第一章 物质结构基础
基础化学1第一章 物质结构基础
![基础化学1第一章 物质结构基础](https://img.taocdn.com/s3/m/c297e1a8376baf1ffc4fadee.png)
元素的氧化数(或称氧化值)是指某元素一个原子的形 式电荷数。这种电荷数是假设化学键中的电子指定给电负性 较大原子而所求得的。
氧化数反映元素的氧化状态,可为正、负、零或分数。 周期表中元素的最高氧化值呈周期性变化 ⅠA~ⅦA族(F除外)、ⅢB~ⅦB族元素:
最高氧化数=价电子总数=族序数
说明:其他主、副族元素的最高氧化数变化不规律
26Fe2+的核外电子分布是
[Ar]3d6
而不是
[Ar]3d44s2。
请写出25Mn2+核外电子分布的原 子实表示式。
三、元素性质的周期性变化
1.电负性(X)
原子在分子中吸引成键电子的能力,称为元素电负性。 元素电负性越大,原子在分子中吸引成键电子能力越强。
鲍林电负性值是指定最活泼非金属元素氟的电负性为4.0, 然后,借助热化学数据计算求得其他元素电负性(见表2-3)。
能级组
7p
7
6d 5f
(7s5f6d7p)
7s
6p 5d 4f
6s
6 (6s4f5d6p)
5p
能 量
4d 5s
4p 3d
4s
5 (5s4d5p)
4 (4s3d4p)
周期 . 七
六 五 四
3p 3s
2p 2s
3
(3s3p)
三
2
(2s2p)
二
1
1s
(1s)
一
n= 1 n= 2 n= 3 n= 4 n= 5 n= 6 n= 7
相同电子层,l值越大,电子能量越高。 不同亚层,其原子轨道(或电子云)的形状不同,如图2-3、 2-4所示,s亚层为球形;p亚层为无柄哑铃形;d亚层为四瓣花 形。 3.磁量子数(m) 磁量子数就是描述原子轨道(或电子云)在空间伸展方向 的量子数。 m取值是从+l到-l包括0在内的任何整数值。即
普通化学教案物质结构基础
![普通化学教案物质结构基础](https://img.taocdn.com/s3/m/23ed6092d05abe23482fb4daa58da0116c171fe9.png)
表面吸附与反应
表面吸附的概 念:物质在固 体表面上的聚
集现象。
表面吸附的原 理:由于表面 分子的作用力 与内部不同, 导致气体分子 在表面上的聚
集。
表面吸附的分 类:物理吸附 和化学吸附。
表面反应的定 义:在表面吸 附的基础上, 表面上的分子 与其他分子或 离子发生化学
反应。
界面现象与性质
润湿现象:液体在固体表面 铺展的现象
相变:晶体在不同 温度和压力条件下 发生结构转变的现 象
晶体缺陷对相变的 影响:缺陷可以促 进或抑制相变的发 生
相变在晶体缺陷中 的应用:通过控制 晶体缺陷来调控材 料的性能和功能
晶体结构与物理性质
晶体结构决定物质的物理性质,如硬度、熔点、导电性等。
不同晶体结构对物理性质的影响不同,如金属晶体具有良好的导电性和延 展性。
溶液中的化学反应动力学
反应速率常数:描 述化学反应快慢的 物理量
活化能:反应进行 所需的最低能量
反应机理:化学反 应的步骤和过程的 描述
催化剂:降低反应 活化能,加速反应 进程的物质
溶液中的相变与热力学
相变:溶液中物质 状态的变化,如溶 解、结晶等
热力学基本概念: 如熵、焓、自由能 等在溶液结构中的 意义
振动与转动的能量:较低,常温下即可发生。
振动与转动的光谱特征:可通过红外光谱和拉曼光谱进行检测和研究。
分子的极性
影响因素:元素的电负性、 键的极性、分子构型等
定义:分子中正负电荷中心 不重合,导致分子表现出极 性
极性分类:永久极性、诱导 极性、取向极性
物理性质:溶解度、熔点、 沸点等
分子光谱与分子能级
THANK YOU
汇报人:XX
表面张力:液体表面抵抗变 形的能力
第一章物质结构基础
![第一章物质结构基础](https://img.taocdn.com/s3/m/60073514f111f18583d05ae4.png)
第一章物质结构基础【知识导航】“上帝粒子”:希格斯玻色子(英语:Higgs boson)是粒子物理学标准模型中所预言的最后一种基本粒子(模型预言了62种基本粒子,已发现61种,包括质子、中子、电子、夸克等),以物理学者彼得·希格斯命名,是一种具有质量的玻色子,没有自旋,不带电荷,非常不稳定,在生成后会立刻衰变。
2012年7月4日,CERN(欧洲核子研究组织)宣布LHC(大型强子对撞机)的紧凑渺子线圈探测到两种新粒子,这两个粒子极像希格斯玻色子,但还有待物理学者进一步分析确定。
——维基中文百科【重难点】1.原子的电子层结构原子核是由质子和中子组成的,原子核与核外电子又一同构成了原子。
由于单质和化合物的化学性质主要取决于核外电子的运动状态,因此,在化学中研究原子结构主要在于了解核外电子运动的规律。
(如图1-1)图1-1 原子的结构图1-2 核外电子运动2.核外电子运动的特性核外电子运动无法用牛顿力学来描述,具有测不准性。
(如图1-2)(1)核外电子运动规律的描述电子云:电子在原子核外空间出现的概率密度分布。
(如图1-3)是p电子云的形状。
离核越近,电子云密度越大;离核越远,电子云密度越小。
(如图1-4)图1-3 p亚层结构图1-4 核外电子概率分布(2)核外电子运动状态的描述——四个量子数(n、l、m、m s)多电子原子中,决定能量的量子数是n、l。
(3)核外电子的排布遵循能量最低原理、泡利不相容原理及洪特规则。
根据n+0.7l的整数部分相同,近似分成若干近似的能级组。
3.原子结构与周期律元素周期律:元素的性质(原子半径、电离能、电负性、金属性等)随着核电荷数的递增而呈现周期性的变化。
一般而言,同一周期元素,从左到右原子半径逐渐减小,电离能和电负性逐渐增大,金属性减弱,非金属性增强。
同一族元素,从上到下原子半径逐渐增大,电离能和电负性逐渐减小,金属性增强,非金属性减弱。
周期表中共有7个周期,16个族(7个主族、7个副族、1个0族、1个第Ⅷ族)。
高中化学 《第一章 物质结构》练习竞赛辅导
![高中化学 《第一章 物质结构》练习竞赛辅导](https://img.taocdn.com/s3/m/3f778e8aa1116c175f0e7cd184254b35eefd1ae5.png)
现吨市安达阳光实验学校高中化学竞赛辅导《第一章物质结构》练习及答案第一章物质结构1、在有机溶剂里令n摩尔五氯化磷与n摩尔氯化铵量地发生完全反,释放出4n摩尔的氯化氢,同时得到一种白色的晶体A。
A的熔点为113℃,在减压下,50℃即可升华,在1Pa下测得的A的蒸汽密度若换算成状况下则为15.5g/L。
(1)通过计算给出A的分子式。
(2)分子结构测的结论表明,同种元素的原子在A分子所处的环境毫无区别,试画出A的分子结构简图(即用单键一和双键=把分子里的原子连接起来的路易斯结构式)。
2、PCl5是一种白色固体,加热到160℃不经过液态阶段就变成蒸气,测得180℃下的蒸气密度(折合成状况)为9.3g/L, 极性为零,P—Cl键长为204pm 和211pm两种。
继续加热到250℃时测得压力为计算值的两倍。
PCl5在加压下于148℃液化,形成一种能导电的熔体,测得P—Cl的键长为198pm和206pm 两种。
(P、Cl相对原子质量为31.0、35.5)回答如下问题:(1)180℃下PCl5蒸气中存在什么分子?为什么?写出分子式,画出立体结构。
(2)在250℃下PCl5蒸气中存在什么分子?为什么?写出分子式,画出立体结构。
(3)PCl5熔体为什么能导电?用最简洁的方式作出解释。
(4)PBr5气态分子结构与PCl5相似,它的熔体也能导电,但经测其中只存在一种P-Br键长。
PBr5熔体为什么导电?用最简洁的形式作出解释。
3、NO的生物活性已引起家高度。
它与超氧离子(O2—)反,该反的产物本题用A为代号。
在生理pH值条件下,A的半衰期为1~2秒。
A被认为是人生病,如炎症、中风、心脏病和风湿病引起大量细胞和组织毁坏的原因。
A在巨噬细胞里受控生成却是巨噬细胞能够杀死癌细胞和入侵的微生物的重要原因。
家用生物拟态法探究了A的基本性质,如它与硝酸根的异构化反。
他们发现,当16O 标记的A在18O标记的水中异构化得到的硝酸根有11% 18O,可见该反历程复杂。
第1章物质结构基础(含答案)
![第1章物质结构基础(含答案)](https://img.taocdn.com/s3/m/e36f4f691ed9ad51f01df26c.png)
第一章物质结构基础一、选择题1、下列各组量子数,不正确的是------------------- ( B )A.n=2,l=1,m=0,m s=-1/2 B.n=3,l=0,m=1,m s=1/2C.n=2,l=1,m=-1,m s=1/2 D.n=3,l=2,m=-2,m s=-1/22、下列各组量子数中,合理的一组是---------------------------- ( A )A.n=3,l=1,m1 =+1,m s=+1/2 B.n=4,l=5,m1 =-1,m s= +1/2C.n=3,l=3,m1 =+1,m s=-1/2 D.n=4,l=2,m1 =+3,m s= -1/23、原子序数为19 的元素的价电子的四个量子数为----------- ( D )A.n=1,l=0,m=0,m s =+1/2 B.n=2,l=1,m=0,m s =+1/2C.n=3,l=2,m=1,m s =+1/2 D.n=4,l=0,m=0,m s =+1/24、在下列各组量子数中,其合理状态的一组是----------------- ( D)A. n = 1, l = 1, m = 0 B. n = 2, l = 1, m = 2C. n = 2, l = 0, m = 1 D. n = 3, l =1, m = 05、在等价轨道的d轨道中电子排布成,而不排布成,其最直接的根据是-------------------- ( D )A.能量最低原理B.Pauli原理C.原子轨道能级图D.洪特规则6、若将N 原子的基态电子构型写成1s2 2 s 2 2p x2 2p y1,这违背了--------------------------------- ( B )A.泡里原理B.洪特规则C.对称性一致的原则D.玻尔理论7、下列电子排布式中不正确的是:DA.1s2 B.1s22s22p3 C.1s22s22p63s23p63d3 4s2 D.1s22s22p63s23p63d4 4s28、下列分子中心原子是sp2杂化的是--------------------------- ( C )A. PBr3 B. CH4 C. BF3 D. H2O9、元素N的核外电子正确排布是-------------------------- ( A )A. 1s22s22p x12p y12p z1 B. 1s22s12p x22p y12p z1 C. 1s22s22p x22p y1 D. 1s22s22p x12p y2 10、在B、C、N、O四种元素中,第一电离能最大的是-------------------- ( C )A. B B. C C. N D. O11、下列离子半径变小的顺序正确的是---------------------- ( A )A. F->Na+>Mg2+>Al3+ B. Na+>Mg2+>Al3+>F-C. Al3+>Mg2+>Na+>F- D. F->Al3+>Mg2+>Na+12、下列的等电子离子中半径最小的是------------------------- ( A)A. Al3+ B. Na+ C. F- D. O2-13、既存在离子键和共价键,又存在配位键的化合物是--------------------- ( C )A. H3PO4 B. Ba(NO3)2 C. NH4F D. NaOH14、下列物质中,属于共价化合物的是----------------------- ( C )A. I2 B. BaCl2 C. H2SO4 D. NaOH15、下列物质中,既有离子键又有共价键的是------------------- ( C )A. KCl B. CO C. Na2SO4D. NH4+16、下列分子中,中心原子采取不等性sp3杂化的是-------------------------- ( C )A. BF3 B. BCl3 C. H2O D. SiCl4 17、下列分子中,键和分子均具有极性的是--------------------------- ( D )A. Cl2 B. BF3 C. CO2 D. NH3 18、氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是因为------------------------- ( C ) A.两种分子的中心原子杂化轨道类型不同,NH3为sp2型杂化,而CH4是sp3型杂化。
大学化学普通化学习课后题答案
![大学化学普通化学习课后题答案](https://img.taocdn.com/s3/m/8e10d943866fb84ae45c8dbf.png)
普通化学 马家举 第一章 物质结构基础习题4 假定有下列电子的各套量子数,指出哪几套不可能存在,并说明原因。
(1)3,2,2,1/2;(2)3,0,-1,1/2;(3)2,2,2,2;(2)当角量子数l 取0时,磁量子数m 不能取-1。
(3)当主量字数取2时,角量子数不能取2;自旋量子数不能取2,只能取+1/2或-1/2。
5写出原子序数为47的银原子的电子分布式,并用四个量子数表示最外层电子的运动状态。
Ag :1s 22s 22p 63s 23p 63d 104s 24p 64d 105s 1 5,0,0,+1/2。
试用杂化轨道理论解释:(1) H 2S 分子的键角为920,而PCl 3的键角为1020。
(2) NF 3分子为三角锥形构型,而BF 3分子为平面三角形构型。
(1) H 2S 分子与H 2O 分子一样,中心原子采取sp 3不等性杂化,在两个孤电子对的作用下,两个H-S键键角减小。
之所以键角小于H 2O 分子中两个H-O 键的键角104045’,是因为H-S 键的成键电子对更靠近H 原子,两个H-S 键之间的斥力小,被压缩的程度更大。
PCl 3分子与NH 3分子一样,也是中心原子采取sp 3不等性杂化,同理Cl-P 键的成键电子对更靠近Cl 原子,所以两个P-Cl 键的键角小于NH 3分子中两个N-H 键的键角。
(2) NF3分子与NH 3分子一样中心原子采取sp 3不等性杂化,使分子产生三角锥形构型;BF 3分子中心原子B 采用sp 2等性杂化,使分子产生平面三角形构型。
7 为什么(1)室温下CH 4为气体,CCl 4为液体,而CI 4为其固体?(2)水的沸点高于H 2S ,而CH 4的沸点低于SiH 4?(1) 从CH 4→CCl 4→CI 4分子量增加,分子间色散力增大,而色散力在范德华力中占较大比例,即分子间力是增大的,而分子间力越大,熔沸点越高。
(2) H 2O 分子与H 2S 分子相比,水中H 2O 分子之间存在氢键,虽然H 2O 分子间的色散力较小,氢键的存在却使沸点更高一些。
无机及分析化学教材课后习题答案
![无机及分析化学教材课后习题答案](https://img.taocdn.com/s3/m/01f67c6c9ec3d5bbfc0a749b.png)
第一章物质结构基础1-1.简答题(1) 不同之处为:原子轨道的角度分布一般都有正负号之分,而电子云角度分布图均为正值,因为Y平方后便无正负号了;除s轨道的电子云以外,电子云角度分布图比原子轨道的角度分布图要稍“瘦”一些,这是因为︱Y︱≤ 1,除1不变外,其平方后Y2的其他值更小。
(2) 几率:电子在核外某一区域出现的机会。
几率密度:电子在原子核外空间某处单位体积内出现的几率,表示微粒波的强度,用电子云表示。
(3) 原子共价半径:同种元素的两个原子以共价单键连接时,它们核间距离的一半。
金属半径:金属晶体中相邻两个金属原子核间距离的一半。
范德华半径:分子晶体中相邻两个分子核间距离的一半。
(4) BF3分子中B原子采用等性sp2杂化成键,是平面三角形;而NF3分子中N原子采用不等性sp3杂化,是三角锥形。
(5)分子式,既表明物质的元素组成,又表示确实存在如式所示的分子,如CO2、C6H6、H2;化学式,只表明物质中各元素及其存在比例,并不表明确实存在如式所示的分子,如NaCl、SiO2等;分子结构式,不但表明了物质的分子式,而且给出了分子中各原子的具体联接次序和方式,像乙酸的结构式可写为C HH HC OO H其结构简式可记为CH 3COOH 。
1-2解 1错;2错;3对;4对;5对;6错。
7对;8错;9对 10错;11错;12错。
1-3 波动性;微粒性1-4. 3s=3p=3d=4s ;3s< 3p< 4s <3d ;3s< 3p< 3d< 4s ; 1-5 32;E 4s < E 4p < E 4d < E 4f ; 第六周期;La 系;2;铈(Ce) 1-6 HF>HCl>HBr>HI ;HF>HCl>HBr>HI;HF<HCl<HBr<HI;HF>HI>HBr>HCl 。
《基础应用化学》课件 第一章-物质结构
![《基础应用化学》课件 第一章-物质结构](https://img.taocdn.com/s3/m/18f5da53cd7931b765ce0508763231126edb779f.png)
1 泡利不相容原理
2
能量最低原理
3
洪特规则
原子结构与元素周期系
1、泡利不相容原理
科学家泡利(W·Pauli,1900~1958)于1925年根据元素在周期表中的位置和光谱 分析的结果提出:“在同一个原子中没有运动状态四个方面完全相同的电子存在”, 即泡利不相容原理。由此可以推出:
1)每个原子轨道只能容 纳两个电子,且自旋方 向相反。因为只有这样 才能使原子的能量最低。
另外,由于电子在原子核外同不区域出现的几率不同,我们通常用小黑点来表示核外电子在某 处出现的几率大小。小黑点密,说明电子云密度值大,即电子在该处出现的几率大;小黑点疏, 说明电子云密度值小,即电子在该处出现的几率小。 电子出现机会最大的区域,就是电子云密度最大的地方。把电子出现的几率相等的地方联接起 来的线,称为等密度线,亦称电子云的界面,这个界面所包括的空间范围称为原子轨道。
原子结构与元素周期系
3)磁量子数m
电子层n 1 2 3
4
电子亚层l
亚层符号
磁量子数m
轨道数
0
s
0
1
0
s
1
p
0 4
0,+1,-1
0
s
0
1
p
0,+1,-1
9
2
d
0,+1,-1,+2,-2
0
s
0
1
p
0,+1,-1
16
2
d
0,+1,-1,+2,-2
3
f
0,+1,-1,+2,-2,+3 ,-3
各电子层的原子轨道数
电子云形状相同时,电子所处电子层数 越大,说明电子离核越远,电子的能量 也就越高。由于n只能取正整数,所以电 子的能量是不连续的,或者说能量是量 子化的。
无机及分析化学知识点归纳
![无机及分析化学知识点归纳](https://img.taocdn.com/s3/m/f2689496360cba1aa811da58.png)
第一章物质结构基础1、四个量子数(1) 主量子数(n):电子所处的电子层。
(2) 副(角)量子数(l) :电子所处的电子亚层及电子云的形状。
l值受n限制,可取0,1……,n-1。
(3) 磁量子数(m):轨道在空间的伸展方向。
m的取值受l的限制(0、±1 … ±l),共(2l+1)个。
(4) 自旋量子数(m s):描述电子自旋的状态。
取值+1/2和-1/22、屏蔽效应与钻穿效应(1)屏蔽效应:内层电子对外层电子的排斥作用,削弱了原子核对外层电子的吸引力,使有效核电荷数减小(2)钻穿效应:外层电子钻入原子核附近而使体系能量降低的现象。
导致能级交错:如:E4s<E3d3、核外电子排布原理(1) 泡利不相容原理:每个轨道至多能容纳两个自旋方向相反的电子。
(2)能量最低原理:核外电子的分布在不违反泡利原理的前提下,优先占据能量较低的轨道,使整个原子系统能量最低。
(3)洪特规则:在n、l相同的轨道上分布电子时,将尽可能占据m 值不同的轨道,且自旋平行。
等价轨道在电子全充满、半充满、和全空时的状态比较稳定。
原因:两个电子占据同一轨道时,电子间排斥作用使系统的能量升高。
4、原子半径(1)原子半径分类:自由原子半径:电子云的径向分布函数D(r) 的最大值。
共价半径:单质分子中两个相邻原子的核间距一半。
范德华半径:分子晶体中,不同分子的相邻两原子核间距的一半。
注:同一元素的范德华半径较共价半径大。
金属半径:固体中测定两个最邻近原子的核间距一半。
(适用金属元素。
)(2)原子半径变化的周期性同周期:主族元素,自左向右原子半径逐渐减小。
d区过渡元素,原子半径略有减小;从IB 族元素起,原子半径反而有所增大。
同族:主族元素,自上而下,原子半径显著增大。
副族元素,自上而下,原子半径也增大,但幅度较小。
5、电离能:气态原子失去电子变为气态阳离子,克服核电荷对电子的吸引力而消耗的能量。
元素原子的电离能越小,越容易失去电子;越大,越难失去电子。
基础化学习题解答(第一章)
![基础化学习题解答(第一章)](https://img.taocdn.com/s3/m/f5ee90e5b90d6c85ed3ac6d1.png)
习题解答(第一章物质结构基础)思考与习题1.填空题(1)原子核外电子运动具有波粒二象性、能量变化不连续的特征,其运动规律可用量子力学来描述。
(2)当主量子数为3时,包含有3s、3p、3d三个亚层,各亚层为分别包含1、3、5个轨道,分别能容纳2、6、10个电子。
(3)同时用n、l、m和m s四个量子数可表示原子核外某电子的运动状态;用n、l、m 三个量子数表示核外电子运动的一个轨道;而n、l两个量子数确定原子轨道的能级。
(4)改错的现象称为能级交错。
3d4S(6)原子序数为35的元素,其基态原子的核外电子分布式为1s22s22p63s23p63d104s24p5,用原子实表示为[Ar]3d104s24p5,其价电子构型为4s24p5,价电子构型的轨道表示式为;该元素位于元素周期表的第ⅦA 族,第四周期,元素符号是Br 。
(7)等价轨道处于全充满(p6、d10、f14)、半充满(p3、d5、f7)和全空(p0、d0、f0)状态时,具有较低的能量,比较稳定。
这一规律通常又称为洪德规则的特例。
(8)原子间通过共用电子对而形成的化学键,叫做共价键。
共价键的本质是原子轨道的重叠,其形成条件是两个具有自旋相反单电子的原子轨道,尽可能达到最大重叠。
(9)表征化学键性质的物理量,统称为键参数,常用的有键能、键长、键角。
(10)H2S分子的构型为V形,中心原子S采取sp3不等性杂化,键角∠HSH<109°28′(提示:填写>,=或<)。
(11)完成下表2.选择题(1)下列原子轨道中,属于等价轨道的一组是( C )。
A .2s ,3sB .2p x ,3p xC .2p x ,2p yD .3d xy ,4d xy(2)下列用一套量子数表示的电子运动状态中,能量最高的是( B )。
A .4,1,-1,-12B .4,2,0,-12C .4,0,0,+12D .3,1,1,+12(3)下列不存在的能级是( C )。
无机化学内容及要求
![无机化学内容及要求](https://img.taocdn.com/s3/m/0c392aaf64ce0508763231126edb6f1aff007109.png)
第一篇物质结构基础第一章原子结构和元素周期系第二章分子结构第三章晶体结构第四章配合物第二篇化学热力学与化学动力学基础第五章化学热力学基础第六章化学平衡常数第三篇水溶液化学原理第九章酸碱平衡第十章沉淀平衡第十一章电化学基础第十二章配位平衡第四篇元素化学(一)非金属第十三章氢和稀有气体第十四章卤素第十五章氧族元素第十六章氮磷砷第十七章碳硅硼第十八章非金属元素小结第五篇元素化学(二)金属第二十一章p区金属第二十二章ds 区金属第二十三章 d 区金属(一)第四周期d区金属要求绪论教学基本要求:理解化学研究的对象、内容、目的和方法。
了解化学发展的现状。
掌握学习化学的正确方法。
第一篇物质结构基础第1章原子结构与元素周期系教学基本要求:初步了解原子能级、波粒二象性、原子轨道(波函数)和电子云等原子核外电子运动的近代概念。
熟悉四个量子数对核外电子运动状态的描述。
熟悉s、p、d原子轨道的形状和伸展方向。
掌握原子核外电子排布的一般规律和各区元素原子层结构的特征。
会从原子半径、电子层构型和有效核电荷来了解元素的性质。
熟悉电离能、电子亲合能、电负性及主要氧化值的周期性变化。
1.本章第1、2、3节讨论原子、元素、核素、同位素、同位素丰度、相对原子质量等基本概念。
其中相对原子质量(原子量)是最重要的,其余都是阅读材料。
2.本张第4节讨论氢原子的玻尔行星模型,基本要求是建立定态、激发态、量子数和电子跃迁4个概念,其他内容不作为教学要求。
3.第5节是本章第1个重点。
基本要求是初步理解量子力学对核外电子运动状态的描述方法;初步理解核外电子的运动状态;掌握核外电子可能状态的推算。
本节小字部分为阅读材料。
4.第6节是本章第2个重点。
基本要求是掌握确定基态原子电子组态的构造原理,在给定原子序数时能写出基态原子的电子组态;掌握多电子原子核外电子状态的基本规律,特别是能量最低原理。
本节小字内容不作教学要求。
5.第7、8节是本章最后1个重点。
普通化学教案(1) 物质结构基础
![普通化学教案(1) 物质结构基础](https://img.taocdn.com/s3/m/863ba8e2a26925c52dc5bf21.png)
第一章:物质结构基础Chapter 1:Structure of substance第一节:原子结构本节教学目的要求:只是核外电子的运动状态发生变化。
因此,要说明化学反应的本质,了解物质的性质与结构的关系,推测新化合物合成的可能性,就必须了解原子结构,特别是原子的电子层结构。
一、原子结构理论的发展概况1、道尔顿(John Dalton )的原子论——物质由原子构成,原子不可再分。
2、原子的含核模型1911年,卢瑟福通过α粒子散射实验认为:原子的中心有一个带正电的原子核,电子在它的周围旋转,原子中绝大部分是空的。
电子的质量极小(质子的1/1836),原子的质量主要集中在原子核上,由质子数和中子数决定,原子是电中性的。
核外电子数=核内质子数=核外电子数=原子序数 质量数(A )=质子数(Z )+中子数(N )原子核 质子 Z其关系为:原子X AZ中子 A-Z核外电子 Z3、原子结构的玻尔模型玻尔提出原子中的电子能量也是不连续的、量子化的。
并假设: (1)定态假设 原子中电子在固定轨道上旋转,不吸收能量。
(2)能级的概念 原子在不同轨道上旋转时,有不同的能量(能级)。
2n BE -= 式中 n ——量子数,1,2,3……;B ——2.18×10-18J基态:能量最低状态,如氢原子n =1的状态。
激发态:能量较高状态,如氢原子n =,3,4……的状态。
(3)跃迁时有能量放出或吸收 νh E E E =∆=-12, 式中 h ——普朗克常数,h =6.626×10-34J·s ;ν——辐射能的频率,s -1;E ——辐射能,J 。
在氢原子光谱中,电子从n =3,4,5,6,7跃迁回到n =2时,放出可见光中的五条光谱(其波长为λ=C /ν,C =3×108m /s ),即H α(656.3)、青H β(486.1)、蓝H γ(434.0)、紫H δ(410.2)、紫H ε(390.0)。
化学必修一第一章知识点总结
![化学必修一第一章知识点总结](https://img.taocdn.com/s3/m/8a607412443610661ed9ad51f01dc281e53a562f.png)
化学必修一第一章知识点总结第一章:物质结构与性质1. 物质的分类物质可分为元素和化合物。
元素是由同类原子组成的,如金属铜、非金属氧等。
化合物由不同元素的原子组成,如水、二氧化碳等。
2. 原子结构原子由质子、中子和电子组成。
质子带正电荷,中子不带电荷,电子带负电荷。
原子的质子数等于其电子数时是稳定的。
3. 元素周期表元素周期表是由元素根据原子序数排列的表格,以及其化学性质的周期性变化。
周期表可以分为周期和族,周期表示元素原子价层的数量,族表示元素的化学性质相似。
4. 原子量和摩尔质量原子量是指一个元素原子的相对质量,在元素的原子量单位上标注。
摩尔质量是指一个物质样品里的质量,以摩尔为单位。
5. 化学符号和化学方程式化学符号用来表示化学元素和化合物。
化学方程式是化学反应的图示化表示,包括反应物、生成物和化学反应条件。
6. 化学反应的基本概念化学反应是指物质由一种形式转变为另一种形式的过程。
反应物是参与反应的物质,生成物是反应过程中形成的物质。
7. 量的关系化学反应中,化学计量法则可以描述反应物和生成物之间的物质量关系。
化学计量法则包括质量守恒定律、等量反应定律和瓦特定律。
8. 摩尔计算摩尔可以用来计算反应物和生成物之间的物质量关系。
摩尔比是指反应物和生成物处在化学方程式中的摩尔的比例关系。
9. 化学反应的能量变化化学反应中,能量可以转化为其他形式,如热能或化学能。
放出能量的反应被称为放热反应,吸收能量的反应被称为吸热反应。
10. 离子的形成和物质的分子结构离子是由失去或获得一个或多个电子的原子或原子团组成的,有正负电荷。
分子是由两个或更多的原子通过化学键连接而形成的。
11. 元素的周期性变化元素的周期性变化可以通过元素周期表来进行描述和理解。
周期性变化包括原子半径、电离能、电子亲和能、与氧化还原有关的性质等。
12. 元素的化合价化合价是指化合物中一个元素与其他元素结合时的电荷数目。
元素的化合价与元素的外层电子数有关。
第1章 物质结构基础习题
![第1章 物质结构基础习题](https://img.taocdn.com/s3/m/2fc7c2a9453610661fd9f468.png)
一、思考题1. 试述下列各名词的意义(1)量子化 (2)物质波 (3)波函数 (4)原子轨道 (5)几率密度 (6)量子数 (7)电子云 2. 原子中的能级主要由哪些量子数来确定?答案:原子轨道能量的高低(也称能级)主要由主量子数n 和角量子数l 决定。
当l 相同时,n 越大,原子轨道能量E 越高,例如E1s<E2s...电子在原子中的运动状态,可以用n,l,m,ms 四个量子数来描述。
3. 试述描述核外电子运动状态的四个量子数的意义和它们的取值规则。
答案:(1)主量子数(n ) 它代表核外电子距核的远近和原子轨道能量大小。
n 取值:任意正整数n=1,2,3,…… n =1为第一电子层或称K 层,距核最近,n =2为第二电子层或称L 层,余类推。
离核近,电子的能量较低,离核远则电子能量较高。
因此主量子数n 对于确定电子的能量具有决定性的作用。
(2)角量子数(l ) 决定原子轨道(或电子云)的形状,表示每一主层中不同的亚层。
l 取值:小于n 的非负整数l =0,1,2,……(n-1)l=0 时,原子轨道(或电子云)是球形对称的,称为s 轨道(或s 电子云)。
l=1 时,原子轨道(或电子云)是纺棰形(或哑铃形)分布,称为p 轨道。
l=2 时,原子轨道(或电子云)呈花瓣形分布,称为d 轨道(或d 电子云)。
l=3 时,原子轨道(或电子云)形状复杂,称为f 轨道(或f 电子云)。
l 代表电子所在的亚层 ,角量子数l : 0 1 2 3 - - - - 电子亚层符号: s p d f - - - - 对多电子原子来讲,电子的能量由n 、l 决定。
(3)磁量子数(m ) 同一电子层中某一特定形状的原子轨道可以在空间有不同的伸展方向,从而得到若干空间取向不同而能量相同的原子轨道,称为等价轨道。
m 决定原子轨道(或电子云)的空间伸展方向。
m 取值:绝对值不大于l 的所有值m =0,±1,±2……±l 有(2 l +1)个取值l=0 时,m 有一个取值,即m =0,s 轨道球形对称,在空间只有一个取值,轨道无方向性。
高中化学说课ppt课件
![高中化学说课ppt课件](https://img.taocdn.com/s3/m/f5e567b5f9c75fbfc77da26925c52cc58ad69004.png)
有关的内容标准
知道元素、核素的涵义 了解原子核外电子的排布 能结合有关数据和实验事实认识元素周期律,了解原子结构与元素性质的关系 能描述元素周期表的结构,知道金属、非金属在周期表中的位置及其性质的递变规律 认识化学键的涵义,知道离子键和共价键的形成
01
02
教学目标
能描述元素周期表的结构,知道金属、非金属在周期表中的位置。
第三节 化学键 以前两节物质结构和元素周期律知识为基础,进一步学习物质结构基础知识、物质的形成以及化学反应的本质
课时建议
第一节 元素周期表 2课时
第三节 化学键 3课时Biblioteka 第二节 元素周期律 3课时
机动与复习 2课时
2
从周期表前三周期元素,原子核外电子排布入手,分析电子层数的不同和最外层电子数的递增关系
3
通过第三周期元素代表物的性质,认识元素周期律,并拓展到周期表和周期律的应用
说明:所涉及到的原子的核外电子排布,是通过模型和原子结构示意图直接给出的,没有介绍排布的规律,主要是按照课程标准的要求,有关内容在选修模块进行教学。
碱金属元素 卤族元素
钾与水反应 钠与水反应 钾在空气中燃烧
本节结合元素周期表,原子结构与元素性质的关系→元素物理性质和化学性质 →核外电子与元素性质的关系 又引出原子核与元素性质关系:介绍核素、同位素
1
第二节,利用周期表的横向结构进一步认识元素周期律,通过周期来体现元素性质与原子结构的关系
通过有关数据和事实,了解原子结构与元素性质之间的关系。知道核素的涵义。认识原子结构相似的一族元素在化学性质上表现出的相似性和递变性,认识元素周期律。
在初中有关原子结构知识的基础上,了解元素原子核外电子排布。
认识化学键的涵义,通过实例了解离子键和共价键的形成。
基础化学第一章
![基础化学第一章](https://img.taocdn.com/s3/m/e920a0828762caaedd33d4a8.png)
在同一周期中从左到右电负性增加。
2013-7-19 基础化学 第九章 25
能级组与元素周期表
能级组 一,二,三,四,五,六,七 原子轨道数 1, 4, 4, 9, 9, 16, 16 最大电子容量 2, 8, 8, 18, 18, 32, 32 各周期元素数 2, 8, 8, 18, 18, 32, 32 周期 一,二,三,四,五,六,七
2013-7-19
基础化学 第九章
24
原子轨道与能量
1. n相同时,l越大,原子轨道的能量越高, 如: E4S<E4P<E4d; 2. l相同时, n越大,原子轨道的能量越高, 如: E2P<E3P<E4P; 3. n ,l都不相同时,某些n值较大的轨道能量可能 低于n值较小的轨道,称为;能级交错, 如:E3d>E4S; 4. n ,l都相同时, E2Px=E2Py=E2Pz; 等价轨道
2013-7-19 基础化学 第九章 36
例如铝的电离能数据为: 电离能 I1 I2 I3 I4 I5 I6 In/kJmol1 578 1817 2745 115781483118378 这是由于原子失电子 后,其余电子受核的吸引力越大的缘故; I3 I4 < I5 < I6… 这是因为 I1 、I2 、I3 失去的是 铝原子最外层的价电子,即3s、3p电子,而从I4起 失去的是铝原子的内层电子,要把这些电子电离 需要更高的能量,这正是铝常形成Al3+离子的原因,
第一章 物质结构基础
• 第一节 原子结构和元素周期律 一、量子数 二、核外电子排布规律↓ 三、元素周期律↓
2013-7-19
基础化学 第九章
1
第一章 物质结构基础
• 物质结构包括:原子结构、化学键、分 子结构、晶体结构等。 • 原子由:质子、中子、电子三种基本粒 子所组成。(质子、中子构成原子核). • 核内质子数=核电荷数=核外电子数=原子 序数。 • 核电荷数;是指质子所带正电荷数
物质结构与基础
![物质结构与基础](https://img.taocdn.com/s3/m/ef2bd46ba98271fe910ef920.png)
*经典电磁理论不能解释氢原子光谱 经典电磁理论 电子绕核作高速圆周运动,发出连续电磁波→ 电子绕核作高速圆周运动,发出连续电磁波→ 连续光谱;电子能量↓ 坠入原子核→ 连续光谱;电子能量↓ → 坠入原子核→原子 湮灭 事实 氢原子光谱是线状而不是连续光谱; 氢原子光谱是线状而不是连续光谱;原子没有 湮灭
7
核素、 1-2-2 核素、同位素和同位素丰度
核素(nuclide)---具有一定质子数 质子数和一定中子数 中子数的原 ( 1 ) 核素 (nuclide) 质子数 中子数 子称为一种核素 • 分类 稳定核素 --- 单核素元素和多核素元素 放射性核素素 质量数 12 • 核素符号 6C 同位素(isotope) (isotope)---具有相同核电荷数,不同中子数 ( 2 ) 同位素 (isotope) 的核素互称同位素,这些核素在周期表中占同位置 8 • 表示 16O、17O 、18O
13
1-4 原子结构的玻尔行星模型
1-4-1 氢原子光谱
连续光谱 自然界) (自然界)
14
1666年 1666年:牛顿光谱 (spectrum)
15
1859年 德国海德堡大学的基尔霍夫和本生发明 1859年,德国海德堡大学的基尔霍夫和本生发明 基尔霍夫 了光谱仪, 奠定了光谱学的基础, 了光谱仪 , 奠定了光谱学的基础 , 使光谱分析成为 认识物质和鉴定元素的重要手段。 认识物质和鉴定元素的重要手段。 光谱仪可以测量物质发射或吸收光的波长, 光谱仪可以测量物质发射或吸收光的波长,拍摄 各种光谱图。 光谱图就像“ 指纹” 辨人一样, 各种光谱图 。 光谱图就像 “ 指纹 ” 辨人一样 , 可 以辨别形成光谱的元素。 以辨别形成光谱的元素 。 人们用光谱分析发现了 许多元素,如铯、 铟等十几种。 许多元素,如铯、铷、氦、镓、铟等十几种。 直到本世纪初, 直到本世纪初,人们只知道物质在高温或电激励 下会发光, 却不知道发光机理; 下会发光 , 却不知道发光机理 ; 人们知道每种元 素有特定的光谱, 素有特定的光谱 , 却不知道为什么不同元素有不 同光谱。 同光谱。 16
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 物质结构基础 1.de Bloglie 关系式:h m v
λ=
又 22
J k g m s
-=⋅⋅
已知31
9.109510m k g -=⨯;6
1
5.010v m s -=⨯⋅;34
6.62610
h J s -=⨯⋅;
代入,
34
34
2210
31
6
1
31
6
1
6.62610
6.62610 1.45510
145.59.109510
5.0109.109510
5.010J s
k g m s
s
m p m
k g m s
k g m s
λ--------⨯⋅⨯⋅⋅⋅=
=
=⨯=⨯⨯⨯⋅⨯⨯⨯⋅
2. (1) 3d ;n=3, l=2, m=0,±1, ±2,共5个轨道,每一轨道至多两个电子,即:3,2,0, ±1/2;3,2,1, ±1/2;3,2,-1,
±1/2;3,2,+2, ±1/2;3,2,-2, ±1/2; (2) 4s ;n=4, l=0, 即4,0,0 (±1/2);
(3) 氧原子中的4个p 电子:n=2, l=1, m=0, ±1, 即2,1,0, ±1/2;2,1,1, +1/2(或-1/2);2,1,-1, +1/2(或-1/2); (4) 4s 1电子,4,0,0,+1/2或4,0,0,-1/2。
3.根据周期数、族序数和主、副族规律:
(1)第3周期,零族,主族;(2)第5周期,ⅣA 族,主族;(3)第4周期ⅣB ,副族; (4)第4周期,ⅠB ,副族。
4.填表
5. (1)②, (2)③;②;④, (3)①②, (4)⑤
6. (1)Ga 价电子构型为4s 24p 1,价电子数为3; (2)W 原子的电子构型为[Xe] 4f 145d 46s 2; (3)最外层有6个电子的元素应为ⅥA ;
(4) Sb 原子的电子构型为[Kr]4d 105s 25p 3,未成对电子数为3。
7.(1)该元素属于ⅡA ;(2)金属性强,电负性小;(3)一般氧化值为+2,其氧化物的化学式可表示为XO 。
8. (1)第3周期,ⅣA 元素,硅,Si ,[Ne]3s 23p 2; (2)第4周期的铁元素,26Fe ,[Ar] 3d 64s 2; (3)有4个电子层,最高氧化值又与氯相同的金属元素是锰,25Mn ,[Ar]3d 54s 2。
(4)为29Cu ,[Ar]3d 104s 1
9.离子化合物中影响库仑作用的因素是离子电荷和离子半径,作用力越大,熔点就越高。
据此即可判断:(1) MgO>BaS ;(2) KCl>CsCl ;(3) NaF>NaCl>NaBr>NaI ;(4) MgSO 4>K 2SO 4。
10.原子半径和等于共价键键长的理论值,故:(1)H C l -键长为(37+99)pm=136pm ;(2)C N -键长为(77+70)pm=147pm ;(3)C C l -键长:(77+99)pm=176pm ;(4)C F -键长:(77+64)pm=141pm ;(5)
N I -键长(70+133)pm=203pm 。
11.根据元素周期表中(1)阴离子半径大于相同电子构型的阳离子半径;(2)阴离子负价越高,外层电子排斥越显著,故大于相同电子构型的低价阴离子;(3)阳离子价数越高受原子核的吸引更大,故小于相同电子构型的低价阳离子。
(1)O 2->F ->Na +>Mg 2+;(2)P 3-> Mg 2+>Al 3+>Si 4+
12.(1)BBr 3为sp 2杂化;(2)HgCl 2为sp 杂化;(3)SiH 4为sp 3杂化;
(4)CS 2为sp 杂化;(5)[Hg(CN)4]2-为sp 3杂化;(6)[PtCl 6]2-为sp 3d 2杂化
13.(1)SiCl 4的空间构型为正四面体;(2)H 2Se 构型为角形或V 字形;
(3)CO 32-构型为正三角形; (4)ICl 3构型为T 字形; (5)AsCl 5构型为三角双锥; (6)[AlF 6]3-构型为正八面体形。
14.(1)ClF 3,T 字形,有极性;(2)TeCl 4,变形四面体,有极性; (3)SO 2,角形(或V 字形),有极性;(4)XeF 2,直线形,无极性; (5)NF 3,三角双锥,有极性;(6)BrF 5,四方锥,有极性。
15.根据“构型相同时,元素间电负性相差越大,其电偶极距越大”规律: (1)NH 3>PH 3>AsH 3,(2)AsF 3>AsCl 3>AsBr 3>AsI 3
16.依题意:X —Mg ,Y —P ,Z —Cl : (1)电负性:Cl 最大,Mg 最小;
(2)M g P -—共价键,两元素电负性差 1.0( 1.7)χ∆=<;M g C l -—离子键,Mg 与Cl 间电负性
差为 2.0( 1.7)χ∆=>;
(3)MgCl 2,为离子化合物;Y Z -可生成PCl 3和PCl 5两种共价分子,其中PCl 3构型为三角锥形,有极
性,而PCl 5则为三角双锥,结构对称,无极性。
17.(1)HCl 分子间有色散力,诱导力和取向力;(2)He 原子间只有色散力;(3)H 2O 分子间存在色散、
诱导、取向三种作用力,此外还有氢键;(4)2H O A r -分子间只有色散力和诱导力;(5)苯和CCl 4分子间,只有色散力,因两者均为非极性分子;(6)苯酚和对甲苯酚间,分子间的三种作用力都有,且有氢键。
18.(1)硬度:MgF 2<TiO 2;NaF>NaCl ;(2)熔点:MgO>MgCl 2;MgS>Na 2S ;(3)在水中溶解度:MgF 2<MgBr 2;
(4)晶格能:CaO>CaCl 2。
[判断根据是题中物质均为离子化合物]
19.根据:(1)离子晶体与离子电荷和离子半径有关;
(2)分子晶体:①如为同类型分子,分子的体积越大,分子间力越强;②极性分子作用力强于相对分子质
量相近的非极性分子。
故:(1)沸点:I 2>Br 2>Cl 2>F 2;(2)熔点:BaF 2>BaCl 2>BaBr 2>BaI 2;(3)硬度:NaF>NaCl>NaBr>NaI
20.填表如下:
21.(1)CH4是非极性分子晶体,熔化时只需克服色散力;(2)CaCl2为离子晶体,必须克服其间作用的库仑力;(3)BN为共价型的原子晶体,要克服其共价键力,因此需很高的温度方可实现;(4)CO2干冰,非极性分子晶体,其中只存在极弱的色散力,很容易分开,这表现为干冰的升华性;(5)Ag,金属晶体,破坏金属键力,需较高的能量;(6)Ar,非极性分子晶体,只存在微弱的色散力,故常温下即为气态;(7)NH3,极性分子晶体,三种分子间力外,还存在氢键;(8)CuF2,离子晶体,克服其正、负离子间的库仑作用力。
22.(1)X为Si,原子晶体,熔点、沸点高,脆性,硬度大,机械加工性差,晶体中电子跃迁较易,是典型的半导体元素;(2)XY—Si3P4,近于原子晶体,熔、沸点较高,脆性,硬度大,机械加工性差;(3)XZ —SiCl4,非极性分子晶体,熔、沸点较低,不导电,导热性差,不能机械加工。