材料性能学复习重点

合集下载

材料性能学复习资料.

材料性能学复习资料.

d g
o
f h
1、弹性范围内卸载、再加载 2、过弹性范围卸载、再加载
5、灰铸铁
对于脆性材料(铸铁),拉伸时的应力 应变曲线为微弯的曲线,没有屈服和径缩现 象,试件突然拉断。断后伸长率约为0.5%。 为典型的脆性材料。
bt
o
σbt—拉伸强度极限(约为140MPa)。它是 衡量脆性材料(铸铁)拉伸的唯一强度指标。
值记作 ,称b为材料的抗拉强度(或强度极限),
它是衡量材料强度的又一个重要指标。
(4)缩颈断裂阶段
曲线到达e点前,试件的变形是均匀发生的, 曲线到达e点,在试件比较薄弱的某一局部(材 质不均匀或有缺陷处),变形显著增加,有效横 截面急剧减小,出现了缩颈现象,试件很快被 拉断,所以ef段称为缩颈断裂阶段。
称为屈服点(或屈服极限)。在屈服阶段卸载,将 出现不能消失的塑性变形。工程上一般不允许构 件发生塑性变形,并把塑性变形作为塑性材料破
坏的标志,所以屈服点 s是衡量材料强度的一
个重要指标。
(3)强化阶段 抗拉强度 b
经过屈服阶段后,曲线从c点又开始逐渐上
升,说明要使应变增加,必须增加应力,材料 又恢复了抵抗变形的能力,这种现象称作强化, ce段称为强化阶段。曲线最高点所对应的应力
、 值越大,其塑性越好。一般把 ≥5%的材
料称为塑性材料,如钢材、铜、铝等;把 <5%的
材料称为脆性材料,如铸铁、混凝土、石料等。
工程应用:冷作硬化
e
d
b
b
e P
a c s
即材料在卸载过程中 应力和应变是线形关系,
f 这就是卸载定律。
材料的比例极限增高, 延伸率降低,称之为冷作硬 化或加工硬化。
4.塑性指标 试件拉断后,弹性变形消失,但塑性变形仍保 留下来。工程上用试件拉断后遗留下来的变形 表示材料的塑性指标。常用的塑性指标有两个:

材料物理性能总复习

材料物理性能总复习

材料性能学总复习
3)铁磁性:即使在较弱的磁场内也可以得到极高的磁化强度,而 且当外磁场移去后,仍可保留极强的磁性
铁磁体的磁化率为正值,而且很大,但当外场增大时,由于磁化 强度迅速达到饱和,其磁化率变小 铁磁性物质很强的磁性来自于其很强的内部交换场,自发磁化是 铁磁物质的基本特征 铁磁性物质的铁磁性只在某一温度以下才表现出来,超过这一温 度,由于物质内部热骚动破坏电子自旋磁矩的平行取向,因而自发 磁化强度变为0,铁磁性消失,这一温度称为居里点Te 4)反铁磁性:
材料的热学性能
材料的热学性能是表征材料与热相互 作用行为的一种宏观特性。
热容:在没有相变或化学反应的条件 下,材料温度升高1K所吸收的热量Q。 热膨胀:物体的体积或长度随温度的 升高而增大的现象。 热传导:当固体材料的两端存在温差 时,热量会从热端自动地传向冷端的现象。 材料性能学总复习
2、导电性本质因素
i ni qi i
i i
决定材料导电性好坏的本质因素有两个:
载流子浓度 载流子迁移率
温度、压力等外界条件,以及键合、成分等材料 因素都对载流子数目和载流子迁移率有影响。任何提 高载流子浓度或载流子迁移率的因素,都能提高电导 率,降低电阻率。
材料性能学总复习

磁畴:磁性材料中磁化方向一致的小区域
• 磁畴结构:各个磁畴之间彼此取向不同,首尾相接,形成闭 合的磁路,使磁体在空气中的自由静磁能下降为0,对外不显现磁性, 磁畴之间被畴壁隔开,畴壁实质上是相邻磁畴间的过渡层
• 磁畴成因:大量实验证明,磁畴结构的形成是由于这种磁体 为了保持自发磁化的稳定性,必须使强磁体的能量达到最低值,因而 就分裂成无数微小的磁畴 • 磁畴影响因素:畴壁的厚度取决于交换能和磁结晶各向异性 能平衡的结果,实际材料中的畴结构,受到材料的尺寸、晶界、第二 相、应力、掺杂、缺陷等的显著影响,使畴结构复杂化

新版材料性能学重点(完整版)-新版.pdf

新版材料性能学重点(完整版)-新版.pdf

7、 努氏硬度适用于测定表面渗层、镀层及淬硬层的硬度,渗层截面上的硬度分布
8、 维氏硬度
维氏硬度的试验原理与布氏硬度基本相似, 是根据压痕单位面积所承受的载荷来计算硬
度值。维氏硬度试验所用的压头是两相对面夹角 α 为 136°的金刚石四棱锥体。在载荷 F 作
用下,试样表面被压出一个四方锥形压痕,测量压痕的对角线长度,计算压痕表面积
10、 包申格效应 :材料经预先加载产生少量塑性变形(残余应变小于
4%),而后同向
加载,规定残余伸长应力,反向加载,规定残余伸长应力降低的象。
原因:预塑性变形,位错增殖、运动、缠结;
同相加载,位错运动受阻,残余伸长应
力增加;反向加载,位错被迫作反向运动,运动容易残余伸长应力降低。
可以通过热处理加以消除。 对材料进行较大的塑性变形或对微量塑变形的材料进行再结
时突然下降, 随后, 在外力不增加或上下波动的情况下试样可以继续伸长变形,
这种现象称
为材料在拉伸实验时的屈服现象
14、 屈服强度 材料屈服时所对应的应力值也就是材料抵抗起始塑性变形或产生微量的塑性变形的能 力,这一应力值称为材料的屈服强度(屈服点)
15、 影响金属材料屈服强度的因素 (1) 晶体结构 (2) 晶界与亚结构 (3) 溶质元素 (4) 第二相 (5) 温度 (6) 应变速率与应力状态
比弹性模数是指材料的弹性模数与其单位体积质量(密度)的比值,也称为比模数或比
刚度
3、 影响弹性模数的因素①键合方式和原子结构(不大)②晶体结构(较大)③
化学成分
(间隙大于固溶)④微观组织(不大)⑤温度(很大)⑥加载条件和负荷持续时间(不
大)
4、 比例极限和弹性极限
比例极限 σ p 是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力-

材料性能学复习重点

材料性能学复习重点

材料性能学复习(1)低碳钢拉伸曲线特点(p1)典型力——伸长曲线分析:OP:弹性变形,F∝△LPe:过量弹性变形Pe :偏离OPeC:屈服变形,不均匀塑性变形CB:均匀塑性变形Bk:不均匀集中塑性变形k:断裂(2)影响弹性模数的因素(p5)一)键合方式和原子半径二)晶体结构单晶体材料的弹性模数在不同的晶体学方向上各向异性,即沿原子排列最密的晶向上弹性模数较大多晶体和非晶体材料表现为各向同性。

三)化学成分固溶体合金中,溶解度较小时,E变化不大;两相合金中, E与合金成分、第二相性质、数量、大小及分布有关。

四)微观组织气孔率对陶瓷的E的影响:高分子聚合物的弹性模数可以通过添加增强性填料而提高复合材料:其弹性模数随增强相体积分数的增高而增大五)温度影响原子间距而使弹性模数变化六)加载条件和载荷持续时间对金属、陶瓷类材料的弹性模数几乎没有影响高分子聚合物材料的弹性模数一般随负荷时间的延长而逐渐下降。

(3)高分子材料的塑性变形机理(p15)结晶态高分子材料的塑性变形由薄晶转变为沿应力方向排列的微纤维束。

非晶态高分子材料变形有两种方式:在正应力作用下形成银纹或在切应力作用下无取向分子链局部转变为排列的纤维束。

4、金属材料的塑性变形机理(p14)单晶体塑性变形的主要方式:滑移和孪生滑移是金属晶体在切应力的作用下,沿滑移面和滑移方向进行的切变过程滑移面和滑移方向的组合成为滑移系;滑移系越多,金属的塑性越好;滑移还受到晶体结构和温度的影响;滑移的机制——位错运动;为使晶体中上下两部份相对移动,滑移是“最省力”的一种方式孪生:晶体一部分相对于另一部分的均匀切变。

滑移难以发生时才会出现孪生;孪生变形可以调整;滑移面的方向使新的滑移系动,间接对塑性变形有贡献。

多晶体金属材料塑性变形的特征(4)塑性变形的非同时性和非均匀性:材料表面优先与切应力取向最佳的滑移系优先(5)各晶粒塑性变形的相互制约与协调晶粒间塑性变形的相互制约晶粒间塑性变形的相互协调晶粒内不同滑移系滑移的相互协调5、几种常见的硬度测试方法及机理(p48)常用:布氏硬度法、洛氏硬度法和维氏硬度HBS:以淬火钢球为压头测出的硬度值,主要用于450HBS以下的灰铸铁、软钢和非铁合金HBW:以硬质合金球为压头测出的硬度值,可测试650HBW以下的淬火钢材(6)火钢球或硬质合金球D(mm) ②加载F(kgf);③压入;④定时;⑤卸载→圆形压痕;⑥测量圆形压痕d;⑧布氏硬度HB:⑦圆形压痕表面积(3)压痕几何相似原理(载荷F与压头直径D):①d= D sinφ/2HB=2F/[πD(D-√D2-d2)]→HB=F/D2·2/[π(1-√1-sin2φ)]②两个条件:一是φ为常数;二是保证F/D2为常数。

材料物理性能复习重点

材料物理性能复习重点

1.热容:热容是使材料温度升高1K所需的热量。

公式为C=ΔQ/ΔT=dQ/dT (J/K);它反映材料从周围环境中吸收热量的能力,与材料的质量、组成、过程、温度有关。

在加热过程中过程不同分为定容热容和定压热容。

2.比热容:质量为1kg的物质在没有相变和化学反应的条件下升高1K所需的热量称为比热容每个物质中有两种比热容,其中c p>c v,c v不能直接测得。

3.摩尔热容:1mol的物质在没有相变或化学反应条件下升高1K所需的能量称为摩尔热容,用Cm表示,单位为J/(mol·K)4.热容的微观物理本质:材料的各种性能(包括热容)的物理本质均与晶格热振动有关。

5.热容的实验规律:1.对于金属:2.对于无机材料(了解)1.符合德拜热容理论,但是德拜温度不同,它取决于键的强度、材料的弹性模量、熔点等。

2.对于绝大多数氧化物,碳化物,摩尔热容都是从低温时一个最低值增到到1273K左右近似于3R,温度进一步升高,摩尔热容基本没有任何变化。

3.相变时会发生摩尔热容的突变4.固体材料单位体积热容与气孔率有关,多孔材料质量越小,热容越小。

因此提高轻质隔热砖的温度所需要的热量远低于致密度的耐火砖所需的热量。

6.经典理论传统理论不能解决低温下Cv的变化,低温下热容随温度的下降而降低而下降,当温度接近0K时热容趋向于07.量子理论1.爱因斯坦模型三个假设:1.谐振子能量量子化2.每个原子是一个独立的谐振子3.所有原子都以相同的频率振动。

爱因斯坦温度:爱因斯坦模型在T >> θE 时,Cv,m=3R,与实验相符合,在低温下,T当T << θE时Cv,m比实验更快趋于0,在T趋于0时,Cv,m也趋于零。

爱因斯坦模型不足之处在于:爱因斯坦模型假定原子振动不相关,且以相同频率振动,而实际晶体中,各原子的振动不是彼此独立地以同样的频率振动,而是原子间有耦合作用,点阵波的频率也有差异。

温度低尤为明显2.德拜模型德拜在爱因斯坦的基础上,考虑了晶体间的相互作用力,原子间的作用力遵从胡克定律,固体热容应是原子的各种频率振动贡献的总和。

材料物理性能期末复习考点

材料物理性能期末复习考点

材料物理性能期末复习考点
1.力学性能
-弹性模量:描述材料在受力后能恢复原状的能力。

-抗拉强度和屈服强度:材料在受拉力作用下能够承受的最大应力。

-强度和硬度:表示材料对外界力量的抵抗能力。

-延展性和韧性:描述材料在受力下发生塑性变形时的能力。

-蠕变:材料在长期静态载荷下发生塑性变形的现象。

2.电学性能
-电导率:描述材料导电的能力。

-电阻率:描述材料导电困难程度的量。

-介电常数和介电损耗:材料在电场中储存和散失电能的能力。

-铁电性和压电性:描述材料在外加电场或机械压力下产生极化效应的能力。

-半导体性能:半导体材料的导电性能受温度、光照等因素的影响。

3.热学性能
-热导率:描述材料传热能力的指标。

-线热膨胀系数:描述材料在温度变化下线膨胀或收缩的程度。

-热膨胀系数:描述材料在温度变化下体积膨胀或收缩的程度。

-比热容:描述单位质量材料在温度变化下吸收或释放热能的能力。

-崩裂温度:材料在受热时失去结构稳定性的温度。

4.光学性能
-折射率:描述光在材料中传播速度的比值。

-透射率和反射率:描述光在材料中透过或反射的比例。

-吸收率:光在材料中被吸收而转化为热能的比例。

-发光性能:描述材料能否发光以及发光的颜色和亮度。

-线性和非线性光学效应:描述材料在光场中的响应特性。

以上是材料物理性能期末复习的一些考点,希望能帮助到你。

但需要注意的是,这只是一部分重点,你还需要结合教材和课堂笔记,全面复习和理解这些概念和原理。

祝你考试顺利!。

材料性能学全部复习资料

材料性能学全部复习资料

第一章材料单向静拉伸的力学性能1、各种材料的拉伸曲线:曲线1:淬火、高温回火后的高碳钢曲线2:低碳钢、低合金钢曲线3:黄铜曲线4:陶瓷、玻璃等脆性材料曲线5:橡胶类高弹性材料曲线6:工程塑性2、拉伸曲线的变形过程:拉伸开始后试样的伸长随力的增加而增大。

在P点以下拉伸力F合伸长量ΔL呈直线关系。

当拉伸力超过F p后,曲线开始偏离直线。

拉伸力小于F e时,试样的变形在卸除拉力后可以完全恢复,因此e点以内的变形为弹性变形。

当拉伸力达到F A后,试样便产生不可恢复的永久变形,即出现塑性变形。

在这一阶段的变形过程中,最初试样局部区域产生不均匀的屈服塑性变形,曲线上出现平台式锯齿,直至C点结束。

接着进入均匀塑性变形阶段。

达到最大拉伸力F b时,试样再次出现不均匀塑性变形,并在局部区域产生缩颈。

最后在拉伸力Fk处,试样断裂。

在整个拉伸过程中变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀塑性变形四个阶段。

3、金属、陶瓷及高分子材料性能的差异及机制1)、弹性变形:a、金属、陶瓷或结晶态的高分子聚合物:在弹性变形范围内,应力和应变之间可以看成具有单值线性关系,且弹性变性量都较小。

橡胶态的高分子聚合物:在弹性变形范围内,应力和应变之间不呈线性关系,且变性量较大。

b、材料产生弹性变性的本质:构成材料的原子(离子)或分子自平衡位置产生可逆位移的反映。

金属、陶瓷类晶体材料:处于晶格结点的离子在力的作用下在其平衡位置附近产生的微小位移。

橡胶类材料:呈卷曲状的分子链在力的作用下通过链段的运动沿受力方向产生的伸展。

2)、塑性变形:a、金属材料的塑性变形机理:晶体的滑移和孪生i、滑移:金属晶体在切应力作用下,沿滑移面和滑移方向进行的切变过程。

滑移面和滑移反向的组成成为滑移系。

滑移系越多,金属的塑性越好,但滑移系的多少不是决定塑性好坏的唯一因素。

金属晶体的滑移面除原子最密排面外,还受到温度、成分和预先变形程度等的影响。

塑变宏观特征:单晶体的滑移塑变微观特征: 原子面在滑移面上滑移,并非某原子面的整体运动,而是借助位移运动来实现,结果出现滑移台阶。

材料性能学课程复习材料

材料性能学课程复习材料

材料性能学课程复习材料材料性能学第⼀章材料单向静拉伸的⼒学性能1.应⼒-应变曲线σp:⽐例极限σe:弹性极限σs:屈服点σb:抗拉强度2.弹性变形的本质?材料产⽣弹性变形的本质,概括来说,都是构成材料的原⼦(离⼦)或分⼦⾃平衡位置产⽣可逆位移的反映。

⑴⾦属、陶瓷类晶体材料的弹性变形是处于晶格结点的离⼦在⼒的作⽤下在其平衡位置附近产⽣的微⼩位移。

⑵橡胶类材料则是呈卷曲状的分⼦链在⼒的作⽤下通过链段的运动沿受⼒⽅向产⽣的伸展。

3.影响弹性模数(E)的因素?⑴键合⽅式和原⼦结构:共价键、离⼦键和⾦属键都有较⾼的E值,⽽分⼦键E值较低。

对于⾦属元素,原⼦半径越⼤,E值越⼩,反之亦然。

⑵晶体结构:①单晶材料:E呈各向异性,沿密排⾯E值较⼤,反之较⼩;②多晶材料:E为各晶粒的统计平均值,表现为各向同性,但为伪各向同性;③⾮晶态材料:E是各项同性的。

⑶化学成分:材料化学成分的变化将引起原⼦间距或键合⽅式的变化,因此也将影响材料的弹性模数。

⑷微观组织:①对⾦属材料来说,E是⼀个组织不敏感的⼒学性能指标;②对⾼分⼦和陶瓷材料,E对结构和组织敏感;⑸温度:温度升⾼,原⼦结合⼒下降,E值降低。

⑹加载⽅式和负荷持续时间:①加载⽅式、加载速率和负荷持续时间对⾦属、陶瓷类材料的E⼏乎没有影响;②⾼分⼦聚合物的E随负载时间延长⽽降低,发⽣松弛。

4.⾮理想弹性⾏为可分为⼏种类型?⑴滞弹性(弹性后效):材料在快速加载或卸载后,随时间的延长⽽产⽣的附加弹性应变的性能。

⑵粘弹性:材料在外⼒作⽤下,弹性和粘性两种变形机理同时存在的⼒学⾏为。

⑶伪弹性:在⼀定的温度条件下,当应⼒达到⼀定⽔平后,⾦属或合⾦将产⽣应⼒诱发马⽒体相变,伴随应⼒诱发相变产⽣⼤幅度的弹性变形的现象。

⑷包申格效应:⾦属材料经预先加载产⽣少量塑性变形,⽽后再同向加载,规定残余伸长应⼒增加,反向加载,规定残余伸长应⼒降低的现象。

5.材料产⽣内耗的原因?材料产⽣内耗与材料中微观组织结构和物理性能的变化有关。

材料性能学重点

材料性能学重点

第一章材料单向静拉伸的力学性能1、名词解释:银纹:银纹是高分子材料在变形过程中产生的一种缺陷,由于它的密度低,对光线的反射能力很高,看起来呈银色,因而得名。

银纹产生于高分子材料的弱结构或缺陷部位。

超塑性:材料在一定条件下呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象,称为超塑性。

晶界滑动产生的应变εg在总应变εt中所占比例一般在50%~70%之间,这表明晶界滑动在超塑性变形中起了主要作用。

脆性断裂:材料断裂前基本上不产生明显的宏观塑性变形,没有明显的预兆,往往表现为突然发生的快速断裂过程,因而具有很大的危险性。

韧性断裂:材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。

韧性断裂时一般裂纹扩展过程较慢,而且消耗大量塑性变形能。

解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂称为解理断裂。

(解理台阶、河流花样和舌状花样是解理断口的基本微观特征。

) 剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离而造成的断裂。

(微孔聚集型断裂是材料韧性断裂的普通方式。

其断口在宏观上常呈现暗灰色、纤维状,微观断口特征花样则是断口上分布大量“韧窝”。

)4、试述韧性断裂与脆性断裂的区别,为什么说脆性断裂最危险?应力类型,塑性变形程度、有无预兆、裂纹扩展快慢。

5、断裂强度σc与抗拉强度σb有何区别?若断裂前不发生塑性变形或塑性变形很小,没有缩颈产生,材料发生脆性断裂,则σc=σb。

若断裂前产生缩颈现象,则σc与σb不相等。

6、格里菲斯公式适用哪些范围及在什么情况下需要修正?格里菲斯公式只适用于含有微裂纹的脆性固体,如玻璃、无机晶体材料、超高强钢等。

对于许多工程结构材料,如结构钢、高分子材料等,裂纹尖端会产生较大塑性变形,要消耗大量塑性变形功。

因此,必须对格里菲斯公式进行修正。

第二章材料单向静拉伸的力学性能1、应力状态软性系数;τmax和σmax的比值称为,用α表示。

α越大,最大切应力分量越大,表示应力状态越软,材料越易于产生塑性变形。

材料性能学复习资料

材料性能学复习资料

第一篇材料的力学性能第一章材料的弹性变形一、名词解释1、弹性变形:外力去除后,变形消失而恢复原状的变形。

P42弹性模量:表示材料对弹性变形的抗力,即材料在弹性变形范兩内,产生单位弹性应变的需应力。

P103、比例极限:是保证材料的弹性变形按正比例关系变化的最大应力。

P154、弹性极限:是材料只发生弹性变形所能承受的最大应力。

P155、弹性比功:是材料在弹性变形过程中吸收变形功的能力。

P156、包格申效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%), 而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

P207、内耗:在加载变形过程中,被材料吸收的功称为内耗。

P21二、填空题1、金属材料的力学性能是指在载荷作用下其抵抗(变形)和(断裂)的能力。

P22、低碳钢拉伸试验的过程可以分为(弹性变形)、(塑性变形)和(断裂)三个阶段。

P2三、选择题1、表示金属材料刚度的性能指标是(B )。

P10A比例极限B弹性模量C弹性比功2、弹簧作为广泛应用的减振或储能元件,应具有较高的(C )<> P16A塑性B弹性模量C弹性比功D硬度3、下列材料中(C )最适宜制作弹簧。

A 08 钢B 45 钢C 60Si:Mn C T12 钢4、下列因素中,对金属材料弹性模量影响最小的因素是(D )。

A化学成分B键合方式C晶体结构D晶粒大小四、问答题影响金属材料弹性模量的因素有哪些?为什么说它是组织不敬感参数?答:影响金属材料弹性模量的因素有:键合方式和原子结构、晶体结构、化学成分、温度及加载方式和速度。

弹性模量是组织不敬感参数,材料的晶粒大小和热处理对弹性模量的影响很小。

因为它是原子间结合力的反映和度量。

P11第二章材料的塑性变形一、名词解释1、塑性变形:材料在外力的作用于下,产生的不能恢复的永久变形。

P242、塑性:材料在外力作用下,能产生永久变形而不断裂的能力。

P523、屈服强度:表征材料抵抗起始塑性变形或产生微量塑性变形的能力。

材料性能学复习

材料性能学复习

《材料性能学》复习第一章 材料单向静拉伸的力学性能一、力-伸长曲线(拉伸图) 1、曲线上变形三阶段 (1)、弹性变形(2)、塑性变形 (屈服现象)(3)、不均匀变形(颈缩阶段)及断裂阶段(会画) 2、拉伸图的种类曲线1 为淬火、高温回火后的高碳钢 曲线2 为低合金结构钢 曲线3 为黄铜 曲线4 为陶瓷、玻璃 曲线5 为橡胶类(会画)二、应力一应变曲线(σ-ε曲线)1、应力: 应变:2、 应力-应变曲线(工程应力-应变曲线)0A F =σ0L L ∆=ε3、各种性能指标(1)、强度指标①弹性极限:σe=Fe / S0②比例极限:σp=Fp / S0③屈服极限:σs=Fs / S0 ;屈服强度σ0。

2=F0.2 / S0④强度极限:σb=Fb / S0⑤断裂强度:Sk=Fk / Sk(2)、塑性指标①延伸率:δk=(Lk-L0) / L0 X 100 %②断面收缩率:ψk=(S0-Sk)/ S0 X 100 % 4、真应力-真应变曲线(S-e曲线)真应力:其中, F -瞬时载荷,A-瞬时面积真应变:则:两曲线比较0 0ln)LLLdLdee e LL⎰⎰===)1(ψσ-=SAFS=三、弹性变形及其实质(一)、弹性变形的特点•1、可逆性;•2、单值线性关系;•3、弹性变形量较小(ε<0。

5~1%)(二)、双原子模型解释弹性变形引力四、弹性的不完整性与内耗(一)、滞弹性(弹性后效)1.正弹性后效2.反弹性后效3.产生原因4、危害(二)、包申格效应包申格(Bauschinger)效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%),而后再同向加载规定残余伸长应力(或弹性极限)增加,反向加载,规定残余伸长应力(或弹性极限)降低的现象.原因:包申格(Bauschinger)效应可能与第二类内应力有关;危害: 包申格(Bauschinger)效应可弱化材料,因而应予以消除;消除办法五、断裂1、断裂概念2、断裂的类型及断口特征3、韧性断裂与脆性断裂概念韧性断裂的特点;脆性断裂的特点4、穿晶断裂与沿晶断裂剪切断裂;解理断裂;准解理断裂5、断裂强度(1).理论断裂强度(会推导)理论断裂强度和实际强度说(2).断裂强度的裂纹理论(Griffith强度理论)Griffith强度理论此公式说明的问题金属材料γs=γe+γp Griffith强度理论212⎪⎭⎫⎝⎛=aEscπγσ22σγπscEa=21(2⎪⎪⎭⎫⎝⎛+=aEpecπγγσ2)(2σγγπpecEa+=第二章材料在其他静载下的力学性能主要讲了硬度试验一、布氏硬度(HB)(1) 测定原理(2)、优缺点•优点:压痕面积较大,其硬度值能反映材料在较大区域内各组成相的平均性能,试验数据稳定,重复性强。

性能学总复习

性能学总复习

材料性能学总复习资料第一章 作业11.掌握以下物理概念:强度、屈服强度、抗拉强度、塑性、弹性、延伸率、断面收缩率、弹性模量、比例极限、弹性极限、弹性比功、包申格效应、弹性后效、弹性滞后环强度:指的是构件抵抗破坏的能力。

屈服强度:材料屈服时对应的应力值也就是材料抵抗起始塑性变形或产生微量塑性变形的能力,这一应力值称为材料的屈服强度。

抗拉强度:材料最大均匀塑性变形的抗力。

塑性:是指在外力作用下,材料能稳定地发生永久变形而不破坏其完整性的能力。

弹性:材料受载后产生一定的变形,而卸载后这部分变形消逝,材料恢复到原来的状态的性质称为材料的弹性。

延伸率:材料拉伸后的截面面积变化量与原始截面面积的比值。

断面收缩率:材料拉断后,缩颈处横截面积的最大减缩量与原始截面面积的百分比。

弹性模量:弹性模数是产生100%弹性变形所需的应力。

比例极限:是保证材料的弹性变形按正比关系变化的最大应力。

弹性极限:是材料由弹性变形过渡到弹-塑性变形时的应力。

弹性比功:又称为弹性必能,是材料在弹性变形过程中吸收变形功的能力。

包申格效应:是指金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

弹性后效:又称滞弹性,是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。

弹性滞后环:在非理想弹性的情况下,由于应力和应变不同步,是加载线与卸载线不重合而形成一封闭回线,这个封闭回线称为弹性滞后环。

2、衡量弹性的高低用什么指标,为什么提高材料的弹性极限能够改善弹性? 衡量弹性的高低通常用弹性比功来衡量E a e e 22σ=,所以提高弹性极限可以提高弹性比功。

3、材料的弹性模数主要取决哪些因素?凡是影响键合强度的因素均能影响材料的弹性模数。

主要有:键合方式、晶体结构、化学成分、微观组织、温度及加载方式和速度。

4、一直径2.5mm ,长度为200.0mm 的杆,在2000N 的载荷作用下,直径缩至2.2mm ,试求(1)杆的最终长度;(2)在该载荷作用下的真实应力和真实应变;(3)在该载荷作用下的工程应力和工程应变。

材料性能学课程复习材料

材料性能学课程复习材料

材料性能学第一章材料单向静拉伸的力学性能1.应力-应变曲线σp:比例极限σe:弹性极限σs:屈服点σb:抗拉强度2.弹性变形的本质?材料产生弹性变形的本质,概括来说,都是构成材料的原子(离子)或分子自平衡位置产生可逆位移的反映。

⑴金属、陶瓷类晶体材料的弹性变形是处于晶格结点的离子在力的作用下在其平衡位置附近产生的微小位移。

⑵橡胶类材料则是呈卷曲状的分子链在力的作用下通过链段的运动沿受力方向产生的伸展。

3.影响弹性模数(E)的因素?⑴键合方式和原子结构:共价键、离子键和金属键都有较高的E值,而分子键E值较低。

对于金属元素,原子半径越大,E值越小,反之亦然。

⑵晶体结构:①单晶材料:E呈各向异性,沿密排面E值较大,反之较小;②多晶材料:E为各晶粒的统计平均值,表现为各向同性,但为伪各向同性;③非晶态材料:E是各项同性的。

⑶化学成分:材料化学成分的变化将引起原子间距或键合方式的变化,因此也将影响材料的弹性模数。

⑷微观组织:①对金属材料来说,E是一个组织不敏感的力学性能指标;②对高分子和陶瓷材料,E对结构和组织敏感;⑸温度:温度升高,原子结合力下降,E值降低。

⑹加载方式和负荷持续时间:①加载方式、加载速率和负荷持续时间对金属、陶瓷类材料的E几乎没有影响;②高分子聚合物的E随负载时间延长而降低,发生松弛。

4.非理想弹性行为可分为几种类型?⑴滞弹性(弹性后效):材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。

⑵粘弹性:材料在外力作用下,弹性和粘性两种变形机理同时存在的力学行为。

⑶伪弹性:在一定的温度条件下,当应力达到一定水平后,金属或合金将产生应力诱发马氏体相变,伴随应力诱发相变产生大幅度的弹性变形的现象。

⑷包申格效应:金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

5.材料产生内耗的原因?材料产生内耗与材料中微观组织结构和物理性能的变化有关。

材料性能学重点(完整版)

材料性能学重点(完整版)

材料性能学重点(完整版)第一章1、 力—伸长曲线和应力—应变曲线,真应力—真应变曲线 在整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀集中塑性变形4个阶段将力—伸长曲线的纵,横坐标分别用拉伸试样的标距处的原始截面积Ao 和原始标距长度Lo 相除,则得到与力—伸长曲线形状相似的应力(σ=F/Ao )—应变(ε=ΔL/Lo )曲线比例极限σp , 弹性极限σe , 屈服点σs , 抗拉强度σb如果以瞬时截面积A 除其相应的拉伸力F ,则可得到瞬时的真应力S (S =F/A)。

同样,当拉伸力F 有一增量dF 时,试样瞬时长度L 的基础上变为L +dL ,于是应变的微分增量应是de =dL / L ,则试棒自L 0伸长至L 后,总的应变量为: 00ln 0L L L dL de e L e L ===⎰⎰2、3、比例极限和弹性极限是保证材料的弹性变形按正比比例极限σp关系变化的最大应力,即在拉伸应力-应变曲线上开始偏离直线时的应力值。

试样加载后再卸载,以不出现弹性极限σe残留的永久变形为标准,材料能够完全弹性恢复的最高应力值4、弹性比功又称为弹性比能或应变比能,表示,是材料在弹性变形过程中吸收变形用ae功的能力。

一般可用材料弹性变形达到弹性极限时单位体积吸收的弹性变形功表示。

5、根据材料在弹性变形过程中应力和应变的响应特点,弹性可以分为理想弹性(完全弹性)和非理想弹性(弹性不完整性)两类。

对于理想弹性材料,在外载荷作用下,应力和应变服从虎克定律σ=Mε,并同时满足3个条件,即:应变对于应力的响应是线性的;应力和应变同相位;应变是应力的单值函数。

材料的非理想弹性行为大致可以分为滞弹性、粘弹性、伪弹性及包申格效应等类型。

6、滞弹性(弹性后效)是指材料在快速加载或卸料后,随时间的延长而产生的附加弹性应变的性能。

7、粘弹性:指材料在外力作用下,弹性和粘性两种变形机理同是存在的力学行为,其特征是应变对应力的响应不是瞬时完成的,需要通过一个弛豫过程,但卸载后,应变恢复到初始值,不留下残余变形。

材料性能学重点(完整版)说课材料

材料性能学重点(完整版)说课材料

材料性能学重点(完整版)第一章1、 力—伸长曲线和应力—应变曲线,真应力—真应变曲线 在整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀集中塑性变形4个阶段将力—伸长曲线的纵,横坐标分别用拉伸试样的标距处的原始截面积Ao 和原始标距长度Lo 相除,则得到与力—伸长曲线形状相似的应力(σ=F/Ao )—应变(ε=ΔL/Lo )曲线比例极限σp , 弹性极限σe , 屈服点σs , 抗拉强度σb如果以瞬时截面积A 除其相应的拉伸力F ,则可得到瞬时的真应力S (S =F/A)。

同样,当拉伸力F 有一增量dF 时,试样瞬时长度L 的基础上变为L +dL ,于是应变的微分增量应是de =dL / L ,则试棒自L 0伸长至L 后,总的应变量为:式中的e 为真应变。

于是,工程应变和真应变之间的关系为2、 弹性模数在应力应变关系的意义上,当应变为一个单位时,弹性模数在数值上等于弹性应力,即弹性模数是产生100%弹性变形所需的应力。

在工程中弹性模数是表征材料对弹性变形的抗力,即材料的刚度,其值越大,则在相同应力下产生的弹性变形就越小。

比弹性模数是指材料的弹性模数与其单位体积质量(密度)的比值,也称为比模数或比刚度3、 影响弹性模数的因素①键合方式和原子结构(不大)②晶体结构(较大)③ 化学成分(间隙大于固溶)④微观组织(不大)⑤温度(很大)⑥加载条件和负荷持续时间(不大)4、 比例极限和弹性极限比例极限σp 是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力-应变曲线上开始偏离直线时的应力值。

弹性极限σe 试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力值5、 弹性比功又称为弹性比能或应变比能,用a e 表示,是材料在弹性变形过程中吸收变形功的能力。

一般可用材料弹性变形达到弹性极限时单位体积吸收的弹性变形功表示。

6、 根据材料在弹性变形过程中应力和应变的响应特点,弹性可以分为理想弹性(完全弹性)和非理想弹性(弹性不完整性)两类。

材料性能学复习资料--王从曾 北京工业大学

材料性能学复习资料--王从曾 北京工业大学

第一章材料的弹性变形一、填空题:1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂的能力。

2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。

3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。

二、名词解释1.弹性变形:去除外力,物体恢复原形状。

弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨氏模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。

4.弹性比功定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。

三、简答:1.金属材料、陶瓷、高分子弹性变形的本质。

答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。

对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。

2.非理想弹性的概念及种类。

答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。

表现为应力应变不同步,应力和应变的关系不是单值关系。

种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。

3.什么是高分子材料强度和模数的时-温等效原理?答:高分子材料的强度和模数强烈的依赖于温度和加载速率。

加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。

时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。

四、计算题:气孔率对陶瓷弹性模量的影响用下式表示:E=E0 (1—1.9P+0.9P2)E0为无气孔时的弹性模量;P为气孔率,适用于P£50 %。

材料性能学重点(完整版)

材料性能学重点(完整版)

第一章1、 力—伸长曲线和应力—应变曲线,真应力—真应变曲线 在整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀集中塑性变形4个阶段将力—伸长曲线的纵,横坐标分别用拉伸试样的标距处的原始截面积Ao 和原始标距长度Lo 相除,则得到与力—伸长曲线形状相似的应力(σ=F/Ao )—应变(ε=ΔL/Lo )曲线比例极限σp , 弹性极限σe , 屈服点σs , 抗拉强度σb如果以瞬时截面积A 除其相应的拉伸力F ,则可得到瞬时的真应力S (S =F/A)。

同样,当拉伸力F 有一增量dF 时,试样瞬时长度L 的基础上变为L +dL ,于是应变的微分增量应是de =dL / L ,则试棒自L 0伸长至L 后,总的应变量为:式中的e 为真应变。

于是,工程应变和真应变之间的关系为2、 弹性模数在应力应变关系的意义上,当应变为一个单位时,弹性模数在数值上等于弹性应力,即弹性模数是产生100%弹性变形所需的应力。

在工程中弹性模数是表征材料对弹性变形的抗力,即材料的刚度,其值越大,则在相同应力下产生的弹性变形就越小。

比弹性模数是指材料的弹性模数与其单位体积质量(密度)的比值,也称为比模数或比刚度3、 影响弹性模数的因素①键合方式和原子结构(不大)②晶体结构(较大)③ 化学成分(间隙大于固溶)④微观组织(不大)⑤温度(很大)⑥加载条件和负荷持续时间(不大)4、 比例极限和弹性极限比例极限σp 是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力-应变曲线上开始偏离直线时的应力值。

弹性极限σe 试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力值5、 弹性比功又称为弹性比能或应变比能,用a e 表示,是材料在弹性变形过程中吸收变形功的能力。

一般可用材料弹性变形达到弹性极限时单位体积吸收的弹性变形功表示。

6、 根据材料在弹性变形过程中应力和应变的响应特点,弹性可以分为理想弹性(完全弹性)和非理想弹性(弹性不完整性)两类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章证明题 显然,真应力总是大于工程应力,真应变总是小于工程应变。

缩颈的条件: 产生缩颈的载荷为 影响材料弹性模数的因素: 1、键合方式和原子结构:a 、以共价健、离子键、金属键结合的材料有较高的弹性模量。

b 、以分子键结合的材料,弹性模量较低。

()εσσσ+=∆+==⋅===10000000LLL L LA A A F A F S AL L A ()ε+====⎰⎰1ln ln 00l ll dl de e ll en endede A dA l dl de endeA dA de e F n dA A F e denKAe A dAKe A de KAne dA Ke dF KAe F Ke S SA F n nn n nn ==+--===+=⋅+=+⋅=+====-00001()()nnn b ne b b b bnb bn b b b b n n b b e n K e Kn e e A A A A e A A KnA Kn A S A F Kn Ke S b ⎪⎭⎫⎝⎛===========---σσσ00lnc、原子结构:a)非过渡金属(b)过渡族金属:原子半径较小,且d层电子引起较大的原子间结合力,弹性模数较高。

且当d层电子等于6时,E有最大值2、晶体结构:a、单晶体材料,由于在不同的方向上原子排列的密度不同,故呈各向异性。

b、多晶体材料,E为各晶粒的统计平均值,伪各向同性。

c、非晶态材料弹性模量各向同性。

3、化学成分:(引起原子间距或键合方式的变化)(1)纯金属主要取决于原子间的相互作用力。

(2)固溶体合金:主要取决于溶剂元素的性质和晶体结构,弹性模量变化不大(3)两相合金:与第二相的性质、数量、尺寸及分布状态有关。

(4)高分子:填料对E影响很大。

4.微观组织:金属:微观组织对弹性模量的影响较小晶粒大小对E无影响;陶瓷:工程陶瓷弹性模数与相的种类、粒度、分布、比例、气孔率等有关。

其中,气孔率的影响较大。

复合材料:增强相为颗粒状,弹性模数随增强相体积分数的增高而增大5、温度:a、温度升高,原子振动加剧,体积膨胀,原子间距增大,结合力减弱,材料的弹性模量降低。

如碳钢,每升高100℃,E值下降3~5%(软化)b、当温度变化引起材料的固态相变时,弹性模数显著变化。

如碳钢的奥氏体、马氏体相变。

6、加载条件和负荷持续时间:a、加载方式(多向应力),加载速率和负荷持续时间对金属、陶瓷类材料的弹性模数几乎没有影响。

陶瓷材料的压缩弹性模数高于拉伸弹性模数(与金属不同)。

b、高分子聚合物,随负荷时间的延长,E值逐渐下降(松弛)。

滞弹性:材料在快速加载或卸载后,随时间的延长而产生附加弹性变形的性能。

即应变与应力不同步(相位),应变滞后。

粘弹性:是指材料在外力作用下变形机理,既表现出粘性流体又表现出弹性固体两者的特性,弹性和粘性两种变形机理同时存在(时间效应)。

特征:应变对应力的响应不是瞬时完成的,应变与应力的关系与时间有关,但卸载后,应变恢复,无残余变形。

伪弹性:是指在一定的温度条件下,当应力达到一定水平后,金属或合金将产生应力诱发马氏体相变,从而产生大幅度的弹性变形的现象。

应用:形状记忆合金。

包申格效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%),然后再同向加载规定残余伸长应力(б0.01)增加;反向加载,规定残余伸长应力(б0.01)降低的现象。

消除或减弱方法:再结晶退火滑移变形具有以下特点:(1)滑移在切应力作用下产生(2)滑移沿原子密度最大的晶面和晶向发生(3)滑移时两部分晶体的相对位移是原子间距的整数倍滑移系数目与材料塑性的关系:1. 一般滑移系越多,塑性越好;2.与滑移面密排程度和滑移方向个数有关;3.与同时开动滑移系数目有关( k)。

多晶体金属材料的塑性变形的特点:(1)各晶粒变形的不同时性和不均匀性(2)各晶粒变形的相互制约与协调性陶瓷材料的塑性变形:(1)键和方式:弹性模量大(2)晶体的滑移系少(3)位错宽度小,柏氏矢量大固溶合金中,溶质原子与溶剂原子直径不同,随着溶质原子的进入,晶格产生畸变,使得位错运动受阻,屈服强度升高(бs)体心立方晶格金属,屈服强度具有强烈的温度效应,面心立方晶格的金属,屈服强度温度效应较小。

应变硬化的意义:①应变硬化与塑性变形相配合,保证了金属材料在截面上的均匀变形,得到均匀一致的冷变形产品②应变硬化可以降低碳钢的塑性,改善切削加工性能。

③应变强化是金属强化的一种重要手段(不能热处理强化的金属)。

④应变硬化性能使金属制件在工作中具有适当的抗偶然过载的能力,保证了机件的安全工作。

①韧性断裂:断裂前材料有明显宏观塑性变形。

裂纹扩展过程较慢.(晶粒变形→拉断)断口呈暗灰色,纤维状韧性断裂断口(低碳钢)断口呈杯锥状:由纤维区、放射区、剪切唇三个区组成。

②脆性断裂:断裂前材料没有明显的宏观塑性变形。

裂纹扩展速度极快(没有预兆)。

断口平齐,光亮(呈放射状或结晶状)穿晶断裂:可以韧性断裂,也可以脆性断裂;沿晶断裂:断裂沿晶界发生,多为脆性断裂。

解理台阶,河流花样,舌状花样是解理断口的基本微观特征。

韧度:静力韧度、冲击韧度、断裂韧度。

第二章正应力容易导致脆性的解理断裂;切应力容易导致材料的塑性变形和韧性断裂。

扭转试验的特点:可用来测定那些在拉伸时呈现脆性的材料(τf/σc=0.5~0.8)的强度和塑性。

截面应力分布表面最大,心部最低,因此扭转试验对材料表面强化和表面缺陷的反映十分敏感,适用于表面强化材料的性能检验。

扭转试验时正应力与切应力大致相等,而生产所使用的大部分金属结构材料的σc>τf,所以,扭转试验是测定金属材料切断强度的最可靠方法。

弯曲试验的特点:弯曲试验常用于测量硬度很高,难以加工成拉伸试样的脆性材料的断裂强度,并能显示出塑性差别。

常用来比较、评定材料表面处理层的质量。

不适合塑性材料压缩试验的特点:压缩试验主要用于脆性材料,以显示静拉伸不能反映的韧性行为。

压缩试验不能使塑性材料断裂。

故多向不等压缩试验适用于脆性更大的材料,以反映塑性的微小差别。

缺口三效应:缺口造成应力应变集中,这是缺口第一效应。

由于缺口的存在,改变了平板中缺口截面的应力状态。

使单向拉伸变为两向或三向拉伸,这是缺口的第二效应。

缺口使塑性材料得到“强化”—缺口的第三效应。

布氏硬度值的表示方法:数字+硬度符号+数字/ 数字/ 数字硬度值钢球直径载荷量载荷保持时间当保持时间为10-15s时,可不标注。

HBW:硬质合金钢球,HBS:淬火钢球。

500HBW5/750表示用直径为5mm的硬质合金钢球,在750kgf载荷作用下保持10~15秒测得的布氏硬度为500。

维氏硬度:维氏硬度只能测定450HB(或650HB硬质合金头)以下的材料。

640HV30/20表示在载荷30kgf作用下,持续20秒测得的维氏硬度为640。

Τb:扭转强度极限;τs:扭转屈服强度;бbN:抗拉强度;бbb抗弯强度;бpc规定非比例压缩应力бbc抗拉强度бpb非比例弯曲应力бsh剩余应力бso松弛应力qe缺口敏感度(脆性qe<1;塑性qe>1)бp比限例极бe弹性极限бs屈服强度бb抗拉强度第三章材料对多次冲击的抗力影响因素a、冲击能量高时,材料的抗多次冲击能力主要取决于塑性;冲击能量低时,材料抗多次冲击能力则主要取决于强度。

强度是影响零件寿命的主要因素。

b、不同的冲击能量要求不同的强度与塑性配合c、αk值对冲击疲劳抗力的影响:材料强度不同,塑性和冲击韧性对冲击疲劳抗力的影响不同。

高强度钢、超高强钢,塑性和冲击韧性作用大。

tk 冷脆性转变温度NDT:当低于某一温度时材料吸收的冲击能量基本不随温度而变化,形成一平台(低阶能),以低阶能开始上升的温度定义tk。

FTP:当温度高于某一温度时,材料吸收的能量基本不变,形成一个平台(高阶能),以高阶能对应的度定义为tk。

FTE:以高阶能和低阶能的平均值对应的温度定义tk,V15TT:以Akv=15呎磅(20.3N·m)对应的温度定义tk50%FATT或FATT50:温度下降到某一临界值时,纤维区面积突然减少,结晶区面积突然增大→材料由韧变脆,当结晶区面积占整个断口面积50%时的温度定义为tk。

影响材料低温脆性的因素:1、晶体结构的影响:体心立方、密排六方金属及其合金存在低温脆性,面心立方金属及其合金一般不存在低温脆性。

2、化学成分的影响:①间隙溶质元素含量增加,晶格畸变程度加大,位错运动阻力提高,屈服强度升高,脆性增大,韧脆转变温度提高。

②置换型溶质元素影响较小(也提高冷脆性转变温度)。

③杂质元素S、P、Pb、Sn、As偏聚于晶界,产生沿晶脆性断裂,提搞了冷脆性转变温度。

3、显微组织的影响:①细化晶粒,可提高材料的韧性,冷脆性转变温度下降。

晶界是裂纹扩展的阻力;晶界增多有利于降低应力集中,降低晶界上杂质度,避免产生沿晶界脆性断裂。

②金相组织:a、较低强度水平(低碳钢),回火索氏体最好tk↓↓,下贝氏体组织次之tk↓,层片状珠光体最差tk↑。

b、中、高碳钢,等温淬火→下贝氏体组织tk↓↓,优于淬火+回火→回火马氏体组织。

c、相同强度水平,上贝氏体的tk高于下贝氏体组织(低碳钢低温上贝氏体的韧性高于回火马氏体的韧性)。

d、低温合金钢,经不完全等温处理获得贝氏体和马氏体的混合组织,其韧性比单一贝氏体或单一马氏体组织好。

e、马氏体钢中存在稳定的残余奥氏体,可抑制解理断裂,从而显著改善钢的韧性。

f、第二相的影响取决于第二相的形状、尺寸、分布状态、第二相本身的性质以及与基体的结合力。

4、温度的影响;5、加载速率的影响:提高加载速率,其作用如同降低温度,使材料脆性增大,冷脆性转变温度提高。

高强度和超高强度钢的tk对加载速率的敏感性较小。

中、低强度钢的tk对加载速率比较敏感。

6、试样形状和尺寸的影响:缺口曲率半径越小,tk越高,即V缺口试样的tk高于U缺口试样。

不改变缺口尺寸,只增加试样的厚度时,tk升高;试样各部分尺寸按比例增大时,tk升高。

试样尺寸增大,应力状态变硬,且缺陷增多,脆性增大→tk↑。

第四章KIC或KC表示材料抵抗断裂的能力。

KIC表示平面应变断裂韧度,KC表示平面应力断裂韧度,显然同一材料:KC>KIC ,JIC称为断裂韧度J积分用于开裂点判据完全正确,但用于失稳扩展尚不准确。

δ判据与J判据一样,都是裂纹开始扩展的断裂判据,而不是裂纹失稳扩展的断裂判据形成金属间化合物并以第二相形式析出的合金元素降低塑性,故可使断裂韧度降低。

细化晶粒既可提高强度,又可以提高塑性,断裂韧度也提高。

计算题有一火箭壳体承受很高的工作压力,其周向最大工作压力σ=1400MPa.采用超高强度钢制造,焊接后往往发现有纵向表面半椭圆裂纹,尺寸为a=1.0mm,a/2c=0.3。

相关文档
最新文档