硅在氮化硅涂层上的形核SiO2
SiO2层上沉积的纳米多晶硅薄膜及其特性
厚度的纳米多晶硅薄膜,分别在700℃、800t辅【900 ac下对不同厚度的硅薄膜进行高温真宅i珏火,采川
XRD、R…光谱、SEM和AFM研究薄膜厚度、遐火
分折仪研究纳米多品硅薄膜电肛的,-¨}性、
1实验
温度对硅薄膜特性的影响.通过HP4145B半导体各散
目2
T目薄腰厚&‰米多g硅薄媵∞XRD谙目
2 2
薄膜AFM形貌
R一*#h。
圈4
30姗厚的纳来每■硅沉积瘩薄孽和不同 遇火盖度下群曩的hmn光谱对&
震隰
nm、63
采用v…3100 AFM对纳米多隔硅薄膜进行表
nm和98 nm的
(-)30邮
¨)o啁
(c)%哳
圈8{同厚鸯的蚺米多■硅尊睫AFM形孰
2.5纳米多昌硅薄臃电阻电学特性 围9给H{r纳米多品硅薄膜电阻制作工艺T艺 流程为:①采用LPCVD方法在单晶硅衬底NO:屡上沉 积纳米多晶硅薄膜,采用离子注人机进行B离子注
摘要:采用低压化学气相沉积(LPCVD)系统以高纯Sill。为气源,在P型10.16锄<100>晶向单晶硅衬底Si02 层上制备纳米多晶硅薄膜,薄膜沉积温度为620℃,沉积薄膜厚度分剐为30
nrs、63
nm和98 nnl.对不同薄膜厚度
的纳米多晶硅薄膜分别在700℃、800℃和900℃下进行高温真空退火.通过x射线衍射(XRD)、Raman光谱、扫描 电子显微镜(sEM)和原子力显微镜(AFM)对SiO:层上沉积的纳米多晶硅薄膜进行特性测试和表征,随着薄膜厚度 的增加,沉积态薄膜结晶显著增强,择优取向为<lll>晶向.通过HP4145B型半导体参数分析仪对沉积态掺硼纳 米多晶硅薄膜电阻,.y特性测试发现,随着薄膜厚度的增加,薄膜电阻率减小,载流子迁移率增大.
8-增强氮化硅涂层及其在晶体硅铸锭中得应用
第12届中国光伏大会暨国际光伏展览会论文增强氮化硅涂层及其在晶体硅铸锭中的应用尹长浩1,钟根香1,黄新明1,21.东海晶澳太阳能科技有限公司;2. 南京工业大学材料科学与工程学院摘要:本文采用改进溶胶凝胶法(sol-gel)制备增强氮化硅涂层(SG涂层),并将其应用于准单晶硅铸锭及普通多晶硅铸锭。
实验结果显示:1)采用溶胶凝胶法制备的氮化硅涂层,早期强度较常规喷涂法制备的涂层有显著的提高;2)氮化硅涂层中有机物的添加会降低硅熔体与涂层间的非浸润性,涂层中有机物在加热过程中的碳化可能是其主要原因。
铸锭应用结果显示:完整的SG工艺制备的氮化硅涂层可以满足准单晶硅铸锭脱模需要,同时,免烧结SG涂层可直接应用于普通多晶硅铸锭生产。
关键词:氮化硅涂层;溶胶凝胶法;准单晶硅;多晶硅Reinforced Si3N4 coatings and its application in silicon demouldingChanghao Yin1, Genxiang Zhong1, Xinming Huang1,2,1)Donghai JA Solar Technology Co. Ltd.2)College of Materials Sci. & Engineering, Nanjing Univ. Tech.Abstract: In this paper, the silicon nitride coatings used in silicon casting were prepared by improved sol-gel method (SG), which had been used in quasi-mono crystalline silicon casting and multicrystalline silicon casting successfully. The experiments showed significant reinforcement in hardness of the coatings prepared by SG method compared with the coatings prepared by spraying-sintering method (SS). The remnants of the sol added in the coatings increased the wettability in the interface between silicon melt and coating, and carbonization of the organic contents in the coating during heating process was probably responsible for the result. The silicon casting applications showed that the coatings prepared by SG could be used in quasi-mono crystalline silicon casting, and the coatings prepared by SG without sintering could be used in multicrystalline silicon casting as well.Keywords:silicon nitride coating, sol-gel, quasi-mono silicon, multi-crystalline silicon1.引言多晶硅铸锭是目前光伏晶体硅主要的生产方法:将多晶硅料置于石英坩埚内通过定向凝固铸造而成。
氮化硅 深度
氮化硅深度1. 介绍氮化硅(Si3N4)是一种重要的无机材料,具有许多优异的性能。
它是由硅和氮元素组成的化合物,具有高硬度、高熔点、高耐热性和优良的电绝缘性能。
由于这些优点,氮化硅在许多领域得到了广泛的应用,如半导体、陶瓷、涂层和高温材料等。
2. 物理性质2.1 密度和晶体结构氮化硅具有高密度,其晶体结构类似于石英。
它是一种非金属材料,具有非常高的硬度和刚性。
这使得氮化硅在高温、高压和腐蚀性环境下具有出色的稳定性。
2.2 热性能氮化硅具有优异的耐热性能,可以在高温下稳定工作。
它的熔点约为1900°C,比许多金属和合金的熔点要高得多。
这使得氮化硅成为一种理想的高温材料,可以用于制造高温炉、耐火材料和高温电子器件等。
2.3 电性能氮化硅是一种优良的电绝缘材料,具有较高的介电常数和低的电导率。
这使得氮化硅在电子器件中具有重要的应用,如绝缘层、电介质和电隔离等。
氮化硅还具有优异的耐电弧击穿性能,可以防止电器设备因电弧而损坏。
3. 化学性质3.1 化学稳定性氮化硅具有良好的化学稳定性,可以抵抗酸、碱和其他化学物质的侵蚀。
这使得氮化硅在化学工业中有广泛的应用,如制造化学反应器、催化剂载体和化学传感器等。
3.2 氧化性尽管氮化硅具有较高的化学稳定性,但在高温下,它会与氧气反应生成二氧化硅。
这种氧化反应会导致氮化硅的性能下降,因此在使用时需要注意控制氧气的接触。
4. 应用领域4.1 半导体氮化硅在半导体行业中有广泛的应用。
它可以作为绝缘层、电介质和传感器等组件的材料。
氮化硅具有优异的电绝缘性能和耐高温性能,可以提高半导体器件的稳定性和可靠性。
4.2 陶瓷氮化硅具有优良的耐热性能和硬度,使其成为一种理想的陶瓷材料。
它可以用于制造高温炉、耐火材料和陶瓷部件等。
4.3 涂层氮化硅可以作为涂层材料,用于提高材料的耐磨性和耐腐蚀性。
它可以在金属表面形成坚硬的保护层,提高材料的使用寿命和性能。
4.4 高温材料由于氮化硅具有优异的耐热性能,它可以用于制造高温材料,如高温炉、耐火材料和高温电子器件等。
二氧化硅的性质
经常采用方法。因为温度越高时间越长越会引起其
它负面影响,比如,晶园表面层中“错位”和温
度及高温下的时间密
不锈钢套
石英 反应 管
切相关,而这种错位
对器件特性是很不利 高压惰性气体 的。高温氧化系统如 高压氧化气体
图所示。
和普通水平反应炉相似,不同的是炉管 是密封的,氧化剂被用10~25倍大气压的压力 泵入炉管。在这种压力下,氧化温度可降到 300~700℃而又能保证正常的氧化速率。在这 种温度下晶园的错位生长可降到最小。
不均匀的氧化率及氧化步骤
经过一些制作工艺后,晶园表面的条件会 有所不同,有的是场氧化区,有些是掺杂区, 有些是多晶硅区等等。每个区上面氧化层厚度 不同,氧化层厚度的不同被称为不均匀氧化。
不同的氧化率导致了在晶
园表面形成台阶(见图) 。
硅晶片
图中显示的是与比较厚的
再氧化之前
场氧化区相邻的氧化区形
(a)
7.2.1 影响氧化速率的 因素
晶格方向
因为不同晶向其
原子密度不同,所以
在相同的温度、氧化
气压等条件下,原子
密度大的晶面,氧化
生长速率要大,而且 在低温时的线性阶段
1000 û C
更为明显。如图所示。10
<111> 硅 <100> 硅
11120000
û û
C C
900 û C 800 û C 700 û C
成了一个台阶,在暴露区
台阶
的氧化反应较快。
硅晶片
再氧化之后 (b)
7.3 热氧化方法
从氧化反应方程式可以看出,氧和硅的反应 似乎很简单,但是要达到硅技术中的氧化必须 附加条件,那就是加热,给反应过程足够的能 量是其满足要求,所以常称之为热氧化。
PE SiO2和SiN双层膜简介
R 0
n 2 n0 n si 2 ( 2 ) n n0 n si
为了使反射损失减到最小,即希望上式 等于0,就应有:
n n0 n si
对于太阳光谱,取0=0.6微米 ,如果电池直接暴露在真空或大
气中使用,最匹配的减反射膜折射率为n≈1.97。
13
在实际应用中,为了提高电池的使用寿命和抗湿能力,大多采用 硅橡胶封装。所以,对于减反射膜来说,外界介质是硅橡胶,其折射率 约为1.4,在这种情况下,最匹配的减反射膜折射率应为:
4
从图上可以看出,应力随着温度升高增大;在膜厚3000— 6000nm时,应力无明显变化。
5
(2)PECVD SiO2
6
PECVD SiO2的应力为压应力,值约为1~3﹡108Pa。 从上图可以看出:应力随衬底温度的提高而降低;
应力随折射率的增大而增大;
当厚度较小时,应力随膜厚的增大而减小;当膜厚较 大时,应力不随膜厚变化;
一、钝化原理 硅材料中含有大量的杂质和缺陷,导致硅中少数载流子寿命和扩散
长度降低。为了提高硅太阳电池的效率,必须对硅材料中具有电活性的
杂质和缺陷进行钝化。 SiN:由于SiN膜具有很高的正电荷密度,场效应钝化效果较好, 内含丰富的H原子。但其沉积在硅片表面后,界面缺陷密度较高。 SiO2: SiO2膜折射率较低,场效应钝化效果不如SiN,但是生长完 SiO2硅片表面缺陷密度较低。 因此采用/SiN叠层膜结构可以有效综合两种膜的优点得到较好的钝 化效果。
16
5、SiO2的优点:SiO2/Si界面的界面缺陷密度较低
SiO2在硅片表面的生长模型如上图所示,氧气在硅片表面反应生成
SiO2。由于在硅片表面处晶格不连续通过在硅片表面热生长一层SiO2,
氮化硅与硅的热光系数
氮化硅与硅的热光系数引言:在现代科技领域中,材料的热光系数是一个重要的参数。
热光系数可以衡量材料在温度变化下的光学性质变化程度。
本文将重点探讨氮化硅和硅这两种材料的热光系数,并对其特性进行详细分析。
一、氮化硅的热光系数氮化硅是一种独特的材料,具有优异的机械和光学性能。
它是一种透明的、硬质的陶瓷材料,具有极高的熔点和热稳定性。
氮化硅的热光系数较低,这意味着在温度变化下,氮化硅的折射率变化较小。
这使得氮化硅成为一种理想的光学材料,特别是用于高温环境下的光学器件。
二、硅的热光系数硅是一种常见的半导体材料,广泛应用于电子和光学器件中。
硅的热光系数较高,这意味着硅在温度变化下的折射率变化较大。
这种特性使得硅在光学器件中的应用受到一定限制。
然而,硅具有良好的光学透明性和电子特性,因此仍然被广泛用于光电子学领域。
三、氮化硅与硅的比较氮化硅和硅是两种具有不同特性的材料,它们在热光系数方面存在明显的差异。
氮化硅具有较低的热光系数,而硅具有较高的热光系数。
这意味着在温度变化下,氮化硅的折射率变化较小,而硅的折射率变化较大。
在实际应用中,选择适合的材料取决于具体需求。
如果需要在高温环境下使用光学器件,氮化硅是一个更好的选择,因为它的热光系数较低,能够保持较稳定的折射率。
然而,对于一些需要较大折射率变化的应用,如温度传感器,硅可能更适合。
结论:热光系数是衡量材料在温度变化下光学性质变化程度的重要参数。
氮化硅和硅是两种常见的材料,它们在热光系数方面存在明显的差异。
氮化硅具有较低的热光系数,适用于高温环境下的光学器件。
而硅具有较高的热光系数,适用于需要较大折射率变化的应用。
在实际应用中,根据具体需求选择合适的材料是非常重要的。
通过对氮化硅和硅的热光系数进行分析,我们可以更好地理解这两种材料在光学性能方面的差异,并为光学器件的设计和应用提供指导。
随着科技的不断发展,相信在未来会有更多新型材料的热光系数被发现和研究,为光学器件的性能提升带来更多可能性。
晶体硅太阳电池中的氮化硅的刻蚀方法及应用
晶体硅太阳电池中的氮化硅的刻蚀方法及应用
氮化硅是一种广泛应用于晶体硅太阳电池中的材料,常用于制备太阳电池的反射层和抗反射层。
氮化硅可以通过湿法和干法两种方式进行刻蚀。
湿法刻蚀是使用一种含有氢氟酸的溶液与氮化硅表面发生反应,溶解掉部分氮化硅材料。
湿法刻蚀的优点是刻蚀速度较快,可控性较好,且不会对硅基底材料造成损伤。
但是湿法刻蚀需要处理腐蚀性溶液,操作相对危险,且对环境的影响较大。
干法刻蚀是在真空或气氛控制下,使用一种高能量的离子束轰击氮化硅表面,将表面的氮化硅物质剥离掉。
干法刻蚀的优点是刻蚀过程中没有液体溶液的参与,操作相对安全,且对环境的影响较小。
但干法刻蚀的缺点是刻蚀速度较慢,且需要较高的设备成本。
氮化硅的应用主要集中在晶体硅太阳电池中的反射层和抗反射层。
在反射层中,氮化硅可以提供较高的反射率,使太阳能光线得到更好的反射,提高光电转换效率。
在抗反射层中,氮化硅可以减少表面的光反射,提高光的吸收率,进一步提高光电转换效率。
此外,氮化硅还可以用于制备其他太阳电池组件的材料,如背表面场层等。
氮化硅的性质及其在耐火材料中的应用
氮化硅的性质及其在耐火材料中的应用氮化硅是一种具有良好的耐磨、耐高温、耐蚀性的合成耐火原材料。
在耐火材料的应用中,主要以结合相的形式出现。
1.0氮化硅的晶体结构Si3N4有两种晶体结构:α-Si3N4为颗粒状结晶体,β-Si3N4为针状结晶体(见图1)。
两者都是[SN4]四面体共用顶角构成的三维空间网络,均属于六方晶系。
它们的差别在于[SiN4]四面体层的排列顺序上。
β相是由几乎完全对称的六个[SN4]四面体组成的六方环层在c轴方向重叠而成;而α相是由两层有形变而且不同的非六方环层重叠而成。
α相在晶体结构范围能够固溶氧,其结构内部应变比β相大,故自由能比β相高。
从热力学角度来看,在较高的温度下,β相更稳定。
α相对称性低,容易形成,在大约1500℃温度下,α相发生重建式转变而转化为β相。
这一转变是不可逆的,某些工艺条件及质的存在更有利于α相向β相的转变。
在低于1350℃时形成α-Si3N4,在高于1500℃的温度下就可以直接制取β-Si3N4。
(a)α-Si3N4的原子排列;(b)β-Si3N4的原子排列图1α-Si3N4和β-Si3N4的原子排列2.0氮化硅的基本性质氮化硅的分子式为Si3N4,其中Si占60.06%,N占39.94%。
Si与N之间以强的共价键结合(其中离子键结合的情况仅占30%),故Si3N4硬度高(莫氏硬度9)、熔点高,结构稳定。
表1 Si3N4的晶格常数和密度表2氮化硅的基本性质Si3N4的晶格常数及密度列于表1。
从表中数据可以看出,α相和β相的晶格常数A相差不大,而α相的晶格常数C约为β相的两倍。
这两个相的密度几乎相等,因此在相变过程中不会引起体积的较大变化。
表2为氮化硅的基本性质。
氮化硅晶体中Si-N之间以共价键结合为主,键合强度高,所以它具有很大的弹性模量(4.7×105kg/cm2)。
热膨胀系数较低,而导热系数较大,使这种材料不易产生热应力,因而具有良好的抗热震性能,耐热冲击性能好。
PECVD氮化硅
实验内容
本实验采用牛津仪器公司生产的牛津Plasma80Plus在2 英寸(50mm)p型〈100〉晶向的单晶硅片上沉积约100~ 400nm的氮化硅薄膜。薄膜制备过程如下:实验前使用乙 醇和丙酮超声清洗样品15min以去除油污,然后用1号液 (V(H2O)∶V(H2O2)∶V(NH3・H2O)=5∶1∶1)和2号液 (V(H2O)∶V(H2O2)∶V(HCl)=5∶1∶1)清洗,最后再使用 体积分数为5%的稀氢氟酸(HF)漂洗5min以去除氧化层, 去离子水洗净烘干后放入反应室。反应气体体积分数为 5%的SiH4/N2,NH3和N2,射频功率为13156MHz[9]。通 过对衬底温度、射频功率、反应腔体气压等条件的调节 得到不同工艺条件下的氮化硅薄膜。通过AFM检测样品 表面形貌,利用XP-2台阶仪和椭圆偏振仪测量样品的厚度 和折射率。
1结果与讨论--射频功率对薄膜生长速率的影响
图3为射频功率对薄膜生长速率的影响,工艺参数为腔体气压 13313Pa,SiH4流量100cm3/min,NH3流量4cm3/min,N2流量 700cm3/min,时间10min,温度300℃,射频功率10~50W。由图3可以 发现,随着射频功率的增加,薄膜沉积速率提高,提高幅度缓慢下降,这 与文献[9】中相符,射频功率的提高增加了电子密度和相关的高能电 子的产生,增加的高能电子提供了更高的反应气体离子化和分解,从 而提高了反应气体的活化率,使反应气体在衬底表面的反应增加,从 而沉积速率提高。由图3可以看出射频功率是主要控制氮化硅薄膜 沉积速率的参数
1结果与讨论性非常重要[5-6,10-11],所 以研究并探讨衬底温度与沉积速率和结构稳定性的关系也是非常重 要的。图1为温度对薄膜生长速率的影响,工艺参数为腔体气压 13313Pa,射频功率20W,SiH4流量100cm3/min,NH3流量 4cm3/min,N2流量700cm3/min,时间10min,温度100~400℃。由图 1可以看出,薄膜生长速率随温度的升高而降低,并且下降速度略有减 缓,这与文献[6]中所得的实验结果相似。有三种可能的理论对其进行 解释:一是由于采用PECVD方法生长氮化硅薄膜
硅、氮化硅、二氧化硅
硅百科名片硅guī(台湾、香港称矽xī)是一种化学元素,它的化学符号是Si,旧称矽。
原子序数14,相对原子质量28.09,有无定形硅和晶体硅两种同素异形体,属于元素周期表上IVA族的类金属元素。
硅也是极为常见的一种元素,然而它极少以单质的形式在自然界出现,而是以复杂的硅酸盐或二氧化硅的形式,广泛存在于岩石、砂砾、尘土之中。
硅在宇宙中的储量排在第八位。
在地壳中,它是第二丰富的元素,构成地壳总质量的25.7%,仅次于第一位的氧(49.4%)。
目录[隐藏]基本资料硅的部分化合物晶体硅原子硅元素硅总体特性硅的用途与硅有关的病症基本资料硅的部分化合物晶体硅原子硅元素硅总体特性硅的用途与硅有关的病症工业制取纯硅[编辑本段]基本资料部首:石部首笔画:5总笔画:11五笔86:DFFG五笔98:DFFG仓颉:MRGG四角号码:14614基本字义:一种非金属元素,是一种半导体材料,可用于制作半导体器件和集成电路。
旧称“矽”。
[编辑本段]硅的部分化合物二氧化硅、硅胶、硅酸盐、硅酸、原硅酸、硅烷、二氯硅烷、三氯硅烷、四氯硅烷、另参考:气相二氧化硅(俗称气相白碳黑)为人工合成物无定形白色流动性粉末,具有各种比表面积和容积严格的粒度分布。
本产品是一种白色、松散、无定形、无毒、无味、无嗅,无污染的非金属氧化物。
其原生粒径介于7~80nm之间,比表面积一般大于100㎡/g。
由于其纳米效应,在材料中表现出卓越的补强、增稠、触变、绝缘、消光、防流挂等性质,因而广泛的应用于橡胶、塑料、涂料、胶粘剂、密封胶等高分子工业领域。
[编辑本段]晶体硅硅(矽)晶体硅为灰黑色,无定形硅为黑色,密度2.32-2.34克/立方厘米,熔点1410℃,沸点2355℃,晶体硅属于原子晶体,硬而有金属光泽,有半导体性质。
硅的化学性质比较活泼,在高温下能与氧气等多种元素化合,不溶于水、硝酸和盐酸,溶于氢氟酸和碱液,用于制造合金如硅铁、硅钢等,单晶硅是一种重要的半导体材料,用于制造大功率晶体管、整流器、太阳能电池等。
工程陶瓷 氮化硅陶瓷
氮化硅陶瓷
氮化硅陶瓷粉末制备
3 、液相法 -30----70º C SiCl4+6NH3——————Si(NH)2+4NH4Cl 1600º C
3Si(NH)2 —— Si3N4+2NH3
它具有纯度高,粒径微细而且均匀,所以发展很快。
氮化硅陶瓷
氮化硅陶瓷粉末制备
4 、气相法 1400º C 3SiCl4+4NH3————Si3N4+12HCl
氮化硅陶瓷
三、氮化硅陶瓷助剂的研究
氮化硅陶瓷
三、氮化硅陶瓷助剂的研究
氮化硅陶瓷的主要体系 1、 Si3N4—MgO系 加入的MgO与存在于Si3N4粉末 表面的杂质SiO2反应,生成接近于 顽火辉石组成的相。这种玻璃相起 着将Si3N4粒子的结合起来的粘结剂 的作用。 用高温Si3N4粉加MgO制得的热压 产品HS—130,高温强度得到明显改 善,1200º C强度才明显降低。
氮化硅陶瓷
三、氮化硅陶瓷助剂的研究
相关系,显微结构及其对性能的影响 添加剂,不管对致密化影响程度如何,其种类和含量正如方程式所示决 定了晶界相的本性和含量,且影响高温强度、抗蠕变性和抗氧化性。因此 ,了解M-Si-O-N和其它有关系统的相平衡甚为重要。相平衡知识可 用来指导制备工艺、设计有利的显微结构和了解它们与性能之间的关系。 “晶界工程”这一概念是指在氮化硅基材料中探索如何控制晶界结构和在 晶界上的反应。通过“晶界工程”作为一条新途径,使氮化硅基材料得到 了显著的发展。 Gazza(1973,1975)的工作表明:高温性能的改善可以通过提高晶界玻璃 相的软化点,为此Y2O3已被采用来代替MgO作烧结添加剂。加入Y2O3后 ,在晶界上易形成一种或多种的氧氮化钇硅(总共4种晶相),晶相形成 的容易程度取决于氮化硅粉表面的氧含量。
二氧化硅和氮化硅介质薄膜的 PECVD 法低温制备
签 名: 导师签名:
日期: 日期:
北京理工大学硕士学位论文
摘要
作为光电子用的二氧化硅和氮化硅薄膜通常采用等离子体增强化学气相沉 积法高温制备。为了实现柔性光电子器件用的二氧化硅和氮化硅薄膜,其需要 低温制备。本课题研究了在较低的温度条件下利用等离子体增强化学气相沉积 法制备以上两种介质薄膜的工艺条件;研究了不同的制备参数对薄膜性能参数 的影响,并将其应用到低温制备的参数优化中。
以块状固体形式存在时晶体中硅原子的4个价电子与4个氧原子形成4个共价键硅原子位于正四面体的中心4个氧原子位于正四面体的4个顶角上整个晶体是一个巨型分子sio2是表示组成的最简式不表示单个二氧化硅分子仅是表示二氧化硅晶体中硅和氧的原子个数之比见图11
研究成果声明
本人郑重声明:所提交的学位论文是我本人在指导教师的指导下进行 的研究工作获得的研究成果。尽我所知,文中除特别标注和致谢的地方外 , 学位论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得 北京理工大学或其它教育机构的学位或证书所使用过的材料。与我一同工 作的合作者对此研究工作所做的任何贡献均已在学位论文中作了明确的 说明并表示了谢意。
1.3
氮化硅薄膜的性质及应用 .................................... 5
第二章 二氧化硅和氮化硅薄膜的制备方法 .............................................................. 9 2.1 薄膜的生长模式和缺陷 .......................................... 9 2.1.1 薄膜的生长模式简介 .............................................................................9 2.1.2 薄膜中的缺陷 ....................................................................................... 10 2.2 二氧化硅的制备方法 ............................................ 11 2.2.1 热氧化法 ................................................................................................ 12 2.2.2 物理气相沉积( PVD)...................................................................... 13 2.2.3 化学气相沉积( CVD)......................................................................14 2.2.4 溶胶 -凝胶法(sol-gel)..................................................................... 15 2.3 氮化硅薄膜的制备 ..............................................16
氮化硅 与二氧化硅反应
氮化硅与二氧化硅反应氮化硅(Si3N4)是一种重要的陶瓷材料,具有优异的高温机械性能、化学稳定性和电气绝缘性能。
与之相比,二氧化硅(SiO2)是一种常见的无机化合物,具有广泛的应用领域。
本文将探讨氮化硅与二氧化硅反应的相关内容。
氮化硅与二氧化硅反应是一种重要的化学反应,在工业和科研领域中具有广泛的应用。
这种反应可以通过不同的方法来实现,例如高温热处理、等离子体处理和化学气相沉积等。
我们来探讨高温热处理方法。
在高温下,氮化硅和二氧化硅可以发生化学反应,生成氮化硅和二氧化硅的混合物。
这种混合物具有良好的导热性能和化学稳定性,可用于制备高温陶瓷材料和耐火材料。
等离子体处理也是一种常用的方法。
在等离子体处理中,氮化硅和二氧化硅被暴露在等离子体中,通过离子的撞击和化学反应来实现反应。
这种方法通常能够实现较高的反应速率和较好的均匀性,适用于大面积薄膜的制备和表面改性。
化学气相沉积是另一种常见的方法。
在这种方法中,氮化硅和二氧化硅的前体化合物被分解并反应在基底上,形成氮化硅和二氧化硅的薄膜。
这种方法可以实现对薄膜厚度和成分的精确控制,适用于微电子器件和光学涂层的制备。
通过这些方法,氮化硅和二氧化硅可以得到不同形态的反应产物。
其中,氮化硅和二氧化硅的混合物可以用于制备高温陶瓷材料和耐火材料。
氮化硅和二氧化硅的薄膜可以用于微电子器件的制备和光学涂层的应用。
此外,氮化硅和二氧化硅的复合材料也具有优异的力学性能和导热性能,可以应用于高性能结构材料和导热材料。
总的来说,氮化硅与二氧化硅反应是一种重要的化学反应,具有广泛的应用领域。
通过不同的方法,可以实现氮化硅和二氧化硅的反应,并得到不同形态的产物。
这些产物具有优异的性能,可应用于高温陶瓷材料、耐火材料、微电子器件和光学涂层等领域。
随着科技的进步和应用的不断拓展,氮化硅与二氧化硅反应的研究将会有更多新的突破和应用。
硅、氮化硅导热系数
硅、氮化硅导热系数
硅和氮化硅都是常见的导热材料,它们的导热系数是非常重要的物理参数。
下面我将分章节介绍它们的导热系数。
一、硅的导热系数
硅是一种常见的半导体材料,也是一种优良的导热材料。
硅的导热系数随着温度的升高而增加,一般在室温下为148 W/(m·K)。
硅的导热系数比较高,这是因为硅的晶格结构比较简单,原子之间的键结构比较紧密,热能传递比较容易。
此外,硅的导热系数还与硅晶体的纯度有关,纯度越高,导热系数越大。
二、氮化硅的导热系数
氮化硅是一种新型的高温材料,具有优异的物理性能。
氮化硅的导热系数比硅大,一般在室温下为200 W/(m·K)。
氮化硅的导热系数比硅大的原因是氮化硅的晶格结构比硅更加复杂,原子之间的键结构更加紧密,热能传递更加容易。
此外,氮化硅的导热系数还与氮化硅晶体的纯度有关,纯度越高,导热系数越大。
总结:
硅和氮化硅都是优良的导热材料,它们的导热系数与温度、纯度等因素有关。
硅
的导热系数比氮化硅小,但是硅的应用范围更广泛,因为硅的制备工艺比氮化硅更加成熟,成本更低,而且硅的机械性能和化学稳定性也比氮化硅更好。
氮化硅硅空位
氮化硅硅空位一、引言氮化硅(Si3N4)是一种重要的无机非金属材料,具有优异的热稳定性、化学稳定性和机械性能。
然而,在氮化硅晶体中存在着一种特殊的缺陷,即氮化硅硅空位。
本文将对氮化硅硅空位的形成、性质以及其对氮化硅材料性能的影响进行探讨。
二、氮化硅硅空位的形成氮化硅硅空位指的是氮化硅晶体中的硅原子缺失。
这种缺陷的形成主要有以下两种机制:1. 热诱导:在氮化硅材料的生长过程中,由于高温引起的硅原子扩散不均匀,导致某些区域出现硅原子缺失,形成硅空位。
2. 辐射诱导:在氮化硅材料的辐照过程中,辐射能量会使得晶格发生位移,造成硅原子缺失,形成硅空位。
三、氮化硅硅空位的性质1. 原子结构:氮化硅硅空位是指晶格中的硅原子缺失,其周围会形成一定的结构畸变。
硅空位周围的氮原子和邻近的硅原子会重新排列,形成不稳定的局部结构。
2. 能级结构:氮化硅硅空位引入了能级缺陷,使得氮化硅材料的能带结构发生改变。
硅空位处的能级会影响材料的导电性和光学性质。
3. 电子态密度:氮化硅硅空位的存在会导致材料的电子态密度发生变化。
硅空位处的电子态密度增加,对电子的传输和输运性质产生影响。
四、氮化硅硅空位对材料性能的影响1. 电学性能:氮化硅硅空位会引入能级缺陷,增加材料的电子态密度,从而影响材料的载流子浓度和迁移率。
这对于氮化硅材料的电学性能,如导电性和绝缘性能,都会产生重要影响。
2. 光学性能:氮化硅硅空位的存在会改变材料的能带结构,从而影响材料的光学性能。
这对于氮化硅材料在光电器件中的应用具有重要意义,如光电二极管、激光器等。
3. 机械性能:氮化硅硅空位的形成会导致晶格的畸变,从而影响材料的机械性能。
硅空位的存在会降低材料的硬度和强度,增加材料的脆性。
五、氮化硅硅空位的应用前景1. 光电器件:氮化硅硅空位对氮化硅材料的光学性能产生重要影响,有望在光电器件中得到应用,如激光器、LED等。
2. 能源存储:氮化硅材料的电学性能受到硅空位的影响,可以用于电池、超级电容器等能源存储领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nucleation of silicon on Si3N4coated SiO2I.BrynjulfsenÃ,L.ArnbergDepartment of Materials Science and Engineering,Norwegian University of Science and Technology,7491Trondheim,Norwaya r t i c l e i n f oArticle history:Received30May2011Received in revised form6July2011Accepted8July2011Communicated by P.RudolphAvailable online19July2011Keywords:A1.NucleationA1.SolidificationA2.UndercoolingB1.Silicona b s t r a c tControl of the nucleation during directional solidification of solar cell silicon is important in order to beable to control the growth and number of grains formed.A certain amount of undercooling is requiredto obtain dendritic growth with faceted twins(which has shown promising results for structurecontrol),but a too high undercooling will lead to extensive nucleation which will oppose the positiveeffect of a small number of large grains with controlled growth directions.In the present experiments,the nucleation undercooling of silicon on Si3N4coated SiO2with variation in coating parameters hasbeen investigated.Experiments were performed with the sessile drop method,and with differentialthermal analysis,with a cooling rate of20K/min.There were no significant differences in nucleationundercooling between the different variations in coating.The undercooling does not seem to bedependent on coating thickness,oxygen concentration,wetting angle or roughness at the givencooling rate.&2011Elsevier B.V.All rights reserved.1.IntroductionThe solar cell industry is developing fast in several directions,andin order for the multicrystalline solar cell to be able to compete withmonocrystalline cells and other new alternatives,the efficiency hasto be improved.The solidification process of multicrystalline siliconis important for thefinal efficiency of the solar cell.Grain size,grainorientation,and impurity distribution/concentration are all proper-ties dependent on solidification parameters.Some of these char-acteristics like the number of,the size,and orientation of grains areagain dependent on the nucleation of silicon,and it is thereforeimportant to be able to control this mechanism.Recently several solidification experiments have been per-formed by Fujiwara et al.[1–4].They studied grain growth,andwere able to increase the crystals size by an initial faceteddendritic growth followed by traditional planar front directionalsolidification.The dendritic growth results in fewer and largergrains,which again lead to less grain boundaries were recombi-nation can take place.Fujiwara et al.[1]investigated howdifferent cooling rates influenced the size of undercooling neededto obtain faceted dendritic growth.The present work has beenperformed in order to study how/if the substrate on which thesilicon grows will influence the undercooling and nucleation ofsilicon.Si3N4coated SiO2has been chosen as a substrate sincemulticrystalline silicon ingots are normally cast in Si3N4coatedSiO2crucibles.Nucleation is the dominant process in the beginning of solidifica-tion and leads to the establishment of thefinal grain number.Heterogeneous nucleation undercooling depends strongly on thewetting angle between the nucleus and the nucleating substrate.This implies that the nucleation is dependent on the substrateroughness,composition,thickness,etc.[5].Another aspect is impu-rities.Impurities in the bulk have been studied by several authors,and it has been shown that silicon often nucleate from Si3N4-orSiC-particles[6].This nucleation can cause the formation of anequiaxed zone instead of the desired columnar zone[7,8].It hasbeen documented that particles like this are present in the bottomof the ingot[9].The substrate’s influence on undercooling for solidification ofsilicon has not been studied thoroughly,but some investigationsin the area has been done.Appapillai et al.[10]investigatednucleation undercooling for silicon samples coated with differentmaterials among others Si3N4.They foundfinely spaced nuclea-tion sites near the edge of the samples coated with dry oxides(high undercooling),which indicated that the nucleation startedin this region.For the silicon nitride coated samples the nuclea-tion sites were further apart.This resulted in the conclusion that alower undercooling gave fewer grains,which is consistent withclassical nucleation theory.This shows the importance of theability to control the nucleation more precisely.They also showedthat the chemical composition played an important role innucleation.The oxides had a higher interfacial stability resultingin a higher undercooling than the Si3N4.The present work has been performed to investigate whichcoating parameters influence the nucleation undercooling ofsilicon on Si3N4coated SiO2.This is done in order to be able toContents lists available at ScienceDirectjournal homepage:/locate/jcrysgroJournal of Crystal Growth0022-0248/$-see front matter&2011Elsevier B.V.All rights reserved.doi:10.1016/j.jcrysgro.2011.07.003ÃCorresponding author.Tel.:þ4773594903;fax:þ4773550203.E-mail address:ingvild.brynjulfsen@material.ntnu.no(I.Brynjulfsen).Journal of Crystal Growth331(2011)64–67control the nucleation and undercooling needed for a dendritic growth more accurately,since this growth has shown promising results for structure control of silicon ingots.2.Experimental procedureThree different parameters have been studied in this work;the coating thickness;the amount of oxygen in the coating;and the roughness of the coating.Two types of experiments have been used to study the nucleation undercooling.The sessile drop method performed in a wettability furnace and differential thermal analysis (DTA).The samples for the wettability furnace,SiO2pieces with the dimensions0.9Â0.9Â0.3cm3,were coated both manually with a spray gun and with a coating robot.Before coating the samples were preheated on a heater to a temperature of1501C,but this dropped rapidly when the samples were coated.The samples were coated with a variation in number of layers.The samples were dried between each layer of coating to ensure a better adherence to the substrate and a smooth coating.The amount of coating was weighed and the coating thickness was both estimated and measured after the nucleation experiments,with correlating numbers.The samples were thenfired at11001C for4h as a standardfiring routine.Firing temperatures of900and12001C,and holding time of6h were used to obtain different oxygen levels in the coating.The oxygen concentration was measured by LECO.Similar samples were also produced by a commercial crucible producer,Vesuvius.For the nucleation study in the wettability furnace a small piece of silicon(approximately20mg)was placed on the Si3N4 coated substrate and mounted on the sample holder.The proce-dure and specifications for using the wetting furnace are explained elsewhere[11].The sample was heated at a rate of 5K/min when it was close to melting and to the preset holding temperature.When the sample reached the holding temperature, which was always less than50K above the melting point,it was cooled at a rate of20K/min.The temperature was measured with a thermocouple placed directly below the sample holder,and the melting point of silicon was used as a reference point for the amount of undercooling.When the droplet started solidifying it expanded in most cases,as can be seen in Fig.1.The solidification temperature was set to be the temperature when thefirst visible changes in size and/or reflection in the middle of the droplet took place.The high cooling rate was chosen in order to be able to visually see the point of solidification.A high cooling rate will give higher values of undercooling[12],but since the cooling rate was the same for all experiments it should not have influenced the parameters under investigation in this study.Some experiments were performed in a differential thermal analysis(DTA)equipment to confirm the undercooling measured by the sessile drop method.The same heating and cooling routine as for the wetting experiments were used in these experiments. The crucibles were Al2O3coated with Si3N4,and therefore an Al2O3substrate was also tested in the wetting furnace.Because of the small diameter of the DTA crucibles the coating was not easy to spray uniformly.Some crucibles were spray coated and some painted with coating to investigate if this led to differences.3.Results and discussion3.1.Wetting experimentsAs explained in Introduction a good wetting between solid and substrate leads to a lower energy barrier for nucleation,thus a lower nucleation undercooling.The surface energy balance for a solid droplet in a liquid is shown in Fig.2(a).For good wetting between the solid and the substrate, gLiquidÀSubstratemust be higher than the sum of the other interface energies:gLiquidÀSubstrateZ g SolidÀSubstrateþg LiquidÀSolid cos yð1ÞA large g LiquidÀSubstrate will give wetting of the solid nucleus in Fig.2(a).On the other hand,if g LiquidÀSubstrate is large it can beseenFig.1.Melted droplet of silicon(a)before cooling and(b)solidified.Fig.2.Thefigure illustrates the difference between contributions affecting the wetting angle for the two cases:(a)Solid nucleus in liquid silicon.(b)Liquid drop on substrate in vapour atmosphere,sessile drop experiment.I.Brynjulfsen,L.Arnberg/Journal of Crystal Growth331(2011)64–6765from Fig.2(b)that this can lead to non-wetting in the liquid on substrate case.Wetting conditions in this second case is also dependent on the liquid–vapour tension and vapour–substrate tension.Both of these interface tensions are dependent on the coating,because a high oxygen concentration can lead to the formation of an oxide film and/or a high production of SiO gas.This will affect the wetting and nucleation conditions on the edges of the droplet,but not the nucleation conditions inside the droplet.Therefore it is difficult to predict whether or not non-wetting/wetting in sessile drop experiments indicate wetting/non-wetting of the solid nucleus forming inside the droplet.Another factor from theory that will contribute to a good wetting is a rough coating which will lead to more nucleation points [13].In addition,in the sessile drop experiments a low oxygen concentration will lead to a higher degree of wetting [11].Since the dendritic growth requires a certain amount of under-cooling to take place,non-wetting in Fig.2(a)is wanted.The aim of this study is therefore not only to investigate what factors influence the nucleation undercooling,but also see which gives the highest undercooling at the given cooling rate.Since several factors are affecting the wetting conditions,the only conclusion that can be drawn is that wetting in Fig.2(b)gives a higher probability for non-wetting in Fig.2(a).A consideration that must be taken into account,and cannot be left out of experiments with solar cell silicon,is that non-wetting in Fig.2(b)is important to prevent the silicon from sticking to the crucible.Large variations in the undercooling were measured,from the lowest of 12K to the highest of 37K.The undercooling did not seem to be dependent on the oxygen concentration in the coating,see Fig.3(a),or the measured wetting angle,see Fig.3(b).A thicker coating will limit the diffusion of oxygen from the silica substrate and in this way affect the reactions taking place between silicon and substrate.It was therefore believed that the thickness would influence the undercooling,but variations in coating thicknessdid neither show a trend;see Fig.4(a).These samples were produced with the same firing routine and hence had the same oxygen concentrations.Samples produced by Vesuvius with an up to 20times thicker coating also gave undercooling in the same range.The variations in coating thickness were applied due to earlier investiga-tions of wetting and oxygen concentration [11].The comparison of samples with different roughness from Vesuvius did neither show any trend;see Fig.4(b).The average roughness given in the figure is smaller than 5and 10m m Ra.The last value marked as 20m m Ra is for all the experiments with variation in coating thickness.The two finest coatings are some-what thinner than the rough coatings.The coating fired at 12001C for 6h displayed a different behaviour then the rest.It looked like the droplet reacted with the substrate after melting and formed an oxide layer around the droplet.It lost its round shape and imploded.This implies an effect of the oxygen concentration on the surface tension and hence the nucleation.Because of this behaviour the data for the coating fired at 12001C were only plotted in Fig.4(a).The present results are not directly comparable with the experiments in the study by Appapillai et al.[10],since in their case they coated the silicon samples completely with the sub-strate.But,as for Appapillai,the coated Al 2O 3substrates in the present project gave a somewhat lower undercooling than the coated silica substrates.Silicon wet these substrates most,and the spreading was faster and more significant.This implies that the chemical composition of the silicon nitride coating alone does not determine the undercooling.All the samples in the present experiments were covered by a black layer,indicating a low interfacial stability,which can contribute to decrease the undercooling.This behaviour together with the clear reaction for the samples fired at 12001C showed,in accordance with Appapillai et al.[10],Koh et al.[14]and Vallat-Sauvain et al.[15],the importance of chemical composition.0510152025303540Undercooling as a function of oxygen concentration in coatingOxygen concentration (wt.%)U n d e r c o o l i n g (K )1100°C, 4h 1100°C, 6h 900°C, 2h 1200°C, 4h0510152025303540Undercooling as a functionof wetting angleWetting angle (°)U n d e r c o o l i n g (K )Author VesuviusCoated alumina Pure silica Pure aluminaFig.3.Variation in undercooling with:(a)oxygen concentration.The tempera-tures and time displayed are the firing parameters for the coating.(b)Liquid-substrate wettingangle.Undercooling as a function ofcoating thickness0510152025303540Coating thickness (µm)U n d e r c o o l i n gAuthorVesuviusUndercooling as a function of roughness- samples from Vesuvius0510152025303540Roughness (µm)U n d e r c o o l i n g (K )Fig. 4.Display of variation in undercooling with coating thickness (a)and roughness (b).I.Brynjulfsen,L.Arnberg /Journal of Crystal Growth 331(2011)64–6766As mentioned above there is also the possibility for the nucleation to take place at inclusions in the melt.Si 3N 4particles can be formed due to dissolution and re-precipitation of the coating,and carbon is also available in the furnace atmosphere giving the possibility for formation of SiC.The substrates without coating were not exposed to nitrogen.(The coating has been identified as the main source of nitrogen in silicon.)If Si 3N 4particles were the main cause of nucleation of silicon,the substrates without coating should show a higher undercooling.This is not the case in this work,but SiC can not be ruled out as a compound influencing nucleation.3.2.DTA-analysisTwo series of differential thermal analysis experiments were performed on Si 3N 4coated Al 2O 3crucibles,with the same heating and cooling cycle as in the wetting furnace.Because of the small diameter of the crucible an even coating was very difficult to obtain.The first series of coating were therefore still on the experimental level and not very complete or uniform.Two crucibles were coated in this way and are marked M in Fig.1.In the second series,two crucibles were spray coated,S,and three painted with coating,P.The average undercooling was ca.21K.The shapes of two of the DTA curves were varied from the others.These were the spray coated and most evenly coated crucibles.They have a somewhat higher undercooling than the others,but not significantly enough to conclude with a real difference,see Table 1.The undercooling of the samples in the DTA were in the same range as the sessile drop experiments.This means that even if the DTA is a more accurate measuring method,since the sessile drop experiments rely on a visual observation of start of nucleation,sessile drop experiments can be used to measure undercooling.Two of the DTA-values were somewhat lower,but as commented above these were not coated as good as they should have.This leads to an uncertainty in their accuracy.All the experiments are summarized in Fig.5.4.ConclusionThe results from the wetting experiments do not indicate that the coating alone plays an important role in the nucleation under-cooling.Different oxygen concentration,thickness,and roughness gave undercooling in the same range.There where on the other hand some variations in undercooling with different substrates,as the coated alumina substrates showed a lower undercooling,see Fig.5.A very high oxygen concentration did affect the undercooling in the way that a clear reaction and deformation affected the silicon leading to a lower degree of undercooling.Even if the DTA results and the results from the sessile drop experiments were in the same range,the DTA-results showed variations,and a further study of the coating roughness should be done.Nucleation in the melt caused by inclusion should not be ruled out either.Further work is required to study if the nucleation undercooling experiments in the present investigation can be used to predict nucleation conditions during solidification of large silicon ingots.AcknowledgementThis work was performed within The Norwegian Research Centre for Solar Cell Technology project number 193829,a Centre for Environment-friendly Energy Research co-sponsored by the Norwegian Research Council and research and industry partners in Norway.References[1]K.Fujiwara,W.Pan,K.Sawada,M.Tokairin,ami,Y.Nose,A.Nomura,T.Shishido,K.Nakajima,Directional growth method to obtain high quality polycrystalline silicon from its melt,Journal of Crystal Growth 292(2)(2006)282–285.[2]K.Fujiwara,W.Pan,ami,K.Sawada,M.Tokairin,Y.Nose,A.Nomura,T.Shishido,K.Nakajima,Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting,Acta Materialia 54(12)(2006)3191–3197.[3]K.Fujiwara,K.Maeda,ami,G.Sazaki,Y.Nose,A.Nomura,T.Shishido,K.Nakajima,In situ observation of Si faceted dendrite growth from low-degree-of-undercooling melts,Acta Materialia 56(11)(2008)2663–2668.[4]K.Fujiwara,K.Maeda,ami,G.Sazaki,Y.Nose,K.Nakajima,Formationmechanism of parallel twins related to si-facetted dendrite growth,Scripta Materialia 57(2)(2007)81–84.[5]W.Kurz,D.J.Fisher,Fundamentals of Solidification,Trans Tech Publications,1998.[6]A.K.Soiland,E.J.Ovrelid,T.A.Engh,O.Lohne,J.K.Tuset,O.Gjerstad,Sic andSi 3N 4inclusions in multicrystalline silicon ingots,Materials Science in Semiconductor Processing 7(1–2)(2004)39–43.[7]M.Beaudhuin,K.Zaidat,T.Duffar,M.Lemiti,Impurities influence on multi-crystalline photovoltaic silicon,Transactions of the Indian Institute of Metals 62(2009)505–509.[8]N.Mangelinck-No¨el,T.Duffar,Modelling of the transition from a planarfaceted front to equiaxed growth:application to photovoltaic polycrystalline silicon,Journal of Crystal Growth 311(1)(2008)20–25.[9]T.Buonassisi,A.A.Istratov,M.D.Pickett,J.-P.Rakotoniaina,O.Breitenstein,M.A.Marcus,S.M.Heald,E.R.Weber,Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon:Assessing the role of impurities in silicon nitride crucible lining material,Journal of Crystal Growth 287(2)(2006)402–407.[10]A.Appapillai,E.Sachs,The effect of substrate material on nucleation behaviorof molten silicon for photovoltaics,Journal of Crystal Growth 312(8)(2010)1297–1300.[11]I.Brynjulfsen,A.Bakken,M.Tangstad,L.Arnberg,Influence of oxidation onthe wetting behavior of liquid silicon on Si3N4-coated substrates,Journal of Crystal Growth 312(16–17)(2010)2404–2410.[12]K.Fujiwara,Y.Obinata,T.Ujihara,ami,G.Sazaki,K.Nakajima,Graingrowth behaviors of polycrystalline silicon during melt growth processes,Journal of Crystal Growth 266(4)(2004)441–448.[13]D.A.Porter,K.Easterling,Phase Transformations in Metals and Alloys,Chapman &Hall.[14]J.Koh,A.S.Ferlauto,P.I.Rovira,C.R.Wronski,R.W.Collins,Evolutionary phasediagrams for plasma-enhanced chemical vapor deposition of silicon thin films from hydrogen-diluted silane,Applied Physics Letters 75(15)(1999)2286–2288.[15]E.Vallat-Sauvain,J.Bailat,J.Meier,X.Niquille,U.Kroll,A.Shah,Influence of thesubstrate’s surface morphology and chemical nature on the nucleation and growth of microcrystalline silicon,Thin Solid Films 485(1–2)(2005)77–81.Table 1DTA experiments performed.M is for mixed,S is for sprayed and P is for painted crucible.DTA-results CoatingM M S S P P P Undercooling (K)17152429221820Undercooling all substrates510152025303540U n d e r c o o l i n g (K )Fig.5.Variation in undercooling for all the different substrates tested in this study.Experiments with the same undercooling on the same type of substrate are placed next to each other.I.Brynjulfsen,L.Arnberg /Journal of Crystal Growth 331(2011)64–6767。