2021年高二下学期暑假作业数学文试题(16) 含答案
2021高二数学暑假作业及答案
2021高二数学暑假作业及答案(2021最新版)作者:______编写日期:2021年__月__日【一】(一)选择题(每个题5分,共10小题,共50分)1、抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为() A2B3C4D52、对于抛物线y2=2x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是()A(0,1)B(0,1)CD(-∞,0)3、抛物线y2=4ax的焦点坐标是()A(0,a)B(0,-a)C(a,0)D(-a,0)4、设A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的两点,并且满足OA⊥OB.则y1y2等于()A–4p2B4p2C–2p2D2p25、已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.(,-1)B.(,1)C.(1,2)D.(1,-2)6、已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为()(A)(B)(C)(D)7、直线y=x-3与抛物线交于A、B两点,过A、B两点向抛物线的准线作垂线,垂足分别为P、Q,则梯形APQB的面积为()(A)48.(B)56(C)64(D)72.8、(2021年高考广东卷文科8)设圆C与圆外切,与直线相切.则C的圆心轨迹为()A.抛物线B.双曲线C.椭圆D.圆9、已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为(A)(B)(C)(D)10、(2021年高考山东卷文科9)设M(,)为抛物线C:上一点,F为抛物线C的焦点,以F为圆心、为半径的圆和抛物线C的准线相交,则的取值范围是(A)(0,2)(B)[0,2](C)(2,+∞)(D)[2,+∞)(二)填空题:(每个题5分,共4小题,共20分)11、已知点P是抛物线y2=4x上的动点,那么点P到点A(-1,1)的距离与点P到直线x=-1距离之和最小值是。
高二数学文科暑假作业答案
集合、简易逻辑与函数、导数参考答案一.选择题:1、B2、A3、C4、C5、D6、B7、B8、C9、D 10.C 11.B 12.C 二.填空题:13、(2,0)(2,5)- 14、②③ 15、0 16、155 三.解答题:17解:由于2x y =是增函数,()f x ≥3|1||1|2x x +--≥ ① (1) 当1x ≥时,|1||1|2x x +--=,∴①式恒成立。
(2) 当11x -<<时,|1||1|2x x x +--=,①式化为322x ≥,即314x ≤< (3) 当1x ≤-时,|1||1|2x x +--=-,①式无解综上x 的取值范围是3,4⎡⎫+∞⎪⎢⎣⎭18.解:(1)①若1,012±==-a a 即,1)当a =1时,6)(=x f ,定义域为R ,适合;2)当a =-1时,66)(+=x x f ,定义域不为R ,不合; ②若6)1(3)1()(,01222+-+-=≠-x a x a x g a 为二次函数,)(x f 定义域为R ,R x x g ∈≥∴对0)(恒成立,11150)511)(1(110)1(24)1(901222<≤-⇒⎩⎨⎧≤+-<<-⇒⎪⎩⎪⎨⎧≤---=∆>-∴a a a a a a a ; 综合①、②得a 的取值范围]1,115[-(2)命题等价于不等式06)1(3)1(22≥+-+-x a x a 的解集为[-2,1], 显然012≠-a20112-=<-∴x a 且、12=x 是方程06)1(3)1(22=+-+-x a x a 的两根,⎪⎩⎪⎨⎧==+->-<⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=⋅-=--=+>-<∴4023*******)1(31122221221a a a a a a x x a a x x a a 或或,解得a 的值为a =2. 19、解:由1|)(1='=x x f ,故直线l 的斜率为1,切点为))1(,1(f即(1,0) ∴1:-=x y l ① 又∵)21,1(,1)(a x x g +=='切点为∴1)21(:-=+-x a y l 即a x y +-=21②比较①和②的系数得21,121-=∴-=+-a a20、解:设函数()(1)x f x e x =-+()1x f x e '=-当0x >时, 01x e e >=,()10x f x e '∴=->故()f x 在[0,)+∞递增,∴当0x > 时,()(0)f x f >,又0(0)(10)0f e =-+=,()0f x ∴>,即(1)0x e x -+>,故1x e x >+ 21、解:(I )()()()()ln 0a F x f x g x x x x =+=+>,()()221'0a x aF x x x x x-=-=> ∵0a >,由()()'0,F x x a >⇒∈+∞,∴()F x 在(),a +∞上单调递增。
2021年高二下学期暑假作业数学文试题(10) 含答案
2021年高二下学期暑假作业数学文试题(10)含答案一:选择题1已知函数,那么=A.1B.1.5C.D.42.直线(t为参数)的倾斜角( )A. B. C. D.3.已知函数,,则的值为 .( )A. 1B. 0C. -1D. -24.参数方程为参数)的普通方程为()A. B.C. D.5..给出下列命题(1)实数的共轭复数一定是实数;(2)满足的复数的轨迹是椭圆;(3)若,则(4)若“a,b,c是不全相等的实数”,则;(5) 若“a,b,c是不全相等的实数”, 不能同时成立其中正确命题的序号是( )A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(5)D.(3)(4)(5)二.填空题6.从1,2,3,4,5,6,7中任取两个不同的数,事件A 为“取到的两个数的和为偶数”,事件B 为“取到的两个数均为偶数",则=__________.7.在平面内,三角形的面积为S ,周长为C ,则它的内切圆的半径r=.在空间中,三棱锥的体积为V ,表面积为S ,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径R= .三.解答题8. 设平面直角坐标系原点与极坐标极点重合,x 轴正半轴与极轴重合,若已知曲线C 的极坐标方程为,直线l 的参数方程为(t 为参数,t ∈R )(1)求曲线C 的标准方程和直线l 的普通方程(2)若点P 为曲线C 上的动点,求点P 到直线l 的最大距离.(3)9. 观察下题的解答过程:已知正实数满足,求的最大值解:23221221222+=++≤⋅+a a a ,相加得43)1212(2212212=++≤+++=⋅++⋅+b a b a b a,等号在时取得,即的最大值为. 请类比上题解法,使用综合法证明下题:已知正实数满足,求证:10. 设函数,的定义域均为,且是奇函数,是偶函数,,其中e 为自然对数的底数.(1)求,的解析式,并证明:当时,,;(2)设,,证明:当时,.参考答案1. C2. C3. B4. C5. B6.7.8. (I )曲线C 的极坐标方程为ρ2= ,化为直角坐标方程:3x 2+4y 2=12,即 =1.(3分)直线l 的参数方程为(t 为参数,t ∈R ),化为普通方程:x ﹣1﹣y=0(6分) (II )设P (2cos θ,sinθ),θ∈[0,2π),则点P 到直线l 的距离d==≤=,其中α=arctan .∴点P 到直线l 的最大距离是.(12分)9.:3523712371222+=++≤⋅+x x x 3523712371222+=++≤⋅+y y y 相加得7537)121212(=+++≤⋅+++++z y x z y x 即21737121212=⋅≤+++++z y x ,等号在时取得10. (Ⅰ)由, 的奇偶性及,得: 联立①②解得,.(3分)当时,,,故 又由基本不等式,有,即 (5分)(Ⅱ)由(Ⅰ)得 2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=, ① 2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-= , ② 当时,等价于, ③等价于 ④设函数 ,其中c 为常数且c ≤0或c ≥1由①②,有因为,则若,由(1)问结论易得,故在上为增函数,从而,即,故③式成立.若,由(1)问结论得,故在上为减函数,从而,即,故④成立.综合③④,得 . 36591 8EEF 軯?@29362 72B2 犲20517 5025 倥35613 8B1D 謝h25344 6300 挀|32126 7D7E 絾25790 64BE 撾24620 602C 怬32041 7D29 紩。
新高二暑期数学检测卷带解析
新高二暑期数学学习检测卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )=cos2x +6cos ⎝⎛⎭⎫π2-x 的最大值为( )A .4B .5C .6D .7解:因为f (x )=1-2sin 2x +6sin x =-2⎝⎛⎭⎫sin x -322+112,而sin x ∈[-1,1],所以当sin x =1时,f (x )取最大值5.故选B .2.某三棱锥的三视图如图所示,该三棱锥的体积是( )A.43B.83C .4D .6+23 解:由三视图可知,该三棱锥底面是一个等腰直角三角形,直角边长为2,该棱锥的高为2,所以该三棱锥的体积为V =13×12×2×2×2=43.故选A .3.已知sin ⎝⎛⎭⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝⎛⎭⎫α+2π3=( ) A .-45 B .-35 C.45 D.35解:因为sin ⎝⎛⎭⎫α+π3+sin α=32sin α+32cos α=-435,所以32sin α+12cos α=-45.所以cos ⎝⎛⎭⎫α+2π3=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45.故选C .4.已知平面α⊥平面β,α∩β=l ,m ∥α,m ⊥l ,n ⊥α,则下列四种位置关系中,不一定成立的是( )A .m ⊥nB .m ⊥βC .n ⊥lD .n ∥β解:过直线m 作平面γ,与平面α交于直线m ′,则m ∥m ′.又m ⊥l ,所以m ′⊥l ,故m ⊥β.又n ⊥α,所以n ⊥l ,n ⊥m ′,故n ⊥m .所以A 、B 、C 一定成立,D 中亦有可能n ⊂β.故选D .5.给出下列命题:①直线a 与平面α不平行,则a 与平面α内的所有直线都不平行;②直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; ③异面直线a ,b 不垂直,则过a 的任何平面与b 都不垂直; ④若直线a 和b 共面,直线b 和c 共面,则a 和c 共面. 其中错误命题的个数是( )A .1B .2C .3D .4解:直线a 在平面α内时,直线a 与平面α内某一方向上的无数条直线平行,所以①错误;直线a 与平面α不垂直,a 可以与平面α内的无数条直线垂直,所以②错误;若过a 的平面α与b 垂直,那么b 垂直于α内所有直线,所以b ⊥a ,这与a ,b 不垂直矛盾,所以③正确;若直线a 和b 共面,直线b 和c 共面,则a 和c 可能异面,所以④错误.故错误命题的个数是3.此题亦可用正方体模型直观的判断求解.故选C .6.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C .22πD .42π解:将等腰直角三角形绕其斜边所在直线旋转一周,可得到两个同底的圆锥,因此V =13π·(2)2·22=423π.故选B . 7.如图,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,则EF 与平面BB 1D 1D 的位置关系是( )A .EF ∥平面BB 1D 1D B .EF 与平面BB 1D 1D 相交C .EF 在平面BB 1D 1D 内D .EF 与平面BB 1D 1D 的位置关系无法判断解:正方体ABCD A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,取B 1C 1的中点G ,连接GE ,GF ,则GE ∥BB 1,GF ∥B 1D 1,所以BB 1∥平面EFG ,B 1D 1∥平面EFG ,又因为BB 1∩B 1D 1=B 1,所以平面EFG ∥平面BB 1D 1D ,从而可得EF ∥平面BB 1D 1D .故选A .8.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A .4B .6+4 2C .4+4 2D .2解:由三视图知,该几何体是底面为(斜边边长为2的)等腰直角三角形、高为2的直三棱柱,所以该几何体的表面积为2×2+22×2+2×12×2×2=6+4 2.故选B .9.直三棱柱ABC A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°解:延长CA 到D ,使得AD =AC ,连接A 1D ,BD ,则面ADA 1C 1为平行四边形,∠DA 1B 就是异面直线BA 1与AC 1所成的角,又△A 1DB 为等边三角形,所以∠DA 1B =60°.故选C . 10.已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .二、填空题:本题共5小题,每小题4分,共20分.13.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________.解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.14.设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ② 显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.解:因为半圆面的面积为12πl 2=2π,所以l 2=4,l =2,即圆锥的母线长l =2,底面圆的周长2πr =πl =2π,所以圆锥的底面圆的半径r =1,所以圆锥的高h =l 2-r 2=3,所以圆锥的体积为13πr 2h =13π×3=3π3.故填3π3.16.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于________.解:平面图形是上底长为1,下底长为1+2,高为2的直角梯形,计算面积为2+ 2.故填2+2.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解:由题意,b sin B =c sin C ,即sin B =b sin C c =6×323=22,结合b <c ,可得B =45°,则A =180°-B -C =75°.故填75°.三、解答题:共5题,每题10分,共50分.解答应写出文字说明、证明过程或演算步骤.18.已知函数f (x )=sin(2ωx -π6)+2cos 2ωx -1(ω>0)的最小正周期为π.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤0,7π12上的最大值和最小值. 解:(1)因为f (x )=sin ⎝⎛⎭⎫2ωx -π6+(2cos 2ωx -1) =⎝⎛⎭⎫sin2ωx cos π6-cos2ωx sin π6+cos2ωx =32sin2ωx +12cos2ωx =sin ⎝⎛⎭⎫2ωx +π6, 所以f (x )的最小正周期T =2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin ⎝⎛⎭⎫2x +π6. 因为0≤x ≤7π12,所以π6≤2x +π6≤4π3.所以,当2x +π6=π2,即x =π6时,f (x )取得最大值为1;当2x +π6=4π3,即x =7π12时,f (x )取得最小值为-32.19.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且B =60°,c =4,b =6. (1)求sin C ;(2)求△ABC 的面积.解:(1)B =60°,c =4,b =6,在△ABC 中,由正弦定理b sin B =c sin C ,得sin C =c sin B b =4×326=33. (2)由于b >c ,所以B >C ,则C 为锐角,所以cos C =63,则sin A =sin(B +C )=sin B cos C +cos B sin C =32×63+12×33=32+36,所以△ABC 的面积S =12bc sin A =12×32+36=62+2 3.20.如图,在三棱锥P ABC 中,P A ⊥底面ABC ,△ABC 为正三角形,D ,E 分别是BC ,CA 的中点.(1)证明:平面PBE ⊥平面P AC .(2)在BC 上是否存在一点F ,使AD ∥平面PEF ?说明理由. 解:(1)证明:因为P A ⊥底面ABC ,BE ⊂平面ABC , 所以P A ⊥BE .又△ABC 是正三角形,E 是AC 的中点, 所以BE ⊥AC ,又P A ∩AC =A . 所以BE ⊥平面P AC .又BE ⊂平面PBE ,所以平面PBE ⊥平面P AC . (2)存在满足条件的点F ,且F 是CD 的中点. 理由:因为E ,F 分别是AC ,CD 的中点,所以EF ∥AD .而EF ⊂平面PEF ,AD ⊄平面PEF ,所以AD ∥平面PEF .21.如图所示,在四棱锥P ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ; (2)PD ⊥平面ABE .证明:(1)因为P A ⊥底面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD . 因为AC ⊥CD ,P A ∩AC =A ,所以CD ⊥平面P AC .而AE ⊂平面P AC ,所以CD ⊥AE .(2)由P A =AB =BC ,∠ABC =60°,可得AC =P A .因为E 是PC 的中点,所以AE ⊥PC . 由(1)知AE ⊥CD ,且PC ∩CD =C ,所以AE ⊥平面PCD .而PD ⊂平面PCD ,所以AE ⊥PD .因为P A ⊥底面ABCD ,所以P A ⊥AB . 又因为AB ⊥AD 且P A ∩AD =A ,所以AB ⊥平面P AD ,而PD ⊂平面P AD ,所以AB ⊥PD .又因为AB ∩AE =A ,所以PD ⊥平面ABE .22.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1.所以T n =5-2n +52n .。
xx高二数学下学期文科暑假作业及答案
xx高二数学下学期文科暑假作业及答案1. 设全集 ( )A. B. C. D.2.复数 ( 为虚数单位)在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.假设P是的充分不必要条件,那么 p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4. 假设抛物线的焦点与双曲线的右焦点重合,那么的值为( )A. B. C. D.5. 一个三棱锥的三视图如下图,其中正视图和侧视图是全等的等腰三角形,那么此三棱锥外接球的外表积为( )A. B. C.4 D.6. 设,那么( )A.a>b>cB.a>c>bC.b>c>aD.c>a>b7.直线上存在点满足 ,那么实数的取值范围为( )A.(- , )B.[- , ]C.(- , )D.[- , ]8. 将函数的图象上所有点的纵坐标不变,横坐标变为原来的,再将所得图象向右平移得到函数g(x),那么函数g(x)的解析式为( )A. B. C. D.9.双曲线 (a>0,b>0的左、右焦点分别为F1、F2,以F1F2为直径的圆被直线截得的弦长为 a,那么双曲线的离心率为( )A.3B.2C.D.10.要设计一个隧道,在隧道内设双行线公路,其截面由一个长方形和抛物线构成(如下图)。
假设车道总宽度AB为6m,通行车辆(设为平顶)限高3.5m,且车辆顶部与隧道顶部在竖直方向上的高度之差至少要0.5m,那么隧道的拱宽CD至少应设计为(准确0.1m)( )A.8.9mB.8.5mC.8.2 m D .7.9m11. 向量满足,那么向量与夹角的余弦值为 .12. 假设某程序框图如下图,那么该程序运行后输出的值为.13.在样本频率分布直方图中,样本容量为,共有个小长方形,假设中间一个小长方形的面积等于其他个小长方形面积和的,那么中间一组的频数为 .14.假设“ ”是“ ”的充分但不必要条件,那么实数a的取值范围是 ?15. 设是的三边中垂线的交点, 分别为角对应的边, 那么的范围是16.集合 .对于中的任意两个元素,定义A与B之间的间隔为现有以下命题:①假设 ;②假设 ;③假设 =p(p是常数),那么d(A,B)不大于2p;④假设,那么有xx个不同的实数满足 .其中的真命题有 (写出所有真命题的序号)17.(本小题总分值10分)为了了解《中华人民共和国道路交通平安法》在学生中的普及情况,调查部门对某校5名学生进展问卷调查,5人得分情况如下:5,6,7,8,9。
2021年高二暑假入学检测数学(文)试题含答案
2021年高二暑假入学检测数学(文)试题含答案注意事项:1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
满分为150分。
考试用时为120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。
3.选择题答案涂在在答题卡上,答在本试卷上无效。
4.考试结束后,将答题卡和第II卷一并交回。
第I卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值是A.B. C. D.2.已知为平行四边形,若向量,,则向量为()A. B. C. D.3.函数是()A.周期为的奇函数 B.周期为的偶函数C.周期为的奇函数 D.周期为的偶函数4.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是()A. B. C. D.5.已知,并且是第二象限的角,那么的值等于()A.B.C.D.6. 如图所示,随机在图中撒一把豆子,则它落到阴影部分的概率是( )A. B. C. D.7.函数的图象的一条对称轴方程是()A. B. C. D.8.直线4x+3y=40与圆x2+y2=100的位置关系是()A.相交 B.相切 C.相离 D.无法确定9. 一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是().A. 至多有一次中靶B. 两次都中靶C. 只有一次中靶D. 两次都不中靶10.某班学生在一次数学考试中各分数段以及人数的成绩分布为:[0,80),2人;[80,90),6人;[90,100),4人;[100,110),8人;[110,120),12人;[120,130),5人;[130,140),6人;[140,150),2人.那么分数在[100,130)中的频数以及频率分别为()A.25,0.56B.20,0.56 C.25,0.50 D.13,0.2911.要得到函数的图象,只需将函数的图象上所有的点的()A.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度;B.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度;C.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度;D.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度。
北京宏志中学高二文科数学暑假作业答案
北京宏志中学高二文科数学暑假作业 参考答案暑假作业(一)A1.B 2.B 3.C 4.{-1,0} 5.C 6.D 7.D 8.D 9.010.{(0,1),(-1,2)} 11.-1<a <212.实数m 的值为8 13.(1)C (2)4m1+m 2暑假作业(一)B1.B 2.C 3.D 4.2 5.A 6.C 7.C 8.A 9.{2,4,6} 10.[0,1)∪(3,+∞) 11.23 12.A ∪B ={-7,-4,-8,4,9} 13.(1)B ={x |4<x <5} (2)a =-1暑假作业(二)1.C 2.A 3.C 4.充分不必要 5.B 6.A 7.B 8.B 9.充分不必要10.⎣⎡⎦⎤-12,43 11.m >9 12.m ≤4 13.(1)(∁U B )∩A ={x |3≤x <4}(2)⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52 暑假作业(三)1.C 2.D 3.D 4.“所有的三角形都不是直角三角形” 5.D 6.D 7.C 8.C9.(-∞,0)∪⎝⎛⎭⎫34,+∞ 10.①②④ 11.[1,+∞) 12.-2<a ≤2 13.{a |a >2或a <-2}暑假作业(四)A1.C 2.B 3.B 4.(1,3] 5.A 6.B 7.B 8.C9.[2,+∞) 10.[-14,0)∪(34,1] 11.1201512.(1)f [g (2)]=0 g [f (2)]=2 (2)f [g (x )]=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2-4x +3,x <0g [f (x )]=⎩⎪⎨⎪⎧x 2-2,x ≤-1或x ≥1,3-x 2,-1<x <1 13.(1)f (x )=x 2+2x g (x )=-x 2+2x (2)(-∞,0]暑假作业(四)B1.B 2.A 3.C 4.435.C6.B7.D8.B9.[-14,+∞) 10.x3+1 11.(-∞,1]12.(1)(-3,0)∪(2,3) (2)①[-1,1] ②[1,4] (3)(-∞,0]13.(1)B (2)A暑假作业(五) 1.B 2.C 3.B 4.(-12,23) 5.A 6.A 7.D 8.D9.C 10.[3,+∞) 11.(-∞,2] 12.[2,+∞) 13.(-1,1)14.(1)b =4 (2)函数f (x )=x +cx取得最小值2 c 当c ∈[1,2)时,f (x )的最大值为2+c2当c ∈(2,4]时,f (x )的最大值为1+c 当c =2时,f (x )的最大值为315.(1)略 (2)(-∞,3]16.(1)f (1)=0 (2)略 (3)[1+10,+∞)暑假作业(六)A1.B 2.D 3.B 4.-2 5.D 6.A 7.A 8.A 9.1 10.-2 11.120712.(1)m =1 (2)f (x )是奇函数 (3)f (x )在区间(0,+∞)上单调递增13.(1)f (x )=⎩⎪⎨⎪⎧4x 3-2ax ,-1≤x <0,-4x 3+2ax ,0≤x ≤1. (2)存在a =8使得f (x )的图像的最高点在直线y =12上暑假作业(六)B1.C 2.C 3.B 4.-3 5.C 6.B 7.B 8.D 9.3210.2 11.(-2,0)∪(3,+∞) 12.(1)m =0 (2)-1<a <0 13.(1)略 (2)f (x )=x 2-6x +8(3)f (0)+f (1)+f (2)+…+f (2013)=1暑假作业(七)1.A 2.D 3.D 4.(-∞,-3] 5.B 6.C 7.C 8.A 9.C 10.-2 -4 11.y =-x 2+2x +8 12.-1或313.-3或15 14.f (x )=x 2+x15.(1)[-214,15] (2)a =-13或-116.(1)f (x )=12x 2+x (2)m =12,t =8暑假作业(八)A1.B 2.D 3.C 4.2 5.B 6.C 7.A 8.D 9.-1 10.log 23 11.3 212.(1)1 (2)-43 13.(1)略 (2)a =6,b =8,c =10暑假作业(八)B 1.C 2.B 3.D 4.a 2b 45.B6.D7.C8.A9.3 10.ab +3ab +111.①③④12.(1)略 (2)3x <4y <6z13.(1)y =at 2-3t +3 (2)a =16 x =64暑假作业(九)1.B 2.B 3.B 4.[-1,2)∪(2,3]5.B 6.D 7.C 8.B 9.B 10.3 11.0和112.(11-a,0) 13.-1和0 [-14,3]14.(-∞,0]∪[1,2]15.(1)f (12013) +f (-12013) =0 (2)(-∞,-2]∪[4,+∞)16.(1)a =1 (2)λ=43暑假作业(十)1.C 2.D 3.D 4.③ 5.C 6.A 7.D 8.C9.B 10.(-2,1) 11.-2 12.(-1,-1) 13.10<abc <1214.f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0. 15.(0,13]∪[3,+∞) 16.(1)m ≥2e (2)(-e 2+2e +1,+∞)暑假作业(十一)1.D 2.C 3.A 4.3x -y +2=0 5.D 6.C 7.A 8.B 9.B 10.1 1 11.0 12.3x +y =0 13.-cos x14.(1)13x -y -32=0 (2)切点坐标为(1,-14)或(-1,-18),切线方程为y =4x -18或y =4x -1415.(1)f (x )=x -3x(2)证明略 定值为616.(1)x 0=1 (2)a ≥ e暑假作业(十二)1.B 2.A 3.C 4.(-∞,-3)∪(6,+∞) 5.A 6.B 7.D 8.C9.C 10.9 11.(0,12) 12.-4 13.(-1,0)∪(1,+∞)14.(1)a =4,b =4 (2)极大值为4(1-e -2)15.(1)a =2 (2)①当a ≤0时,函数f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);②当0<a <2时,则函数f (x )的单调递增区间为(0,a2),(1,+∞),单调递减区间为(a2,1);③a =2时,函数f (x )的单调递增区间为(0,+∞);④a >2时,函数f (x )的单调递增区间为(0,1),(a2,+∞)单调递减区间为(1,a2)16.(1)f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0),f (x )有极小值1(2)g (x )=sin x +1 (3)[1,+∞)暑假作业(十三)1.D 2.B 3.D 4.(0,1) 5.D 6.C 7.A 8.B9.A 10.6 cm 3 cm 4 cm 11.3-1 12.[-42,9] 13.114.(1)f (x )=x 3+2x 2-4x +5(2)f (x )在[-3,1]上的最大值为1315.(1)f (x )的单调递增区间为(-π2,0),单调递减区间为(0,π2) (2)k ≤-1216.(1)S 1的最大值为4 (2)l 的范围是[8,4 5]专题一 突破高考解答题——函数与导数1.(1)f (x )=x +1x(2)(-∞,2]2.(1)(0,1) (2)[2ln 3-5,2ln 2-4)3.(1)①当a ≤0时,函数f (x )的单调递增区间为(0,+∞)②当a >0时,函数f (x )的单调递减区间为(2a2a,+∞),单调递增区间为(0,2a2a)(2)略4.(1)(-1,13) (2)(-1,-411) (3)[-38,0]5.(1) y =x -1 (2)略 (3)f (b )-f (a )b -a>f⎝⎛⎭⎫a +b 2暑假作业(十四) 1.A 2.D 3.C 4.(-3π2,0) 5.D 6.B 7.D 8.D9.⎩⎪⎨⎪⎧2x +3y ≤60,4x +2y ≤80,y -x ≤10,x ≥0,x ∈N *,y ≥0,y ∈N*10.b a -c <ab -d11.①④12.a n +b n <c n 13.5张暑假作业(十五)1.A 2.B 3.B 4.(0,8) 5.B 6.A 7.B 8.C9.-1 10.(-7,3) 11.-21412.(1)M ={x |0<x <2} (2)[-2,2]13.(1)a1+a 2 (2)1-k 2-2k +k 2暑假作业(十六)1.C 2.D 3.C 4.6 5.A 6.B 7.A 8.B 9.B 10.2 11.22 12.2 13.20 14.略15.(1)k =50 (2)建8层时,每平方米的平均综合费用为1225元16.a 为6,b 为3时,经沉淀后流出的水中该杂质的质量分数最小暑假作业(十七)1.C 2.B 3.B 4.D 5.D 6.C 7.D 8.A 9.C10.a >c >b 11.log a (1+a )>log a ⎝⎛⎭⎫1+1a 12.a ≥0,b ≥0且a ≠b 13.3 3214.略 15.略16.(1)a n =2n -1+2,S n =n (n +2) (2)略暑假作业(十八)1.A 2.A 3.A 4.2 5.D 6.C 7.A 8.B9.A 10.3 11.-12+2i 12.2 13.3+4i14.(1)a =b =3 (2)z =1-i 时,|z |min = 2 15.(1)m =5或m =-3 (2)m ≠5且m ≠-3 (3)m =-2 (4)m <-3或m >5(5)m =-3-414或m =-3+41416.(1)|z |=1 ⎝⎛⎭⎫-12,1 (2)略 (3)1暑假作业(十九)1.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图像( )A .关于点⎝ ⎛⎭⎪⎫π3,0对称 B .关于直线x =π4对称C .关于点⎝ ⎛⎭⎪⎫π4,0对称 D .关于直线x =π3对称解析 由已知,ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫2x +π3,因为f ⎝ ⎛⎭⎪⎫π3=0,所以函数图像关于点⎝ ⎛⎭⎪⎫π3,0中心对称,故选A. 答案 A2.要得到函数的图像,只要将函数的图像( )A. 向左平移1个单位B. 向右平移1个单位C. 向左平移个单位 D.向右平移 个单位 解析 因为,所以将c o s (21)y x =+c o s 2y x =12121c o s (21)c o s (2()2y xx =+=+向左平移个单位,故选C. 答案 C3. 函数f (x )=A sin(ωx +φ)A >0,ω>0,|φ|<π2的部分图象如图所示,则将y =f (x )的图象向右平移π6个单位后,得到的图象对应的函数解析式为( ). A .y =sin 2xB .y =cos 2xC .y =sin ⎝ ⎛⎭⎪⎫2x +2π3D .y =sin ⎝ ⎛⎭⎪⎫2x -π6解析 由所给图象知A =1,34T =11π12-π6=3π4,T =π,所以ω=2πT =2,由sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,|φ|<π2得π3+φ=π2,解得φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移π6个单位后得到的图象对应的函数解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π6=sin ⎝ ⎛⎭⎪⎫2x -π6,故选D. 答案 D4.将函数y =sin 2x 的图象向左平移φ(φ>0)个单位,所得图象对应的函数为偶函数,则φ的最小值为( ).A.π6B.π3C.π4D.π12解析 将函数y =sin 2x 的图象向左平移φ个单位,得到函数y =sin 2(x +φ)=sin(2x +2φ)的图象,由题意得2φ=π2+k π(k ∈Z ),故φ的最小值为π4. 答案 C5. 如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝ ⎛⎭⎪⎫32,12,当秒针从P 0(注:此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为( ).A .y =sin ⎝ ⎛⎭⎪⎫π30t +π6B .y =sin ⎝ ⎛⎭⎪⎫-π60t -π6C .y =sin ⎝ ⎛⎭⎪⎫-π30t +π6D .y =sin ⎝ ⎛⎭⎪⎫-π30t -π3解析 由题意可得,函数的初相位是π6,排除B ,D.又函数周期是60(秒)且秒针按顺时针旋转,即T =⎪⎪⎪⎪⎪⎪2πω=60,所以|ω|=π30,即ω=-π30,故选C.答案 C6.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图像如图所示,则当t =1100秒时,电流强度是( ) A .-5安 B .5安 C .53安 D .10安解析 由函数图像知A =10,T 2=4300-1300=1100. ∴T =150=2πω,∴ω=100π. ∴I =10sin(100πt +φ). 又∵点⎝ ⎛⎭⎪⎫1300,10在图像上, ∴10=10sin ⎝ ⎛⎭⎪⎫100π×1300+φ ∴π3+φ=π2,∴φ=π6, ∴I =10sin ⎝ ⎛⎭⎪⎫100πt +π6.当t =1100时,I =10sin ⎝⎛⎭⎪⎫100π×1100+π6=-5. 答案 A 二、填空题 7.已知函数f (x )=sin(ωx+cos2y x =12φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图像上的两个相邻的最高点和最低点的距离为22,则ω=________. 解析 由已知两相邻最高点和最低点的距离为22,而f (x )max -f (x )min =2,由勾股定理可得T2=22-22=2,∴T =4,∴ω=2πT =π2.答案 π28.已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=2cos(2x+φ)+1的图象的对称轴完全相同,若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是________.解析 ∵f (x )与g (x )的图象的对称轴完全相同,∴f (x )与g (x )的最小正周期相等,∵ω>0,∴ω=2,∴f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6,∵0≤x ≤π2,∴-π6≤2x -π6≤5π6,∴-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1,∴-32≤3sin ⎝ ⎛⎭⎪⎫2x -π6≤3,即f (x )的取值范围是⎣⎢⎡⎦⎥⎤-32,3.答案 ⎣⎢⎡⎦⎥⎤-32,39.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若⎝ ⎛⎭⎪⎫π8,5π8是f (x )的一个单调递增区间,则φ的值为________.解析 令π2+2k π≤2x +φ≤3π2+2k π,k ∈Z ,k =0时,有π4-φ2≤x ≤3π4-φ2,此时函数单调递增,若⎝ ⎛⎭⎪⎫π8,5π8是f (x )的一个单调递增区间,则必有⎩⎪⎨⎪⎧π4-φ2≤π8,3π4-φ2≥5π8,解得⎩⎪⎨⎪⎧φ≥π4,φ≤π4,故φ=π4.答案 π410.在函数f (x )=A sin(ωx +φ)(A >0,ω>0)的一个周期内,当x =π9时有最大值12,当x =4π9时有最小值-12,若φ∈⎝⎛⎭⎪⎫0,π2,则函数解析式f (x )=________.解析 首先易知A =12,由于x =π9时f (x )有最大值12,当x =4π9时f (x )有最小值-12,所以T =⎝ ⎛⎭⎪⎫4π9-π9×2=2π3,ω=3.又12sin ⎝⎛⎭⎪⎫3×π9+φ=12,φ∈⎝ ⎛⎭⎪⎫0,π2,解得φ=π6,故f (x )=12sin ⎝⎛⎭⎪⎫3x +π6.答案12sin ⎝⎛⎭⎪⎫3x +π6三、解答题11.已知函数f (x )=3sin2x +2cos 2x .(1)将f (x )的图像向右平移π12个单位长度,再将周期扩大一倍,得到函数g (x )的图像,求g (x )的解析式;(2)求函数f (x )的最小正周期和单调递增区间. 解 (1)依题意f (x )=3sin2x +2·cos2x +12=3sin2x +cos2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π6+1,将f (x )的图像向右平移π12个单位长度,得到函数f 1(x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π12+π6+1=2sin2x +1的图像,该函数的周期为π,若将其周期变为2π,则得g (x )=2sin x +1.(2)函数f (x )的最小正周期为T =π,当2k π-π2≤2x +π6≤2k π+π2(k ∈Z)时,函数单调递增, 解得k π-π3≤x ≤k π+π6(k ∈Z),∴函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z).12.已知向量m =(sin x,1),n =(3A cos x ,A2cos 2x )(A >0),函数f (x )=m ·n 的最大值为6. (1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域.解 (1)f (x )=m ·n =3A sin x cos x +A2cos 2x =A ⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =A sin ⎝ ⎛⎭⎪⎫2x +π6.因为A >0,由题意知A =6. (2)由(1)知f (x )=6sin ⎝ ⎛⎭⎪⎫2x +π6.将函数y =f (x )的图象向左平移π12个单位后得到 y =6sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6=6sin ⎝ ⎛⎭⎪⎫2x +π3的图象; 再将得到图象上各点横坐标缩短为原来的12倍,纵坐标不变,得到y =6sin ⎝ ⎛⎭⎪⎫4x +π3的图象.因此g (x )=6sin ⎝ ⎛⎭⎪⎫4x +π3. 因为x ∈⎣⎢⎡⎦⎥⎤0,5π24,所以4x +π3∈⎣⎢⎡⎦⎥⎤π3,7π6,故g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域为[-3,6].13.已知函数f (x )=23sin x 2+π4cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.解 (1)因为f (x )=3sin ⎝ ⎛⎭⎪⎫x +π2+sin x=3cos x +sin x =2⎝ ⎛⎭⎪⎫32cos x +12sin x=2sin ⎝ ⎛⎭⎪⎫x +π3,所以f (x )的最小正周期为2π.(2)∵将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,∴g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin[⎝ ⎛⎭⎪⎫x -π6+π3]=2sin ⎝ ⎛⎭⎪⎫x +π6.∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴当x +π6=π2,即x =π3时,sin ⎝ ⎛⎭⎪⎫x +π6=1,g (x )取得最大值2.当x +π6=7π6,即x =π时,sin ⎝ ⎛⎭⎪⎫x +π6=-12,g (x )取得最小值-1.14.设函数f (x )=22cos ⎝ ⎛⎭⎪⎫2x +π4+sin 2x .(1)求f (x )的最小正周期;(2)设函数g (x )对任意x ∈R ,有g ⎝ ⎛⎭⎪⎫x +π2=g (x ),且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x ).求g (x )在区间[-π,0]上的解析式.解 (1)f (x )=22cos ⎝ ⎛⎭⎪⎫2x +π4+sin 2x=22⎝ ⎛⎭⎪⎫cos 2x cos π4-sin 2x sin π4+1-cos 2x 2=12-12sin 2x ,故f (x )的最小正周期为π.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x )=12sin 2x ,故 ①当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,x +π2∈⎣⎢⎡⎦⎥⎤0,π2.由于对任意x ∈R ,g ⎝ ⎛⎭⎪⎫x +π2=g (x ),从而g (x )=g ⎝ ⎛⎭⎪⎫x +π2=12sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π2=12sin(π+2x )=-12sin 2x .②当x ∈⎣⎢⎡⎭⎪⎫-π,-π2时,x +π∈⎣⎢⎡⎭⎪⎫0,π2.从而g (x )=g (x +π)=12sin[2(x +π)]=12sin 2x .综合①、②得g (x )在[-π,0]上的解析式为 g (x )=⎩⎪⎨⎪⎧12sin 2x ,x ∈⎣⎢⎡⎭⎪⎫-π,-π2,-12sin 2x ,x ∈⎣⎢⎡⎦⎥⎤-π2,0.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C . (1)求tan C 的值;(2)若a = 2,求△ABC 的面积. 解 (1)因为0<A <π,cos A =23, 得sin A =1-cos 2A =53.又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C=53cos C +23sin C . 所以tan C = 5.(2)由tan C =5,得sin C =56,cos C =16.于是sin B =5cos C =56.由a = 2及正弦定理a sin A =csin C ,得c = 3. 设△ABC 的面积为S ,则S =12ac sin B =52. 16. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,点(a ,b )在直线x (sin A -sin B )+y sin B =c sin C 上. (1)求角C 的值;(2)若a 2+b 2=6(a +b )-18,求△ABC 的面积. 解 (1)由题意得a (sin A -sin B )+b sin B =c sin C , 由正弦定理,得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab , 由余弦定理,得cos C =a 2+b 2-c 22ab =12,结合0<C <π,得C =π3.(2)由a 2+b 2=6(a +b )-18,得(a -3)2+(b -3)2=0, 从而得a =b =3,所以△ABC 的面积S =12×32×sin π3=934. 17. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a .(1)求证:B -C =π2;(2)若a = 2,求△ABC 的面积.(1)证明 由b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a 应用正弦定理,得sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A ,sin B ⎝ ⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22,整理得sin B cos C -cos B sin C =1,即sin(B -C )=1. 由于0<B ,C <34π,从而B -C =π2.(2)解 B +C =π-A =3π4,因此B =5π8,C =π8. 由a = 2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8, 所以△ABC 的面积S =12bc sin A = 2sin 5π8sin π8 = 2cos π8sin π8=12北京宏志中学文科暑假作业答案。
2021年高二下学期第三次阶段考试数学(文)试题 含答案
2021年高二下学期第三次阶段考试数学(文)试题含答案本试卷共4页,20小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和班级座位号、试室号、试室座位号填写在答题卡上。
2.必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液、改写纸。
不按以上要求作答的答案无效。
一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.)1.已知集合,,则()A. B. C. D.2.为虚数单位,则复数的虚部为()A.B.C.D.3.若,则“”是“”的()条件A.充分而不必要B.必要而不充分C.充要D.既不充分又不必要4.下列说法错误..的是 ( )A.如果命题“”与命题“或”都是真命题,那么命题一定是真命题B.命题:,则C.命题“若都是偶数,则是偶数”的否命题是“若都不是偶数,则不是偶数”D.特称命题“,使”是假命题5. 过点且垂直于直线的直线方程为()A, B, C., D.6.在中,内角A,B,C对应的边分别是a,b,c ,已知,的面积,则的周长为( )A.6 B.5 C.4 D.7.阅读右图1所示的程序框图,运行相应的程序,输出的结果是().A.B.C.D.8.已知实数构成一个等比数列,则圆锥曲线的离心率为()9在等差数列中,,是数列的前项和,则()A.B.C.D.10.已知x>0,y>0,lg2x+lg8y=lg2,则1x+13y的最小值是()A.2B.2 2 C.4 D.2 3二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)11.已知,,若均为正实数),类比以上等式,可推测a,t的值,则=_________.12.已知直线的参数方程为(为参数),圆的参数方程为(为参数),则圆心到直线的距离为 .13.设、满足条件,则的最小值是 .14.已知圆的极坐标方程为,则圆上点到直线的最短距离为。
2021年高二下学期暑假作业数学文试题(15) 含答案
2021年高二下学期暑假作业数学文试题(15)含答案一、选择题:1.已知全集,集合,,那么集合等于()A B C. D.2.用反证法证明命题“如果a<b,那么”时,假设的内容是( )A. B.C. D.3.复数在复平面上对应的点的坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)4.已知x>0,则的最小值是()A. B. C.-4 D.45.双曲线的渐近线与圆相切,则双曲线离心率为()A. B. C. D.二、填空题:(本大题共4小题,每小题5分,共20分)6.若复数是纯虚数,则实数的值为______.7.若某空间几何体的三视图如图所示,则该几何体的体积是______.三、解答题:8.(本小题满分12分)函数(其中)的图象如图所示⑴求函数的解析式;⑵设,求的值。
9.(本小题满分12分)已知等比数列满足:,成等差数列,公比(1)求数列的通项公式;10.(本小题满分12分)如图,平行四边形中,,将沿折起到的位置,使平面平面(1)求证:;(2)求三棱锥的侧面积.答案:1.A2.A3.C4.B5.C6. 27.1,8.解:(1)由图可得,且,从而,又图像过点,即又 ,,.(2)由(1)可知, - ,54)3(sin 1)3cos(2-=+--=+∴παπα =2512)54(532)3cos()3sin(2-=-⋅⋅=++παπα 9.设等比数列公比为,,成等差数列,,即,整理得,解得或, 又,,(1)根据题意得=,, ①, ② ②-①得= =10.(本小题满分12分)(I )证明:在中,2222222cos 23,BD AB AD AB AD DAB AB BD AD AB DE ∴=+-⋅∠=∴+=∴⊥又平面平面平面平面平面平面平面(Ⅱ)解:由(I )知从而在中,又平面平面14,42ABE BE BC AD S AB BE ∆===∴=⋅= 平面平面,平面 而平面1,,42ADE ABD ED AD S AD DE ∆∴⊥∴=⋅= 综上,三棱锥的侧面积, 37232 9170 酰33937 8491 蒑22582 5836 堶 35446 8A76 詶33213 81BD 膽w4J38040 9498 钘39911 9BE7 鯧:31874 7C82 粂21966 55CE 嗎3。
2021年高二下学期入学考试数学(文)试题 含答案
2021年高二下学期入学考试数学(文)试题 含答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)。
1.i 是虚数单位,复数=( ).A .1+2iB .2+4iC .-1-2iD .2-i 2.设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B 等于( ).A .{x |3≤x <4}B .{x |x ≥3}C .{x |x >2}D .{x |x ≥2}3.命题“”的否命题是( )A .B .C .D .4.若变量满足约束条件,则的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和05.在正项等比数列中,,则的值是( )A .10000B .1000C .100D .10 6.已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于( )A .B .C .D . 7.函数f (x )=( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 8.“”是“”的 条件( )A . 充分而不必要B . 必要而不充分C . 充要D . 既不充分也不必要 9.右表提供了某厂节能降耗技术改造后在生产过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据.根据表中提供的数据,求出关于的线性回归方程为,那么表中的值为 ( )A .3B .3.15C .3.5D .4.5 10.函数的单调递增区间为( )A .(-∞,1)B .(2,+∞)C .(-∞,)D .(,+∞) 11.设双曲线的离心率为,抛物线的准线过双曲线的左焦点,则双曲线的方程为( ) A . B . C . D .12.设函数的定义域为,若满足:①在内是单调函数; ②存在,使得在上的值域为,那么就称是定义域为的“成功函数”.若函数是定义域为的“成功函数”,则的取值范围为 ( )3 45 62.5 t 44.5A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上)。
高二数学暑假作业检测试题含解析 试题
卜人入州八九几市潮王学校麓山国际实验2021届新高二数学暑假作业检测试题〔含解析〕时量:120分钟总分值是:150分一.选择题〔一共15小题,每一小题4分〕1.设集合A={x||x﹣a|<1},B={x|1<x<5,x∈R},A∩B=∅,那么实数a的取值范围是〔〕A.{a|0≤a≤6}B.{a|a≤2或者a≥4}C.{a|a≤0或者a≥6}D.{a|2≤a≤4}2.设x1,x2分别是方程xa x=1和xlog a x=1的根〔其中a>1〕,那么x1+2x2的取值范围〔〕A.〔2,+∞〕B.[2,+∞〕C.〔3,+∞〕D.[3,+∞〕3.函数〔a>0,且a≠1〕的值域为R,那么实数a的取值范围是〔〕A.〔0,1〕∪〔1,2] B.〔2,+∞〕C.〔4,+∞〕D.〔0,1〕∪〔1,4]4.在△ABC中,a,b,c分别为内角A,B,C所对的边,S为△ABC的面积.假设向量,满足,那么tan=〔〕A.B.C.2 D.45.A,B,C三点不在同一条直线上,O是平面ABC内一定点,P是△ABC内的一动点,假设,λ∈[0,+∞〕,那么直线AP一定过△ABC的〔〕A.重心B.垂心C.外心D.内心6.三棱柱的侧棱AA1和BB1上各有一动点P,Q满足A1P=BQ,过P、Q、C三点的截面把棱柱分成两局部,那么其体积比为〔〕A.3:1 B.2:1 C.4:1 D.7.完成以下两项调查:①一项对“小彩旗春晚连转四小时〞的调查中有10000人认为这是成为优秀演员的必经之路,有9000人认为太残酷,有1000人认为无所谓.现要从中随机抽取200人做进一步调查.②从某的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次是〔〕A.①简单随机抽样,②系统抽样B.①分层抽样,②简单随机抽样C.①系统抽样,②分层抽样D.①②都用分层抽样8.等比数列{a n}的前n项和S n=2n﹣1,那么数列{a n2}的前n项和T n=〔〕A.〔2n﹣1〕2B.4n﹣1 C.D.9.程序框图如图:假设上述程序运行的结果为S=132,那么判断框中应填入〔〕A.k≤10B.k≤9C.k<10 D.k<910.假设a>b>0,且ab=1,那么以下不等式成立的是〔〕A.a+<<log2〔a+b〕〕B.<log2〔a+b〕<a+C.a+<log2〔a+b〕<D.log2〔a+b〕〕<a+<11.设x,y满足约束条件,那么z=x+y的最大值为〔〕A.0 B.1 C.2 D.312.直线l:〔m+2〕x+〔m﹣1〕y+4﹣4m=0上总存在点M,使得过M点作的圆C:x2+y2+2x﹣4y+3=0的两条切线互相垂直,那么实数m的取值范围是〔〕A.m≤1或者m≥2B.2≤m≤8C.﹣2≤m≤10 D.m≤﹣2或者m≥813.假设α,β是两个不同平面,m,n是两条不同直线,那么以下结论错误的选项是〔〕A.假设m∥n,α∥β,那么m与α所成的角和n与β所成的角相等B.假设m⊥n,m⊥α,n∥β,那么α⊥βC.假设α∥β,m⊂α,那么m∥βD.假设m⊥α,n∥α,那么m⊥n14.一个三棱锥的三视图如下列图,其中正视图和侧视图是全等的等腰三角形,那么此三棱锥外接球的外表积为〔〕A.B.9πC.4πD.π15.定义在R上的函数f〔x〕是奇函数且满足f〔﹣x〕=f〔x〕,f〔﹣2〕=﹣3,数列{a n}满足a1=﹣1,且=2×+1,〔其中S n为{a n}的前n项和〕.那么f〔a5〕+f〔a6〕=〔〕A.﹣3 B.﹣2 C.3 D.2二.填空题〔一共5小题,每一小题5分〕16.sinα,cosα是关于x的方程x2﹣ax+a=0的两个根,那么sin3α+cos3α=.17.两点A〔﹣1,0〕,B〔1,3〕,向量=〔2k﹣1,2〕,假设∥,那么实数k的值是.18.如下列图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1,AD的中点,那么异面直线OE和FD1所成角的余弦值等于.19.在平面直角坐标系xOy中,假设直线l:x+2y=0与圆C:〔x﹣a〕2+〔y﹣b〕2=5相切,且圆心C在直线l的上方,那么ab最大值为.20.在△ABC中,角A,B,C所对的边分别为a,b,c,假设△ABC为锐角三角形,且满足b2﹣a2=ac,那么﹣的取值范围是.三.解答题〔一共5小题〕〔12+12+13+14+14〕21.函数f〔x〕=log4〔4x+1〕+kx〔k∈R〕是偶函数〔1〕求k的值;〔2〕设g〔x〕=log4〔a•2x﹣a〕,假设函数f〔x〕与g〔x〕的图象有且只有一个公一共点,务实数a的取值范围.22.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点,〔Ⅰ〕证明:平面AEF⊥平面B1BCC1;〔Ⅱ〕假设直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.23.{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.〔Ⅰ〕求数列{x n}的通项公式;〔Ⅱ〕如图,在平面直角坐标系xOy中,依次连接点P1〔x1,1〕,P2〔x2,2〕…P n+1〔x n+1,n+1〕得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.24.直线x﹣y+3=0与圆心为〔3,4〕的圆C相交,截得的弦长为2.〔1〕求圆C的方程;〔2〕设Q点的坐标为〔2,3〕,且动点M到圆q的切线长与|MQ|的比值为常数k〔k>0〕.假设动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.25.如图是我国2021年至2021年生活垃圾无害化处理量〔单位:亿吨〕的折线图〔Ⅰ〕由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;〔Ⅱ〕建立y关于t的回归方程〔系数准确到0.01〕,预测2021年我国生活垃圾无害化处理量.参考数据:y i=2,t i y i=40.17,=0.55,≈46.参考公式:相关系数r=回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.麓山国际实验二零二零—二零二壹新高二暑假作业测试数学试卷参考答案1.解:由|x﹣a|<1得﹣1<x﹣a<1,即a﹣1<x<a+1.如图由图可知a+1≤1或者a﹣1≥5,所以a≤0或者a≥6.应选C2.解:由题意可得,x1a x1=1,x2log a x2=1;故a x1=,=x2,又∵y=a x在〔0,+∞〕上单调递增,故=x2,x2>1;故x1+2x2=+2x2,而y=+2x2在〔1,+∞〕上是增函数,故+2x2>3;应选C.3.解:函数〔a>0,且a≠1〕的值域为R⇔y=〔a>0,且a≠1〕的值域为〔0,+∞〕⇔y=x2﹣4x+a〔a>0,且a≠1〕的值域为〔0,+∞〕⇔△=〔﹣4〕2﹣4a≥0,a>0且a ≠1.解得0<a≤4且a≠1.应选D.4.解:∵向量,,由,得S=〔a+b〕2﹣c2=2ab+a2+b2﹣c2,即,也就是,∴.那么.应选:D.5.解:如图,取BC的中点P并连结AD,那么+=、﹣=,∵,λ∈[0,+∞〕,∴=λ,即A、P、D三点一共线,又∵AD为BC边上的中线,∴直线AP一定过△ABC的重心,应选:A.6.解:设三棱柱ABC﹣A1B1C1的体积为V∵侧棱AA1和BB1上各有一动点P,Q满足A1P=BQ,∴四边形PQBA与四边形PQB1A1的面积相等故四棱椎C﹣PQBA的体积等于三棱锥C﹣ABA1的体积等于V那么四棱椎C﹣PQB1A1的体积等于V故过P、Q、C三点的截面把棱柱分成两局部,那么其体积比为2:1应选B7.解:①一项对“小彩旗春晚连转四小时〞的调查中有10000人认为这是成为优秀演员的必经之路,有9000人认为太残酷,有1000人认为无所谓.现要从中随机抽取200人做进一步调查,此项抽查的总体数目较多,而且差异很大,符合分层抽样的适用范围;②从某的15名艺术特长生中选出3名调查学习负担情况,此项抽查的总体个数不多,而且差异不大,符合简单随机抽样的适用范围.∴宜采用的抽样方法依次是:①分层抽样,②简单随机抽样.应选;B.8.解:等比数列{a n}的前n项和S n=2n﹣1,∴a1=S1=1,a1+a2=22﹣1=3,解得a2=2.∴公比q=2.∴a n=2n﹣1.∴=4n﹣1,那么数列{a n2}为等比数列,首项为1,公比为4.其前n项和T n==.应选:C.9.解:按照程序框图依次执行:k=12,s=1;进入循环,s=1×12=12,k=11;s=12×11=132,k=10,跳出循环,故k=10满足判断框内的条件,而k=11不满足,故判断框内的条件应为k≤10或者k<11应选A 10.解:∵a>b>0,且ab=1,∴可取a=2,b=.那么=4,==,log2〔a+b〕==∈〔1,2〕,∴<log2〔a+b〕<a+.应选:B.11.解:x,y满足约束条件的可行域如图:,那么z=x+y经过可行域的A时,目的函数获得最大值,由解得A〔3,0〕,所以z=x+y的最大值为:3.应选:D.12.解:如图,设切点分别为A,B.连接AC,BC,MC,由∠AMB=∠MAC=∠MBC=90°及MA=MB知,四边形MACB为正方形,故,假设直线l上总存在点M使得过点M的两条切线互相垂直,只需圆心〔﹣1,2〕到直线l的间隔,即m2﹣8m﹣20≤0,∴﹣2≤m≤10,应选:C.13.解:A、假设m∥n,α∥β,那么m,n与α所成的角和m,n与β所成的角均相等,故正确;B、假设m⊥n,m⊥α,n∥β,不能得出α⊥β,故错误;C、假设α∥β,m⊂α,那么m与β无公一共点,那么m∥β.故正确;D、假设n∥α,那么存在直线l⊂α,使n∥l,由m⊥α,可得m⊥l,那么m⊥n.故正确,应选B.14.解:由题意,三棱锥的一个侧面垂直于底面,底面是等腰直角三角形,顶点在底面中的射影是底面斜边的中点,设三棱锥外接球的半径为r,那么r2=〔1﹣r〕2+〔〕2,∴r=,∴三棱锥外接球的外表积为4=,应选:A.15.解:∵函数f〔x〕是奇函数∴f〔﹣x〕=﹣f〔x〕∵f〔﹣x〕=f〔x〕,∴f〔﹣x〕=﹣f〔﹣x〕∴f〔3+x〕==﹣f〔〕=﹣f[]=﹣f〔﹣x〕=f〔x〕∴f〔x〕是以3为周期的周期函数.∵数列{a n}满足a1=﹣1,且=2×+1,∴a1=﹣1,且S n=2a n+n,∴a5=﹣31,a6=﹣63∴f〔a5〕+f〔a6〕=f〔﹣31〕+f〔﹣63〕=f〔2〕+f〔0〕=f〔2〕=﹣f〔﹣2〕=3应选C.16.解:由题意利用韦达定理可得sinα+cosα=a,sinα•cosα=a,∴1+2a=a2,解得a=1±.再根据判别式△=a2﹣4a≥0,可得a≤0,或者a≥4,∴a=1﹣.∴sin3α+cos3α=〔sinα+cosα〕〔1﹣sinαcosα〕=a〔1﹣a〕=a﹣a2=〔1﹣〕﹣〔1﹣〕2=﹣2+,故答案为:.17.解:两点A〔﹣1,0〕,B〔1,3〕,向量=〔2k﹣1,2〕,=〔2,3〕,∥,3〔2k﹣1〕=4,解得:k=故答案为:.18.解:取BC的中点G.连接GC1,那么GC1∥FD1,再取GC的中点H,连接HE、OH,那么∵E是CC1的中点,∴GC1∥EH∴∠OEH为异面直线所成的角.在△OEH中,OE=,HE=,OH=.由余弦定理,可得cos∠OEH===.故答案为:19.解:∵直线和圆相切,∴,∵圆心C在直线l的上方,∴a+2b>0,从而a+2b=5,∴ab,当且仅当a=2b,即a=,b=时取等号,故ab的最大值为,故答案为:20.解:∵b2﹣a2=ac,∴由正弦定理得,sin2B﹣sin2A=sinAsinC,,,由和差化积公式得cos2A﹣cos2B=﹣2sin〔A+B〕sin〔A﹣B〕,代入上式得,﹣sin〔A+B〕sin〔A﹣B〕=sinAsinC,∵sin〔A+B〕=sinC≠0,∴﹣sin〔A﹣B〕=sinA,即sin〔B﹣A〕=sinA,在△ABC中,B﹣A=A,得B=2A,那么C=π﹣3A,∵△ABC为锐角三角形,∴,解得,那么,∴====,由得,sinB∈〔,1〕,那么,∴取值范围是,故答案为:.21.解〔1〕∵函数f〔x〕=log4〔4x+1〕+kx〔k∈R〕〕是偶函数∴f〔﹣x〕=log4〔4﹣x+1〕﹣kx〕=log4〔〕﹣kx=log4〔4x+1〕+kx〔k∈R〕恒成立∴﹣〔k+1〕=k,那么k=.〔5分〕〔2〕g〔x〕=log4〔a•2x﹣a〕,函数f〔x〕与g〔x〕的图象有且只有一个公一共点,即方程f〔x〕=g〔x〕只有一个解由得log4〔4x+1〕x=log4〔a•2x﹣a〕,∴log4〔〕=log4〔a•2x﹣a〕,方程等价于,设2x=t,t>0,那么〔a﹣1〕t2﹣﹣1=0有一解,假设a﹣1>0,设h〔t〕=〔a﹣1〕t2﹣﹣1,∵h〔0〕=﹣1<0,∴恰好有一正解∴a>1满足题意假设a﹣1=0,即a=1时,h〔t〕=﹣﹣1,由h〔t〕=0,得t=﹣<0,不满足题意假设a﹣1<0,即a<1时,由,得a=﹣3或者a=,当a=﹣3时,t=满足题意当a=时,t=﹣2〔舍去〕综上所述实数a的取值范围是{a|a>1或者a=﹣3}.〔12分〕〔少些a=-3扣2分〕22.〔Ⅰ〕证明:∵几何体是直棱柱,∴BB1⊥底面ABC,AE⊂底面ABC,∴AE⊥BB1,∵直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E分别是BC的中点,∴AE⊥BC,BC∩BB1=B,∴AE⊥平面B1BCC1,∵AE⊂平面AEF,∴平面AEF⊥平面B1BCC1;〔6分〕〔Ⅱ〕解:取AB的中点G,连结A1G,CG,由〔Ⅰ〕可知CG⊥平面A1ABB1,直线A1C与平面A1ABB1所成的角为45°,就是∠CA1G,那么A1G=CG=,∴AA1==,CF=.三棱锥F﹣AEC的体积:×==.〔12分〕23.解:〔I〕设数列{x n}的公比为q,那么q>0,由题意得,两式相比得:,解得q=2或者q=﹣〔舍〕,∴x1=1,∴x n=2n﹣1.〔6分〕〔II〕过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,记梯形P n P n+1Q n+1Q n的面积为b n,那么b n==〔2n+1〕×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+〔2n+1〕×2n﹣2,①∴2T n=3×20+5×21+7×22+…+〔2n+1〕×2n﹣1,②①﹣②得:﹣T n=+〔2+22+…+2n﹣1〕﹣〔2n+1〕×2n﹣1=+﹣〔2n+1〕×2n﹣1=﹣+〔1﹣2n〕×2n﹣1.∴T n=.〔13分〕24.解:〔1〕圆心C到直线l的间隔为=,∵截得的弦长为2,∴半径为2,∴圆C:〔x﹣3〕2+〔y﹣4〕2=4;〔6分〕〔2〕设动点M〔x,y〕,那么由题意可得=k,即=k,化简可得〔k2﹣1〕•x2+〔k2﹣1〕•y2+〔6﹣4k2〕x+〔8﹣6k2〕y+13k2﹣21=0,假设动点M的轨迹方程是直线,那么k2﹣1=0,∴k=1,直线的方程为x+y﹣4=0.〔14分〕25.解:〔Ⅰ〕由折线图看出,y与t之间存在较强的正相关关系,∵y i=2,t i y i=40.17,=0.55,∴r≈≈0.993,∵>0.75,故y与t之间存在较强的正相关关系;〔5分〕〔Ⅱ〕由≈31及〔Ⅰ〕得=≈0.103,×4=0.92.所以,y关于t的回归方程为:+0.10t.〔11分〕将2021年对应的t=10代入回归方程得:+×所以预测2021年我国生活垃圾无害化处理量将约2亿吨.〔14分〕。
2021年高二暑假作业(四)数学(文) 含答案
xx高二数学(文)暑假作业(四)一、选择题1.曲线y=-x3+3x2在点()1,2处的切线方程为( )A.y=3x-1 B.y=-3x+5C.y=3x+5 D.y=2x2.(2011·山东)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.函数f(x)=11-x+lg(1+x)的定义域是( )A.(-∞,-1) B.(1,+∞)C.(-1,1)∪(1,+∞) D.(-∞,+∞)4.(2011·江西)若f(x)=x2-2x-4ln x,则f′(x)>0的解集为 ( ) A.(0,+∞) B.(-1,0)∪(2,+∞)C.(2,+∞) D.(-1,0)5.(2011·湖北)已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x) =a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于 ( )A.2 B.154C.174D.a26.(2011·课标全国)在下列区间中,函数f(x)=e x+4x-3的零点所在的区间( )A.(-14,0) B.(0,14) C.(14,12) D.(12,34)7.已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有( )A.10个B.9个C.8个D.1个8.设a=log3π,b=log23,c=log32,则 ( ) A.a>b>c B.a>c>b C.b>a>c D.b>c>a9.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于( ) A.2 B.3 C.6 D.910.已知函数在上是单调函数,则实数的取值范围是()A. B.C. D.11.函数y=2x-x2的图象大致是( ).12.设函数g(x)=x 2-2(x∈R),f(x)=⎩⎪⎨⎪⎧g(x)+x +4,x<g(x),g(x)-x ,x≥g (x),则f(x)的值域是 ( )A .[-94,0]∪(1,+∞) B.[0,+∞)C .[-94,+∞) D.[-94,0]∪(2,+∞)二、填空题13.如果幂函数y =(m 2-3m +3)x 的图象不过原点,则m 的取值是________.14.若函数f(x)=a x-x -a(a >0,且a≠1)有两个零点,则实数a 的取值范围是________.15.已知二次函数y =f(x)的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f(x)=0的两个实根之差的绝对值等于7,则此二次函数的解析式是________.16.奇函数f(x)在定义域(-1,1)上是减函数,且f(1+a)+f(1-a 2)<0,则实数a 的取值范围是____________ 三、解答题17.已知定义在实数集上的函数f(x)满足xf(x)为偶函数,f(x+2)=-f(x), 且当时,. (1)求时,函数f(x)的解析式;(2)求f(xx)、f (xx.5)的值。
高二数学下册暑假作业及答案
高二数学下册暑假作业及答案【导语】着眼于眼前,不要沉迷于玩乐,不要沉迷于学习进步没有别*的痛苦中,进步是一个由量变到质变的过程,只有足够的量变才会有质变,沉迷于痛苦不会改变什么。
无忧考网高二频道为你整理了《高二数学下册暑假作业及答案》,希望对你有所帮助!【一】1.(09年重庆高考)直线与圆的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离2.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a、b、c的值依次为()A.2、4、4;B.-2、4、4;C.2、-4、4;D.2、-4、-43(2011年重庆高考)圆心在轴上,半径为1,且过点(1,2)的圆的方程为()A.B.C.D.4.直线3x-4y-4=0被圆(x-3)2+y2=9截得的弦长为()A.B.4C.D.25.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是()A.相切B.相交C.相离D.相切或相交6、圆关于直线对称的圆的方程是().A.B.C.D.7、两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为().A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.4x-3y+7=08.过点的直线中,被截得最长弦所在的直线方程为()A.B.C.D.9.(2011年四川高考)圆的圆心坐标是10.圆和的公共弦所在直线方程为____.11.(2011年天津高考)已知圆的圆心是直线与轴的交点,且圆与直线相切,则圆的方程为.12(2010山东高考)已知圆过点,且圆心在轴的正半轴上,直线被该圆所截得的弦长为,则圆的标准方程为____________ 13.求过点P(6,-4)且被圆截得长为的弦所在的直线方程.14、已知圆C的方程为x2+y2=4.(1)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=23,求直线l的方程;(2)圆C上一动点M(x0,y0),ON→=(0,y0),若向量OQ→=OM→+ON→,求动点Q的轨迹方程"人"的结构就是相互支撑,"众"人的事业需要每个人的参与。
山东省高二暑假作业:文科数学(含答案)
山东省高二暑假作业:文科数学(含答案)解答题17.若函数当时,函数极值(1)求函数的解析式;(2)若函数有3个解,求实数的取值范围.18.(本小题满分12分) 与等腰直角所在平面互相垂直,为的中点,,∥,.(1)求证:平面平面;(2)求证:∥平面;(3)求四面体的体积.19、己知等比数列所有项均为正数,首,且成等差数列.(I)求数列的通项公式;(II)数列的前n项和为,若,求实数的值.20.(本小题满分12分)已知函数.(1)若曲线在和处的切线互相平行,求的值;(2)求的单调区间;(3)设,若对任意,均存在,使得,求的取值范围.2019高二文科数学暑假作业(一)答案1-5 ACABC 6-10 BADBD 11-12BB13. 614. 2i15.1/216.17. (1)所以,.即,由此可解得,(2)所以在处取得极大值,在处取得极小值所以18.(1)∵面面,面面,,面,又∵面,平面平面.(2)取的中点,连结、,则 ,又∵,,四边形是平行四边形,∥,又∵面且面,∥面.(3)∵,面面=,面.就是四面体的高,且=2.∵==2=2,∥,19.(Ⅰ)设数列的公比为,由条件得成等差数列,所以解得由数列的所有项均为正数,则=2数列的通项公式为=(Ⅱ)记,则若不符合条件;若,则,数列为等比数列,首项为,公比为2, 此时又=,所以20.解:.(1),解得.(3).①当时,,,在区间上,;在区间上,故的单调递增区间是,单调递减区间是.②当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.③当时,,故的单调递增区间是.④当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是. (Ⅲ)由已知,在上有.由已知,,由(Ⅱ)可知,①当时,在上单调递增,故,所以,,解得,故.②当时,在上单调递增,在上单调递减,故.由可知,,,所以,,,综上所述,.这篇山东省高二暑假作业就为大家分享到这里了。
希望对大家有所帮助!。
高二数学暑假作业16附答案
高二数学暑假作业十六一、单选题1. 已知集合}9|{},032|{22<=<--=x x B x x x A ,则A.A BB.B AC.A =BD.A ∩B =Φ2. 集合M={ x ∈N*| x (x -3)< 0}的子集个数为 A .1 B .2 C .3 D .43. 0000cos43cos77sin43cos167+的值是( )。
A. 32-B. 12C. 32D. 12-4. 为了得到函数y=3sin 错误!未找到引用源。
的图象,只要把函数y=3sin 错误!未找到引用源。
的图象上所有的点( )A.向右平行移动错误!未找到引用源。
个单位长度B.向左平行移动错误!未找到引用源。
个单位长度C.向右平行移动错误!未找到引用源。
个单位长度D.向左平行移动错误!未找到引用源。
个单位长度5. 已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S = ( )A. 12n - B. 21n- C. 13n - D.()1312n- 6. 设a >b >0,x=a -b a +,y=b a -a -,则x 、y 的大小关系为( )A. x >yB. x <yC. x =yD. x 、y 大小关系不定 7. 如图Rt O A B '''∆是一平面图形的直观图,直角边2O B ''=,则这个平面图形的面积是( )A .22B .1C .2D .428. 已知012:,022:21=-+=-+y mx l my x l ,且21l l ⊥,则m 的值为( ) A 、2 B 、1 C 、0 D 、不存在9. 设,m n 是两条不同的直线, αβγ、、是三个不同的平面,给出下列四个命题: ①若,//m n αα⊥,则m n ⊥ ②若//,//,m αββγα⊥,则m γ⊥ ③若//,//m n αα,则//m n ④若,αγβγ⊥⊥,则//αβ其中正确命题的序号是( )A. ①和②B. ②和③C. ③和④D. ①和④ 10. 两圆与总有公共点,则圆半径的取值范围是 A 、[]2,7B 、[]3,7C 、[]2,10D 、[]3,10二、填空题11. 数列{}n a 满足1(1)(1)n n n a a a +--=,82a =,则2017S = . 12. 已知函数()f x 的定义域为[]1,3,则函数()21f x +的定义域为_________13. 如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A,点A 的纵坐标为4,cos 5α则=_____。 14. 过)0,3(P 做圆1)1()1(22=+++y x 的切线,切点为点,A 则=PA .三、解答题15. 已知在ABC ∆中,角A,B,C,的对边分别为,,a b c ,且222,1b a c ac b =+-=(1)若3tan tan (1tan tan ),3A C A C c -=+求边的值; (2)若2a c =,求ABC ∆的面积.16. 如图,在五棱锥P ABCDE -中,PA ⊥平面ABCDE ,AB ∥CD ,AC ∥ED ,AE ∥BC ,45ABC ︒∠=, 22AB =,24BC AE ==,PAB ∆是等腰三角形.(1)求证:平面PCD ⊥平面PAC ; (2)求侧棱PB 上是否存在点Q ,使得CQ 与平面PCD 所成角大小为30︒,若存在,求出Q 点位置,若不存在,说明理由.高二数学暑假作业十六答案AxOyα1. A 【解析】试题分析:,所以考点:解不等式及集合的子集关系 2. D 【解析】所以集合的子集个数为个,故选D 。
高二数学暑假作业16试题
卜人入州八九几市潮王学校2021年高二数
学暑假作业(16)
一、选择题:
1、函数x x
x x e e y e e --+=-的图像大致为(). 2.定义在R 上的函数f(x )满足f(x)=⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,那么f 〔3〕的值是() A.-1B.-2 C.1D.2. △ABC 所在平面内的一点,
2BC BA BP +=,那么〔〕 A.
0PA PB += B.0PB PC += C.0PC PA += D.0PA PB PC ++= 二、填空题:
4.向量a 和向量b 的夹角为
30,||2,||3==a b ,那么向量a 和向量b 的数量积=a b . 5.设{}n a 是公比为q 的等比数列,||1
q >,令1(1,2,)n n b a n =+=,假设数列{}n b 有连续四项在集合
{}53,23,19,37,82--中,那么6q =.
三、解答题:
6.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠
PBC =90º〔Ⅰ〕证明:AB ⊥PC
〔Ⅱ〕假设4PC
=,且平面PAC ⊥平面PBC , 求三棱锥P ABC -
体积。
7.向量(sin ,2)(1,cos )a b θθ=-=与互相垂直,其中
(0,)2πθ∈.〔1〕求sin cos θθ和的值;〔2〕
1
x y
1 O A
x y O 1 1 B x y O 1 1 C x y 1 1 D O
A B C
P 第3题图
假设
sin()2πθϕϕ-=<<,求cos ϕ值.。
2021年高二下学期暑假作业数学(理)试题(16) 含答案
2021年高二下学期暑假作业数学(理)试题(16)含答案选择题:.1.函数的定义域为()A.R B. C. D.2. 从1,2,3,4,5中任取两个不同的数,事件A为“取到的两个数之和为偶数”,事件B为“取到的两个数均为偶数”,则=( )A. 18 B.14 C.25 D.123.若集合,则()A.B.C.D.4. 已知,则()A. B. C. D.5. 在等比数列中,首项,且成等差数列,若数列的前项之积为,则的值为()A. B. C. D.二、填空题:6.在⊿ABC中,已知.7.把化为十进制数的结果是.8.某厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样的方法抽取一个容量为的样本,样本中A种型号产品有16件,则样本容量=.9.2008年5月12日,四川汶川地区发生里氏8.0级特大地震.在随后的几天中,地震专家对汶川地区发生的余震进行了监测,记录的部分数据如下表:注:地震强度是指地震时释放的能量地震强度()和震级()的模拟函数关系可以选用(其中为常数).利用散点图可知的值等于.(取)三、解答题:10、(本大题满分8分)如图所示,已知M 、N 分别是AC 、AD 的中点,BCCD .(I )求证:MN ∥平面BCD ; (II )求证:平面B CD 平面ABC ;(III )若AB =1,BC =,求直线AC 与平面BCD 所成的角.11、(本大题满分8分)如下图所示,圆心C 的坐标为(2,2),圆C与轴和轴都相切.(I )求圆C 的一般方程;(II )求与圆C 相切,且在轴和轴上的截距相等的直线方程. 12. (本小题满分10分)已知一个等差数列前10项的和是,前20项的和是。
(I )求这个等差数列的前n 项和S n 。
(II )求使得S n 最大的序号n 的值。
答案:1.D2.B3.C4.B5.B6.7.508.809.10.解 (1)因为分别是的中点,所以.又平面且平面,所以平面. (2)因为平面, 平面,所以. 又,所以平面.又平面,所以平面平.(3)因为平面,所以为直线与平面所成的角. 在直角中,,所以.所以. 故直线与平面所成的角.(8)'BADCM•N•第18题图11.解 (1) 依题意,半径,所以,圆的标准方程是.圆的一般方程为.(2)设直线方程为,则..12.解(1)将S10=, S20=,代入公式Sn=na1+得到:10a1+45d=20a1+190d=解方程得:a1=5,d=所以:Sn=(2)因为Sn=-rL27613 6BDD 毝40392 9DC8 鷈436459 8E6B 蹫39138 98E2 飢28506 6F5A 潚6i22532 5804 堄33864 8448 葈l。
2021年高二下学期暑假作业数学文试题(3) 含答案
2021年高二下学期暑假作业数学文试题(3)含答案一、选择题1 . 已知全集U={1,2,3,4,5,6,7},A={2,4,6},B={1,3,5,7},则A∩B)等于()(∁UA.{2,4,6} B.{1,3,5} C.{2,4,5} D.{2,5}2.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A.a<c<b B.a<b<c C.b<a<c D.b<c<a3.若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30°B.45°C.60°D.90°4.下列函数是偶函数的是()A.y=x B.y=2x2﹣3 C.y= D.y=x2,x∈[0,1]5.已知函数f(x)=,则f(2)=()A.3 B.2 C.1 D.0二、填空题6.函数y=的定义域是.7.若直线l经过点P(2,3)且与两坐标轴围城一个等腰直角三角形,则直线l的方程为或.三、解答题(本大题共7小题,共70分.)8.化简•.9.已知tan(3π+α)=3,试求的值.10.(1)当a为何值时,直线l1:y=﹣x+2a与直线l2:y=(a2﹣2)x+2平行?(2)当a为何值时,直线l1:y=(2a﹣1)x+3与直线l2:y=4x﹣3垂直?答案1. A2. C3. A4. B C 6.:[2kπ﹣,2kπ+](k∈Z).7.:x+y﹣5=0;x﹣y+1=0.8. 解:原式=•=•=2sinx.9.解:由tan(3π+α)=3,可得tanα=3,故====10. 解:(1)直线l1的斜率k1=﹣1,直线l2的斜率k2=a2﹣2,因为l1∥l2,所以a2﹣2=﹣1且2a≠2,解得:a=﹣1.所以当a=﹣1时,直线l1:y=﹣x+2a与直线l2:y=(a2﹣2)x+2平行.(2)直线l1的斜率k1=2a﹣1,l2的斜率k2=4,因为l1⊥l2,所以k1k2=﹣1,即4(2a﹣1)=﹣1,解得a=.所以当a=时,直线l1:y=(2a﹣1)x+3与直线l2:y=4x﹣3垂直.26507 678B 枋QE31587 7B63 筣)\32034 7D22 索22935 5997 妗)20340 4F74 佴28824 7098 炘7。
【高二】万州二中2021年高二数学暑假作业答案解析
【高二】万州二中2021年高二数学暑假作业答案解析万州二中2021年高二数学暑假作业答案解析为了帮助考生了解高中的学习信息,数学网络共享了万州市第2中学2022高二数学暑期作业的答案分析,供大家参考。
三、解答题(共6题,要求写出解答过程或者推理步骤,共75分):16.(这道题的满分是13分)解:(ⅰ)由已知,根据正弦定理得即由余弦定理得因此,a=120°。
7分(ⅱ)由(ⅰ)得:因此,当B=30°时,SINB+sinc获得最大值1.13点17、(本题满分13分)解决方案:(I)从袋子中随机取出两个球。
由所有可能结果组成的基本事件是1和2,1和3,1和4,2和3,2和4,3和4,共6个.…………………………2分当从袋子中随机取出的球数之和不大于4时,有1和2、1和3个事件因此所求事件的概率为.…………………………6分(二)从袋子里随机取一个球,记下数字。
放回后,从袋子中随机取出一个球,记下数字。
所有可能的结果如下:(1,1)(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3,2),(3,3)(3,4),(4,1)(4,2 ),(4,3)(4,4),共16个…………………………8分有三个事件符合条件:(1,3)、(1,4)、(2,4)所以满足条件的事件的概率为.因此,事件满足条件的概率为13分18、(本题满分13分)解决方案:(I)从由正弦定理,分数4分……………………6分(二)从标题来看,由已知得,,…………………………9分当时,。
10分所以,当时,的最大值为;当时,的最大值为…13分19.(本题满分为12分)(第一题6分,第二题6分)20、(本题满分12分)解:(I)解集是,let,and对称轴,开口向下,,解得,;……5分(二)恒生即对恒成立简化,即常数。
8分令,记,则,二次函数的开口是向下的,对称轴是向下的,所以有10个点,解得或…………………………………12分21.(文本)(I)溶液:从溶液中获得A1=1或A1=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高二下学期暑假作业数学文试题(16)含答案
一、选择题
1.设集合,则()
A. B. C. D.
2.已知函数有两个极值点,则实数的取值范围是
A.B.C. D.
3.将函数的图象向左平移个单位长度后,所得到的图象关于y轴对称,则m的最小值是
A.B.C.D.
4.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙
降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为
A.∨B.∨C.∧D.∨
5.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:加以统计,
得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()
A.588 B.480 C.450 D.120
二、填空题
6.在中,角的对边分别是,若,则的形状是________.
7.椭圆与直线交于两点,过原点与线段中点的直线的斜率为,则的值为.
三、解答题:
8.(本小题满分12分)
一款底面为正方形的长方体无盖金属容器(忽略其厚度),如图所示,
当其容积为时,问容器的底面边长为多少时,所使用材料最省?
第17题图
某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据? (Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图14所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.
图14
(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完
成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为
附:K 2
=n (ad -bc )2
(a +b )(c +d )(a +c )(b +d )
已知函数图象与轴交点坐标为,其导函数是以轴为对称轴的抛物线,大致图象如右下图所示.
答案
一.选择题:
1. B
2.D
3.A
4.A
5. B
二.填空题: 6. 等腰或直角三角形;7. ;
三、解答题
8.(本小题满分12分)
解:设长方体底面边长为,高为,
则
那么,长方体的表面积(不包括上底面)为
,
令得
当时,当时,
因此,是函数的极小值点,也是最小值点. 答:当容器底面边长为时,所使用材料最省.
9.解: (1)300×4500
15 000=90,所以应收集90位女生的样本数据...
(2)由频率分布直方图得每周平均体育运动超过4小时的频率为1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75. ……7分
(3)由(2)知,300位学生中有300×0.75=225(位)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:
结合列联表可算得K 2
=300×(165×30-45×60)75×225×210×90=100
21≈4.762>3.841.
所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”
10.(本小题满分12分)
解: (I ),由题意,得()()()⎪⎪⎩⎪
⎪⎨⎧-='=-'==4
0,02,0,40f f b f
解之,得所以,
(II ),令,得,或.
当变化时,变化情况如下表:
O24307 5EF3 廳28156 6DFC 淼29495 7337 猷20650 50AA 傪35746 8BA2 订 Y25477 6385 掅~32259 7E03 縃25923 6543 敃24753 60B1 悱32174 7DAE 綮B。