FM31256的基本结构及原理

合集下载

带RTC的FC总线铁电存储器FM31256

带RTC的FC总线铁电存储器FM31256
维普资讯
带 R C的 1 T 2 C息线铁电存储矗 F 3 6 5 M 1 2
■ 中南 大 学 陈 淼 凌 玉 华 廖 力 清
关键词
I 总 线 铁 电体技 术 R MS 4 0 C TC P 3F
F 1 5 是 由 R mt n公 司 推 出的 新 一 代 多 功 能 系 M3 2 6 a r o 统 监 控 和 非 易 失 性 铁 电 存 储 芯 片 。 与 其 他 非 易 失 性 存 储 器 比较 , 具 有 如 下 优 点 :读/ 速 度 快 , 有 写 等 待 时 它 写 没 间 ; 耗 低 , 态 电 流小 于 1mA, 人 电 流 小 于 1 0mA; 功 静 写 5
由 用户 自由选 择 。
A l AO 、 S CL
铁 电存 储 器 ( R F AM) 核 心 技 术 是 铁 电 晶 体 材 料 。 的 这一 特 殊 材 料 使 铁 电 存 储 器 同 时 拥 有 随 机 存 取 存 储 器 ( A 和 非 易 失 性 存 储 的 特 性 。本 文 介 绍 了 F 1 5 R M) M3 2 6 的 主要 功 能 , 具 体 给 出 了基 于 嵌 入 式 C语 言 编 写 的 存 并
用 先 进 的 0 3 m 制 造 工 艺 , 些 功 能 通 过 一 个 通 用 接 口 .5 这
VDD VBAK
事件计数器
开关 电源 f
图 1 F M315 2 6原 理 图
2 F 15 M3 2 6功 能及 使 用 方 法
在 F 15 M32 6中 , 2 个 特 殊 功 能 寄 存 器 ( F ) O 有 5 S R OH
功能。
p e msto. ( 稿 ) ar e ec c投 专用 p@ n. r n n

FM31256在C8051F单片机系统中的应用

FM31256在C8051F单片机系统中的应用

FM31256在C8051F单片机系统中的应用李娜1,孙百生2,方卫民11北京邮电大学自动化学院,北京(100876)2北京信息科技大学,北京(100085)E-mail:lina0474@摘要:本文介绍了一种具有I2C接口的高速低功耗、集多功能为一体的铁电存储器FM31256,对器件的基本结构、工作原理和使用方法作了详细的描述,并以C8051F020单片机系统为例介绍了FM31256在C8051F系列单片机中的应用,并给出了部分程序。

关键词:FM31256,C8051F单片机,铁电存储器0.引言FRAM 由于具有非易失性、读写速度快、读写功耗极低等诸多优点使其得到了广泛的应用。

目前FRAM 在中国已经涉足许多应用领域,例如计量领域的称重仪,计量器,汽车电子领域的ABS、车身电子、以及电力能源的监测、通讯领域嵌入式系统、PLC、安全系统报警监控、工业控制,、通讯,金融电子等。

FM31256 是Ramtron 公司推出的一款存储容量为32k×8bits 的FRAM。

它集非易失存储器、实时时钟、低电压复位、掉电检测、看门狗、非易失事件计数器等多种功能于一体, 克服了传统方案采用分立器件造成的电路复杂、成本高等缺点。

可以方便的应用于以单片机、ARM、DSP、FPGA 为核心的电子产品中,尤其适合于电池供电的产品。

1. FM31256FM31256 采用工业标准的I2C 总线,14 脚SOIC 封装,其内部具有256Kb 的串行FRAM,可按字节读写, 读写方式与SRAM 一样,速度快,CLK 的速度达到1MHZ,没有写等待,读写次数无限次,功耗低,静态电流低于1uA,读写电流低于150uA。

片内的实时时钟以BCD 格式提供时间和日期信息,它能通过外部电池或电容供电,供电时钟使用一个32.768 kHz 晶振,可以使用软件校准模式来提供时间记录器的精确性[1] 。

片内包括一个低电压复位模块,当电源电压下降到低于可编程的门限电压时,PRST 被激活并一直保持有效状态,直到VDD 上升到高于正常点后的100ms 。

FM33256_FM3316_中文数据手册

FM33256_FM3316_中文数据手册

串行时钟:所有的I / O活动同步串行时钟.输入锁存的上升沿和输出发生在下降沿.由于该设备是静态 的,时钟频率可以是0和16 MHz之间的任何值,并且可以在任何时间被中断.
串行输入:所有数据输入到该引脚上的设备.该引脚的上升沿采样 SCK的边缘,而在其他时间被忽略.它应该总是被驱动为有效逻辑电平 满足我 DD 规格. SI引脚可以连接到SO为一个单一的数据引脚 接口.
VDD
13
ACS
12
SCK
11
SI
10
PFO
9
RST
8
PFI
FM33256/FM3316 SPI伴侣W / FRAM
引脚名称
/CS SCK
SI SO
PFI PFO CNT
ACS /RST
X1, X2 VDD VBAK
VSS
功能
片选 串行时钟
串行数据输入 串行数据输出
电源故障输入 电源故障输出(NMI) 计数器输入 报警/校准/ SqWave 复位输入/输出 晶体连接 电源电压 电池后备电源
• 无需等待的写入
实时时钟/日历
• 根据1备份当前
µA
• 秒通过BCD格式的世纪
• 跟踪闰年到2099年
• 使用标准的32.768 kHz晶振
• 软件校准
• 支持电池或电容备份
快速SPI接口
• 高达16 MHz最大总线频率
• •
通过SPI接口RTC,监事受控 SPI模式0&3(CPOL,CPHA = 0,0&1,1)
实时时钟(RTC)提供BCD格式的时间和日期信息.它可以 从外部备用电压源,可以是电池或电容器进行永久供电. 时钟使用一个共同的外部32.768 kHz晶振,并提供校准模 式,允许软件调整计时精度.

FM3104 fm3116 fm3164 fm31256 铁电

FM3104 fm3116 fm3164 fm31256 铁电

特性高集成度用于替换多个器件 l 串行非易失性存储器 l 实时时钟 l 低电压复位 l 看门狗记数器l 早期电压失效告警/NMI l 双16位事件记数器 l 串行数字标识 铁电非易失性RAMl 4Kb 、16Kb 、64Kb 、256 Kb 版本 l 无限制的读写次数 l 10年掉电数据保存期 l 无延时写操作 实时时钟/日历l 备用电流低至1UAl 秒至年采用BCD 格式编码 l 自动闰年调整l 使用标准的32.768KHZ 晶振(6PF ) l 时钟软件校准l 支持电池及电容后备处理器辅助功能l 电源及看门狗低有效复位输出 l 可编程低电压复位门限 l 手动复位l 可编程看门狗记数器l 电池后备的双事件记数器用于记录系统干扰或其它事件l 比较器用于电源失效中断或者其它用途 l 带锁定的64位串行数字标识 快速的二线制串行接口l 最高达1M 总线时钟频繁l 支持以前的100K&400K 总线速度 l 器件选择管脚用于最多四只芯片寻址l RTC 、监测控制功能统一通过进行二线制接口操作方便使用的构造l 操作电源范围2.7V-5.5V l 小封装14引脚SOICl 低操作电流,150UA 的静态工作电流 l -40°C 至 +85°C 温度操作范围描述FM31系列产品是一族包含基于处理器系统的通用功能需求的集成器件,主要功能包含各种容量大小的铁电非易性存储器、实时时钟、低电压复位、看门狗记数器、非易失的事件记数器、可锁定的串行数字标识,和一个通用的比较器,用于电源失效中断输出或其它用途,所有器件的操作电压范围为2.7V-5.5V .。

FM31系列器件包含4Kb 、16Kb 、64Kb 、256 Kb 版本,快速的写速度及无限制读写次数,使得此存储器可以像一个外部RAM 或传统的非易失性存储器那样使用,相对于电池后备方式,它是真正的非易失性存储器。

实时时钟以BCD 码的形式提供时间及日期信息,它可以永久地由后备电源供电,后备电源可以是电容,也可以是电池。

FM31256的基本结构及原理

FM31256的基本结构及原理

FM31256的基本结构及原理摘要FM31256是一种基于I2C总线、采用铁电体技术的多功能存储芯片。

除了非易失存储器外,该器件还具有实时时钟、低电压复位、看门狗计数器、非易失性事件计数器、可锁定的串行数字标识等多种功能。

文章主要介绍了FM31256的基本功能、原理,并结合实例给出了其在电磁铸轧电源控制装置中的具体应用方法。

关键词I2C总线铁电体技术 RTC MSP430FFM31256是由Ramtron公司推出的新一代多功能系统监控和非易失性铁电存储芯片。

与其他非易失性存储器比较,它具有如下优点:读/写速度快,没有写等待时间;功耗低,静态电流小于1 mA,写入电流小于150 mA;擦写使用寿命长,芯片的擦写次数为100亿次,比一般的EEPROM存储器高10万倍,即使每秒读/写30次,也能用10年;读/写的无限性,芯片擦写次数超过100亿次后,还能和SRAM一样读/写。

铁电存储器(FRAM)的核心技术是铁电晶体材料。

这一特殊材料使铁电存储器同时拥有随机存取存储器(RAM)和非易失性存储的特性。

本文介绍了FM31256的主要功能,并具体给出了基于嵌入式C语言编写的存储器读/写程序。

1 FM31256的基本结构及原理FM31256由256 KB存储器和处理器配套电路(processor companion)两部分组成。

与一般的采用备份电池保存数据不同,FM31256是真正意义上的非易失(truly nonvolatile)存储器,并且用户可以选择对不同的存储区域以软件方式进行写保护。

FM31256 器件将非易失FRAM与实时时钟(RTC)、处理器监控器、非易失性事件计数器、可编程可锁定的64位ID号和通用比较器相结合。

其中,通用比较器可提前在电源故障中断(NMI)时发挥作用或实现其他用途。

采用先进的0.35 μm制造工艺,这些功能通过一个通用接口嵌入到14个引脚的SOIC封装中,从而取代系统板上的多个元件。

超外差收音机原理详细讲解

超外差收音机原理详细讲解

超外差收音机方框图超外差收音机电路组成方框图如图Z1002所示。

它主要由输入回路、变频级、中放级、检波级、低放级〔前置或推动级〕和功放级与电源等局部组成。

超外差收音机的主要工作特点是:采用了"变频"措施。

输入回路从天线接收到的信号中选出某电台的信号后,送入变频级,将高频已调制信号的载频降低成一固定的中频〔对各电台信号均一样〕,然后经中频放大、检波、低放等一系列处理,最后推动扬声器发出声音。

这一"变频"措施,是超外差收音机性能得以改善的关键,也是分析超外差收音机"重点"。

超外差收音机性能指标收音机质量的上下是用其性能指标来衡量的。

国家标准中规定的指标很多,我们就其重要的几项作一介绍。

1.灵敏度收音机正常工作〔即输出功率和输出信噪比达到额定值〕时,天线上感应的最小信号(场强或电势)称为灵敏度。

它反映收音机接收微弱信号的能力。

使用磁性天线接收信号时,用电场强度来表示,其单位是mV/m,一般中波段收音机的灵敏度应不劣于2mV/m;使用外接天线或拉杆天线时,灵敏度用电势表示,单位是μV。

2.选择性收音机抑制邻近电台信号干扰、选择有用信号的能力称为选择性。

它反映收音机选择电台的能力。

调幅广播电台的中心频率是按9kHz间隔来分布的,故收音机的选择性通常用输入信号失谐±9kHz时,灵敏度的衰减程度来衡量,一般要求收音机的选择性大于20dB。

3.失真度收音机输出波形与输入波形相比失真的程度称为失真度。

收音机中对音质有影响的主要是频率失真和非线性失真。

4.波段覆盖围收音机所能接收的载波频率围。

调幅收音机的中波段频率围为535~1605kHz,而短波围那么为1.6─26MHz,调频收音机的覆盖围为88─108MHz。

LC串联谐振回路LC谐振回路LC谐振回路广泛地用于超外差收音机的选频电路之中,如输入回路、变频电路、中频电路等。

故在分析超外差收音机的工作原理之前,我们先复习一下LC 谐振回路的性能与特点。

调频(FM)无线 对讲机 原理,制作与调试

调频(FM)无线 对讲机 原理,制作与调试
调频(FM)无线 对讲机 原理,制作与调试MP3 图片 视频 分类
说明
首页 | 热门导航 | 行业导航 | 学科导航 | 地方导航
当前位置: 首页 > 调频(FM)无线 对讲机 原理,制... 数字中国全站搜索:
0—25kHz范围之间,音频信号的频谱范围则在100—3000Hz之间,我们可以采用一个特殊的滤波器选出这一噪声信号,经检波变成直流分量,再通过一个电子开关电路就可以控制一个电路工作,达到静噪目的,这样在接收机没有收到信号时,喇叭将寂静一片,以消除讨厌的噪声,一旦收到对讲机发来的信号,又能自动打开放大电路进行联络。同时,设置静噪电路还可以达到省电目的。
N3和CRY1,L5等元件组成本机振荡器,L5和相应的回路电容谐振于10.243MHz的三次谐波上,即10.24333x3=30.730MHz,它比发射频率30.275MHz(10.0917的三倍频,即10.0917MHzx3=30.275MHz)高出一个中频455kHz(即30.730—30.275=0.455MHz),本振信号也送到Icl的第1脚,在Icl内部进行混频。
除了提到的这些元件,其他元件选用普通的元件即可,业余条件下完全可以,据笔者经验,那些非主要元件对收信灵敏度影响十分轻微。
因为ICl是专用的窄带调频接收芯片,性能一般都得到保证。质量最优的要算MOTOROLA公司的产品,其次MALAYSIA生产的也不错。值得一提的是笔者拿到了数片Made
in
China的MC3361芯片,通过采用德国的信号发生器(频率在50MHz量程精确到10Hz,。输出分辨率可达0.01uv)等仪器对比实验,国产的产品灵敏度与MOTOROLA公司的产品基本无差别。所以ICl的性能参数完全不必多虑。
7.载频输出功率:2w

FM收音机原理与原理图

FM收音机原理与原理图

AM/FM收音机的安装与调试ξ1概述一、实习目的:1、学习收音机的调试与装配。

2、提高读整机电路图及电路板图的能力。

3、掌握收音机生产工艺流程,提高焊接工艺水平。

二、实习内容:1、收音机电路原理分析。

2、掌握印制电路板的组装及焊接工艺。

3、进行AM、FM中频及统调覆盖的调试及整机测试。

4、故障判断及排除。

三、实习基本要求:1、会检测元器件并判别其质量。

2、独立完成各测试点的测量与整机安装。

3、会排除在调试与装配过程中可能出现的问题与故障。

4、所制作的产品电器性能指标应能满足三级机水平(国标),具体如下:接收频率范围:AM 525~1605KHZ FM72~108MHZ接收灵敏度:AM 达国家C类标准FM优于μV级输出功率:大于100mW供电电源:DC 3V立体声耳机输出阻抗:32Ωξ2收音机的基本工作原理1、收音机的电路结构种类有很多,早期的多为分立元件电路,目前基本上都采用了大规模集成电路为核心的电路。

集成电路收音机的特点是结构比较简单,性能指标优越,体积小等优点。

AM/FM型的收音机电路可用如图1所示的方框图来表示。

收音机通过调谐回路选出所需的电台,送到变频器与本振电路送出的本振信号进行混频,产生中频输出(我国规定的AM中频为465KHZ,FM中频为10.7MHZ),中频信号将检波器检波后输出调制信号,调制信号经低放、功放放大电压和功率,推动喇叭发出声音。

图1 AM/FM型收音机电路方框图2、本实训中的收音机是一种50型的AM/FM二波段的收音机,收音机电路主要由索尼公司生产的专为调频、调幅收音机设计的大规模集成电路CXA1191M/CXC1191P组成。

由于集成电路内部无法制作电感、大电容和大电阻,故外围元件多以电感、电容和电阻为主,组成各种控制、供电、滤波等电路。

50型收音机电路图如图2所示。

图2 50型收音机电路图CXA1191M/CXC1191P的内部方框图如图3所示。

图3 CXA1191M/CXC1191P的内部方框图下面介绍收音机电路图的功能块电路的作用。

FM(调频)收音机的基本原理和各项指标的测试方法

FM(调频)收音机的基本原理和各项指标的测试方法

定义:最大/最小音量时的(交流哼声及噪声)电压 测试条件:频偏:22.5KHZ,调制频率:1KHZ,测试频率:98MH 方法: A.选98MHZ频点接受,电平设1MV(60DB) B.当收音机手正电台后,将音量控制在最大/最小,然后关掉信号发生器的调制 C衰减毫伏表,观测毫伏表的输出的刻度值,即最大/最小哼声 单位:毫伏(MV) 18:停振电压(OUT VOLTAGE) 定义::收音机本振电路停止工作时的电压(此时已经无接受功能) 测试条件: 调制度为22.5KHZ,调制频率为1KHZ,测试频率为98MHZ。 测试方法 A:测出106MHZ的最大灵敏度或30DB限噪灵敏度 B接受机要在外接直流电测试条件下测试,此时降低的电压,直至无接受信号输出时止,此时的电压即停振电压 C至少为标准电池电压的70%(即电池电压下降了30%,机器仍然正常工作) 19.电池消耗电流(ATTERY CURRENT) 测试方法:
发布时间: 2008年10月
用DC电源供电(标准电压),串联电流表,可以检测机器的静电能工作电流(无信号)以及最大工作电流(最大功 率时)
20.台位指标刻度偏差(DIAL CALIBRATION)
测试条件:音量:标准输出,调制频率:1KHZ 频偏:22.5KHZ. 电平(ATT):60DB
测试方法:
A将台钮控制使指标对正台尺刻度丝印中间 B调整高频信号频率,使接受信号最强,失真最小,此时的频率和台位刻度丝印频率之差,即台位的偏差.C.PLL电调谐收音机的 刻度测试同样的原理
方法二 要求:调制度为22.5KHZ,调制频率为1KHZ,测试频率为106MHZ
A.同调(测试机与RF信号发生器的频率基本一致)106MHZ,测试其MAX SENS为A B.将频率106MHZ变调106M+2IF(+10.7/-10.7MHZ)。 C.再微调106MHZ+2IF的频率使它达到最大输出,增加电平达到标准输出为B D. B-A得出中频抑制 A. 用106+2IF(+10.7\-10.7MHZ)减去同调之后的106MHZ得出2IF÷2得出中频

fm31256中文

fm31256中文
手动复位
/RST 管脚是双向的,并且允许 FM31xxx 来过滤和阻止手动复位切换反弹。/RST 输入检测外部低电压条件, 通过拉低/RST 信号 100ms 来回应。
注意:/RST内部弱上拉消除了额外外部元件的需要。
复位标志
如果复位条件出现,设定一个标志来表示复位源。低电压复位是由POR标志,寄存器09h位6来表示的。看门 狗复位是由WTR标志,寄存器09h位7来表示。手动复位无标志设定产生,因此手动复位是缺标志位的。注意: 标志位是内部设定的,对应相映的复位源,但是他们必须由用户来清空。寄存器读取后,如果两个复位在用 户最后清除它们后都发生了,两个复位标志都可以设定。
快速两线串行接口
高达1 MHz的最大总线速度 支持以前的100 kHz & 400 kHz计数 器件选择管脚用于最多四只芯片寻址 RTC,监控器通过2线接口操作
方便使用的构造
操作电压 2.7 to 5.5V 14管脚SOIC小封装 低操作电流 操作温度-40°C to +85°C
描述
FM31xxx是一个包含最基本应用功能的基于处理器系统的集成芯片家族。主要特性包括不同尺寸的非易失性 存储器,实时时钟,低电压复位,看门狗计数器,非易失性事件计数器,可锁存的64位串行数据密码和用在 早期电源(NMI)电源失效或其他目的的通用比较器。此家族的操作电压为2.7至5.5V。
处理器伴侣包括通用CPU通常需要功能。系统监测功能包括由低电平状态或看门狗超时控制的中断输出信号。 当电源电压下降到低于可编程的极门限时,/RST激活,并且一直保持有效状态100ms,直到VDD上升到高于 正常点。可编程的看门狗计数器可编程从100毫秒到2秒。看门狗计数器是可选的,但是如果它被使能,而主 机在超时前没有清狗,它将发布100毫秒复位信号。一个标志位表示复位源。

带RTC的I_2C总线铁电存储器FM31256

带RTC的I_2C总线铁电存储器FM31256

带R TC的I2C总线铁电存储器FM31256■中南大学 陈淼 凌玉华 廖力清 摘 要FM31256是一种基于I2C总线、采用铁电体技术的多功能存储芯片。

除了非易失存储器外,该器件还具有实时时钟、低电压复位、看门狗计数器、非易失性事件计数器、可锁定的串行数字标识等多种功能。

文章主要介绍了FM31256的基本功能、原理,并结合实例给出了其在电磁铸轧电源控制装置中的具体应用方法。

 关键词I2C总线 铁电体技术 R TC MSP430F FM31256是由Ramtron公司推出的新一代多功能系统监控和非易失性铁电存储芯片。

与其他非易失性存储器比较,它具有如下优点:读/写速度快,没有写等待时间;功耗低,静态电流小于1mA,写入电流小于150mA;擦写使用寿命长,芯片的擦写次数为100亿次,比一般的EEPROM存储器高10万倍,即使每秒读/写30次,也能用10年;读/写的无限性,芯片擦写次数超过100亿次后,还能和SRAM一样读/写。

铁电存储器(FRAM)的核心技术是铁电晶体材料。

这一特殊材料使铁电存储器同时拥有随机存取存储器(RAM)和非易失性存储的特性。

本文介绍了FM31256的主要功能,并具体给出了基于嵌入式C语言编写的存储器读/写程序。

1 FM31256的基本结构及原理FM31256由256K B存储器和处理器配套电路(pro2 cessor companion)两部分组成。

与一般的采用备份电池保存数据不同,FM31256是真正意义上的非易失(truly nonvolatile)存储器,并且用户可以选择对不同的存储区域以软件方式进行写保护。

FM31256器件将非易失FRAM与实时时钟(R TC)、处理器监控器、非易失性事件计数器、可编程可锁定的64位ID号和通用比较器相结合。

其中,通用比较器可提前在电源故障中断(NMI)时发挥作用或实现其他用途。

采用先进的0.35μm制造工艺,这些功能通过一个通用接口嵌入到14个引脚的SOIC封装中,从而取代系统板上的多个元件。

FM31256-GTR

FM31256-GTR

FM31256/FM3164Integrated Processor Companion with MemoryThis product conforms to specifications per the terms of the Ramtron standard warranty. The product has completed Ramtron’s internal qualification testing and has reached production status. FeaturesHigh Integration Device Replaces Multiple PartsSerial Nonvolatile MemoryReal-time Clock (RTC)Low Voltage ResetWatchdog TimerEarly Power-Fail Warning/NMITwo 16-bit Event CountersSerial Number with Write-lock for SecurityFerroelectric Nonvolatile RAM64Kb, and 256Kb versionsVirtually Unlimited Read/Write Endurance 38 year Data Retention (+75C) NoDelay™ WritesReal-time Clock/CalendarBackup Current at 2V, 1.15A (max.) at +25°CSeconds through Centuries in BCD formatTracks Leap Years through 2099Uses Standard 32.768 kHz Crystal (6pF)Software CalibrationSupports Battery or Capacitor BackupProcessor CompanionActive-low Reset Output for V DDand Watchdog Programmable V DDReset Trip PointManual Reset Filtered and DebouncedProgrammable Watchdog TimerDual Battery-backed Event Counter TracksSystem Intrusions or other EventsComparator for Early Power-Fail Interrupt 64-bit Programmable Serial Number with LockFast Two-wire Serial InterfaceUp to 1 MHz Maximum Bus FrequencySupports Legacy Timing for 100 kHz & 400 kHzDevice Select Pins for up to 4 Memory Devices RTC, Supervisor Controlled via 2-wire InterfaceEasy to Use ConfigurationsOperates from 2.7 to 5.5VSmall Footprint 14-pin “Green” SOIC (-G)Low Operating Current -40 C to +85C OperationDescriptionThe FM31xx is a family of integrated devices that includes the most commonly needed functions for processor-based systems. Major features include nonvolatile memory available in various sizes, real-time clock, low-VDD reset, watchdog timer, nonvolatile event counter, lockable 64-bit serial number area, and general purpose comparator that can be used for an early power-fail (NMI) interruptor other purpose. The family operates from 2.7 to 5.5V.Each FM31xx provides nonvolatile RAM available in sizes including 64Kb and 256Kb versions. Fast write speed and unlimited endurance allow the memory to serve as extra RAM or conventional nonvolatile storage. This memory is truly nonvolatile rather than battery backed.The real-time clock (RTC) provides time and date information in BCD format. It can be permanently powered from external backup voltage source, either a battery or a capacitor. The timekeeper uses a common external 32.768 kHz crystal and provides a calibration mode that allows software adjustment of timekeeping accuracy.The processor companion includes commonly needed CPU support functions. Supervisory functions include a reset output signal controlled by either a low VDD condition or a watchdog timeout. /RST goes active when VDD drops below a programmable threshold and remains active for 100 ms after VDD rises above the trip point. A programmable watchdog timer runs from 100 ms to 3 seconds. The watchdog timer is optional, but if enabled it will assert the reset signal for 100 ms if not restarted by the host before the timeout. A flag-bit indicates the source of the reset.A general-purpose comparator compares an external input pin to the onboard 1.2V reference. This is useful for generating a power-fail interrupt (NMI) but can be used for any purpose. The family also includes a programmable 64-bit serial number that can be locked making it unalterable. Additionally it offers a dual battery-backed event counter that tracks the number of rising or falling edges detected on dedicated input pins.Pin ConfigurationVDD VBAKSCL SDA VSS X1 X2 CNT1 PFI RST A0 A1 CNT2Figure 1. Block DiagramPin DescriptionsSCL SDARSTA1, A0 PFI VDD VBAKBattery BackedNonvolatileOverviewThe FM31xx family combines a serial nonvolatile RAM with a real-time clock (RTC) and a processor companion. The companion is a highly integrated peripheral including a processor supervisor, a comparator used for early power-fail warning, nonvolatile event counters, and a 64-bit serial number. The FM31xx integrates these complementary but distinct functions that share a common interface in a single package. Although monolithic, the product is organized as two logical devices, the FRAM memory and the RTC/companion. From the system perspective they appear to be two separate devices with unique IDs on the serial bus.The memory is organized as a stand-alone 2-wire nonvolatile memory with a standard device ID value. The real-time clock and supervisor functions are accessed with a separate 2-wire device ID. This allows clock/calendar data to be read while maintaining the most recently used memory address. The clock and supervisor functions are controlled by 25 special function registers. The RTC and event counter circuits are maintained by the power source on the VBAK pin, allowing them to operate from battery or backup capacitor power when V DD drops below an internally set threshold. Each functional block is described below.Memory OperationThe FM31xx is a family of products available in different memory sizes including 64Kb, and 256Kb. The family is software compatible, all versions use consistent two-byte addressing for the memory device. This makes the lowest density device different from its stand-alone memory counterparts but makes them compatible within the entire family. Memory is organized in bytes, for example the 64Kb memory is 8192 x 8 and the 256Kb memory is 32768 x 8. The memory is based on FRAM technology. Therefore it can be treated as RAM and is read or written at the speed of the two-wire bus with no delays for write operations. It also offers effectively unlimited write endurance unlike other nonvolatile memory technologies. The 2-wire interface protocol is described further on page 15.The memory array can be write-protected by software. Two bits in the processor companion area (WP0, WP1 in register 0Bh) control the protection setting as shown in the following table. Based on the setting, the protected addresses cannot be written and the 2-wire interface will not acknowledge any data to protected addresses. The special function registers containing these bits are described in detail below.Write protect addresses WP1 WP0None 0 0Bottom 1/4 0 1Bottom 1/2 1 0Full array 1 1Processor CompanionIn addition to nonvolatile RAM, the FM31xx family incorporates a highly integrated processor companion. It includes a low voltage reset, a programmable watchdog timer, battery-backed event counters, a comparator for early power-fail detection or other purposes, and a 64-bit serial number. Processor SupervisorSupervisors provide a host processor two basic functions: detection of power supply fault conditions and a watchdog timer to escape a software lockup condition. All FM31xx devices have a reset pin (/RST) to drive the processor reset input during power faults (and power-up) and software lockups. It is an open drain output with a weak internal pull-up to V DD. This allows other reset sources to be wire-OR’d to the /RST pin. When V DD is above the programmed trip point, /RST output is pulled weakly to V DD. If V DD drops below the reset trip point voltage level (V TP) the /RST pin will be driven low. It will remain low until V DD falls too low for circuit operation which is the V RST level. When V DD rises again above V TP, /RST will continue to drive low for at least 100 ms (t RPU) to ensure a robust system reset at a reliable V DD level. After t RPU has been met, the /RST pin will return to the weak high state. While /RST is asserted, serial bus activity is locked out even if a transaction occurred as V DD dropped below V TP.A memory operation started while V DD is above V TP will be completed internally.Figure 2 below illustrates the reset operation in response to the V DD voltage.Figure 2. Low Voltage ResetThe bits VTP1 and VTP0 control the trip point of the low voltage detect circuit. They are located in register 0Bh, bits 1 and 0.V TP VTP1 VTP02.6V 0 02.9V 0 13.9V 1 04.4V 1 1VTPRSTThe watchdog timer can also be used to assert the reset signal (/RST). The watchdog is a free running programmable timer. The period can be software programmed from 100 ms to 3 seconds in 100 ms increments via a 5-bit nonvolatile register. All programmed settings are minimum values and vary with temperature according to the operating specifications. The watchdog has two additional controls associated with its operation, a watchdog enable bit (WDE) and timer restart bits (WR). Both the enable bit must be set and the watchdog musttimeout in order to drive /RST active. If a reset event occurs, the timer will automatically restart on the rising edge of the reset pulse. If WDE=0, the watchdog timer runs but a watchdog fault will not cause /RST to be asserted low. The WTR flag will be set, indicating a watchdog fault. This setting is useful during software development and the developer does not want /RST to drive. Note that setting the maximum timeout setting (11111b) disables the counter to save power. The second control is a nibble that restarts the timer preventing a reset. The timer should be restarted after changing the timeout value. The watchdog timeout value is located in register 0Ah, bits 4-0, and the watchdog enable is bit 7. The watchdog is restarted by writing the pattern 1010b to the lower nibble of register 09h. Writing this pattern will also cause the timer to load new timeout values. Writing other patterns to this address will not affect its operation. Note the watchdog timer is free-running. Prior to enabling it, users should restart the timer as described above. This assures that the full timeout period will be set immediately after enabling. The watchdog is disabled when V DD is below V TP. The following table summarizes the watchdog bits. A block diagram follows.Watchdog timeout WDT4-0 0Ah, bits 4-0 Watchdog enable WDE 0Ah, bit 7 Watchdog restart WR3-0 09h, bits 3-0Figure 3. Watchdog TimerManual ResetThe /RST pin is bi-directional and allows the FM31xx to filter and de-bounce a manual reset switch. The /RST input detects an external low condition and responds by driving the /RST signal low for 100 ms.Figure 4. Manual ResetNote that an internal weak pull-up on /RST eliminates the need for additional external components.Reset FlagsIn case of a reset condition, a flag will be set to indicate the source of the reset. A low V DD reset is indicated by the POR flag, register 09h bit 6. A watchdog reset is indicated by the WTR flag, register 09h bit 7. Note that the flags are internally set in response to reset sources, but they must be cleared by the user. When the register is read, it is possible that both flags are set if both have occurred since the user last cleared them.Early Power Fail ComparatorAn early power fail warning can be provided to the processor well before V DD drops out of spec. The comparator is used to create a power fail interrupt (NMI). This can be accomplished by connecting the PFI pin to the unregulated power supply via a resistor divider. An application circuit is shown below.Figure 5. Comparator as Early Power-Fail Warning The voltage on the PFI input pin is compared to an onboard 1.2V reference. When the PFI input voltage drops below this threshold, the comparator will drive the CAL/PFO pin to a low state. The comparator has 100 mV (max) of hysteresis to reduce noise sensitivity, only for a rising PFI signal. For a falling PFI edge, there is no hysteresis.VDD/RSTThe comparator is a general purpose device and its application is not limited to the NMI function.The comparator is not integrated into the special function registers except as it shares its output pin with the CAL output. When the RTC calibration mode is invoked by setting the CAL bit (register 00h, bit 2), the CAL/PFO output pin will be driven with a 512 Hz square wave and the comparator will be ignored. Since most users only invoke the calibration mode during production, this should have no impact on system operations using the comparator.Note: The maximum voltage on the comparator input PFI is limited to 3.75V under normal operating conditions.Event CounterThe FM31xx offers the user two battery-backed event counters. Input pins CNT1 and CNT2 are programmable edge detectors. Each clocks a 16-bit counter. When an edge occurs, the counters will increment their respective registers. Counter 1 is located in registers 0Dh and 0Eh, Counter 2 is located in registers 0Fh and 10h. These register values can be read anytime VDD is above VTP, and they will be incremented as long as a valid VBAK power source is provided. To read, set the RC bit register 0Ch bit 3 to 1. This takes a snapshot of all four counter bytes allowing a stable value even if a count occurs during the read. The registers can be written by software allowing the counters to be cleared or initialized by the system. Counts are blocked during a write operation. The two counters can be cascaded to create a single 32-bit counter by setting the CC control bit (register 0Ch). When cascaded, the CNT1 input will cause the counter to increment. CNT2 is not used in this mode.Figure 6. Event CounterThe control bits for event counting are located in register 0Ch. Counter 1 Polarity is bit C1P, bit 0; Counter 2 Polarity is C2P, bit 1; the Cascade Control is CC, bit 2; and the Read Counter bit is RC bit 3. The polarity bits must be set prior to setting the counter value(s). If a polarity bit is changed, the counter may inadvertently increment. If the counter pins are not being used, tie them to ground.Serial NumberA memory location to write a 64-bit serial number is provided. It is a writeable nonvolatile memory block that can be locked by the user once the serial number is set. The 8 bytes of data and the lock bit are all accessed via the device ID for the processor companion. Therefore the serial number area is separate and distinct from the memory array. The serial number registers can be written an unlimited number of times, so these locations are general purpose memory. However once the lock bit is set the values cannot be altered and the lock cannot be removed. Once locked the serial number registers can still be read by the system.The serial number is located in registers 11h to 18h. The lock bit is SNL, register 0Bh bit 7. Setting the SNL bit to a 1 disables writes to the serial number registers, and the SNL bit cannot be cleared.Real-Time Clock OperationThe real-time clock (RTC) is a timekeeping device that can be battery or capacitor backed for permanently-powered operation. It offers a software calibration feature that allows high accuracy.The RTC consists of an oscillator, clock divider, anda register system for user access. It divides down the32.768 kHz time-base and provides a minimum resolution of seconds (1Hz). Static registers provide the user with read/write access to the time values. It includes registers for seconds, minutes, hours, day-of-the-week, date, months, and years. A block diagram (Figure 7) illustrates the RTC function. The user registers are synchronized with the timekeeper core using R and W bits in register 00h described below. Changing the R bit from 0 to 1 transfers timekeeping information from the core into holding registers that can be read by the user. If a timekeeper update is pending when R is set, then the core will be updated prior to loading the user registers. The registers are frozen and will not be updated again until the R bit is cleared to 0. R is used for reading the time.Setting the W bit to 1 locks the user registers. Clearing it to 0 causes the values in the user registers to be loaded into the timekeeper core. W is used for writing new time values. Users should be certain not to load invalid values, such as FFh, to the timekeeping registers. Updates to the timekeeping core occur continuously except when locked.Backup PowerThe real-time clock/calendar is intended to be permanently powered. When the primary system power fails, the voltage on the V DD pin will drop. When V DD is less 2.5V, the RTC (and event counters) will switch to the backup power supply on V BAK. The clock operates at extremely low current in order to maximize battery or capacitor life. However, an advantage of combining a clock function with FRAM memory is that data is not lost regardless of the backup power source.The I BAK current varies with temperature and voltage (see DC parametric table). The following graph shows I BAK as a function of V BAK. These curves are useful for calculating backup time when a capacitor is used as the V BAK source.Figure 7. I BAK vs. V BAK VoltageThe minimum V BAK voltage varies linearly with temperature. The user can expect the minimum V BAK voltage to be 1.23V at +85°C and 1.90V at -40°C. The tested limit is 1.55V at +25°C. The minimum V BAK voltage has been characterized at -40°C and +85°C but is not 100% tested.Figure 8. V BAK (min.) vs. Temperature Trickle ChargerTo facilitate capacitor backup the V BAK pin can optionally provide a trickle charge current. When the VBC bit, register 0Bh bit 2, is set to 1 the V BAK pin will source approximately 15 µA until V BAK reaches V DD or 3.75V whichever is less. In 3V systems, this charges the capacitor to V DD without an external diode and resistor charger. In 5V systems, it provides the same convenience and also prevents the user from exceeding the V BAK maximum voltage specification. In the case where no battery is used, the V BAK pin should be tied according to the following conditions:For 3.3V systems, V BAK should be tied to V DD.This assumes V DDdoes not exceed 3.75V.For 5V systems, attach a 1 µF capacitor to V BAKand turn the trickle charger on. The V BAK pinwill charge to the internal backup voltage whichregulates itself to about 3.6V. V BAK should notbe tied to 5V since the V BAK (max) specificationwill be exceeded. A 1 µF capacitor will keepthe companion functions working for about 1.5second.Although V BAK may be connected to V SS, this is not recommended if the companion is used. None of the companion functions will operate below about 2.5V Note: systems using lithium batteries should clear the VBC bit to 0 to prevent battery charging. The V BAK circuitry includes an internal 1 K series resistor as a safety element.CFFigure 9. Real-Time Clock Core Block DiagramCalibrationWhen the CAL bit in a register 00h is set to 1, theclock enters calibration mode. In calibration mode,the CAL/PFO output pin is dedicated to thecalibration function and the power fail output istemporarily unavailable. Calibration operates byapplying a digital correction to the counter based onthe frequency error. In this mode, the CAL/PFO pinis driven with a 512 Hz (nominal) square wave. Anymeasured deviation from 512 Hz translates into atimekeeping error. The user converts the measurederror in ppm and writes the appropriate correctionvalue to the calibration register. The correctionfactors are listed in the table below. Positive ppmerrors require a negative adjustment that removespulses. Negative ppm errors require a positivecorrection that adds pulses. Positive ppm adjustmentshave the CALS (sign) bit set to 1, where as negativeppm adjustments have CALS = 0. After calibration,the clock will have a maximum error of 2.17 ppmor 0.09 minutes per month at the calibratedtemperature.The calibration setting is stored in FRAM so is notlost should the backup source fail. It is accessed withbits CAL.4-0 in register 01h. This value only can bewritten when the CAL bit is set to a 1. To exit thecalibration mode, the user must clear the CAL bit to a0. When the CAL bit is 0, the CAL/PFO pin willrevert to the power fail output function.Crystal OscillatorThe crystal oscillator is designed to use a 6pF crystalwithout the need for external components, such asloading capacitors. The FM31xx device has built-inloading capacitors that match the crystal.Ifa 32.768kHz crystal is not used, an externaloscillator may be connected to the FM31xx. Applythe oscillator to the X1 pin. Its high and low voltagelevels can be driven rail -to-rail or amplitudes as lowas approximately 500mV p -p. To ensure properoperation, a DC bias must be applied to the X2 pin. Itshould be centered between the high and low levelson the X1 pin. This can be accomplished with avoltage divider.Figure 10. External OscillatorIn the example, R1 and R2 are chosen such that theX2 voltage is centered around the X1 oscillatordrive levels. If you wish to avoid the DC current,you may choose to drive X1 with an externalclock and X2 with an inverted clock using a CMOSinverter.Layout RequirementsThe X1 and X2 crystal pins employ very highimpedance circuits and the oscillator connected tothese pins can be upset by noise or extra loading. Toreduce RTC clock errors from signal switching noise,a guard ring must be placed around these pads andthe guard ring grounded. SDA and SCL traces shouldbe routed away from the X1/X2 pads. The X1 and X2trace lengths should be less than 5 mm. The use of aground plane on the backside or inner board layer ispreferred. See layout example. Red is the top layer,green is the bottom layer.Layout for Surface Mount Crystal Layout for Through Hole Crystal (red = top layer, green = bottom layer) (red = top layer, green = bottom layer)Positive Calibration for slow clocks: Calibration will achieve 2.17 PPM after calibration Negative Calibration for fast clocks: Calibration will achieve 2.17 PPM after calibrationRegister MapThe RTC and processor companion functions are accessed via 25 special function registers mapped to a separate 2-wire device ID. The interface protocol is described below. The registers contain timekeeping data, control bits, or information flags. A description of each register follows the summary table below. Register Map Summary TableRange FFh FFh FFh FFh FFh FFh FFh FFh FFh FFh FFh FFh00-991-121-311-70-230-590-59Note: When the device is first powered up and programmed, all registers must be written because the battery-backed register values cannot be guaranteed. The table below shows the default values of the non-volatile registers. All other register values should be treated as unknown.Register Description Address DescriptionTwo-wire InterfaceThe FM31xx employs an industry standard two-wire bus that is familiar to many users. This product is unique since it incorporates two logical devices in one chip. Each logical device can be accessed individually. Although monolithic, it appears to the system software to be two separate products. One is a memory device. It has a Slave Address (Slave ID = 1010b) that operates the same as a stand-alone memory device. The second device is a real-time clock and processor companion which have a unique Slave Address (Slave ID = 1101b).By convention, any device that is sending data onto the bus is the transmitter while the target device for this data is the receiver. The device that is controlling the bus is the master. The master is responsible for generating the clock signal for all operations. Any device on the bus that is being controlled is a slave. The FM31xx is always a slave device.The bus protocol is controlled by transition states in the SDA and SCL signals. There are four conditions: Start, Stop, Data bit, and Acknowledge. The figure below illustrates the signal conditions that specify the four states. Detailed timing diagrams are shown in the Electrical Specifications section.(Master)(Master)(Transmitter)(Transmitter)(Receiver)SCLSDAFigure 11. Data Transfer ProtocolStart ConditionA Start condition is indicated when the bus master drives SDA from high to low while the SCL signal is high. All read and write transactions begin with a Start condition. An operation in progress can be aborted by asserting a Start condition at any time. Aborting an operation using the Start condition will ready the FM31xx for a new operation.If the power supply drops below the specified VTP during operation, any 2-wire transaction in progress will be aborted and the system must issue a Start condition prior to performing another operation. Stop ConditionA Stop condition is indicated when the bus master drives SDA from low to high while the SCL signal is high. All operations must end with a Stop condition. If an operation is pending when a stop is asserted, the operation will be aborted. The master must have control of SDA (not a memory read) in order to assert a Stop condition.Data/Address TransferAll data transfers (including addresses) take place while the SCL signal is high. Except under the two conditions described above, the SDA signal should not change while SCL is high.AcknowledgeThe Acknowledge (ACK) takes place after the 8th data bit has been transferred in any transaction. During this state the transmitter must release the SDA bus to allow the receiver to drive it. The receiver drives the SDA signal low to acknowledge receipt of the byte. If the receiver does not drive SDA low, the condition is a No-Acknowledge (NACK) and the operation is aborted.The receiver might NACK for two distinct reasons. First is that a byte transfer fails. In this case, the NACK ends the current operation so that the part can be addressed again. This allows the last byte to be recovered in the event of a communication error.Second and most common, the receiver does not send an ACK to deliberately terminate an operation. For example, during a read operation, the FM31xx will continue to place data onto the bus as long as the receiver sends ACKs (and clocks). When a read operation is complete and no more data is needed, the receiver must NACK the last byte. If the receiver ACKs the last byte, this will cause the FM31xx to attempt to drive the bus on the next clock while the master is sending a new command such as a Stop.Slave AddressThe first byte that the FM31xx expects after a Start condition is the slave address. As shown in figures below, the slave address contains the Slave ID, Device Select address, and a bit that specifies if the transaction is a read or a write.The FM31xx has two Slave Addresses (Slave IDs) associated with two logical devices. To access the memory device, bits 7-4 should be set to 1010b. The other logical device within the FM31xx is the real-time clock and companion. To access this device, bits 7-4 of the slave address should be set to 1101b. A bus transaction with this slave address will not affect the memory in any way. The figures below illustrate the two Slave Addresses.The Device Select bits allow multiple devices of the same type to reside on the 2-wire bus. The device select bits (bits 2-1) select one of four parts on a two-wire bus. They must match the corresponding value on the external address pins in order to select the device. Bit 0 is the read/write bit. A “1” indicates a read oper ation, and a “0” indicates a write operation.Figure 12. Slave Address - MemoryFigure 13. Slave Address – CompanionAddressing Overview – MemoryAfter the FM31xx acknowledges the Slave Address, the master can place the memory address on the bus for a write operation. The address requires two bytes. This is true for all members of the family.The first is the MSB (upper byte). For a given density unused address bits are don’t cares, but should be set to 0 to maintain upward compatibility. Following the MSB is the LSB (lower byte) which contains the remaining eight address bits. The address is latched internally. Each access causes the latched address to be incremented automatically. The current address is the value that is held in the latch, either a newly written value or the address followingthe last access. The current address will be held as long as VDD > VTP or until a new value is written. Accesses to the clock do not affect the current memory address. Reads always use the current address. A random read address can be loaded by beginning a write operation as explained below.After transmission of each data byte, just prior to the Acknowledge, the FM31xx increments the internal address. This allows the next sequential byte to be accessed with no additional addressing externally. After the last address is reached, the address latch will roll over to 0000h. There is no limit to the number of bytes that can be accessed with a single read or write operation.Addressing Overview – RTC & CompanionThe RTC and Processor Companion operate in a similar manner to the memory, except that it uses only one byte of address. Addresses 00h to 18h correspond to special function registers. Attempting to load addresses above 18h is an illegal condition; the FM31xx will return a NACK and abort the 2-wire transaction.Data TransferAfter the address information has been transmitted, data transfer between the bus master and the FM31xx begins. For a read, the FM31xx will place 8 data bits on the bus then wait for an ACK from the master. If the ACK occurs, the FM31xx will transfer the next byte. If the ACK is not sent, the FM31xx will end the read operation. For a write operation, the FM31xx will accept 8 data bits from the master then send an Acknowledge. All data transfer occurs MSB (most significant bit) first.Memory Write OperationAll memory writes begin with a Slave Address, then a memory address. The bus master indicates a write operation by setting the slave address LSB to a 0. After addressing, the bus master sends each byte of data to the memory and the memory generates an Acknowledge condition. Any number of sequential bytes may be written. If the end of the address range is reached internally, the address counter will wrap to 0000h. Internally, the actual memory write occurs after the 8th data bit is transferred. It will be complete before the Acknowledge is sent. Therefore, if the user desires to abort a write without altering the memory contents, this should be done using a Start or Stop condition prior to the 8th data bit. The figures below illustrate a single- and multiple-writes to memory.Slave IDDevice Select7654321Slave ID 76543210DeviceSelect。

矿用风机DCS系统

矿用风机DCS系统

2008年 第1期仪表技术与传感器Instrum ent T echn i que and Sensor 2008 N o 1基金项目:新疆维吾尔自治区高校科研项目资助(XJ EDU2004I37)收稿日期:2007-03-07 收修改稿日期:2007-10-15矿用风机DCS 系统郭 辉(新疆工业高等专科学校电气与信息工程系,新疆乌鲁木齐 830091)摘要:主扇风机是煤矿通风设备的主要部分,目前煤矿事故频发与通风不畅有密切关系。

通过对国内外主扇风机控制系统和控制方法的分析、研究,设计了一种采用DCS 控制方案,系统监测风机轴温、工作电压、巷道风压等,实现风机工作状态的远程监控。

给出了系统结构框图和软件流程。

关键词:煤矿风机;DCS 系统;安全性;信息化中图分类号:TP216.2 文献标识码:B 文章编号:1002-1841(2008)01-0052-03DCS Syste m for M i ne FanGUO H u i(Depart m ent of E lectr ic and In for m ati on,X injiang Polytechn i c College ,Uru m q i 830091,Ch i na)Abstract :M ain fan is t he mo st i m po rtant part of m ine a iriness equip m ents .N owadays ,m any co alm i ne accidents a l w ays hap pened si nce the poo r ventilati on .A DCS contro l pro jectw as designed based on the ana l y si s and research o f the m a i n fan con tro lli ng syste m and contro lli ng m e t hod .The sy stem can m onito r fan axes te m pe ra t ure ,w ork vo ltage and w i nd pressure ,m ean wh ile it a lso rea li zs re m ote contro.l The hardware structure and soft w are flo w w ere presented .K ey word s :m i ne fan ;DCS ;sa fety ;i nfor m ation0 引言主扇风机作为矿井的主要通风设备,在煤矿安全生产中占有重要的位置,随着对安全生产越来越重视,对监控系统提出了更高的要求。

铁电存储器FM31256的使用

铁电存储器FM31256的使用

带RTC(Real-Time Clock)的I2C总线铁电存储器FM31256 内容摘要:FM31256是一种基于I2C总线、采用铁电体技术的多功能存储芯片。

除了非易失存储器外,该器件还具有实时时钟、低电压复位、看门狗计数器、非易失性事件计数器、可锁定的串行数字标识等多种功能。

文章主要介绍了FM31256的基本功能、原理,并结合实例给出了其在电磁铸轧电源控制装置中的具体应用方法。

FM31256是由Ramtron公司推出的新一代多功能系统监控和非易失性铁电存储芯片。

与其他非易失性存储器比较,它具有如下优点:读/写速度快,没有写等待时间;功耗低,静态电流小于1 mA,写入电流小于150 mA;擦写使用寿命长,芯片的擦写次数为100亿次,比一般的EEPROM存储器高10万倍,即使每秒读/写30次,也能用10年;读/写的无限性,芯片擦写次数超过100亿次后,还能和SRAM一样读/写。

铁电存储器(FRAM)的核心技术是铁电晶体材料。

这一特殊材料使铁电存储器同时拥有随机存取存储器(RAM)和非易失性存储的特性。

本文介绍了FM31256的主要功能,并具体给出了基于嵌入式C语言编写的存储器读/写程序。

1FM31256的基本结构及原理FM31256由256 KB存储器和处理器配套电路(processor companion)两部分组成。

与一般的采用备份电池保存数据不同,FM31256是真正意义上的非易失(truly nonvolatile)存储器,并且用户可以选择对不同的存储区域以软件方式进行写保护。

FM31256 器件将非易失FRAM与实时时钟(RTC)、处理器监控器、非易失性事件计数器、可编程可锁定的64位ID号和通用比较器相结合。

其中,通用比较器可提前在电源故障中断(NMI)时发挥作用或实现其他用途。

采用先进的0.35 μm制造工艺,这些功能通过一个通用接口嵌入到14个引脚的SOIC封装中,从而取代系统板上的多个元件。

FM调频与解调原理

FM调频与解调原理

幅度/相位鉴频器的实现模型
调频信号 频率-幅度线性变换 幅频信号 包络检波器 调制信号
调频信号 频率-相位线性变换 调相信号
相位检波器
调制信号
立体声原理
一.定义:
用两个传声器分别检测左右两部分声音信号, 并将左右两个声道的信号按一定方式进行编 码,然后调制在同一副载波上,再用调频的 方式调制在主载波上并发送出去
立体声调频原理
调频原理 定义:载波信号的频率随 调制信号的瞬时频 率线性的变法,载波 的幅度不 变. 数学表达式: f (t ) 设调制信号为:
一.
Am cos(wmt )
载波信号为: 调频信号为: S
C (t ) A cos(wct )
FM
(t ) A cos(wct M sin wmt )
SIN G LE TO D IFEER EN TIA L
PR E_EM PH A SIS & LPF
V O LTA G E R EG U LA TIO N & PO W ER DOW N
I C -B U S AND 3-W IR E B U S
2
M U TE 23
LIM ITER
M PX EN C O D ER
7. H z 6M CCO
M PX PLL
LO O P_FILTER 2 PW D _EX 2
D IV ID ER
B U FFER
22 EX _C A P 21 PA _R TTEN U A TIO N
LPF
L_C H 5
20
RF PLL
RF V CO
PA
PA _O U T 19
M=f/F,其中f为最大频偏, F为载波频率,由卡 森公式得到调频带宽 B=2(f+F)

不停车车辆出入管理系统设计与实现研究

不停车车辆出入管理系统设计与实现研究

不停车车辆出入管理系统设计与实现研究摘要:本文分析了不停车车辆出入管理系统的设计原理,从车辆控制器与配套的管理软件两个方面阐述了该系统的设计与实现,最后指出了此系统的优势与存在的不足,并且提出了相应的改进方法。

关键词:不停车;车辆出入管理系统;设计中图分类号:tp311.521车辆出入管理系统的原理本系统由地感线圈、读卡机、道闸、摄像机、管理计算机等设备组成。

其中,通常设置三个地感线圈,两个车辆控制器以及配套的读卡机,以对车辆进出两个环节进行全面的控制。

读卡环节采用微波频段远距离射频识别(rfid)技术,单位或者小区内部车辆需要粘贴已经注册过的电子标签,设计读卡机为rsf-300读卡机,因此电子标签为对应的sp-tgs-300/301有源感应卡,此卡的最远识别距离为80m,接收灵敏度为-80d到-90dm间,能够支持高速移动读取,是较为理想的读取卡设备。

当车辆由外向内进入时,压地感线圈处,地感线圈将信号传递给配套的读卡机,读卡机进行读取操作并判断车辆是否为注册车辆。

如果其为注册车辆,则由控制器控制道闸抬起,当车辆压过第二道地感线圈后,由控制器控制道闸放下。

如果车辆并非已经注册过的内部车辆,则控制器不会控制继电器触发道闸的抬起动作,而是会控制读卡机的显示屏与语音提示请车主取临时卡,车主在车辆上安装临时卡后才可以进入单位或者小区内部,同时临时卡计时器开始计时,否则不予放行。

当车辆出去时,压到位于内侧的地感线圈,重复上述的流程对车辆进行识别,如果此车不是注册车辆,则需交卡计时后,才可放行。

管理计算机负责记录进出车辆的各种信息,存储抓拍到的车辆图像,以方便相关部门的查询管理。

2车辆出入管理系统的设计与实现车辆出入管理系统的设计实现重点是车辆控制器极其配套的软件系统,本文将对此进行深入分析。

2.1车辆控制器的设计与实现车辆控制器的设计与实现需要考虑的问题主要是控制器的硬件选择与控制器的软件设计。

本系统采用嵌入式系统芯片技术,增加了控制板的集成程度,flash存储方式也扩展了系统的存储性能,减弱了管理计算机对系统的影响。

FM立体声广播原理

FM立体声广播原理

第一章调频立体声广播原理第一节调频广播的发展史调频方式是1935年在美国的实验室证明可以用来作为广播的一种调制方式。

1941年5月,美国首先开始在43~50MHz波段进行调频广播(随后频率改变为88~108MHz),但发展缓慢。

在1958年开始双声道调频立体声广播,并在1961年,美国联邦通信委员会(FCC)决定采用AM-FM制(GE-Zenith制式,即我们现在所说的导频制)为立体声调频广播制式。

由于这一制式的确立,调频立体声广播从此在世界各发达国家迅速开展,例如苏联从1959年,原西德从1963年,日本从1962年开始立体声调频广播。

在欧洲,调频广播得到了更加积极和广泛的实施,因为这种方式解决了在比较密集狭小的地区内,中波广播频带不够分配而导致的串台现象严重的问题。

而在日本开始采用调频广播的目的是它可以排除邻国中波台的串扰,提高广播音质,并在70年代以后得到迅猛的发展。

在我国,上世纪50年代末就开始了试验性调频广播,当时主要用于节目传输。

对于新中国来说,在相当长的时间内,广播首先要解决幅员辽阔、人口覆盖的问题和对外的宣传问题,因此中波广播和短波广播是更为有效的方式。

进入上世纪80年代以后,直至2000年以前,随着“四级办广播”的指导方针的确定,极大地调动了各地方办台的积极性,调频广播方式开始为各级电台所采纳。

随着电子元器件的发展和通讯技术的进步,到80年代后期我国的调频广播迅速的发展起来。

中央及省级调频台大部分采用10kW功率等级电子管发射机,发射台一般设置在高山上和电视塔上,覆盖着城市稠密的人群;中小城市一般采用自立式铁塔作支撑架设天线,多采用300W~5kW电子管发射机;而县乡城镇多采用小调频10W ~100W 。

到上世纪90年代初,我国的调频发射机研制生产能力已得到长足的进步,陆续推出了300W 、1kW 的全固态调频立体声广播发射机,并能批量生产。

此后调频广播主要向立体声、多功能附加信道、全固态方向发展,对设备性能要求越来越高,节目内容也越来越丰富,新闻、教育、文化、科技宣传、娱乐和各种广告等各种信息服务应有尽有,极大的丰富了人们的业余文化生活,听众参与节目十分踊跃,这一时期是调频广播发展的鼎盛时期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FM31256的基本结构及原理
摘要FM31256是一种基于I2C总线、采用铁电体技术的多功能存储芯片。

除了非易失存储器外,该器件还具有实时时钟、低电压复位、看门狗计数器、非易失性事件计数器、可锁定的串行数字标识等多种功能。

文章主要介绍了FM31256的基本功能、原理,并结合实例给出了其在电磁铸轧电源控制装置中的具体应用方法。

关键词I2C总线铁电体技术 RTC MSP430F
FM31256是由Ramtron公司推出的新一代多功能系统监控和非易失性铁电存储芯片。

与其他非易失性存储器比较,它具有如下优点:读/写速度快,没有写等待时间;功耗低,静态电流小于1 mA,写入电流小于150 mA;擦写使用寿命长,芯片的擦写次数为100亿次,比一般的EEPROM存储器高10万倍,即使每秒读/写30次,也能用10年;读/写的无限性,芯片擦写次数超过100亿次后,还能和SRAM一样读/写。

铁电存储器(FRAM)的核心技术是铁电晶体材料。

这一特殊材料使铁电存储器同时拥有随机存取存储器(RAM)和非易失性存储的特性。

本文介绍了FM31256的主要功能,并具体给出了基于嵌入式C语言编写的存储器读/写程序。

1 FM31256的基本结构及原理
FM31256由256 KB存储器和处理器配套电路(processor companion)两部分组成。

与一般的采用备份电池保存数据不同,FM31256是真正意义上的非易失(truly nonvolatile)存储器,并且用户可以选择对不同的存储区域以软件方式进行写保护。

FM31256 器件将非易失FRAM与实时时钟(RTC)、处理器监控器、非易失性事件计数器、可编程可锁定的64位ID号和通用比较器相结合。

其中,通用比较器可提前在电源故障中断(NMI)时发挥作用或实现其他用途。

采用先进的0.35 μm制造工艺,这些功能通过一个通用接口嵌入到14个引脚的SOIC封装中,从而取代系统板上的多个元件。

存储器的读/写以及其他控制功能都通过工业标准的I2C总线来实现。

图1为FM31256的原理图。

其中,SDA和SCL引脚用于与CPU进行数据交换和命令写入,数据输出部分均具有施密特触发器,以提高抗干扰性能;同时,SDA 作为二线接口中的双向信号线,集电极开路输出,可与二线总线上其他器件进行“线或”。

A1~A0为器件地址选择信号,即总线上可同时使用4个同类器件。

正常模式下,PFI引脚分别为比较器的输入(不可悬空),CAL/PFO引脚输出PFI 引脚的输入信号与1.2 V参考电压之间的比较结果;校准模式下,CAL/PFO引脚将输出512 Hz的方波用于时钟校准。

CNT2~CNT1是通过备份电池支持的事件计数器的两路输入端,通过边沿触发启动计数器,触发沿由用户自由选择。

X1和X2晶振引脚均为高阻引脚,两引脚之间的距离须小于5 mm;即使信号位于板内层,也不允许信号线靠近X1和X2引脚。

在晶振引脚周围使用接地保护环,内部或板反面使用接地保护敷铜。

3.2 存储区访问程序设计
对FM31256存储器访问操作过程中,微处理器处于主机地位,器件始终处于从机地位。

根据上述对FM31256的分析,可以把所有的通信过程归纳为3种类型:①单脉冲,如Start、Stop、Ack、Nack;②字节发送,如从机地址、目标地址和数据传送;③字节接收,如读操作中的数据传送。

因此只要把这些操作以子程序的形式编写好,所有的通信操作就可通过调用这些子程序来完成。

这里以MSP430F149微处理器的嵌入式C语言编写。

设微处理器端口P6.6为数据线(SDA);P5.4为时钟线(SCL)。

限于篇幅,本文不作详细介绍,只给出模拟I2C总线及字节写入、读出的部分C语言程序:
#defineRTC_SDABIT6
#defineRTC_SCLBIT4
void FM31256_Start(void) {/*FM31256启动程序*/
P6OUT |=RTC_SDA;// SDA=1
P5OUT |=RTC_SCL;// SCL=1
delay(IIC_DELAY);
P6OUT &=~ RTC_SDA;// SDA=0
delay(IIC_DELAY);
P5OUT &=~ RTC_SCL;// SCL=0}
void FM31256_Stop( void ) {/*FM31256停止程序*/
P6OUT &=~ RTC_SDA;// SDA=0
delay(IIC_DELAY);
P5OUT |=RTC_SCL;// SCL=1
delay(IIC_DELAY);
P6OUT |=RTC_SDA;// SDA=1
delay(IIC_DELAY);}
void FM31256_Send_Ack( void ) {/*FM31256应答程序*/
P5OUT &=~ RTC_SCL;// SCL=0
P6OUT &=~ RTC_SDA;// SDA=0
P5OUT |=RTC_SCL;// SCL=1
delay(IIC_DELAY);
P5OUT &=~ RTC_SCL;// SCL=0}
void FM31256_Send_noAck( void ) {/*FM31256不应答程序*/
P5OUT |=RTC_SCL;// SCL=1
delay(IIC_DELAY);
P5OUT &=~ RTC_SCL;// SCL=0}
说明:SCL线是高电平时,SDA线从高电平向低电平切换,表示起始条件;当SCL是高电平时,SDA线由低电平向高电平切换,表示停止条件。

相关的确认时钟脉冲由主机产生,在确认的时钟脉冲器件发送方释放SDA(高电平),在此期间接收方须将SDA拉低。

void FM31256_transfByte_to_IIC( unsigned char tran_byte ) {/* CPU 字节发送程序*/
unsigned char i , current_bit =0x80;
P5OUT &=~ RTC_SCL;
delay(IIC_DELAY);
for( i=0; i <=7; i++ ) {
if ( tran_byte & current_bit )
P6OUT |= RTC_SDA;
else
P6OUT &=~ RTC_SDA;
current_bit >>=1;
delay(IIC_DELAY);
P5OUT |=RTC_SCL;//SCL=1
delay(IIC_DELAY);
P5OUT &=~ RTC_SCL;//SCL=0
delay(IIC_DELAY);
}
}
unsigned char FM31256_receByte_from_IIC( void ){/*CPU字节接收程序*/
unsigned char mvalue, i, rece_data =0;
P6DIR &=~ RTC_SDA;//设置为输入方向
P5OUT &=~ RTC_SCL; //SCL=0
delay(IIC_DELAY);
for(i=0;i
rece_data = rece_data<<1;
P5OUT |=RTC_SCL;//SCL=1
delay(IIC_DELAY);
mvalue = P6IN & RTC_SDA;//当前位的值
if( mvalue )//接收位为高
rece_data = rece_data | 0x01;
else//接收位为低
rece_data = rece_data & 0xFE;
P5OUT &=~ RTC_SCL;//SCL=0
delay(IIC_DELAY);
}
P6DIR |=RTC_SDA;//P6.6输出
return(rece_data);//返回收到的字节。

相关文档
最新文档