小学奥数7-7-5 容斥原理之最值问题.专项练习及答案解析-精品
(小学奥数)容斥原理之最值问题
1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數). 二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-5.容斥原理之最值問題1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.【例 1】 “走美”主試委員會為三~八年級準備決賽試題。
三年级奥数题及参考答案-容斥原理问题
三年级奥数题及参考答案-容斥原理问题
编者导语:数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。
这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。
为大家准备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:容斥原理问题,可以帮助到你们,助您快速通往高分之路!!
容斥原理
三年级科技活动组共有 63人。
在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人。
每个同学都至少完成了一项活动。
问:同时完成这两项活动的同学有多少人?
解:因42+34=76,76>63,所以必有人同时完成了这两项活动。
由于每个同学都至少完成了一项活动,根据包含排除法知,42+34-(完成了两项活动的人数)=全组人数,即76-(完成了两项活动的人数)=63。
由减法运算法则知,完成两项活动的人数为
76-63=13(人)。
2020年部编版小学奥数容斥原理之最值问题
小学奥数容斥原理之最值问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.知识要点教学目标7-7-5.容斥原理之最值问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】 “走美”主试委员会为三~八年级准备决赛试题。
容斥原理练习题解析版
容斥原理练习题【练习 1】47 名学生参加数学和语文考试,其中语文得分 95 分以上的 14 人, 数学得分 95 分以上的 21 人,两门都不在 95 分以上的有 22 人.问:两门都在 95 分以上的有多少人?【解析】如图,用长方形表示这47 名学生, A 圆表示语文得分95 分以上的人数,B 圆表示数学得95 分以上的人数,A 与B 重合的部分表示两门都在95 分以上的人数,长方形内两圆外的部分表示两门都不在95 分以上的人数.由图中可以看出,全体人数是至少一门在95 分以上的人数与两门都不在95 分以 上的人数之和,则至少一门在95 分以上的人数为: 47 - 22 = 25 (人).根据包含排除法,两门都在95 分以上的人数为:14 + 21 - 25 = 10 (人).【练习 2】某班有 42 人,其中 26 人爱打篮球,17 人爱打排球,19 人爱踢足球, 9 人既爱打篮球又爱踢足球,4 人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?【解析】由于全班42 人没有一个人三种球都不爱好,所以全班至少爱好一种球的有42 人.根据包含排除法, 42 =(26 + 17 + 19)-(9 + 4 + 既爱打篮球又爱打排球的人数)+ 0 ,得到既爱打篮球又爱打排球的人数为: 49 - 42 = 7 (人).95分以上的 数学95分以上的 B不在两门95分以上的 语文95分以上的 A 两门都【练习 3】四(二)班有48 名学生,在一节自习课上,写完语文作业的有30 人,写完数学作业的有20 人,语文数学都没写完的有6 人.(1)问语文数学都写完的有多少人?(2)只写完语文作业的有多少人?【解析】(1)由题意,有48 - 6 = 42 (人)至少完成了一科作业,根据包含排除原理,两科作业都完成的学生有:30 + 20 - 42 = 8 (人).(2)只写完语文作业的人数=写完语文作业的人数-语文数学都写完的人数,即30 - 8 = 22 (人)【练习 4】某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34 人,手中有黄旗的共有26 人,手中有蓝旗的共有18 人.其中手中有红、黄、蓝三种小旗的有6 人.而手中只有红、黄两种小旗的有9 人,手中只有黄、蓝两种小旗的有4 人,手中只有红、蓝两种小旗的有3 人,那么这个班共有多少人?【解析】如图,用A 圆表示手中有红旗的,B 圆表示手中有黄旗的,C 圆表示手中有蓝旗的.如果用手中有红旗的、有黄旗的与有蓝旗的相加,发现手中只有红、黄两种小旗的各重复计算了一次,应减去,手中有三种颜色小旗的重复计算了二次,也应减去,那么,全班人数为:(34+ 26 +18)-(9+ 4 + 3)- 6 ⨯ 2 = 50 (人).A BC。
小学奥数趣味学习《容斥问题》典型例题及解答
小学奥数趣味学习《容斥问题》典型例题及解答容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
常见的容斥问题有两者容斥、三者容斥两种。
数量关系:A∪B = A+B - A∩BA∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C解题思路和方法:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
可画文氏(韦恩)图来解题。
例题1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。
钉成的木板长 _____ 厘米。
解:1、本题考查了学生的运算能力、应用能力。
解决重叠问题时,要注意重叠的部分不能重复计算。
2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。
例题2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。
A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。
孩子没有进行画图理解,只是凭自己的主观想象进行思考,没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。
2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。
选择B。
例题3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。
小学思维数学讲义:容斥原理之最值问题-带详解
容斥原理之最值问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.教学目标 例题精讲知识要点 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例1】“走美”主试委员会为三~八年级准备决赛试题。
小学奥数容斥原理之最值问题
小学奥数容斥原理之最值问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.7-7-5.容斥原理之最值问题教学目标知识要点1.先包含——A B +重叠部分A B I 计算了2次,多加了1次;2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B I 、B C I 、C A I 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---I I I 重叠部分A B C I I 重叠了3次,但是在进行A B C ++- A B B C A C --I I I 计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+I I I I I .【例 1】 “走美”主试委员会为三~八年级准备决赛试题。
奥数 容斥原理(例题+详解)
容斥原埋在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理.为了说明这个原理,我们先介绍一些集合的初步知识。
例1、桌上有两张圆纸片A、B.假设圆纸片A的面积为30平方厘米,圆纸片B的面积为20平方厘米.这两张圆纸片重叠部分的面积为10平方厘米.则这两张圆纸片覆盖桌面的面积由容斥原理的公式(1)可以算出为:|A∪B|=30+20-10=40(平方厘米)。
例2、求在1至100的自然数中能被3或7整除的数的个数。
分析解这类问题时首先要知道在一串连续自然数中能被给定整数整除的数的个数规律是:在n个连续自然数中有且仅有一个数能被n整除.根据这个规律我们可以很容易地求出在1至100中能被3整除的数的个数为33个,被7整除的数的个数为14个,而其中被3和7都能整除的数有4个,因而得到解:设A={在1~100的自然数中能被3整除的数},B={在1~100的自然数中能被7整除的数},则A∩B={在1~100的自然数中能被21整除的数}。
∵100÷3=33…1,∴|A|=33。
∵100÷7=14…2,∴|B|=14。
∵100÷21=4…16,∴|A∩B|=4。
由容斥原理的公式(1):|A∪B|=33+14-4=43。
答:在1~100的自然数中能被3或7整除的数有43个。
例3、求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?分析如果在1~100的自然数中去掉5的倍数、6的倍数,剩下的数就既不是5的倍数也不是6的倍数,即问题要求的结果。
解:设A={在1~100的自然数中5的倍数的数},B={在1~100的自然数中6的倍数的数},数.为此先求|A∪B|。
∵100÷50=20,∴|A|=20又∵100÷6=16…4,∴|B|=16∵100÷30=3…10,∴|A∩B|=3,|A∪B|=|A|+|B|-|A∩B|=20+16-3=33。
容斥原理之最值问题
容斥原理之最值问题1.了解容斥原理⼆量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个⽅⾯的应⽤.⼀、两量重叠问题在⼀些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,⽽要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,⽤式⼦可表⽰成:A B A B A B =+-(其中符号“”读作“并”,相当于中⽂“和”或者“或”的意思;符号“”读作“交”,相当于中⽂“且”的意思.)则称这⼀公式为包含与排除原理,简称容斥原理.图⽰如下:A 表⽰⼩圆部分,B 表⽰⼤圆部分,C 表⽰⼤圆与⼩圆的公共部分,记为:AB ,即阴影⾯积.图⽰如下:A 表⽰⼩圆部分,B 表⽰⼤圆部分,C 表⽰⼤圆与⼩圆的公共部分,记为:A B ,即阴影⾯积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进⾏:第⼀步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的⼀切元素都“包含”进来,加在⼀起);第⼆步:从上⾯的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).⼆、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类⼜是B 类的元素个数-既是B 类⼜是C 类的元素个数-既是A 类⼜是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.⽤符号表⽰为:A B C A B C A B B C A C A B C =++---+.图⽰如下:教学⽬标知识要点7-7-5.容斥原理之最值问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次;A B A B +-1A B在解答有关包含排除问题时,我们常常利⽤圆圈图(韦恩图)来帮助分析思考.【例1】“⾛美”主试委员会为三~⼋年级准备决赛试题。
(精品)小学奥数7-7-5 容斥原理之最值问题.专项练习及答案解析
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点7-7-5.容斥原理之最值问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 “走美”主试委员会为三~八年级准备决赛试题。
小学奥数7-7-5 容斥原理之最值问题.专项练习及答案解析
1.了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.教学目标知识要点7-7-5.容斥原理之最值问题1.先包含——A B + 重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】 “走美”主试委员会为三~八年级准备决赛试题。
小学数学容斥问题练习题
小学数学容斥问题练习题容斥原理是数学中常用的一种组合计数方法,用于处理多个集合的交集和并集问题。
它在解决数学问题时具有广泛的应用,尤其在概率论、组合数学和数论等领域中常见。
下面是一系列关于容斥原理的小学数学练习题,帮助学生更好地理解和应用容斥原理。
题一:小李家中有红、黄、蓝三个颜色的球各3个。
现从这堆球中无规则地取出5个球,求其中至少有两个颜色完全相同的球的取法数目。
解答:假设A表示至少有两个球颜色相同的事件,定义A1为有两个红球相同的事件,A2为有两个黄球相同的事件,A3为有两个蓝球相同的事件。
则A = A1 ∪ A2 ∪ A3。
利用容斥原理,根据公式:P(A) = P(A1) + P(A2) + P(A3) - P(A1 ∩ A2) - P(A2 ∩ A3) - P(A1 ∩ A3) + P(A1 ∩ A2 ∩ A3)首先计算P(A1):从3个红球中选出2个红球,再从剩下的球中选出3个球,所以P(A1) = C(3, 2) × C(6, 3) = 90。
同理可得:P(A2) = 90, P(A3) = 90,P(A1 ∩ A2) = C(3, 2) × C(3, 1) × C(3, 2) = 27,P(A2 ∩ A3) = 27,P(A1 ∩ A3) = 27。
最后计算P(A1 ∩ A2 ∩ A3):从3个红球中选择2个红球,再从剩下的球中选择1个黄球,最后从剩下的球中选择2个蓝球,所以P(A1 ∩ A2 ∩ A3) = C(3, 2) × C(3, 1) × C(3, 2) = 27。
将以上数据代入公式,可得:P(A) = 90 + 90 + 90 - 27 - 27 - 27 + 27 = 216所以,在取出5个球时,至少有两个颜色完全相同的球的取法数目为216。
题二:小明有一盒糖果,里面装有红、黄、蓝三种颜色的糖果各5个。
小明每次从盒子中随机取出3个糖果。
小学奥数精讲:容斥原理习题及答案
⼩学奥数精讲:容斥原理习题及答案⼩学奥数精讲:容斥原理习题及答案年级班姓名得分⼀、填空题1.⼀个班有45个⼩学⽣,统计借课外书的情况是:全班学⽣都借有语⽂或数学课外书.借语⽂课外书的有39⼈,借数学课外书的有32⼈.语⽂、数学两种课外书都借的有⼈.2.有长8厘⽶,宽6厘⽶的长⽅形与边长为5厘⽶的正⽅形,如图,放在桌⾯上(阴影是图形的重叠部分),那么这两个图形盖住桌⾯的⾯积是平⽅厘⽶.3.在1~100的⾃然数中,是5的倍数或是7的倍数的数有个.4.某区100个外语教师懂英语或俄语,其中懂英语的75⼈,既懂英语⼜懂俄语的20⼈,那么懂俄语的教师为⼈.5.六⼀班有学⽣46⼈,其中会骑⾃⾏车的17⼈,会游泳的14⼈,既会骑车⼜会游泳的4⼈,问两样都不会的有⼈.6.在1⾄10000中不能被5或7整除的数共有个.7.在1⾄10000之间既不是完全平⽅数,也不是完全⽴⽅数的整数有个.8.某班共有30名男⽣,其中20⼈参加⾜球队,12⼈参加蓝球队,10⼈参加排球队.已知没⼀个⼈同时参加3个队,且每⼈⾄少参加⼀个队,有6⼈既参加⾜球队⼜参加蓝球队,有2⼈既参加蓝球队⼜参加排球队,那么既参加⾜球队⼜参加排球队的有⼈.69.分母是1001的最简真分数有个.10.在100个学⽣中,⾳乐爱好者有56⼈,体育爱好者有75⼈,那么既爱好⾳乐,⼜爱好体育的⼈最少有⼈,最多有⼈.⼆、解答题11.某进修班有50⼈,开甲、⼄、丙三门进修课、选修甲这门课的有38⼈,选修⼄这门课有的35⼈,选修丙这门课的有31⼈,兼选甲、⼄两门课的有29⼈,兼选甲、丙两门课的有28⼈,兼选⼄、丙两门课的有26⼈,甲、⼄、丙三科均选的有24⼈.问三科均未选的⼈数?12.求⼩于1001且与1001互质的所有⾃然数的和.13.如图所⽰,A、B、C分别代表⾯积为8、9、11的三张不同形状的纸⽚,它们重叠放在⼀起盖住的⾯积是18,且A与B,B与C,C与A公共部分的⾯积分别是5、3、4,求A、B、C 三个图形公共部分(阴影部分)的⾯积.14.分母是385的最简真分数有多少个,并求这些真分数的和.———————————————答案——————————————————————1. 26从图中可以看出全班45⼈,借语⽂或数学课外读物的共39+32=71(⼈),超过全班⼈数71-45=26(⼈),这26⼈都借了语⽂、数学两种课外书。
奥数容斥问题
奥数容斥问题奥数容斥问题是数学竞赛中一个经典的计数原理问题。
通过运用容斥原理,我们可以解决集合之间的重复计数问题。
本文将介绍奥数容斥问题的定义、原理和应用,并通过具体的例题进行说明。
首先,让我们来了解奥数容斥问题的定义。
在组合数学中,容斥原理用于计算多个集合的交集和并集的元素个数。
具体而言,在包含多个集合的问题中,容斥原理帮助我们消除了重复计数的问题。
接下来,我们将详细介绍奥数容斥问题的原理。
假设有n个集合A_1, A_2, ..., A_n,我们的目标是计算它们的并集以及交集中元素的个数。
利用容斥原理,我们可以先计算每个集合的元素个数,再根据交集的元素个数进行加减运算,以消除重复计数的影响。
具体而言,假设A表示所有集合的并集,A_1, A_2, ..., A_n 分别表示这些集合。
根据容斥原理,我们可以得出以下公式:|A_1 ∪ A_2 ∪ ... ∪ A_n| = |A_1| + |A_2| + ... + |A_n| - |A_1 ∩ A_2| - |A_1 ∩ A_3| - ... - |A_(n-1) ∩ A_n| + ... + (-1)^(n-1) |A_1 ∩ A_2 ∩ ... ∩A_n|其中,|X| 表示集合 X 的元素个数。
上述公式中,第一项表示每个集合的元素个数之和,第二项表示两个集合的交集元素个数之和,第三项表示三个集合的交集元素个数之和,以此类推。
交替的符号(-1)^(n-1) 用于保证加减运算的正确性。
了解了奥数容斥问题的定义和原理之后,下面我们将通过一个具体的例题来说明其应用。
例题:某班级共有60名学生,其中30人会打乒乓球,40人会弹钢琴,20人既会打乒乓球又会弹钢琴。
请问至少会其中一项技能的学生有多少人?解析:我们可以定义集合 A 表示会打乒乓球的学生,集合 B 表示会弹钢琴的学生。
根据题目给出的信息,我们有 |A| = 30,|B| = 40,|A ∩ B| = 20。
小学四年级奥数列方程解应用题 容斥问题 最大值最小值问题
列方程解应用题方程解应用题列方程解应用题时,由于引进了字母x ,所以在分析应用题时,不必绕过未知数,而把未知数暂时看做已知数,直接参列式运算,这样的解题思路更加直截了当,减低了思维难度,适用面广,特别是用算术方法需要逆解得问题,用方程解往往比较容易. 列方程解应用题时,一般按下面的步骤进行:、(1)弄清题意,找到未知数并有x 表示(2)找到应用题中数量间的相等关系后列方程(3)解方程(4)检验,写出答案【例1】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是 6 8 ,求这三个连续整数.变形:已知三个连续奇数之和为7 5 ,求这三个数练习:已知三个连续偶数之和为24 ,求这三个数【例2】兄弟二人共养鸭550 只,当哥哥卖掉自己养鸭总数的一半,弟弟卖出70 只时,两人余下的鸭只数相等,求兄弟两人原来各养鸭多少只?变式:一人看见山上有一群羊,他自言自语到:“我如果有这些羊,再加上这些羊,然后加上这些羊的一半,又加上这些羊一半的一半,最后再加上我家里的那只,一共有 1 0 0 只羊”.山上的羊群共有______只练习:两年前,甲的年龄是乙的年龄的 4 倍;而现在,甲的年龄是乙的年龄的 3 倍,那么甲今年多少岁?【例3】重阳节那天,延龄茶庄请来25 位老人品茶,这25 位老人的年龄恰好是25 个连续自然数,并且年龄之和恰好是2000。
问:其中年龄最大的老人多少岁?变式:678 除以一个数的不完全商是13,并且除数与余数的差是8,求除数和余数。
练习:教师给幼儿园小朋友分草莓,如果每个小朋友分 5 个草莓还剩下14 个,如果每个小朋友分7 分草莓则差 4 个,求共有多少草莓?共有多少个小朋友?【例4】爸爸、哥哥、妹妹三人现在的年龄和是64 岁。
当爸爸的年龄是哥哥年龄的 3 倍时,妹妹是9 岁;当哥哥的年龄是妹妹年龄的2 倍时,爸爸是34 岁。
现在三人的年龄各是多少岁?变式:两年前,甲的年龄是乙的年龄的 4 倍;而现在,甲的年龄是乙的年龄的 3 倍,那么甲今年多少岁?练习:父亲今年32 岁,儿子今年 5 岁,几年之后,父亲的年龄正好是儿子的年龄的4倍?例5:大、小两个水池都未注满水。
小学奥数 容斥原理 知识点+例题+练习 (分类全面)
5、在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?不是6的倍数或不是5的倍数的数有几个?
6、某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人。问两科都在90分以上的有多少人?
巩固:刘老师、夏老师和胡老师共有书90本,其中刘老师和夏老师一共有70本,夏老师和胡老师共有50本,三位老师各有书多少本?
例5、在1至10000中不能被5或7整除的数共有多少个?既不能被5整除又不能被7整除的有多少个?
巩固:在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?不是5的倍数或不是8的倍数的数有几个?
巩固:某校的每个学生至少爱好体育和文娱中的一种活动,已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。这个学校共有学生多少人?
例3、学校开展课外活动,共有250人参加。其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。问这250名同学中,象棋组、乒乓球组都不参加的有多少人?
课后作业
1、五年级有112人参加语文、数学考试,每人至少有一门功课得优,其中,语文得优的有65人,数学得优的有87人,问语文、数学都得优的有多少人?
2、某班在一次测验中有26人语文获优,有30人数学获优,其中语、数双优的有12人,另外还有8人语、数均未获优,这个班共有多少个学生?
3、五(1)班有学生50人,在一次测试中,语文90分以上的有30人,数学90分以上的35人,语文和数学都在90分以上的有20人,90分以下的有多少人?
奥数训练专题——容斥原理
容斥原理1、某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?2、某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9 人既爱打篮球又爱踢足球, 4 人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?3、四年级一班有46名学生参加3 项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3 项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍,既参加数学小组又参加语文小组的有10 人.求参加文艺小组的人数.( 6 级)4、五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25 人参加自然兴趣小组,35 人参加美术兴趣小组,27 人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12 人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9 人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.( 6 级)5、光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42 人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?( 6 级)6、新年联欢会上,共有90 人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7 人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多 4 人;50 人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40 人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有多少人?7、五年级三班有46名学生参加三项课外活动,其中24 人参加了绘画小组,20 人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数.8、六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项.其中,爱好体育的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人.问:有多少人只爱好科学和文艺两项?只爱好体育的有多少人?9、在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡, 6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:三种都带了的有几人?只带了一种的有几个?9、盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.10、全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么,数学成绩优秀的有几个学生?有几个人既会游泳,又会滑冰?11、在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比只摘李子的人数多3个;只摘草莓者比摘了山莓和草莓但没有摘李子者多4人;50个人没有摘草莓; 11个人摘了山莓和李子但没有摘草莓;总共有60人摘了李子.如果参与采摘水果的总人数是100,你能回答下列问题吗?①有 _____ 人摘了山莓;②有______ 人同时摘了三种水果;③ 有 ____ 人只摘了山莓;④ 有_____ 人摘了李子和草莓,而没有摘山莓;⑤有 _____ 人只摘了草莓• 12、五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组,若参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数相同,参加E组的人数最少,只有4人.那么,参加 B 组的有多少人?13、五一班有28 位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6 个同学参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是 3 个小组全参加的人数的 5 倍,并且知道 3 个小组全参加的人数是一个不为0 的偶数,那么仅参加数学和语文小组的人有多少人?14、某学校派出若干名学生参加体育竞技比赛,比赛一共只有三个项目,已知参加长跑、跳高、标枪三个项目的人数分别为10、15、20 人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之一的人还参加了别的比赛项目,求这所学校一共派出多少人参加比赛?图形中的重叠问题1、把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?2、把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长 3 厘米,焊接后这根铁条有多长?3、两张长 4 厘米,宽 2 厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?4、如图,一张长8厘米,宽6厘米,另一个正方形边长为 6 厘米,它们中间重叠的部分是一个边长为 4 厘米的正方形,求这个组合图形的面积.5、一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长 4 厘米的正方形,求这个组合图形的面积.6、三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?7、如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60 平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?8、如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38 •若A与B、B与C的公共部分的面积分别为8、7 , A、B、C这三张纸片的公共部分为3 •求A与C公共部分的面积是多少?容斥原理在数论问题中的应用1、在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?2、在自然数1~100中,能被3或5中任一个整除的数有多少个?3、在前100个自然数中,能被2或3整除的数有多少个?4、在从1 至1000的自然数中,既不能被 5 除尽,又不能被7除尽的数有多少个?5、求在1至100的自然数中能被3或7整除的数的个数.5、以105 为分母的最简真分数共有多少个?它们的和为多少?7、分母是385的最简真分数有多少个?并求这些真分数的和8、在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有 ___________ 个.9、在从1到1998的自然数中,能被2整除,但不能被3或7整除的数有多少个?10、50名同学面向老师站成一行.老师先让大家从左至右按1, 2, 3,…,49, 50依次报数; 再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名?11、有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1, 2, 3,…,2000, 然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?12、写有1到100编号的灯100盏,亮着排成一排,每一次把编号是3的倍数的灯拉一次开关, 第二次把编号是5的倍数的灯拉一次开关,那么亮着的灯还有多少盏?13、在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支?14、在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份;如果沿每条刻度线将木棍锯断,则木棍总共被锯成_______ .15、一根101厘米长的木棒,从同一端开始,第一次每隔2厘米画一个刻度,第二次每隔3厘米画一个刻度,第三次每隔5厘米画一个刻度,如果按刻度把木棒截断,那么可以截出段.16、一根1.8米长的木棍,从左端开始每隔2厘米画一个刻度,涂完后再从左端开始每隔3厘米画一个刻度,再从左端每隔5厘米画一个刻度,再从左端每隔7厘米画一个刻度,涂过按刻度把木棍截断,一共可以截成多少段小木棍?容斥原理中的最值问题1、将1〜13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?2、如图,5条同样长的线段拼成了一个五角星•如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?3、某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球•那么,这个班至少有多少学生这三项运动都会?4、某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20 人,每人最多参加两科,那么参加两科的最多有_____________ 人.2 3 45、60人中有3的人会打乒乓球,4的人会打羽毛球,5的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人?6、图书室有100 本书,借阅图书者需在图书上签名.已知这100 本书中有甲、乙、丙签名的分别有33,44 和55本,其中同时有甲、乙签名的图书为29 本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36 本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?7、甲、乙、丙都在读同-一本故事书,书中有100 个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60 个故事,丙读了52个故事.那么甲、乙、丙 3 人共同读过的故事最少有多少个?8、在阳光明媚的一天下午,甲、乙、丙、丁四人给100 盆花浇水,已知甲浇了30 盆,乙浇了75 盆,丙浇了80 盆,丁浇了90 盆,请问恰好被 3 个人浇过的花最少有多少盆?恰好被 1 个人浇过的花最多有多少盆?9、甲、乙、丙同时给100盆花浇水.已知甲浇了78盆,乙浇了68 盆,丙浇了58盆,那么 3 人都浇过的花最少有多少盆?。
小五数学第7讲:容斥定理(含答案)全国通用
第七讲容斥定理1两集合容斥定理如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。
(A∪B = A+B - A∩B) 2三集合容斥定理如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C教学重点:两集合容斥定理找对A BA∪B A∩B教学难点:三集合容斥定理例1.某区100个外语教师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师为人.答案45 解析:依题意,被计数的事物懂英语的教师和懂俄语的教师有两类,懂英语的教师称为“A 类元素”,懂俄语的教师称为“B 类元素”, 设懂俄语的教师为x 人A ∪B = A+B - A ∩B=75+x-20=100X=45例2.有长8厘米,宽6厘米的长方形与边长为5厘米的正方形,如图,放在桌面上(阴影是图形的重叠部分),那么这两个图形盖住桌面的面积是平方厘米.答案 67解析:依题意,被计数的事物长方形的面积与正方形的面积有两类,长方形的面积称为“A 类元素”,正方形的面积称为“B 类元素”,A ∪B = A+B - A ∩B=6×8+5×5-4×3×1/2=67例3. 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。
答案 13解析:依题意,被计数的事物不超过20的正整数中是2的倍数与不超过20的正整数中是3的倍数有两类,不超过20的正整数中是2的倍数称为“A 类元素”,不超过20的正整数中是3的倍数称为“B 类元素”,A=20÷2=10 B=20÷3=6......2 A ∩B=20÷6=3 (2)A ∪B = A+B - A ∩B=10+6-3=13例4. 一个班有42人,参加合唱队的有30人,参加美术组的有25人,有5人什么都没有参加,求两种都参加的有多少人?8 6 5 4 3例7对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点7-7-5.容斥原理之最值问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 “走美”主试委员会为三~八年级准备决赛试题。
每个年级12道题,并且至少有8道题与其他各年级都不同。
如果每道题出现在不同年级,最多只能出现3次。
本届活动至少要准备 道决赛试题。
【考点】容斥原理之最值问题 【难度】4星 【题型】填空【关键词】走美杯,4年级,决赛,第9题 【解析】 每个年级都有自己8道题目,然后可以三至五年级共用4道题目,六到八年级共用4道题目,总共有864256⨯+⨯=(道)题目。
【答案】56题【例 2】 将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?【考点】容斥原理之最值问题 【难度】4星 【题型】填空【解析】 越是中间,被重复计算的越多,最中心的区域被重复计算四次,将数字按从大到小依次填写于被重复计算多的区格中,最大和为:13×4+(12+11+10+9)×3+(8+7+6+5)×2+(4+3+2+1)=240.【答案】240【例 3】 如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?【考点】容斥原理之最值问题 【难度】4星 【题型】填空【解析】 如下图,下图中“”位置均有两条线段通过,也就是交点,如果这些交点所对应例题精讲图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.的线段都在“”位置恰有红色点,那么在五角星上重叠的红色点最多,所以此时显现的红色点最少,有1994×5-(2-1)×10=9960个.【答案】9960【例 4】 某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班至少有多少学生这三项运动都会?【考点】容斥原理之最值问题 【难度】4星 【题型】填空【解析】 (法1)首先看至少有多少人会游泳、自行车两项,由于会游泳的有27人,会骑自行车的有33人,而总人数为48人,在会游泳人数和会骑自行车人数确定的情况下,两项都会的学生至少有27334812+-=人,再看会游泳、自行车以及乒乓球三项的学生人数,至少有1240484+-=人.该情况可以用线段图来构造和示意:40人33人游泳自行车总人数48人游泳(法2)设三项运动都会的人有x 人,只会两项的有y 人,只会一项的有z 人, 那么根据在统计中会n 项运动的学生被统计n 次的规律有以下等式:3227334048,,0x y z x y z x y z ++=++⎧⎪++≤⎨⎪≥⎩由第一条方程可得到10032z x y =--,将其代入第二条式子得到:100248x y --≤,即252x y +≥①而第二条式子还能得到式子48x y +≤,即248x y x +≤+②联立①和②得到4852x +≥,即4x ≥.可行情况构造同上.【答案】4【巩固】某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有 人.【考点】容斥原理之最值问题 【难度】4星 【题型】填空【解析】 根据题意可知,该班参加竞赛的共有28232071++=人次.由于每人最多参加两科,也就是说有参加2科的,有参加1科的,也有不参加的,共是71人次.要求参加两科的人数最多,则让这71人次尽可能多地重复,而712351÷=,所以至多有35人参加两科,此时还有1人参加1科.那么是否存在35人参加两科的情况呢?由于此时还有1人是只参加一科的,假设这个人只参加数学一科,那么可知此时参加语文、数学两科的共有(282220)215+-÷=人,参加语文、英语两科的共有281513-=人,参加数学、英语两科的共有20137-=人.也就是说,此时全班有15人参加语文、数学两科,13人参加语文、英语两科,7人参加数学、英语两科,1人只参加数学1科,还有14人不参加.检验可知符合题设条件.所以35人是可以达到的,则参加两科的最多有35人.(当然本题中也可以假设只参加一科的参加的是语文或英语)【答案】35【巩固】60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人?【考点】容斥原理之最值问题 【难度】4星 【题型】填空【解析】 设只会打乒乓球和羽毛球两项的人有x 人,只会打乒乓球和排球两项的有y 人,只会打羽毛球和排球两项的有z 人.由于只会三项运动中的一项的不可能小于0,所以x 、y 、z 有如下关系:()()()402204522048220x y x z y z ⎧-++≥⎪⎪-++≥⎨⎪-++≥⎪⎩将三条关系式相加,得到33x y z ++≤,而60人当中会至少一项运动的人数有()40454822256x y z ++-++-⨯≥人,所以60人当中三项都不会的人数最多4人(当x 、y 、z 分别取7、11、15时,不等式组成立). 【答案】4【例 5】 图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?C丙B乙A甲【考点】容斥原理之最值问题 【难度】4星 【题型】填空【解析】 设甲借过的书组成集合A ,乙借过的书组成集合B ,丙借过的书组成集合C .A =33,B =44,C =55,A B =29,A C =25,B C =36.本题只需算出甲、乙、丙中至少有一人借过的书的最大值,再将其与100作差即可. A B C A B C A B A C B C A B C =++---+, 当A B C 最大时,A B C 有最大值.也就是说当三人都借过的书最多时,甲、乙、丙中至少有一人借过的书最多. 而AB C 最大不超过A 、B 、C 、A B 、B C 、A C 6个数中的最小值,所以A B C 最大为25.此时A B C =33+44+55-29-25-36+25=67,即三者至少有一人借过的书最多为67本,所以这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过.【答案】33【巩固】甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?【考点】容斥原理之最值问题 【难度】4星 【题型】填空【解析】 考虑甲乙两人情况,有甲乙都读过的最少为:75+60-100=35个,此时甲单独读过的为75-35=40个,乙单独读过的为60-35=25个;欲使甲、乙、丙三人都读过的书最少时,应将丙读过的书尽量分散在某端,于是三者都读过书最少为52-40=12个.【答案】12【例6】某数学竞赛共160人进入决赛,决赛共四题,做对第一题的有136人,做对第二题的有125人,做对第三题的有118人,做对第四题的有104人。
在这次决赛中至少有____得满分。
【考点】容斥原理之最值问题【难度】5星【题型】填空【关键词】走美杯,5年级,决赛,第10题【解析】设得满分的人都做对3道题时得满分的人最少,有136+125+118+104-160⨯3=3(人)。
【答案】3人【例7】某班有46人,其中有40人会骑自行车,38人会打乒乓球,35人会打羽毛球,27人会游泳,则该班这四项运动都会的至少有人。
【考点】容斥原理之最值问题【难度】5星【题型】填空【关键词】希望杯,4年级,1试【解析】不会骑车的6人,不会打乒乓球的8人,不会羽毛球的11人,不会游泳的19人,那么至少不会一项的最多只有6+8+11+19=44人,那么思想都会的至少44人【答案】44人【例8】在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人浇过的花最少有多少盆?【考点】容斥原理之最值问题【难度】5星【题型】填空【解析】为了恰好被3个人浇过的花盆数量最少,那么被四个人浇过的花、两个人浇过的花和一个人浇过的花数量都要尽量多,那么应该可以知道被四个人浇过的花数量最多是30盆,那么接下来就变成乙浇了45盆,丙浇了50盆,丁浇60盆了,这时共有-=盆花,我们要让这70盆中恰好被3个人浇过的花最少,这就是简单1003070的容斥原理了,恰好被3个人浇过的花最少有45506014015++-=盆.【答案】15【巩固】甲、乙、丙同时给100盆花浇水.已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?【考点】容斥原理之最值问题【难度】4星【题型】填空【解析】只考虑甲乙两人情况,有甲、乙都浇过的最少为:78+68-100=46盆,此时甲单独浇过的为78-46=32盆,乙单独浇过的为68-46=22盆;欲使甲、乙、丙三人都浇过的花最少时,应将丙浇过的花尽量分散在两端.于是三者都浇过花最少为58-32-22=4盆.【答案】4【巩固】在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被1个人浇过的花最少有多少盆?【考点】容斥原理之最值问题【难度】5星【题型】填空【解析】100盆花共被浇水275次,平均每盆被浇2.75次,为了让被浇1次的花多,我们也需要被浇4次的花尽量多,为30盆,那么余下70盆共被浇155次,平均每盆被浇2.21次,说明需要一些花被浇3次才可以.我们假设70盆都被浇3次,那么多出55次,每盆花少浇2次变为被浇1次最多可以变27次,所以本题答案为27盆.【答案】27。