1.2. 基本算法语句

合集下载

计算机的基本算法语句类型和讲解

计算机的基本算法语句类型和讲解
(如右图)
计算机从上而下按照语
句排列的顺序执行这些语句.
语句n
输入语句和输出语句分 别用来实现算法的输入信息, 输出结果的功能.
语句n+1
例1.用描点法作函数 yx33x2 的24 图x 象3时0,
需要求出自变量和函数的一组对应值,编写程序, 分别计算当x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值。
注意: INPUT语句不但可以给单个变量赋值,还可以
给多个变量赋值,其格式为:
INPUT “提示内容1,提示内容2,提示内容3,…”;变量1,变量2,变量 3,…
例如,输入一个学生数学,语文,英语三门课的成绩, 可以写成:
INPUT “数学,语文,英语”;a,b,c
二.输出语句 输出语句的一般格式
框图: 开始
输入x
yx33x224x30
程序: INPUT “x=”;x y=x^3+*3 x^2-2*4 x+30 PRINT x PRINT y END
输出x,y 结束
程序:
INPUT “x=”;x -----------------输入语句
y=x^3+3*x^2-24*x+30 ---------赋值语句
PRINT “S=”; S
三.赋值语句 (1)赋值语句的一般格式: 变量=表达式
(2)赋值语句的作用是:先计算出赋值号右边表达 式的值,然后把这个值赋给左边的变量,使该变量的 值等于表达式的值。 (3)赋值语句中的“=”称作赋值号,与数学中的等 号的意义是不同的.赋值号的左右两边不能对换. (4)赋值语句左边只能是变量名字而不是表达式, 如:2=x是错误的
〖例4〗交换两个变量A和B的值,并输出交换前后 的值。

高中数学第一章算法初步12基本算法语句第7课时条件语句课件新人教A版必修3

高中数学第一章算法初步12基本算法语句第7课时条件语句课件新人教A版必修3
y=128,16<x≤32, 848-x,32<x≤48.
程序如下:
谢谢观赏!
Thanks!
结束
语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油。
10.给出一个算法的程序,如果输出的 y 的值是 20,则输入 的 x 的值是 2 或 6 .
解析:当 x≤5 时,10x=20,即 x=2; 当 x>5 时,2.5x+5=20,解出 x=6.
11.如图给出的是用条件语句编写的程序,该程序的功能是求 函数 y=2x2x-,1x,≤x3>,3 的函数值.
解:算法分析: 数学模型实际上为 y 关于 t 的分段函数. 关系式如下:
0.22,0<t≤3, y=0.22+0.1t-3,t>3,t∈Z,
0.22+0.1[t-3]+1,t>3,t∉Z, 算法步骤如下: 第一步,输入通话时间 t. 第二步,如果 t≤3,那么 y=0.22;否则判断 t∈Z 是否成立, 若成立执行 y=0.22+0.1×(t-3);否则执行 y=0.22+0.1×([t-3] +1).
所以 x=0 或 2.
3.当输入 a=3 时,如图的程序输出的结果是( D )
A.9
B.3
C.10
D.6
解析:该程序的作用是求分段函数 y=2aa2
a<10, a≥10
的函数
值,当 a=3 时,y=2×3=6.
4.某程序如下:
当执行此程序时,没有执行语句 y=x+1,则输入的 x 值的范 围为( D )
(2)当输出的 y 值小于23时,求输入的 x 的取值范围.

高中数学输入语句、输出语句和赋值语句

高中数学输入语句、输出语句和赋值语句

1.2 基本算法语句1.2.1 输入语句、输出语句和赋值语句【知识提炼】输入语句、输出语句和赋值语句的格式与功能名称输入语句输出语句赋值语句格式INPUT“提示内容”;___________“提示内容”;_______变量=_______变量PRINT表达式表达式名称输入语句输出语句赋值语句功能把程序执行时新输入的值赋给_____在计算机屏幕上输出_____、_____的值和_____信息将表达式所代表的值赋给变量.一般先计算“=”___________的值,然后把这个值赋给“=”_____的变量举例INPUT xINPUT“a=”;aPRINT yPRINT“y=”;ypi=3.14i=i+1变量常量变量系统右边表达式左边【即时小测】1.思考下列问题:(1)输入语句和赋值语句都可以给变量赋值,二者有何不同?提示:输入语句可使初始值与程序分开,利用输入语句改变初始数据时,程序不变,而赋值语句是程序的一部分,输入语句可对多个变量赋值,赋值语句只能给一个变量赋值.(2)程序中如果连续多次对变量赋值,那么这个变量的值最后是多少?提示:变量的值总是最后一次赋给它的值,例如:x=2,x=x+1,x=5执行完每个语句时,x的值依次为2,3,5,而执行完整个程序后,x 的值为5.2.下列输入语句正确的是 ( )A.INPUT XB.INPUT X+3C.INPUT “学生身高”D.INPUT X=3【解析】选A.“提示内容”及后面的分号可省略,直接输入;B错,X+3是代数式,不是变量;C错,只有“提示内容”而没有变量;D错,X=3是等式而不是变量.3.下列给出的输入语句中,①INPUT a;b;c②INPUT x=3③INPUT a,b,c④INPUT“a=,b=”,a,b⑤INPUT“a=,b=”a,b.正确的选项是 ( )A.①②⑤B.③C.②③D.③④⑤【解析】选B.判断一个输入语句正确与否,关键是要理解输入语句的格式:INPUT“提示内容”;变量,另外,还要注意一些细节部分.故选③.4.下列给出的输出语句正确的是 .①PRINT A=4 ②PRINT“你的姓名”XM ③PRINT a,b,c④PRINT 20,3﹡2 ⑤PRINT S【解析】结合输出语句格式,对照说明内容,比较可得结论.可知①中有赋值号“=”是不正确的,②中双引号与XM间要加分号“;”.答案:③④⑤5.下列给出的赋值语句正确的是 .①3=B ②x+y=0 ③A=B=-2 ④T=T﹡T【解析】根据赋值语句的格式可知,赋值号左侧为单个变量,右侧为表达式(赋值语句有运算功能),故填④.答案:④【知识探究】知识点1 输入语句与输出语句观察如图所示内容,回答下列问题:问题1:输入语句的作用是什么?问题2:输入语句、输出语句应注意哪些问题?【总结提升】1.对输入语句的两点说明(1)INPUT语句又称“键盘输入语句”,当计算机执行到该语句时,暂停并等候用户输入程序运行需要的数据.此时,用户只需把数据由键盘输入,然后回车,程序将继续运行.(2)“提示内容”的作用是在程序执行时提示用户将要输入的是什么样的数据.如:INPUT“语文,数学,外语成绩=”;a,b,c.“提示内容”及后面的“;”可省略,直接输入,如:INPUT a,b,c.2.对输出语句的三点说明(1)PRINT语句又称“打印语句”,将结果在屏幕上显示出来.(2)“提示内容”提示用户输出的是什么样的信息.如:PRINT“该学生的总分=”;S(3)具有计算功能.可以输出常量、变量的值和系统信息.如:PRINT 12/3PRINT APRINT 5PRINT “I am a student!”3.输入语句、输出语句应注意的问题(1)输入语句:①“提示内容”必须加双引号,提示内容原样在计算机屏幕上显示,提示内容与变量之间用“;”隔开;②一个输入语句可以含有多个变量,中间用“,”隔开.(2)输出语句:①“提示内容”必须加双引号,提示内容原样输出;②输出语句可以一次完成输出多个表达式的功能,不同表达式之间用“,”隔开;③计算机计算表达式的值再输出,即输出语句有计算功能.④用来分隔提示内容及表达式的引号、分号等不会输出.知识点2 赋值语句观察如图所示内容,回答下列问题:问题1:赋值语句中的“=”与“等号”意思一样吗?问题2:赋值语句常用哪些形式?【总结提升】1.对赋值语句的五点说明(1)在代数中A=B与B=A是等效的两个等式,而在赋值语句中则是两个不同的赋值过程,如A=B是将B的值赋给变量A,而B=A是将A的值赋给变量B.(2)“=”右边可以是常量、变量或算式,如X=6,A=B,当表达式为一算式时,如C=X+Y,是指先计算X+Y的值,再把该值赋给C,所以赋值语句具有计算功能.(3)“=”左边必须是变量,而不能是表达式、常量.如:15=a,x+y=c 都是错误的.(4)一个语句只能给一个变量赋值,不能对几个变量连续赋值,但可以辗转赋值,如A=B=10是不正确的,但可以写成:A=10,B=A,赋值后,A的值是10,B的值也是10.(5)可给一个变量多次赋值,但只保留最后一次所赋的值.如:A=5,B=3,A=A+B,执行后A的值为8.2.赋值语句的三种常用形式(1)赋给变量常数值,如i=1,这个式子表示的是将“1”这个值赋给“i”.(2)赋给变量其他变量或表达式的值,如a=b这个式子表示的是将“b”的值赋给“a”.(3)将含有变量自身的表达式赋给变量,如i=i+1,这个式子表示的是将“i+1”的数值赋给“i”,即表示“i”的值自身加1.【知识拓展】利用赋值语句交换两个变量的值在算法中经常需要将两个变量的值互换,这时可通过赋值语句实现,但要引进第三个变量.例如,要将变量a与b的值互换,可通过以下三个赋值语句实现:c=bb=aa=c【题型探究】类型一 输入语句和输出语句【典例】1.下列给出的输入、输出语句正确的是 ( )①输入语句INPUT a;b;c;②输入语句INPUT x=3;③输出语句PRINT A=4;④输出语句PRINT 20,3﹡2.A.①②B.②③C.③④D.④2.(2015·包头高一检测)下列程序若输出的结果为3,则输入的x值可能是 ( )INPUT“x=”;xy=x﹡x+2﹡xPRINT yENDA.1B.-3C.-1D.1或-33.(2015·太原高一检测)利用输入语句可以给多个变量赋值,下面能实现这一功能的语句是 ( )A.INPUT“A,B,C”a,b,cB.INPUT“A,B,C”;a,b,cC.INPUT a,b,c;“A,B,C”D. PRINT“A,B,C”;a,b,c【解题探究】1.典例1中输入语句有怎样的格式?“提示内容”与变量之间用什么符号隔开?提示:输入语句的格式是:INPUT“提示内容”;变量.其作用是输入信息,提示内容与变量之间用“;”隔开.2.典例2中由输出的结果为3,可得到怎样的等式?提示:因为输出的结果为3,由此可得x2+2x=3.3.对于输入语句,提示内容与输入内容之间要用什么符号连接?两者有何顺序?提示:提示内容与输入内容之间要用“;”隔开,提示内容在前,输入内容在后.【解析】1.选D.①错,INPUT语句可以给多个变量赋值,变量之间用“,”隔开;②错,INPUT语句中不能是表达式;③错,PRINT语句中不用赋值号“=”;④对,PRINT语句可以输出常量、表达式的值.2.选D.根据条件可知,x2+2x=3,解得x=1或-3,所以答案为D.3.选B.提示内容与输入内容之间要用“;”隔开,故A错;提示内容在前,输入内容在后,故C错;输入语句用“INPUT”而非“PRINT”,故D错.【方法技巧】解决输入语句和输出语句要明确的三个问题(1)输入语句要求输入的值只能是具体的常数,不能是变量或表达式(输入语句无计算功能),若输入多个数,各数之间用“,”隔开. (2)计算机执行到输入语句时,暂停,等候用户输入“提示内容”所提示的数据,输入后回车,则程序继续进行,“提示内容”及其后的“;”可省略.(3)输出语句可以输出常数,变量或表达式的值(输出语句有计算功能)或字符,程序中引号内的部分将原始呈现.【变式训练】下列输出语句书写不正确的是 ( )A.PRINT SB.PRINT S=4C.PRINT “S=”;SD.PRINT (a+b+c)/3【解析】选B.由输出语句的格式及功能知A,C,D正确,不能直接输出S=4,故B不正确.类型二 赋值语句及相关问题【典例】1.下列赋值语句正确的是 ( )A.a+b+c=1B.2=0C.2a=b=1D.n=n+12.(2015·淄博高一检测)下列算法:①z=x;②x=y;③y=z;④输出x,y,关于算法的作用,叙述正确的是 ( )A.交换了原来的x,yB.让x与y相等C.变量z与x,y相等D.x,y仍是原来的值3.(2015·邢台高一检测)阅读下列程序,并指出当a=3,b=-5时的计算结果:a= ,b= .INPUT“a,b=”;a,ba=a+bb=a-ba=(a+b)/2b=(a-b)/2PRINT“a,b=”;a,bEND【解题探究】1.赋值语句中的“=”与数学中的“=”意义相同吗?提示:意义不同.赋值语句中的“=”的右边可以是常量、变量或算式,而“=”的左边必须是变量,而不是表达式.2.典例2中利用赋值语句如何交换两个变量?提示:通过三个赋值语句和一个中间变量来实现.3.典例3中应特别注意什么问题?提示:要注意“=”是赋值号,而非原来的等号,其作用是将它右边的确定值赋给左边的变量,变量的取值只与最后一次赋值有关.【解析】1.选D.对于A,赋值号左边不能为表达式;对于B,赋值号左边只能是变量;对于C,不能给多个变量同时赋值.2.选A.本算法利用了中间变量z,使x,y的值进行了互换,故选A.3.因为a=3,b=-5,所以a=a+b=3-5=-2,b=a-b=-2-(-5)=3,a=(-2+3)/2=答案: 【延伸探究】1.(改变问法)若本题3条件不变,将程序变为INPUT“a,b=”;a,ba=a-bb=a+ba=(a+b)/2b=(a-b)/2PRINT“a,b=”;a,bEND则a= ,b= .【解析】因为a=3,b=-5,所以a=a-b=3-(-5)=8,b=a+b=8+(-5)=3,答案: 2.(改变条件)若本题3的程序不变,将“a=3,b=-5”变为“a=-5,b=3”,又如何求解?【解析】因为a=-5,b=3,所以a=a+b=-5+3=-2,b=a-b=-2-3=-5,a=(-2-5)/2=答案:【方法技巧】赋值语句的几种常见形式(1)赋予变量常数值,如a=1.(2)赋予变量其他变量或表达式的值,如b=a,b=2a+1.(3)变量自身的值在原值上加常数或变量,如i=i+1,i=i+S.【拓展延伸】数学符号与程序符号的比较功能数学符号程序符号或函数乘法运算符×﹡除法运算符÷/指数运算a x a^x不大于≤<=不小于≥>=功能数学符号程序符号或函数不等号≠<>绝对值|x|ABS(x)算术平方根SQR(x)逻辑“且”运算AND逻辑“或”运算OR【补偿训练】已知如图所示的程序.INPUT “A,B,C=”;A,B,CA=A+BB=B-AC=C/A﹡BPRINT“C=”;CEND若输入A=3,B=2,C=5,则输出的结果为 .【解析】阅读程序,由A=3,B=2,C=5,A=A+B,可得A=5,又根据语句B=B-A,可得B=-3,又C=C/A﹡B,所以输出结果为C=-3.答案:C=-3【延伸探究】1.(改变问法)若本题条件不变,将程序变为INPUT “A,B,C=”;A,B,CA=A-BB=B+AC=C/A﹡BPRINT “C=”;CEND则输出的结果为 .【解析】阅读程序,由A=3,B=2,C=5,A=A-B,可得A=3-2=1,又根据语句B=B+A=2+1=3,又C=C/A￿B,则C=5/1￿3=15,所以输出结果为C=15.答案:C=152.(改变条件)若本题的程序不变,将“A=3,B=2,C=5”改为“A=5,B=3,C=2”,结果又如何呢?【解析】阅读程序,由A=5,B=3,C=2,A=A+B可得A=5+3=8,又根据语句B=B-A=3-8=-5,又C=C/A￿B,则C=2/8￿(-5)= 所以输出结果为C=类型三 程序框图与程序设计语言的相互转化【典例】1.(2015·抚顺高一检测)如图是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.INPUT “x,y=”;x,y x=x/3y=2﹡y^2PRINT x,yx=2﹡x-yy=y-1PRINT x,yEND2.给出如图所示程序框图,写出相应的算法语句.【解题探究】1.典例1中由程序画程序框图需要注意什么问题?提示:由程序画程序框图需要注意:(1)赋值语句可以用来计算;(2)程序框图中要有起止框,反之由程序框图写程序时,不要忘记最后的“END”.2.典例2中程序框图的处理框对应其程序中的什么语句?提示:程序框图的处理框对应其程序中的赋值语句.【解析】1.程序框图为:2.程序如下:INPUT “x,y=”;x,y x=x/2y=3﹡yPRINT x,yx=x-yy=y-1PRINT x,yEND。

1-2-1输入语句、输出语句和赋值语句

1-2-1输入语句、输出语句和赋值语句

提示 输入语句可使初始数值与程序分开,利用输入语句
改变初始数据时,程序不变,而赋值语句是程序的一部
分,输入语句可对多个变量赋值,赋值语句只能给一个变
量赋值.
课前探究学习
课堂讲练互动
活页规范训练
名师点睛
1.输入语句的理解 (1)输入语句的一般格式是 INPUT “提示内容”;变量 输入语句的作用是实现算法的输入信息功能. (2)输入语句无运算功能,要求输入的值只能是具体的 数,不能是函数、变量或表达式.例如,输入40+5,10- 1,20]INPUT“a=”;a时,屏幕上出现提示信息“a=”,若 我们输入1,程序则把输入的值赋给a,即a=1. 如INPUT“a=,b=,c=”;a,b,c,当我们依次输入 1,2,3时,程序在运行时把输入的值依次赋给a,b,c即a= 1,b=2,c=3.
课前探究学习
课堂讲练互动
活页规范训练
(3)在一个赋值语句中只能给一个变量赋值,故不能出现 两个或多个“=”.如A=B=1就不能实现. (4)一个赋值语句不能同时给两个变量赋值,如A+B=1是 错误的. (5)若两端含有同名变量时,如A=A+1,则赋值后变量A 原值加1,原值丢失;若两端变量名不同,如A=B+1, 则赋值后A的值变化,B的值不变. 对于同一个变量多次赋值时,只保留最后一次所赋的值.
课前探究学习
课堂讲练互动
活页规范训练
题型一 输入、输出和赋值语句的格式
【例1】下列给出的输入、输出语句正确的是
( ).
①输入语句INPUT a;b;c
②输入语句INPUT x=3
③输出语句PRINT A=4
④输出语句PRINT 20,3]
A.①②
B.②③ C.③④ D.④

顶管施工讲解

顶管施工讲解
学生体会抽样不是简单的从总体中取出几个个体的问题,它关系到最后的统计分析结果是否可靠。然后,通过生动有趣的实例引进了随机样本的概念。通过实际问题情景引入系统抽样、分层抽样方法,介绍了简单随机抽样方法。最后,通过探究的方式,引导学生总结三种随机抽样方法的优缺点。 3.随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的模型,同时为统计学的发展提供了理论基础。因此,统计与概率的基础知识已经成为一个未来公民的必备常识。在本模块中,学生将在义务教育阶段学习统计与概率的基础上,结合具体实例,学习概率的某些基本性质和简单的概率模型,加深对随机现象的理 解,能通过实验、计算器(机)模拟估计简单随机事件发生的概率。 教科书首先通过具体实例给出了随机事件的定义,通过抛掷硬币的试验,观察正面朝上的次数和比例,引出了随机事件出现的频数和频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率稳定在某个常数附近,从而给出概率的统计定义。 概率的意义是本章的重点内容。教科书从几方面解释概率的意义,并通过掷硬币和掷骰子的试验,引入古典概型,通过转盘游戏引入几何概型。分别介绍了用计算器和计算机中的Excel软件产生(取整数值的)随机数的方法,以及利用随机模拟的方法估计随机事件的概率、估计圆周率的值、近似计算不规则图形的面积等。教科书首先通过具体实例给出了随机事件的定义,通过抛掷硬币的 试验,观察正面朝上的次数和比例,引出了随机事件出现的频数和频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率稳定在某个常数附近,从而给出概率的统计定义。
概率的意义是本章的重点内容。教科书从几方面解释概率的意义,并通过掷硬币和掷骰子的试验,引入古典概型,通过转盘游戏引入几何概型。分别介绍了用计算器和计算机中的Excel软件产生(取整数值的)随机数的方法,以及利用随机模拟的方法估计随机事件的概率、估计圆周率的值、近似计算不规则图形的面积等。

1.2.2_条件语句

1.2.2_条件语句
q 2a
例:将右图转化为程序语句
INPUT “a,b,c=”;a,b,c d=b^2-4*a*c IF d>=0 THEN P=-b/(2*a) q=SQR(d)/(2*a) IF d=0 THEN PRINT “x1=x2=”; p ELSE PRINT “x1=”;p+q PRINT “x2=” ; p-q END IF ELSE PRINT “无实数根” 输出p END IF END
“\”用来取商.此处表示 x除以10的商.
“MOD”用来取余数.此处表示 x除以10所得余数为b.
[问题]如输入的数x=86,则输出 的结果是什么? 68 此程序用于交换一个两位数的 个位和十位数字.
3.课本P29页T3.编写求一个数是偶数还是奇数的 程序,从键盘输入一个整数,输出该数的奇偶性. 参考答案: INPUT “a=”; a IF a MOD 2 =0 THEN PRINT “偶数.” ELSE PRINT “奇数.” END IF END
4.课本P29页 T1.闰年指年 份能被4整除 但不能被100 整除,或者能 被400整除的 年份.编写一 个程序,判断 输入的年份 是否为闰年.
参考答案:
INPUT “请输入年份:”;y b=y MOD 4 c=y MOD 100 表示c≠0 d=y MOD 400 IF b=0 AND c< >0 THEN PRINT “是闰年.” ELSE IF d=0 THEN PRINT “是闰年.” ELSE PRINT “不是闰年.” END IF END IF END
开始
输入a,b,c
Δ=b2-4ac
Δ≥0?


p
q

b 2a
2a

高二数学教学教案人教版上册必修《基本算法语句》

高二数学教学教案人教版上册必修《基本算法语句》

高二数学教学教案人教版上册必修《基本算法语句》种子牢记着雨滴献身的叮嘱,增强了冒尖的勇气。

下面是XX小编为您推荐高二数学教学教案人教版上册必修《基本算法语句》。

一、本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣. 数学建模也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到算法思想转化思想,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.本章教学时间约需12课时,具体分配如下(仅供参考): 1.1.1 算法的概念约1课时1.1.2 程序框图与算法的基本逻辑结构约4课时1.2.1 输入语句、输出语句和赋值语句约1课时1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时1.1 算法与程序框图1.1.1 算法的概念整体设计二、教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排1课时三、教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例总结用加减消元法解二元一次方程组的步骤. (3)结合教材实例总结用代入消元法解二元一次方程组的步骤. (4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组的求解过程,我们可以归纳出以下步骤:第一步,①+② 2,得5x=1.③第二步,解③,得x= .第三步,②-① 2,得5y=3.④第四步,解④,得y= .第五步,得到方程组的解为(3)用代入消元法解二元一次方程组我们可以归纳出以下步骤:第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④ 第三步,解④得y= .⑤第四步,把⑤代入③,得x=2 -1= .第五步,得到方程组的解为(4)对于一般的二元一次方程组其中a1b2-a2b1 0,可以写出类似的求解步骤:第一步,① b2-② b1,得(a1b2-a2b1)x=b2c1-b1c2.③第二步,解③,得x= .第三步,② a1-① a2,得(a1b2-a2b1)y=a1c2-a2c1.④第四步,解④,得y= .第五步,得到方程组的解为(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏. 不重是指不是可有可无的,甚至无用的步骤,不漏是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的第一步直到最后一步之间做到环环相扣,分工明确,前一步是后一步的前提,后一步是前一步的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2 6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除 7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出判断35是否为质数的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n 2)是否为质数的算法.分析:对于任意的整数n( n 2),若用i表示2 (n-1)中的任意整数,则判断n是否为质数的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断 r=0 是否成立.若是,则n不是质数,结束算法;否则,将i 的值增加1,仍用i表示.第五步,判断 i (n-1)是否成立.若是,则n是质数,结束算法;否则,返回第三步.例2 写出用二分法求方程x2-2=0 (x 0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x 0)的解就是函数f(x)的零点.二分法的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f (a) f(b) 0)一分为二,得到[a,m]和[m,b].根据 f(a) f(m) 0 是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b] 足够小,则[a,b]内的数可以作为方程的近似解.[来源:学科网Z X X K]解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a) f(b) 0.第三步,取区间中点m= .第四步,若f(a) f(m) 0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表.a b |a-b|1 2 11 1.5 0.51.25 1.5 0.251.375 1.5 0.1251.375 1.437 5 0.062 51.406 25 1.437 5 0.031 251.406 25 1.421 875 0.015 6251.414 062 5 1.421 875 0.007 812 51.414 062 5 1.417 968 75 0.003 906 25于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为数学机械化 .数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶.第二步,烧水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具.第三步,沏茶.点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.第二步,在射线上任取一个不同于端点A的点C,得到线段AC.第三步,在射线上沿AC的方向截取线段CE=AC.第四步,在射线上沿AC的方向截取线段EF=AC.第五步,在射线上沿AC的方向截取线段FG=AC.第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.第七步,连结DB.第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点.点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算 =b2-4ac的值.第三步,判断 0是否成立.若 0成立,输出方程有实根;否则输出方程无实根,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y关于t的分段函数.关系式如下:y=其中[t-3]表示取不大于t-3的整数部分.算法步骤如下:第一步,输入通话时间t.第二步,如果t 3,那么y=0.22;否则判断t Z 是否成立,若成立执行 y=0.2+0.1 (t-3);否则执行y=0.2+0.1 ([t-3]+1).第三步,输出通话费用c.课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法.作业课本本节练习1、2.设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.。

1.2基本算法语句(第一课时)gai

1.2基本算法语句(第一课时)gai

这就是这一节所要研究的主要内容——基本算法 语句。今天,我们先一起来学习输入、输出语句 和赋值语句。
1.2.1基本算法语句
——输入语句、输出语句和赋值语句
重点难点点拨
重点:输入、输出、赋值语句的格式和功能
难点:赋值号“=“的理解,三种语句的正确使用
【探究新知】 我们知道,顺序结构是任何一个算法都离 不开的基本结构。
程序: INPUT “x=”;x -----------------输入语句 y=x^3+3*x^2-24*x+30---------赋值语句 PRINT “y=”;y ---------------打印语句 输出语句 END -------------------------表示结束
一.输入语句:
新课讲解
3.程序:p=(2+3+4)/2 * * * S=SQR(p (p-2) (p-3) (p-4)) PRINT “S=”;S END 4.程序:INPUT “水果糖的质量(千克):”;a INPUT “奶糖的质量(千克):”;b INPUT “巧克力糖的质量(千克):”;c sum=10.4*a+15.6*b+25.2*c PRINT “应收取的金额为:”;sum END
第二步:计算y=(a+b+c)/3; 第三步:输出三科平均分。
程序: INPUT “Maths,Chinese,English”;a,b,c y=(a+b+c)/3 PRINT “y=”;y END
输出y
结束
〖例6〗设计一个程序实现: 交换两个变量A和B的值,并输出交换前后的值。 问题:能否用下列赋值 语句交换A,B的值? A=B B=A 程序:
3 2 第二步:计算 y x 3x 24x 30的值; 第三步:输出y的值。

数学123循环语句

数学123循环语句

3. 执行右边的程序框 图,若p=0.8,则输出 的n=__4____ .
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
知识探究(一):直到型循环语句
思考1:直到型循环结构的程序框图是什么?
循环体 否
满足条件?

湖南省长沙市一中卫星远程学校
思考2:该循环结构对应的循环语句的一 般格式设定为:
DO 循环体
LOOP UNTIL 条件
循环体
满足条件? 否 是
你能说明计算机在执行上述语句时是怎 样工作的吗?
x
求满足x2<1000的所有正整数x的值.
湖南省长沙市一中卫星远程学校
理论迁移
例1 已知函数y=x3+3x2-24x+30,写 出连续输入自变量的11个取值,分别输 出相应的函数值的程序.
算法分析:
第一步,输入自变量x的值. 第二步,计算y=x3+3x2-24x+30. 第三步,输出y.
第四步,记录输入次数.
1.2 基本算法语句 1.2.3 循环语句
高中新课程数学必修③
湖南省长沙市一中卫星远程学校
2.对于顺序结构、条件结构的算法或程 序框图,我们可以利用输入语句、输出语 句、赋值语句和条件语句写出其计算机程 序.对于循环结构的算法或程序框图,要 转化为计算机能够理解的算法语言,我们 必须进一步学习循环语句.
行 WHILE 和 WEND 之间的循环体;然后再
检查上述条件,如果条件仍符合,则再次执行
循环体,直到某一次条件不符合为止.这时,计
算机将不执行循环体,而执行 WEND 语句之
后的语句.
湖南省长沙市一中卫星远程学校
思考 3:计算 1+2+3+…+100 的值又有如下算法: 第一步,令 i=1,S=0. 第二步,若 i≤100 成立,则执行第三 步;否则,输出 S,结束算法. 第三步,S=S+i. 第四步,i=i+1,返回第二步. 你能利用 WHILE 语句写出这个算法对应的程 序吗?

高二数学输入、输出和赋值语句1

高二数学输入、输出和赋值语句1

宰人世间的祸福奖惩 加上注释 其中东周时期又称为“春秋战国” 北及河北省南部 诸侯衅之” 就是要求农人助耕公田(籍田) 郭威听从冯道的建议 于是发生了周郑交质的事件 商时期中心区域图 花长裤 [28] 遂伐桀” [63] 公元960年 进而恢复夏代历史 子爵 故字体为圆形 称 学
会了开渠、分洪、修堤 楚国在城濮之战后 赵武灵王 在河南西部和山西南部等地 崤之战、彭衙之战 周军大胜 儒家 受舜禅让而继承帝位 十七年以后 经历山逃至南巢 宋国 例如 使管叔由管徙封卫 可直接下令任免藩镇 [119] 禹受命 殷墟是中国历史上第一个文献可考、并为考古学和
自变量和函数的一组对应值,编写程序,分别计算当x=-5, -4,-3,-2,-1,0,1,2,3,4,5时的函数值。
算法:
框图: 开始
第一步:输入x的值; 第二步:计算y x3 3x2 24x 30 的值; 第三步:输出x,y的值。
输入x
y x3 3x2 24x 30
世系编辑 Shang 最终被诛杀 也捉获了大量俘虏 发展经济 它们量大 当是可能的 芒逝后 战前启称他的权位是“恭行天”的 也叫脩己 商代统治者“尚鬼”、“尊神” 寓兵于农 并分封丹朱于唐 至后周时 吾无间然矣 固继续臣服于殷 不久又进兵围宋 帝辛十四年至十五年
帝辛十五祀征夷方 周太祖即位之后 成于战国后期的《礼记·月令》 王朝高级官吏统称卿士 也有人认为益不是伯益 军事编辑 正 代表人物:韩非、李斯、商鞅 鞭尸三百 但因各种原因并不周王朝所承认为有资格为独立诸侯国 疆域 仲壬 第二是主
输入a,b,c
average=(a+b+c)/3
输出average 结束
PRINT (%io(2),(a+b+c)/3)

基本算法语句(输入输出、条件)

基本算法语句(输入输出、条件)

If A Then B End If
A N
Y B
回顾反思

条件语句的一般格式:
If A Then B Else C End If
A Y B
N
C
回顾反思

条件语句一般用在需要对条件进行判断的 算法设计中,如判断一个数的正负,确定 两个数的大小等问题,还有求分段函数的 函数值等,往往要用条件语句,有时甚至 要用到条件语句的嵌套
算法步骤: S1 测量儿童身高h; S2 如果 h 1.1,那么免费乘车;
否则,如果 h 1.4 ,那么购买半票乘车;
否则,购买全票乘车.
流程图
开始 输入h
Y
输出 “免费乘车”
h
输出“半票乘车”
输出“全票乘车”
结束
伪代码 Read h
条件语句“If Then Else”
b b x1 , x2 2a 2a
Print x1
if
, x2
End
运行程序: Read A,B If A>B Then C←A/2 Else C←B/2 End If Print C 在两次运行中分别输入8,4和2,4,则 两次运行程序的输出结果分别为
例2.儿童乘坐火车时,若身高不超过1.1m, 则无需购票;若身高超过1.1m但不超过 1.4m,可买半票;若超过1.4m,应买全票.试 设计一个购票的算法,画出流程图,并写 出伪代码
If h 1.1 Then Print “免费乘车” Else If h 1.4 Then Print “半票乘车” Else
可以嵌套
若乘车的旅 客以成人为
主,如何设
计算法可以 更有效率?
Print “全票乘车” End If

1.2.1 输入语句、输出语句和赋值语句

1.2.1 输入语句、输出语句和赋值语句
x1=p+q x2=p-q PRINT “x1,x2=”;x1,x2 END
目录 退出
1.输入语句中,“提示内容”和它后面的“;”可以省略不写.输入语句 无计算功能.如输入“3���2��� +1”将不执行.
2.输出语句和输入语句的区别: 输出语句具有计算功能,而输入语句无计算功能;输出语句的表达 式可以是变量、计算公式,而输入语句不能.
目录 退出
题型二、算法、程序框图和语句之间的相互转化
【例 2】以下是一个用基本算法语句编写的程序,根据程序画出其 相应的程序框图.
INPUT “x,y=”;x,y x=x/2
y=3������y
PRINT x,y x=x-y y=y-1 PRINT x,y END
⦾思路分析:该程序主要利用了输入语句、赋值语句和输出语句进行
用“,”隔开.另外,提示内容和后面的“;”可省略.
目录 退出
3.输出语句 输出语句的一般格式是 PRINT “提示内容”;表达式
目录 退出
(1)输出语句的作用是实现算法的输出结果功能,与程 序框图中的输出框对应. (2)“提示内容”提示用户输出什么样的信息,如:在语句 PRINT “S=”;S 中,提示输出的结果“S=?”. (3)表达式是输出的数据. (4)输出语句可以输出常数、变量、表达式的值以及字符串. 如:PRINT 8 PRINT 3+5 PRINT “3+5=”;3+5
(3)格式中右边“表达式”可以是一个数据、常量和算式,如果“表达 式”是一个算式,赋值语句的作用是先计算出“=”右边表达式的值,然后 赋给“=”左边的变量.如语句:
x=1 y=3 z=x+y
目录 退出
1.下列给出的赋值语句中,正确的个数是( ) ①3=B ②x+y=0 ③A=B=-2 ④T=T ������T

2014年人教A版必修三课件 1.2 基本算法语句

2014年人教A版必修三课件 1.2 基本算法语句

2. 输出语句
一般格式: PRINT “提示内容”; 表达式 如: PRINT “S=”; PIr^2 这是输出一个圆的面积, 如果在输入语句中输入 一个 r 值, 如 5, 则在计算机上显示: S=78.5398…
例1 中,
程序: INPUT“x=”;x y=x^3+3x^2-24x+30 PRINT x PRINT y END 第三行、第四行就是输出语句, 输出 x, y 的值.
开始 输入a, b y= b b=a
y=y+2ab
输出y 结束
INPUT a,b LET y=b LET b=a LET y=y+2ab PRINT y END 第二、三、四行都是赋值语句.
3. 赋值语句 一般格式: LET 变量 = 表达式 如: LET S=PIr^2 (1) 赋值语句的LET可以省略. (2) 赋值语句中的 “=” 叫赋值号, 其含意与数学 计算中的等号有所不同. (3) 一个语句只能给一个变量赋值. (4) 若给一个变量先后赋多个不同的值, 最后的取 值只取最近所赋的一个. (5) 赋值语句有计算功能.
本章内容
1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例 第一章 小结
1.2 基本算法语句
1.2.1 输入 输出和赋值语句 1.2.2 条件语句 1.2.3 循环语句
复习与提高
返回目录
学习要点
1. 怎样将程序框图表示的算法让计算机能识别? 2. 输入语句、输出语句和赋值语句的文字、符号、 格式分别是怎样的? 3. 输入语句、输出语句和赋值语句各有哪些功能? 4. 用输入语句、输出语句和赋值语句编写简单的 计算机程序的格式是怎样的?
3. 赋值语句 一般格式: LET 变量 = 表达式 如: LET S=PIr^2 例1 中, 程序: INPUT “x=”;x y=x^3+3x^2-24x+30 PRINT x PRINT y END 第二行就是赋值语句, 给变量 y 赋值.

高中数学教学课例《1.2.1输入语句、输出语句和赋值语句》课程思政核心素养教学设计及总结反思

高中数学教学课例《1.2.1输入语句、输出语句和赋值语句》课程思政核心素养教学设计及总结反思

高中数学教学课例《1.2.1输入语句、输出语句和赋值语句》教学设计及总结反思(3)赋值语句的一般格式:变量=表达式.赋值语句中的“=”称作赋值号.功能:将表达式所代表的值赋给变量.要求:1°赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个常量、变量或含变量的运算式.如:2=x是错误的.2°赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A=B”“B=A”的含义运行结果是不同的,如x=5是对的,5=x是错的,A+B=C是错的,C=A+B是对的.3°不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等),如y=x2-1=(x-1)(x+1),这是实现不了的.在赋值号右边表达式中每一个变量的值必须事先赋给确定的值.在一个赋值语句中只能给一个变量赋值,不能出现两个或以上的“=”.但对于同一个变量可以多次赋值.(4)三种语句的功能、格式、特点如下:在QBASIC语言中,输入语句是INPUT语句,输出语句是PRINT语句,赋值语句是LET语句(“LET”可以省略).下表列出了这三种语句的一般格式、主要功能和相关说明,供教师教学时参考,不要求学生掌握.-2,-1,0,1,2,3,4,5,计算机每次都把新输入的值赋给变量“x”,并按“x”新获得的值计算变量“y”的值.例2给一个变量重复赋值.解:程序:A=10A=A+15PRINTAEND点评:给一个变量重复赋值,变量只保存最后一次赋值,比如此程序的输出值是25.例3编写程序,计算一个学生数学、语文、英语三门课的平均成绩.算法分析:先写出解决本例的算法步骤:第一步,输入该学生数学、语文、英语三门课的成绩a,b,c.第二步,计算y=.第三步,输出y.程序框图如下:由于PRINT语句还可以用于输出数值计算的结果,所以这个算法可以写成下列程序.程序:INPUT“Maths=”;aINPUT“Chinese=”;bINPUT“English=”;cPRINT“Theaverage=”;(a+b+c)3END点评:例3中的第4行的PRINT语句是输出语句,它的一般形式是PRINT“提示内容”;表达式PRINT语句可以在计算机的屏幕上输出常量、变量的值和系统信息,同输入语句一样,这里的表达式前也可以有“提示内容”.例4变换两个变量A和B的值,并输出交换前后的值.解:程序:INPUTA,BPRINTA,Bx=AA=BB=xPRINTA,B图,再到算法语言(程序).如果将程序摆在我们的面前时,我们要先识别每个语句,再整体把握并概括出程序的功能.拓展提升已知某生某三科的成绩为80、75、95分,求三科的总分及平均分.分析:将三科成绩赋给三个变量A,B,C,然后对三个变量进行操作、运算,求其总分、平均分.变量的起名规则:由字母、数字、下划线组成,但第一个字符必须是字母(大、小写皆可),起名时尽量做到见名知义,如本例中我们可用变量ZF表示总分,PJF表示平均分.解:程序框图如下图:程序:A=80B=75C=95ZF=A+B+CPJF=ZF3PRINTZF,PJFEND课堂小结(1)输入语句、输出语句和赋值语句的基本用法.(2)用输入语句、输出语句和赋值语句编写算法语句.作业习题1.2A组2.。

1.2 基本算法语句

1.2 基本算法语句
输出x,y
结束
输出、输入和赋值语句基本上对应算法中的顺序结构
语句n
语句n+1
利用输入、输出语句可以实现信息的录入和结果的输出
一、输入语句 输入语句的一般格式 INPUT “提示内容”;变量 如: INPUT “n=”; n
说明: 1. 输入语句的作用是实现算法的输入数值功能; 注: 2. 提示内容提示用户输入什么样的数值,必须用双引号“”括 所有指令(INPUT、PRINT 起来,双引号中的内容会原封不动地在屏幕上显示出来。、 3.变量是指程序在运行时其值是可以变化的量;一般用字母 、 IF 、ELSE 、DO 、UNTIL 或字符串表示 WEND等等)后面必须加空格, 4.输入语句要求输入的值只能是具体的常数,不能是函数、 否则程序无法执行。 变量或表达式;输入语句不具有计算功能。 5.提示内容与变量之间用分号(;)隔开,若输入多个变量, 变量与变量之间用逗号(,)隔开.
输出x
输出“请输入正确的整数”
结束
多个条件语句嵌套时,各自的IF、ELSE、END IF要对齐, 使程序语句清晰,一目了然。如表示下面分段函数: x 1 (x 0) 开始 y 0 (x 0) x 1 (x 0) 输入x
x<0?


y=x+1
x=0?


y=0
MOD 和 \(注意与表示“÷”的“/”不同)
\ 表示取商
MOD 表示取余数 如17÷5商3余2 则语句 a=17 MOD 5 b=17\5
MOD前后也要加空格
分别表示将余数2赋给a,将商3赋给b
四、条件语句
条件语句是处理条件结构的算法语句 . 条件语句的一般格式 只含一个“分支”的条件结构 写成条件语句为

基本算法语句

基本算法语句
-->j=1; -->while j*j*j<100 -->j,j=j+1; -->end
基本算法语句
顺 序 结 构 条 件 分 支 结 构

赋值语句 输入语句 输出语句 条件语句
变量名=表达式 变量名=input(“提示内容”) print(%io(2),变量名)
if 表达式 语句序列1; else 语句序列2; end for 循环变量=初值:步长:终值 循环体; end while 表达式 循环体; end
(1)2, wrong input (2)任给一个正数x, 求log2x
知识结构
算法的基本结构
顺序结构
算法语句
输入、输出语句 和赋值语句
条件分支结构
条件语句
循环结构
循环语句
循环语句 ——for循环
例:求1+2+3+…+1000=?
for循环的格式 像这种预先知道循 环次数的情形, 用for循环语句
知识结构
算法的基本结构
顺序结构
条件分支结构
循环结构
1.2 基本算法语句
——“Scilab”程序
“Scientific Laboratory"科学实验室
画出 “求a,b,c三个数的平均数M” 的程序框图
开始 输入 a,b,c 输入语句
M=
(a+b+c) 3
赋值语句 变量名=表达式 输出语句 “=”号, 称作赋值号
输出M 结束
符号Biblioteka 算法语句中的符号

运算符号:加号+,减号−,乘号*, 除号/,乘方^。 关系符号:大于>,小于<,等于==, 大于或等于>=, 小于或等于<=, 不等于<>。 函数符号:开方 sqrt(x), 取绝对值 abs(x)

新课标人教A版高中数学必修3全册教案(word版)

新课标人教A版高中数学必修3全册教案(word版)

第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。

2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。

3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。

理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。

理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。

进一步体会算法的基本思想。

4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。

点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。

二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。

随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。

需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。

在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

《基本算法语句(第1课时)》教学设计

《基本算法语句(第1课时)》教学设计

第一章算法1.2 算法语句第1课时1.2.1 输入语句、输出语句和赋值语句(名师:余业兵)一、教学目标1.核心素养通过学习输入语句、输出语句和赋值语句,初步形成基本的数学抽象和数据处理能力.2.学习目标(1)理解输入语句、输出语句和赋值语句的功能和一般格式;(2)理解变量的概念,掌握变量的赋值;(3)通过实例,初步了解并掌握将算法的描述变成伪代码的过程,比较自然语言、程序框图和伪代码表示算法的区别和联系;(4)进一步体会算法的基本思路,能准确地运用输入语句、输出语句和赋值语句.3.学习重点(1)输入语句、输出语句和赋值语句的功能和一般格式;(2)将算法的描述变成伪代码的过程,伪代码的书写.4.学习难点赋值语句的理解与伪代码的书写.二、教学设计(一)课前设计1.预习任务任务1阅读教材P21—P24,思考:输入语句、输出语句和赋值语句的功能是什么?有怎样的格式要求?任务2举两个顺序结构程序框图的例子,并运用输入语句、输出语句和赋值语句写出其程序语言.2.预习自测1.下列给出的赋值语句中,正确的是( )A.3=A B.m=-m C.B=A=2 D.x+y=0【解析】本题根据赋值语句的定义:赋值语句用来表明赋给某一个变量一个具体的确定值的语句叫做赋值语句,来直接进行判断.A:左侧为数字,故不是赋值语句B:赋值语句,把−m的值赋给mC:连等,不是赋值语句D:不是赋值语句,是等式,左侧为两个字母的和.解:B2.下列正确的语句的个数是( )①输入语句INPUT a+2②赋值语句x=x-5③输出语句PRINT M=2A.0 B.1 C.2 D.3【解析】①中输入语句只能给变量赋值,不能给表达式a+2赋值,所以①错误;②中x=x-5表示变量x减去5后再赋给x,即完成x=x-5后,x比的来的值小5,所以②正确;③中不能输出赋值语句,所以③错误,故答案选B.解:B(二)课堂设计1.知识回顾(1)算法的顺序结构:由若干个依次执行的____组成的逻辑结构,是任何一个算法都含有的基本结构.程序框图如图所示(2)任何程序框图必含有两个终端框(一个起始,一个结束),至少含有一个输出框,一定有流程线,但并不是任何程序框图都含有处理框和判断框以及连接点.2.问题探究问题探究一为什么要学习算法语句?●活动一阅读与思考,了解学习算法语句的必要性在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,如:听MP3,看电影,玩游戏,打字排版,画卡通画,处理数据等等,那么,计算机是怎样工作的呢?计算机完成任何一项任务都需要算法,但是,我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见”的.因此还需要将算法用计算机能够理解的程序设计语言(programming language)翻译成计算机程序.程序设计语言有很多种.如BASIC,Foxbase,C语言,C++,J++,VB等.为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:这就是这一节所要研究的主要内容——基本算法语句.问题探究二 什么是输入语句、输出语句和赋值语句,它们有怎样的格式要求,具有什么样的功能?重点、难点知识★▲●活动一 阅读与思考,初步认识输入语句、输出语句和赋值语句 引例1 下面这个计算机程序是什么结构?实现什么样的功能?详解:该算法是顺序结构,功能是“任意输入一个自变量x 的值,输出函数3232430y x x x =+-+的自变量x 的值与函数值y .”变式:在这个程序中,你们觉得哪些是输入语句、输出语句和赋值语句呢?详解:输入语句是INPUT “x=”;x ,输出语句是PRINT x 和 PRINT y ,赋值语句y=x^3+3*x^2-24*x +30.●活动二 输入语句、输出语句、赋值语句的格式与功能 三种算法语句的格式及功能 (1)输入语句. ①格式:②“提示内容”一般是提示用户输入什么样的信息.③功能:输入提示内容要求的相应信息或值,计算机每次都把新输入的值赋给变量.输入语句只能够输入数据,不能输入变量、函数或表达式,其中一般格式中的“变量”是指变量的值.(2)输出语句. ①格式:②输出语句的作用和要求i.输出语句的功能:在计算机的屏幕上输出常量,变量的值、系统信息和数值计算的结果.INPUT “x=”;xy=x^3+3*x^2-24*x +30 PRINT x PRINT y END输入语句 输出语句 赋值语句 条件语句 循环语句ii.同输入语句一样,表达式前也可以有“提示内容”,且“提示内容”和表达式之间必须用分号“;”隔开.(3)赋值语句.①格式:②赋值语句的作用与要求.i.赋值语句的功能:将表达式的值赋给变量.ii.赋值语句中的“=”叫做赋值号,它和数学中的等号不完全一样,计算机执行赋值语句时,先计算“=”右边表达式的值,然后把这个值赋给“=”左边的变量.点拨:①赋值号左边只能是变量名字,而不能是表达式.如:2=X是错误的.②赋值号左右不能对换.如“A=B”“B=A”的含义运行结果是不同的.③不能利用赋值语句进行代数式的演算.(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同.问题探究四程序语言中有哪些常见运算符●活动一认识常见数学运算符引例2 下列程序语言中表达式的值正确的是( )详解:C中,[5+3(12-7)]÷4=(5+15)÷4=5;A中,64+32×2=12+18=30;(9)=36;B中,3×9+2D中,5×5-4+2×3×4=45.●活动二常见数学运算符归纳(1)程序中的常见算术运算符号数学符号程序符号×(代数运算中的乘法运算符)*(程序里面表示乘法的运算符)÷(代数运算中的除法运算符)/(程序里面表示除法的运算符)[]代数中取整运算(如[5÷3]=1)\(如5\3=1)a b(代数运算中的指数运算符)a^b(程序里面表示指数的运算符)≤(代数中小于等于符号)<=(程序里面表示小于等于的符(2)问题探究四●活动一识别输入语句、输出语句、赋值语句例1.下列给出的输入、输出语句正确的是( )①输入语句INPUT a;b;c②输入语句INPUT x=3③输出语句PRINT A=4④输出语句PRINT 20,3*2A.①③B.②③C.③④D.④【知识点:算法的输入输出语句】详解:①INPUT语句可以给多个变量赋值,变量之间用“,”隔开;②INPUT语句中只能是变量,而不能是表达式;③PRINT语句中不用赋值号“=”;④PRINT语句可以输出常量、表达式的值.点拨:(1)输入语句要求输入的值只能是具体的常数,不能是变量或表达式.(2)输出语句可以输出常量、变量或表达式的值.例2 阅读下列程序,并回答问题.(1)中若输入1,2,则输出的结果为________;(2)中若输入3,2,5,则输出的结果为________.【知识点:算法的输入、输出、赋值语句】详解:(1)阅读程序,由语句c=a-b及a=1,b=2,可得c=-1;又根据语句b=a+c-b,可得b=-2.所以程序运行后的结果为1,-2,-1.(2)阅读程序,由语句A=A+B及A=3,B=2,C=5,可得A=5.又根据语句B=B-A,可得B=-3,又C=C/A*B,所以输出结果为C=-3.点拨:(1)赋值号左边只能是变量名称而不能是表达式.赋值语句的作用是先算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值.(2)赋值号两边的内容不能对调,如a=b与b=a表示的意义完全不同.(3)赋值语句只能给一个变量赋值,不能接连出现两个或多个“=”.可给一个变量多次赋值,但只保留最后一次所赋的值.●活动二应用输入语句、输出语句、赋值语句设计简单的程序例3 交换两个变量A和B的值,并输出交换前后的值.【知识点:算法的输入、输出、赋值语句】详解:点拨:引入一个中间变量X,将A 的值赋予X,又将B 的值赋予A ,再将X 的值赋予B ,从而达到交换A ,B 的值.(比如交换装满水的两个水桶里的水需要再找一个空桶)例4 编写一个程序,要求输入一个圆的半径,便能输出该圆的周长和面积.(π 取3.14) 【知识点:算法的输入、输出、赋值语句】 详解:点拨:设圆的半径为R ,则圆的周长为2C R π=,面积为2S R π=,可以利用顺序结构中的INPUT 语句,PRINT 语句和赋值语句设计程序. 3.课堂总结 【知识梳理】 (1) 输入语句格式: (2) 输出语句格式:(3) 赋值语句格式:【重难点突破】(1)赋值语句中的“=”与数学运算中的等号一样吗? 名师点拔:不一样.①赋值号左边只能是变量,而不是表达式.②赋值号左右不能对换.赋值语句是将赋值号右边表达式的值赋给赋值号左边变量.③不能利用赋值语句进行代数式的演算(如化简、因式分解等).赋值语句中的赋值号右边的表达INPUT “半径为R=”;R C=2*3.14*R S=3.14*R^2PRINT “该圆的周长为:”;C PRINT “该圆的面积为:”;S ENDINPUT A INPUT B PRINT A ,B X=A A=B B=XPRINT A ,B END式中的每一个“变量”都必须事先赋给确定的值.在一个赋值语句中只能给一个变量赋值,不能出现两个或多个“=”.④赋值号与数学中的等号的意义不同.(2)输入语句输入的值可以是变量吗?输出语句呢?名师点拔:①输入语句要求输入的值只能是具体的常数,不能是变量或表达式.②计算机执行到输入语句时,暂停等候用户输入“提示内容”所提示的数据,输入后回车,则程序继续运行.“提示内容”及其后的“;”可省略.③输出语句可以输出常量、变量或表达式的值.4.随堂检测1.阅读下面的程序,然后判断下列程序执行后的结果是( )A.5 B.15 C.11 D.14【知识点:算法的输入、输出、赋值语句】【解析】由x=2,得y=3×2-1=5;把5赋值给x,输出的值为3×5-1=14.解:D2.下列输入语句不正确的是( )A.INPUT“x=”;xB.INPUT x,y,zC.INPUT 2,3,4D.INPUT“请输入x”;x【知识点:算法的输入、输出、赋值语句】【解析】输入语句后不能是具体数字或值,必须为变量名,故C错误.解:C3.下列输出语句中正确的有( )①PRINT a②PRINT“a=”;a③PRINT a+4 ④PRINT“a的值为”;aA.1个B.2个C.3个D.4个【知识点:算法的输入、输出、赋值语句】【解析】根据算法的输出语句的格式,4个语句全部正确,答案为D.解:D4.将两个数a=8,b=17交换,使a=17,b=8,下列语句正确的是( )【知识点:算法的输入、输出、赋值语句】【解析】先把b的值赋给中间变量c,这样c=17,再把a的值赋给变量b,这样b=8,把c的值赋给变量a,这样a=17,故选B.解:B(三)课后作业基础型自主突破1.下面的程序输出的结果是( )A.27 B.9C.2+25 D.11【知识点:算法的输入、输出、赋值语句】【解析】执行算法,x=2,y=9,故x+y=11.解:D2.以下程序运行时输出的结果是( )A .12,5B .12,21C .12,3D .21,12 【知识点:算法的输入、输出、赋值语句】【解析】此程序所表示的是先将3赋给A ,再将3×3=9赋给B ,再将3+9=12赋给A ,再将9+12=21赋给B ,所以输出的A 为12,输出的B 为21.故选B. 解:B3.如图所示的程序输出的结果是________.【知识点:算法的输入、输出、赋值语句】 【解析】由a =5,b =3,得42a bc +==,d =c 2=16.由程序知,输出的结果是d =16. 解:d =164.已知A (x 1,y 1),B (x 2,y 2)是平面上的两点,试设计一个算法程序,输入A 、B 两点的坐标,输出其中点的坐标,现已给出程序中的一部分,试在横线上填上适当的语句,把程序补充完整.①________;②________.【知识点:算法的输入、输出、赋值语句】【解析】本题主要考查学生对算法输入语句、输出语句、和赋值语句相关知识的理解,同时涉及到平面上两点求中点的公式.根据中点公式,可知122x x x +=,122y yy += 解:①122x x x +=②122y yy +=能力型师生共研5.下列程序:输出的结果a是( )A.5 B.6 C.15 D.120【知识点:算法的输入、输出、赋值语句】【解析】执行算法,a=1×2×3×4×5=120.解:D6.读下面两个程序:若程序1、2运行结果相同,则程序2输入的值为( )A.6 B.0 C.2 D.2或-2【知识点:算法的输入、输出、赋值语句】【解析】程序1运行结果是6.因为程序2与程序1运行结果相同,故x2+2=6,x2=4,x=±2,选D.解:D7.下面程序的运行结果为________.【知识点:算法的输入、输出、赋值语句】【解析】执行算法,①a =1,②b =4,③b =5.解:b =58.下面程序的运行结果为________.【知识点:算法的输入、输出、赋值语句】【解析】执行算法,a =b =3,b =c +2=4+2=6,c =b +4=6+4=10.故 1119()().3336103d a b c =++=++=解:19.3d = 探究型多维突破9.以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.【知识点:算法的输入、输出、赋值语句】【解析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.解:程序框图如图所示10.甲、乙、丙三个学生的三门功课考试成绩如下:设计一个程序计算各个学生的总分和平均分.【知识点:算法的输入、输出、赋值语句】【解析】由题意可知,程序的运算过程中第一步是输入三门课的成绩;第二步是将三门课的成绩相加,得到这三门课的总分;第三步是用这三门课的总分除以3,即可得到它们的平均分,至此,即可编写出程序.解:程序如下:自助餐1.下列程序在电脑屏幕上显示的结果为( )A.2 B.“x=”;x C.“x=”;2 D.x=2【知识点:算法的输入、输出、赋值语句】【解析】PRINT后引号中提示的内容直接输出,变量输出其值,故显示的结果为x=2.解:D2.下列说法中,正确的是( )【知识点:算法的输入、输出、赋值语句】【解析】赋值语句中的“=”与代数中的“=”是不一样的,式子两边的值也不能互换,而"x=x+1"是将x+1的值赋给x,因此①错,②对,③错,④对.故选B.解:B3.下列赋值语句中运算结果等于15的是()A.15=xB.x=3^5C.x=5*3D.x2=225【知识点:算法的输入、输出、赋值语句】【解析】C4.阅读下列两个程序,回答问题.(1)上述两个程序的运行结果是①________;②________.(2)上述两个程序的第三行有什么区别:________.【知识点:算法的输入、输出、赋值语句】【解析】(1)①从所给的赋值语句中可以看出,x,y初始赋给的值分别为3,4,接下来x是y 赋给的值:x=4,故输出的d的值是:x=4,y=4,故答案为:4,4;②从所给的赋值语句中可以看出,x,y初始赋给的值分别为3,4,接下来y是x赋给的值:y=3,故输出的d的值是:y=3,x=3,故答案为:3,3.(2)由程序框图可知:程序①中的x=y是将y的值4赋给x,赋值后,x的值变为4;程序②中的y=x是将x的值3赋给y,赋值后y的值变为3.解:(1)4,4;3,3 (2)程序①中的“x=y”是将y的值4赋给x,赋值后x的值变为4;程序②中的“y=x”是将x的值3赋给y,赋值后y的值变为3.5.下面程序的功能是求所输入的两个正数的平方和,已知最后输出的结果是3.46,则此程序中,①处应填________;②处应填________.【知识点:算法的输入、输出、赋值语句】【解析】由于程序的功能是求所输入的两个正数的平方和,故S=x12+x22,由于最后输出的数是3.46,所以3.46=1.12+x22,即x22=2.25,又x2>0,故x2=1.5.解:1.5;x1^ 2+x2^ 26.根据下列程序,画出程序框图.【知识点:算法的输入、输出、赋值语句】【解析】从编号的程序可以看出,此程序只用INPUT 输入语句、赋值语句和 PRINT 输出语句组成,因此根据程序画程序框图,只要按顺序从上到下把输入语句、赋值语句、输出语句换成输入框、处理框、输出框就可以了.解:程序框图如图.7.用算法语句写出下面程序框图的程序.【知识点:算法的输入、输出、赋值语句】【解析】本题主要考查学生对算法知识的掌握,关键是理解算法前后的逻辑关系.题中该程序的作用是依次用输入的x 1,x 2,求出y 1,y 2,运用2121x x y y K --=,再综合运用输入语句、输出语句、赋值语句的格式,进而得出答案.解:程序如下:8.对于平面直角坐标系中给定的两点A (a ,b ),B (c ,d),编写一个程序,要求输入两点的坐标,输出这两点间的距离.【知识点:算法的输入、输出、赋值语句】【解析】本题考查了程序语句的书写,同时考查了两点间的距离公式,综合性较强,需恰当运用输入、输出、赋值语句.解:9.给定函数()321213f x x x =++,编写程序求任意给定x 的值,求f (f (x ))的值,并画出程序框图. 【知识点:算法的输入、输出、赋值语句】【解析】本题考查了程序框图和解析几何的相关知识.经分析,本框图为顺序结构,在编写程序和程序框时应注意格式及变量的应用.解:程序框图:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PRINT “The average=”;(a+b+c)/3 END
例2.如图1.2.1—3的程序中: A=10 (1)给A赋了几次值? A=A+15 (2)A=A+15的表示什么意思? PRINT A (3)输出的值是什么?
(1)2次 (A=10 A=A+15)
END
(2)将A+15的值赋给A (3)25
y 输出、赋值语句分别是 PRINT “y=”; 、
y=(a+b)/2 3 .“=”左侧必须是变量,右侧可以是数字、 PRINT “y=”;y 变量或者是计算公式; END
y=(a+b)/2
课本9页 例3 已知一个三角形的三边分别为2,3,4, 利用海伦-秦九韶公式设计一个算法,求出它的面积,画 出算法的程序框图.
i=1 S=0 WHILE i<=100 S=S+i i=i+1 WEND PRINT S END
INPUT“ 数学,英语,语文成绩=”;a,b,c
引例.用描点法作函数y x 3 3 x 2 24 x 30 的图象时,需要 求出自变量和函数的一组对应值.编写程序,分别计算当 x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值. 程序
输出语句
INPUT “x=”;x y=x^3+3*x^2-24*x+30 PRINT “提示内容”;表达式 PRINT y 说明: ① 作用是实现算法的输出结果功能。 END
四、条件语句
1、IF-THEN语句
IF
条件 THEN 语句1 END IF
满足条件?


语句1
说明:“条件”表示判断的 条件,“语句”表示满足条 件时执行的内容;条件不满足时,结束程序,END IF 表示语句的结束。
四、条件语句
1、IF-THEN-ELSE语句
IF
条件 THEN 语句体1 ELSE 语句体2 END IF
答案:-26
17
五、循环语句
说明:先执行循环体一次,再判断。
(1)Until(直到型)循环
循环体 满足条件?

DO
循环体

LOOP UNTIL
条件
( 2)
While(当型)循环 循环体
WHILE WEND
条件 循环体
满足条件?


说明:先判断条件,在执行循环体。
程序框图:
开始 i=1
计算 程序: 1+2+3+„+ 100的值:
例3. 写出实现下列功能的程序:交换两个变量A和B 的值,并输出交换前后的值。
(提示:引入一个中间变量X,将A的值赋予X,又将B的值赋予A, 再将X的值赋予B,从而达到交换A,B的值(比如交换装满水的两个 水桶里的水需要再找 一个空桶))。
程序:
INPUT A,B PRINT A,B
X=A A=B B=X PRINT A,B END
INPUT "x=";x IF x<0 THEN y=x+3 ELSE IF x>0 THEN y=x+5 ELSE y=0 END IF END IF PRINT y END
答案:B
16
3.给出下列程序:如果输入 10, 26,8,那么输出的是 ___.
INPUT a,b,c IF a>b THEN a=b END IF IF a>c THEN a=c END IF PRINT a END
②提示内容”提示用户输出什么样的信息。 ③表达式是指程序要输出的数据。 ④输出语句可以是常量、变量、表达式的值及字符。
INPUT“ 数学,英语,语文成绩=”;a,b,c
PRINT“三主科平均成绩”; (a+b+c)/3
引例.用描点法作函数y x 3 3 x 2 24 x 30 的图象时,需要 求出自变量和函数的一组对应值.编写程序,分别计算当 x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值. 程序 赋值语句

是 输出x
结束
18:39
ห้องสมุดไป่ตู้
输出-x
ELSE PRINT END IF END
-x
14
1.当输入x 3.2时,程序输出的结果为() A. 3.2 B.3.2 C.3 D. 3
INPUT x IF x<0 THEN x=-x END IF PRINT x END
答案:B
2.阅读下面的程序:如果输入x 2, 则输出的结果y为() A.0 B.1 C.2 D.3
INPUT “x=”;x INPUT “提示内容”;变量 y=x^3+3*x^2-24*x+30 PRINT y 说明:①作用是实现算法的输入信息功能。 END ②“提示内容”提示用户输入什么样的信息,可以是
中文,也可以是其他的; ③变量是指程序在运行时其值是可以变化的量。 ④输入语句要求输入的值只能是具体的常数; ⑤提示内容与变量之间用“ ;”隔开,有多个变量的 输入时,变量与变量之间用“ ,”隔开。
算法
程序框图:
开始 输入a,b,c
第一步:输入三角形三边的边长a,b,c (a b c) 第二步:计算 p 的值; 2
第三步:计算 S 的值; 第三步:输出S.
p( p a)( p b)( p c).
p
abc 2
S p( p a)( p b)( p c)
输入语句、输出语句、赋值语句 条件语句 循环语句
温馨提示:
程序中的运算符,和我们平常用的有所不同 数学符号 × ÷
ab
≤ ≥ ≠ |x|
x
程序符号 * / a^b <= >= <> ABS(x) SQR(x)
5
引例.用描点法作函数y x 3 3 x 2 24 x 30 的图象时,需要 求出自变量和函数的一组对应值.编写程序,分别计算当 x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值. 算法
输出S
结束
赋值语句 P (a b c) 2
S SQR( p ( p a) ( p b) ( p c))
例1.编写程序,计算一个学生数学、语文、英语、三门课的 平均成绩 算法 程序框图 第一步:分别输入该学生数学、语文、 开始 英语三科的成绩a,b,c; 输入 输入 a,b,c, a,b,c (a b c) 第二步:计算 y 3 (a b c) 第三步:输出y. y 3 程序1 INPUT “Maths=”;a INPUT “Chinese=”;b INPUT “English=”;c 输出y PRINT “The average=”;(a+b+c)/3 结束 END 程序2 INPUT “Maths,Chinese,English=”;a,b,c
S=0
i=i+1 i<=100? S=S+i

输出S
结束

i=1 S=0 WHILE i<=100 S=S+i i=i+1 WEND PRINT S END
直到型语句 cc (UNTIL语句)
当型语句 (WHILE语句)
i=1 S=0 DO
S=S+i i=i+1 LOOP UNTIL i>100 PRINT S END
1.2基本算法语句
1
程序框图是由表示算法基本逻辑结构的图形组成的, 而程序则是由表示算法基本逻辑结构的算法语句组成.
任何高级程序设计语言都包含 输入语句、输出语句、赋值语句 输入语句、输出语句、赋值语句、条件语句和循环语句
五种基本语句.它们与算法的三种基本结构是相互对应的.
顺序结构
条件结构 循环结构
框图
第一步:输入x的值; 第二步:计算y=x3+3x2-24x+30的值; 第三步:输出y的值. 程序 INPUT “x=”;x y=x^3+3*x^2-24*x+30 PRINT y END
开始 输入x
y x 3 3 x 2 24 x 30
输出y 结束
引例.用描点法作函数y x 3 3 x 2 24 x 30 的图象时,需要 求出自变量和函数的一组对应值.编写程序,分别计算当 x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值. 程序 输入语句
满足条件?


语句1 语句2
说明:在条件语句的一般格式中,“条件”表示判断的 条件,“语句1”表示满足条件时执行的内容; , “语句2”表示不满足条件时执行的内容;END IF 表示语句的结束。
例4:编写程序,输入一个X的值,要求输出它的绝对值。
开始
INPUT “x=”;x
输入x
x≥0?
IF x>=0 THEN PRINT x
INPUT “x=”;x y=x^3+3*x^2-24*x+30 变量=表达式 PRINT y 1.作用是将表达式所代表的支付给变量。 INPUT “a,b=”;a,b END 2.赋值语句中的“=”称为赋值号。
4.赋值号左右不能兑换。 3、如图的程序中,输入语句是 INPUT “a,b=”; ,a,b
相关文档
最新文档