,角位移θ=( )rad :(A ) 9 (B) 12 (C) 18 (D) 3.59.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是( )(A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动.10.一质点沿x 方向运动,其加速度随时间的变化关系为a = 3+2 t (SI ) ,如果初始时质点的速度v 0为5m/s,则当t 为3s 时,质点的速度 v = 。
1第一章 质点运动学单元自测答案
第一章 质点运动学单元自测答案一、选择题1.(C )解:由于给出t -v 曲线图,故只需求曲线所围面积,上面部分为正,下面为负,有 11(1 2.5)2(12)12m 22x =⨯+⨯-⨯+⨯= 2.(D )解:3723+-=t t x ,t dt x d a 4222-==,变加速直线运动,加速度方向沿x 轴负方向。
3.(C ) 解:由2v v d A t dt=-,有0v 2v 01v v t d Atdt =-⎰⎰,20111v v 2At -+=-,得20111v 2v At =+ 4.(D )解:单摆:a 的大小方向均变化;匀速率圆周运动:a 大小不变,方向变;行星的椭圆轨道运动:a 大小、方向均变;抛体运动:a g =大小方向均不变。
圆锥摆运动:a 方向变。
5.(B )解:由n a 改变速度方向,a τ改变速度大小,可知其余四个选项均不对。
6.(B )解:由相对运动速度变换v v v BA B A =+地地,得v v v 33BA B A i j =-=-+地地二、填空题1.39 m/s 解:由v 42d a t dt==+,得0v v 0v (42)t d t dt =+⎰⎰,2400v v 4|t t -=+,得v 71616-=+ 2.A ;2s t =;s t = 解:v 48A A dx t dt ==+,2v 83B B dx t t dt==+,因此 0=t 时,v v A B >;2s t =时,B A x x =;s t =时,v v A B =3.2)4(32-=y x 解:r xi yj =+,即26x t =,34y t =+,联立方程消去t 即可4.2g -;解:据题意,有cos602g a g τ=-⋅=-;2v sin 60n a g ρ==⋅,即22v v 3n a gρ==5s ;2 m解:此时n a a =τ,由v 2d a dtτ==,得v 2t =,22v 4n t a R R ==,即242t R =得s t =由v 2ds t dt==,得22m s t = 6.280m /s ;22m /s 解:由t dt d 10==θω,10d dtωα==,得2280m /s n a R ω=⋅=,22m /s a R τα== 三、计算题1.解:(1)21v x x t-=∆ 2311(53)|532m t x t t ==-=-=2322(53)|4m t x t t ==-=-1s t ∆=,42v 6m/s 1--==- (2)2v 109dx t t dt==-,当2s t =时,v 16m /s =-,负号表示与x 反向。
大学物理-质点运动学(答案)
一.选择题:[B]1、一质点沿x轴作直线运动,其v-t曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5 s时,质点在x轴上的位置为(A) 5m.(B) 2m.(C) 0.(D) -2 m.(E) -5 m.(1 2.5)22(21)122()x m=+⨯÷-+⨯÷=提示:[C]2、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v收绳,绳不伸长、湖水静止,则小船的运动是(A) 匀加速运动.(B) 匀减速运动.(C) 变加速运动.(D) 变减速运动.(E) 匀速直线运动.提示:如图建坐标系,设船离岸边x米,222l h x=+22dx h xv i v idt x+==-vdv dv dxa idt dx==⋅=-[D]3、一运动质点在某瞬时位于矢径()yxr,的端点处, 其速度大小为(A)trdd(B)trdd(C)提示:,dx dyv i j vdt⎛⎫=+∴=⎪-12[ B ]4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0.0rv ∆== 2s R =π [ B ]5、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i +2j . (B) -2i +2j . (C) -2i -2j . (D) 2i -2j.提示:2(2)B A B A v v v j i →→→=+=+-地地[ D ]6、某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30o方向吹来,人感到风从哪个方向吹来?(A)北偏东30︒ (B)北偏西60︒ (C) 北偏东60︒ (D) 北偏西30︒提示:根据v 风对人=v 风对地+v 地对人,三者的关系如图所示:这是个等边三角形,∴人感到风从北偏西300方向吹来。
大学物理题库-第1章-质点运动学(含答案解析)
大学物理题库 第一章 质点运动学一、选择题:1、在平面上运动的质点,如果其运动方程为j bt i at r22+= (其中b a ,为常数),则该质点作[ ](A ) 匀速直线运动 (B ) 变速直线运动 (C ) 抛物线运动 (D ) 一般曲线运动2、质点以速度124-⋅+=s m t v 作直线运动,沿质点运动方向作ox 轴,并已知s t 3=时,质点位于m x 9=处,则该质点的运动方程为[ ](A) t x 2= (B) 2214t t x += (C) 123143-+=t t x (D) 123143++=t t x3、某雷达刚开机时发现一敌机的位置在j i96+处,经过3秒钟后,该敌机的位置在处,若i 、j分别表示直角坐标系中y x ,的单位矢量,则敌机的平均速度为[ ](A )j i 36+ (B )j i 36-- (C )j i -2 (D )j i +-24、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]5、一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠(D )v v v,v ≠=[ ] 6、一运动质点的位置矢量为)y ,x (r,其速度大小为[ ](A)dt dr (B )dt r d (C )dt r d (D )dtr d (E )22)()(dt dydt dx +7、某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数,当0=t 时,初速度为0v ,则速度v 与时间t 的函数关系是:[ ](A )0221v kt v += (B ) 0221v kt v +-=(C ) 021211v kt v += (D ) 021211v kt v +-=8、一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .ji 612+(C) 等于2 m/s . (D) 不能确定. [ ] 9、质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的.(D) 只有(3)是对的. [ ] 10、一质点在运动过程中,0=dtr d ,而=dtdv常数,这种运动属于[ ] (A )初速为零的匀变速直线运动; (B )速度为零而加速度不为零的运动; (C )加速度不变的圆周运动; (D )匀变速率圆周运动。
大学物理质点运动单元测试(一)
大学物理单元测试(一)质点运动学班级 学号 姓名一、填空题(每小题 6 分,共 30分 )1、已知某质点的运动方程为x =t ,y =2t 2,式中x 以m 计,以t 计s 。
则1s 末质点的速度为 ,加速度为 。
2、某质点从静止出发沿半径为R =1m 的圆周运动,其角加速度随时间的变化规律是β=2t rad.s -2, 则质点的角速度大小为 ,切向加速度大小为 。
3、某质点做直线运动,其运动方程为x=20t-2t 2,其中x 以m 计,t 以s 计,则质点在 时刻运动发生反向,从开始运动到此时的位移为 。
4、质点的运动方程为x =5cos πt 、y =5sin πt (SI 单位),则质点任意时刻的切向加速 度 ,任意时刻的总加速度的大小 。
5、飞轮的半径为1m ,当其转动时,轮边缘上一点通过的路程可表示为s =2t 2,式中的t 为时间。
则当该点的线速度大小为v =2m/s 时,其切线加速度a t = ,质点加速度与速 度方向间的夹角θ= 。
二、选择题(每小题 6分,共 30分)1、某质点的速度为j i t v 2+=,已知开始时它通过原点,则该质点的运动方程为( )j t i t A 2.2+;j t i t B 221.2+;j i t C 2.+;j i t D 2.2+; 2、下列说法正确的是( )A. 质点作圆周运动的加速度总是指向圆心;B. 匀速圆周运动的加速度为恒量;C.只有法向加速度的运动一定是圆周运动;D. 只有切向加速度的运动一定是直线运动。
3、有一质点在平面上运动,运动方程为j t i t r 2243+=,则该质点作( )A. 曲线运动;B. 匀速直线运动;C. 匀变速直线运动;D. 变加速直线运动。
4、质点作曲线运动,下列说法中正确的是( )A. 由于速度沿切线方向,法向分速度为零,因此法向加速度必为零;B. 除直线运动部分外,法向加速度必不为零;C. 若物体作匀速率运动,其加速度必为零;D. 若加速度恒定,则质点作匀变速率运动。
2015年质点运动学练习试题
练习1 质点运动学(一)班级 学号 姓名 成绩 .1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ]2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为υ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠= [ ]3.一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为___________,在t 由0到4s 的时间间隔内质点走过的路程为_______________.4.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 秒瞬时 速度为零;在第 秒至第 秒间速度与加速度同方向.5. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度;(3) 第2秒内的路程.6. 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够使两者一致?练习2 质点运动学(二)班级 学号 姓名 成绩 .1. 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a t 表示切向加速度,下列表达式中,(1) a t = d d /v , (2) v =t r d d /,(3) v =t d d /S , (4) t a t =d d /v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]2. 一物体作如图所示的斜抛运动,测得在轨道A 点处速度υ 的大小为υ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度a t =__________________,轨道的曲率半径 ρ=__________________. 3.一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规律是 β=12t 2-6t (SI), 则质点的角速ω =__________________;切向加速度 a t =_________________.4.当一列火车以10 m/s 的速率向东行驶时,若相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离竖直方向30°,则雨滴相对于地面的速率是________________;相对于列车的速率是________________.5. 一质点沿x 轴运动,其加速度为a = 4t (SI),已知t =0时,质点位于x 0=10 m 处,初速度υ0=0.试求其位置和时间的关系式.6. 如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.练习3 质点动力学(一)班级 学号 姓名 成绩 .1.质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为(A) a A =0 , a B =0. (B) a A >0 , a B <0.(C) a A <0 , a B >0. (D) a A <0 , a B =0.[ ]2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定. [ ] 3. 分别画出下面二种情况下,物体A 的受力图.(1) 物体A 放在木板B 上,被一起抛出作斜上抛运动,A 始终位于B的上面,不计空气阻力; (2) 物体A 的形状是一楔形棱柱体,横截面为直角三角形,放在桌面C 上.把物体B 轻轻地放在A 的斜面上,设A 、B 间和A 与桌面C 间的摩擦系数皆不为零,A 、B 系统静止.4.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比 T : T ′=____________. 5. 如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m=m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。
质点运动学 单元测验题目
一、单选题 (共 10+1 题,80 分)
1、若质点的运动方程为
,则下列表示正确的是:(
)
A、 B、C、Fra bibliotekD、2、一质点在 O-xy 平面内作曲线运动,其运动方程为
的时间内,其速度矢量和位置矢量垂直的时刻为:( )
A、 1s B、 2s C、 1.41s D、 1.73s
(SI) 。在
A、 R/2 B、 R
C、 πR/2 D、 πR
9、一质点从静止开始沿半径为 R 的圆周做匀加速圆周运动,角加速度的大小
为 α。当切向加速度和法向加速度的大小相等时,质点运动经历的时间是
(
)。
A、
B、 C、 D、
10、以初速度
将一物体斜向上抛,抛射角为 θ,忽略空气阻力,则物体
飞行到轨迹的最高点时,该处轨迹的曲率半径为
(
)。
A、
B、
C、
D、
11、某人骑摩托车以 15m/s 的速度向东行驶,觉得风以 20m/s 的速度从正南吹
来,则实际的风速和风向为(
)。
A、 25m/s,西南风 B、 25m/s,东南风 C、 25m/s,西北风 D、 25m/s,东北风
二、填空题 (共 1 题,5 分)
1、在同一水平面上,在不考虑空气阻力时,一质点以相同的初始速率和不同的方向作斜
3、一质点在 O-xy 平面内运动,其运动方程为
,
,式中 、
、 均为常数,当质点的运动方向与 轴的夹角为 45°时,质点的速率为
(
)
A、 B、 C、
D、
4、一质点在 O-xy 平面内运动,其运动方程为
,
,式中 、 均为常数,当 达到最大值的时刻,该质点的
第1章质点运动学(部分答案)
一、选择题:1. 某质点沿半径为R 的圆周运动一周,它的位移和路程分别为(B) A. πR ,0; B. 0,2πR ;C. 0,0;D. 2πR ,2πR 。
2. 质点作直线运动,运动方程为242x t t =--(SI 制),则质点在最初2秒内的位移为(C)A. -6 m ;B. 4 m ;C. -4 m ;D. 6 m 。
3.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有( D ) A. v v =,v v =;B. v v ≠,v v =;C. v v ≠,v v ≠;D. v v =,v v ≠。
4.质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a t 表示切向加速度,下列表达式中( D ) (1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v。
A. 只有(1)、(4)是对的; B. 只有(2)、(4)是对的; C. 只有(2)是对的;D.只有(3)是对的。
5. 一运动质点在某瞬时位于矢径()y x r ,的端点处,其速度大小为( D )A.d d rt ; B.d d r t ;C.d d r t;6. 一质点作直线运动,某时刻的瞬时速度v =2m/s ,瞬时加速度a =-2m/s 2,则一秒钟后质点的速度(D)A.等于零;B.等于-2 m/s ;C.等于2 m/s ;D.不能确定。
7. 沿直线运动的物体,其速度大小与时间成反比,则其加速度的大小与速度大小有如下关系( B )A.与速度大小成正比;B.与速度大小的平方成正比;C.与速度大小成反比;D.与速度大小的平方成反比。
8. 下列说法中,正确的是( D )A. 物体走过的路程越长,它的位移也越大;B. 质点在时刻t 和t +Δt 的速度分别为1v 和2v ,则在时间Δt 内的平均速度为()122v v +;C. 如物体的加速度为常量,则它一定做匀变速直线运动;D. 在质点的曲线运动中,加速度的方向与速度的方向总是不一致的。
1章质点运动学(例题练习题)
)。
A. 2 i +2 j
B. 2 i +2 j
C. -2 i -2 j
D. 2 i -2 j
【习题精练】
1-1 一质点在平面上运动,已知质点位置矢量的表示式为 r at 2i bt 2 j (其中 a、b
为常量),则该质点作( )。
A. 匀速直线运动
B. 变速直线运动
C. 抛物线运动
D. 一般曲线运动
当总加速度与半径成角 45o 时,所经过的时间 t ( )。
A. 1.7 s
B. 0.82 s
C. 1.0 s
D. 1.2 s
E. 1.3 s
例 1-7 一质点 沿半径为 R=2m 的圆轨 道转动,转 动角速度 与时间 t 函数关 系为
kt 2 (k 是常数)。已知 t =2s 时,质点的速度为 32m/s,试求 t=1s 时,质点的速度和加
1-6 质点作半径为 R 的变速圆周运动时的加速度大小为 (v 表示任一时刻质点的速率)
( )。
dv
A.
dt
v2
B.
R
C. d v v2 dt R
D.
dv dt
2
v2 R
2
1/ 2
1-7 一质点沿半径为 R=0.58m 的圆周运动,在t=0 时经过 P 点,此后它的速率按 v 1 t
的函数关系式。
【解】 a dv dv dy v dv ky dt dy dt dy
vdv kydy
根据已知条件,
v vdv
y
kydy
v0
y0
故 v2 v02 k ( y02 y2 )
例 1-5 对于沿曲线运动的物体,以下几种说法中哪一种是正确的( )。
第一章 质点运动学自测题
第一章 质点运动学自测题一、选择题1.关于参照物的说法, 错误的是( ) (A)研究任何物体的运动, 都要选取参照物; (B)选取的参照物应是绝对静止的;(C)选取合适的参照物, 可使对物体运动的描述变得简单;(D)对物体某段时间内的运动, 选取不同的参照物, 运动情况不同. 2.下面哪些物体不可当作质点( )(A)把一列从北京开往上海的火车作为整体来研究时的火车; (B)对运行中的飞轮各部分进行研究时的飞轮; (C)沿斜面下滑的滑块;(D)研究地球绕太阳公转时的地球.3.在离地面3.0 m 高处竖直向上抛出一物, 上升到离抛出点5.0 m 后, 又落回地面, 在这一过程中, 物体的位移和路程分别为: (取竖直向上为正) ( ) (A) +3.0 m , 13 m ; (B) +3.0 m , 8 m ; (C) -3.0 m , 8 m ; (D) -3.0 m , 13 m.4.一运动质点在xOy 平面上运动,某瞬时运动到位置r处,其速度为( )(A) dt r d /; (B) dt r d / ; (C) dt dr /; (D) dt r d / .5.一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( )(A) dt dr ; (B) dt r d;(C) dt r d; (D)22)()(dtdy dt dx + .6.一质点做直线运动,该质点的运动方程为6533+-=t t x (SI),则该质点做: ( )(A)匀加速直线运动,加速度沿x 轴正方向; (B)匀加速直线运动,加速度沿x 轴负方向; (C)变加速直线运动,加速度沿x 轴负方向; (D)变加速直线运动,加速度沿x 轴正方向.7.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间的关系必定有( )(A) v v = ,v v = ; (B) v v ≠, v v = ;(C) v v ≠ , v v ≠ ; (D) v v =, v v ≠ .8.质点沿半径为R 的圆周作匀速率运动,每t 时间转一周,在2t 时间间隔中,其平均速度大小与平均速率大小分别为( )(A) t R π2,t R π2; (B) 0,t R π2; (C) 0, 0; (D) R π2,0. 9.汽车先以20 m/s 的速度前进6000 m , 随后又以10 m/s 的速度后退2000 m , 这辆汽车在整个过程中的平均速度是( )(A)16 m/s ; (B)8m/s ; (C) 10 m/s ; (D) 5 m/s .10.以下几种运动形式中,加速度a保持不变的运动是( ) (A)单摆的运动; (B)匀速率圆周运动; (C)行星的椭圆轨道运动; (D)抛体运动. 11.下面四种说法,哪一种是正确的?( ) (A)物体的加速度越大,速度就越大;(B)作直线运动的物体,加速度越来越小,速度也越来越小; (C)切向加速度为正时,质点运动加快;(D)法向加速度越大,质点运动的法向速度变化越快.12.已知质点的运动方程为⎩⎨⎧==223t y t x ,则质点在第2s 内的位移=∆r( ) (A) j i 63+; (B) j i 86+; (C) j i 82+; (D) j i23+.13.一质点在平面上运动,已知质点位置矢量的表达式为j bt i at r22+=(其中a 、b 为常量),则该质点作( )(A)匀速直线运动; (B) 变速直线运动; (C)抛物线运动; (D)一般曲线运动14.一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度( )(A)等于零; (B)等于2 m/s ; (C)等于2 m/s ; (D)不能确定.15.以下说法中,正确的是( )(A)作曲线运动的物体,必有切向加速度; (B)作曲线运动的物体,必有法向加速度; (C)具有加速度的物体,其速率必随时间改变; (D)物体作匀速率运动,其总加速度必为零.16.质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( )(A)(B) (C) (D)17.一个质点在做匀速率圆周运动时( ) (A)切向加速度改变,法向加速度也改变; (B)切向加速度不变,法向加速度改变; (C)切向加速度不变,法向加速度也不变; (D)切向加速度改变,法向加速度不变.18.质点作曲线运动,r表示位置矢量,s 表示路程,τa 表示切向加速度,下列表达式中⑴a dt dv = ⑵v dt dr =⑶v dt ds = ⑷τa dt v d =正确的是( )(A)只有⑴、⑷是正确的; (B)只有⑵、⑷是正确的; (C)只有⑵是正确的; (D)只有⑶是正确的.19.斜上抛物体的法向加速度为n a ,轨道上各点的曲率半径为ρ,则在轨道的最高点( )(A) n a 和ρ均最大; (B) n a 和ρ均最小; (C) n a 最大,ρ最小; (D) n a 最小,ρ最大.20、质点作半径为R 的变速圆周运动时,加速度大小为(v 表示任一时刻质点的速率) ( )(A) dt dv ; (B) R v 2; (C) R v dt dv 2+; (D) 242R v dt dv +⎪⎭⎫⎝⎛ .二、填空题1.物体运动的描述与参考系的选取________.(填“有关”或“无关”)2.一质点以s m /2的速率作半径为5m 的圆周运动,则该质点在5s 内走过的路程是_______ m 。
1.质点运动学自测题
a
at
an
dv dt
et
v2 r
en
切向加速度为零,零没有方向。
5/17
1-5. 质点沿半径为R的圆周作匀速率运动,每T秒转一圈.在2T时间 间隔中,其平均速度大小与平均速率大小分别为
(A) 2pR/T , 2pR/T.
(B) 0 , 2pR/T
(C) 0 , 0.
(D) 2pR/T , 0.
[ B]
质点运动学自测题
大学物理
1
1-1. 某质点作直线运动的运动学方程为x=3t-5t3 + 6 (SI),则 该质点作
(A)匀加速直线运动,加速度沿x轴正方向.
(B)匀加速直线运动,加速度沿x轴负方向.
(C)变加速直线运动,加速度沿x轴正方向. (D)变加速直线运动,加速度沿x轴负方向.
D [ ]
a
d2r dt 2
at
dv dt
R
d
dt
R
an
v2 R
R 2
16/17
1-26 如图 (a)所示,一汽车在雨中沿直线行驶,其速率 v1,
下落雨滴的速度方向偏于铅直方向之前θ角,速率为 v,2 车后 有一长方形物体(尺寸如图所示),问车速 v1多大时,此物体刚
好不会被雨水淋湿。
解:v2 v2 ' v1 tan v1 v2 sin
[ c]
取地面作为 S 参照系,自行车作为 S '参照系.
v
v
u
风
风
车
西 uv
相
相
相
对
对
对
地
车
地
的
的
的
v'
v
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 解: t甲 (小时) 42 42 1 1 t乙 (小时) 4 4
A
B
[A]
13.下列说法哪一条正确? (A)加速度恒定不变时,物体运动方向也不变. (B)平均速率等于平均速度的大小. v1 v2 v (C)不管加速度如何,平均速率表达式总可以写成. 2 (D)运动物体速率不变时,速度可以变化.
北
v v u
风 相 对 车 的 速 度 车 相 对 地 的 速 度
风 相 对 地 的 速 度
西
U v
V
南
11. 下列说法中,哪一个是正确的? (A) 一质点在某时刻的瞬时速度是2 m/s,说明它在此后1 s内 一定要经过2 m的路程. (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零. (D) 物体加速度越大,则速度越大. [ ]
[
]
1 dv ktdt 2 v
t 1 dv k tdt v0 v2 0 v
1 kt 1 v 2 v0
2
1-9. 某人骑自行车以速率v向正西行驶,遇到由北向南刮 的风(设风速也是v),则他感到风从哪个方向吹来? (A) 东北方向. (B) 东南方向. (C) 西北方向. (D) 西南方向 [ ]
kv t ,式中的k为大于零 1-8. 某物体的运动规律为 dv dt 的常量.当时,初速为v0,则速度与时间t的函数关系 是
2
(A)
(C)
v
1 2 kt v 0 2
2
(B)
(D)
1 kt 1 v 2 v0
1 v kt 2 v 0 2 1 kt 2 1 v 2 v0
1-2. 一质点在平面上运动,已知质点位置矢量的表示式为 2 2 r at i bt j (其中a、b为常量), 则该质点作
(A) 匀速直线运动. (B) 变速直线运动.
(C) 抛物线运动.
ห้องสมุดไป่ตู้
(D)一般曲线运动.
[
]
解: (1)x
= a t2
y = b t2
消去 t 得
b y x a
dx (2)v= 2ati 2btj dt
4.一个质点在做匀速率圆周运动时 (A)切向加速度改变,法向加速度也改变. (B)切向加速度不变,法向加速度改变. (C)切向加速度不变,法向加速度也不变. (D)切向加速度改变,法向加速度不变.
1-5. 质点沿半径为R的圆周作匀速率运动,每T秒转一圈.在2T时间 间隔中,其平均速度大小与平均速率大小分别为 (A) 2pR/T , 2pR/T. (C) 0 , 0. (B) 0 , 2pR/T (D) 2pR/T , 0. [ ]
v an r
2
拐点处曲率半径为无穷大
12. 一条河在某一段直线岸边同侧有A、B两个码头,相距1 km.甲、乙两人需要从码头A到码头B,再立即由B返回.甲划 船前去,船相对河水的速度为4 km/h;而乙沿岸步行,步行速 度也为4 km/h.如河水流速为 2 km/h, 方向从A到B,则 (A) 甲比乙晚10分钟回到A. (B) 甲和乙同时回到A. (C) 甲比乙早10分钟回到A. (D) 甲比乙早2分钟回到A. [ ]
6.对于沿曲线运动的物体,以下几种说法中哪一种 是正确的? (A)切向加速度必不为零. (B)法向加速度必不为零(拐点处除外). (C)由于速度沿切线方向,法向分速度必为零,因此 法向加速度必为零. (D)若物体作匀速率运动,其总加速度必为零. (E)若物体的加速度为恒矢量,它一定作匀变速率运 动.
i 4 j m/s
2
2. .试说明质点作何种运动时,将出现下述各种情况( v≠0 ): (1)at≠0 an≠0 ; . (2) at≠0 an=0 ; . at 、an分别表示切向加速度和法向加速度
变速率曲线运动
变速率直线运动
取地面作为S参照系,自行车 解: 作为S‘参照系.
v v u
风 相 对 车 的 速 度 车 相 对 地 的 速 度
风 相 对 地 的 速 度
西
v
v
南
位矢变换关系
r r r0
绝对位矢 相对 位矢 牵连位矢
y
y’
[s]
[S’]
p
位移变换关系
r r r0
质点运动学自测题
大学物理
1-1. 某质点作直线运动的运动学方程为x=3t-5t3 + 6 (SI),则 该质点作
(A)匀加速直线运动,加速度沿x轴正方向. (B)匀加速直线运动,加速度沿x轴负方向. (C)变加速直线运动,加速度沿x轴正方向. (D)变加速直线运动,加速度沿x轴负方向.
[ ]
dx 2 v= 3 15t dt 2 d x a 2 30t d t
o
o’ x’ x
x x’
z
ut
故
v v u
Z’
10. 某人骑自行车以速率v向西行驶,今有风以相同速率 从北偏东30°方向吹来,试问人感到风从哪个方向吹来? (A) 北偏东30°. (B) 南偏东30°. (C) 北偏西30°. (D) 西偏南300 [ ]
取地面作为S参照系,自行车 解: 作为S‘参照系.