数学分析III复习题
数学分析3-期末考试真题
3 数学分析试卷
11sin sin 01(),
0 0x y xy y x f x xy ⎧+≠⎪=⎨⎪=⎩
当、已知当()()
000000lim (,),lim lim (,)lim lim (,),x y x x y y f x y f x y f x y →→→→→→判断及是否存在,并说明理由。
2222
2,()1z z z x y x y h z x y ∂++=∂∂、已知=()是由确定的。
试求的值。
222
22231 x y z a b c
++=、求椭球体上任一点的切平面于坐标轴所围四面体体积的最大值。
22
22223/222 0()4(,)(,) 0 0x y x y x y f x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩
当、已知,判断的连续性及可微性。
当22265,0
x y z x y z ⎧++=⎨++=⎩、已知曲线方程为求在点(1,-2,1)处的切线方程和法平面方程。
23D 36,D x dxdy y xy
+⎰⎰、求二重积分已知为如图的区域。
7I ().1x y z dxdydz x y z Ω=++Ω++=⎰⎰⎰、计算三重积分其中为平面,
与三个坐标平面围城的空间区域。
2228I cos .1
xdydz ydzdx dxdy x y z ∑++∑++=⎰⎰、求曲面积分=其中为所谓区域的外侧。
L
9I sin . L Pdx x ydy =+⎰、求曲线积分已知如图所示。
S 22I (). S 2xy yz zx dS z x y ax ++=+=⎰⎰10、求曲面积分=已知为柱面所截的曲面。
数学分析第三学期期末复习卷两套卷五卷六
数学分析第三学期期末复习卷两套卷五卷六卷五一、选择题(每小题3分,共15分)1.设函数⎪⎩⎪⎨⎧=≠+=)0,0(),(0)0,0(),(),(263y x y x y x y x y x f ,则它在点 (0, 0) 处是( )(A) 连续的; (B) )0,0(),(lim )0,0(),(f y x f y x ≠→(C) 二重极限不存在; (D)),(lim)0,0(),(y x f y x →存在,但)0,0(f 不存在2.),(y x f z =在点),(00y x 处的偏导数x z ∂∂及yz∂∂存在且连续是),(y x f 在该点可微的( )(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 以上都不是 3.设22z xy u -=,则u 在点 ( 2, -1, 1 ) 处的方向导数的最大值为( ) (A) 62 (B) 4 (C) (-2, -4, -2) (D) 6 4.设233y x x z +-=,则它在点 (1, 0) ( ) (A) 取得极大值; (B) 不取得极值;(C) 取得极小值; (D) 不能确定是否取得极值 5.设有空间区域}0,|),,({22221≥≤++=z R z y x z y x V ,}0,0,0,|),,({22222≥≥≥≤++=z y x R z y x z y x V ,则有 (A) ⎰⎰⎰⎰⎰⎰=214V V dv x dv x (B) ⎰⎰⎰⎰⎰⎰=214V V dv y dv y(C)⎰⎰⎰⎰⎰⎰=214V V dv z dv z (D) ⎰⎰⎰⎰⎰⎰=214V V dv xyz dv xyz二、填空(每空2分,共20分) 1.设}2|{2<=x x E ,则 =E sup ;=E inf ;E 的聚点是 。
2.若0),(≠=∂∂a a a y f ,则=--→ax a a f a x f a x ),(),(lim3.设V 是锥面22y x z +=与平面1=z 围成的区域,在直角坐标系下将 下列积分化为三次积分=⎰⎰⎰Vdxdydzz y x f ),,(4.设V 是锥面22y x z +=与平面1=z 围成的区域,将下列积分化为柱面 坐标变换的三次积分=⎰⎰⎰Vdxdydzz y x f ),,(5.设V 是锥面22y x z +=与平面1=z 围成的区域,将下列积分化为球坐标变换的三次积分=⎰⎰⎰Vdxdydzz y x f ),,(6.S 为球面1222=++z y x ,外侧为正侧,则=⎰⎰Sdxdy ;7.设S 为球面1222=++z y x ,则=++⎰⎰SdS z y x )(222 ;8.第二类曲面积分⎰⎰++Sdxdy R dzdx Q dydz P 化成第一类曲面积分是其中γβα,,为有向曲面S 在点 (x , y , z ) 处的 方向角.三、求偏导数或全微分(共15分) 1.(5分)求函数 0)()()(>=x f x f z y g 的全微分。
数学分析Ⅲ练习册参考答案
1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}11,00,(0,0)n m n m ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭ 为整数为整数3、设(,)ln 1f x y x y=--,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= .解 222200000limlim (,)limlim lim11x y x y x x y f x y x y →→→→→-===+()222200000limlim (,)limlim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y =的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D )A 、闭区域B 、开区域C 、开集D 、闭集 解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域.2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A ) A 、开区域必为开集 B 、闭区域必为有界闭集 C 、开集必为开区域 D 、闭集必为闭区域4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在.A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则f 在0P 处连续.三、用ε-δ定义证明22200lim 0.x y x yx y →→=+ 证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+ 四、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y ¹时2222222220x y y xx x y x y ?祝++,而200lim 0x y x →→=所以222200lim 0x y x y xy →→=+. 2、2200x y →→解因为())2222221111x y x y +==++-所以)22000lim12x x y y ==.1、设xy e z =,则z x ∂=∂ ,z y∂=∂ . 解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x ∆→+∆=∆ ,000(,)lim y f x y y y∆→+∆=∆ .解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++ (1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解 2222cos(),cos()z zxy x y x x y x y ∂∂==∂∂ ()22222c o s ()c o s ()c o s ()2d z x y x y d x x x y d y x x y y d x x d y∴=+=+ 5、求曲面arctany z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y ⅱ=-=++ 11(1,1),(1,1)22x y z z ⅱ\=-=故曲面arctan y z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩1、设),(y x f 在点(,)a b 处偏导数存在,则lim(,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b '解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim ),(),(lim00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim 00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)0l i ml i m 0,l i m l i m 0x x y x f x f f y f x x y y∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''==4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件 解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;0000C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在; D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微.解 P172定理1 三、求解下列各题 1、求曲面xy z =上一点,使得曲面在该点的切平面平行于平面093=+++z y x ,并写出这切平面方程和法线方程.解 设所求的点为000(,,)x y z .由于,x y z y z x ''== 故000000(,),(,)x y z x y y z x y x ''==于是曲面xy z =在点000(,,)x y z 的切平面方程为00000()()()0y x x x yy z z -+---= 由已知切平面与平面093=+++z y x 平行,故001131y x -== 于是000003,1,3x y z x y =-=-==,故所求的点为(3,1,3)--.曲面在点(3,1,3)--的切平面方程为(3)3(1)(3)0x y z -+-+--=,即330x y z +++= 法线方程为313131x y z ++-==---,即1333y x z ++==- 2、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在附近的连续性、偏导数的存在性及可微性.解 2221(,)(0,0)02x y x y x x y ≠≤≤+ 当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆(,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()3300222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 222l n 2z z x z y u x y x v x v y v vy∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂ 2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u u f f s t∂∂==∂∂,则11222211,,.u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =- 的方向导数. 解 由于l 的方向余弦为212cos ,cos ,cos 333αβγ====-==()0000()22,()1,()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB上的方向导数.解 由于(4,3,12)AB =,故它的方向余弦为4312cos ,cos ,cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==21、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y ∂=∂∂ .解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解 222221,1,0,1,0,0(2)n m n m f f f f f fy x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x yf f f f f f n m +''''''''∴======+> (,)f x y x y x y ∴=++在点)2,1(的泰勒公式为 (,)f x y x y x y =++ 1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(x y x y =+-+-+-- 4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2,(,)0,(,)2xy xyf x y f x y f x y ''''''=-==-222(2,2)20,(2,2)0,(2,2)2,40xy x y A f B f C f B AC ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A ) A 、(1,0) B 、(1,2) C 、(-3,0) D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于22(,)66,(,)0,(,)66xy xyf x y x f x y f x y y ''''''=+==+在点(1,0),2120,0,6,720A B C B AC =>==∆=-=-<在点(3,0)-,212,0,6,720A B C B AC =-==∆=-=> 在点(1,2)-,212,0,6,720A B C B AC ===-∆=-=>在点(3,2)--,2120,0,6,720A B C B AC =-<==-∆=-=-<故函数339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C ) A 、(-1,-1) B 、(0,0) C 、(1,1) D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于22(,)4,(,)2,(,)2xy xyf x y f x y f x y ''''''==-=240,2,2,40A B C B A C =>=-=∆=-=-< 故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2 D、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点.③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令0xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于22(,)0,(,)1,(,)0xy x y z x y z x y z x y ''''''=== 20,1,0,10A B C B A C ===∆=-=> 故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B ) A 、最大值点 B 、稳定点 C 、连续点 D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题1、求函数333(0)z axy x y a =-->的极值.解 令22330330xy z ay x z ax y ¢ï=-=ïí¢ï=-=ïî 得稳定点(0,0)和(,)a a .226,3,6xy x yz x z a z y ⅱ =-==- 对于点(0,0),220,3,0,90A B a C B AC a ===D =-=>故点(0,0)不是极值点.对于点(,)a a ,2260,3,6,270A a B a C a B AC a =-<==-D =-=-< 故点(,)a a 是极大点,极大值为3(,)z a a a =.2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令()()22162054216205xy x y S x x y S y ì+-ïï¢=+=ïïïíï+-ï¢ï=+=ïïî得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.2212418,,555xy x y S S S ⅱⅱⅱ===2124180,,,80555A B C B A C =>==D =-=-< 故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,),(,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2c o s 20x d y d y y e y x y d x d x ⎛⎫⋅+-+⋅= ⎪⎝⎭ 2cos 2xdy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则z x ∂=∂ ,zy∂=∂ . 解法一 令(,,)z F x y z e xyz =-,则 (,,),(,,),(,,)z x y zF x y z y z F x y z x z F x y z ex y'''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y zz z F x y z yzx F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y yy ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)(,)2(,)x y u v u v ==∂∂∂ 二、选择题1、下列命题正确的是( D )A 、任何方程都可以确定一个隐函数;B 、任何方程所确定的隐函数是唯一的;C 、任何方程所确定的隐函数一定是初等函数;D 、如果一个方程在某点满足隐函数存在定理的条件,则它确定的隐函数是唯一的. 2、方程0sin 2=++xy y x 在原点(0,0)的某邻域内必可确定的隐函数形式为( A )A 、)(x f y =B 、)(y g x =C 、两种形式均可D 、无法确定 3、隐函数存在定理中的条件是隐函数存在的( A )A 、充分条件B 、必要条件C 、充要条件D 、无关条件4、方程组22201x y z x y z ++=⎧⎨++=⎩所确定的隐函数组()()x f z y g z =⎧⎨=⎩的导数为 ( B ) A 、,dx y z dy z xdz y x dz x y --=--= B 、,dx y z dy z x dz x y dz x y --==-- C 、,dx y z dy x z dz x y dz x y--==-- D 、,dx y z dy x z dz y x dz x y--==-- 解 方程两边分别对z 求导得102220dx dydz dzdx dy x y z dz dz ⎧++=⎪⎪⎨⎪⋅+⋅+=⎪⎩解方程得,dx y z dy z x dz x y dz x y--==--. 三、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x x y z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+'四、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u v u y x xv u v u x x x ì抖ïï--=ïï抖íï抖ï---=ïï抖ïî解此方程组得24u v uy x uv xy ?=?,224v u xx xy uv?=?1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69,(,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y d y F x y x yd x F x y y x'-=-=-'- (2,1)54dy k dx ==- 故所求的切线方程为51(2)4y x -=--,即54140x y +-=. 法线方程为41(2)5y x -=-,即4530x y --=.3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---== 法平面方程为(1)2(1)3(1)x y z -+-+-=,即2360x y z ++-=. 4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 .解 由于222(,,)236F x y z x y z =++-,则(,,)4,(,,)6,(,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4,(1,1,1)6,(1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)x yz -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B ) A 、只有一条 B 、只有二条 C 、至少有三条 D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线22260x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解 令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩ 该直线平行于xoz 平面.1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为()20,a a >则问题转换为求函数(),,,f x y z xyz =在条件()22xy yz xz a ++=下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩ 解得x y z ===根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x yìï++=ïíï=+ïî在点(1,1,2)-的切线与法平面方程. 解 设222222(,,)239,(,,)3F x y z x y z G x y z z x y =++-=--,在点(1,1,2)-处有4,6,4x y z F F F ⅱ ==-=,6,2,4x y zG G G ⅱ =-== (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y 抖 =-=-=-抖所以切线的法向量为(8,10,7),切线方程为1128107x y z -+-== 法平面方程为8(1)10(1)7(2)0x y z -+++-=或8107120x y z ++-=.1、=++⎰+∞0284x x dx.解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、20x xe dx +∞-=⎰= .解()()2222200111limlim lim 1222AA x x x A A A A xedx xedx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxxp 1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3). 4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn nx x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx x x n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin p xdx x +∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin pxdx x +∞⎰在1p >时绝对收敛,在1p ≤时条件收敛. 二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立. 2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a ⎰+∞收敛,则 )(dx x f c ⎰+∞必收敛.B 、如果 )(dx x f a⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()x e f x -在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Ax x x aace f x dx e f x dx e f x dx ---=+⎰⎰⎰故l i m ()()l i m (x x xaac A A e f x dx e f x dx e f x dx ---→+∞→+∞=+⎰⎰⎰ 即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞adx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( B )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x +∞⎰收敛,但无穷积分sin a x dx x+∞⎰发散(P275,例11).三、讨论下列无穷限积分的敛散性(1)+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x+∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰收敛.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x +∞+⎰收敛. (4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x x dx e +∞-⎰收敛,从而无穷积分11x xdx e +∞-⎰也收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性201dx x +0100x + 解 (1) 由于()22sgn sin 111x x x≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令(),()cos 100f x g x x x ==+,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分⎰收敛.另一方面)21cos 2121002(100)2100100x x x xx x x ⎡⎤+=≥==+⎢⎥++++⎣⎦可证0⎰发散,而0⎰收敛,故0dx ⎰发散,原积分条件收敛. 五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有 ()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.1、1=⎰.解 由于1lim x →=∞,故1x =为瑕点,由瑕积分定义知()11120000001lim lim 1lim 2x εεεεεε---→+→+→==--=-⎰⎰⎰0lim 11ε→+⎤=-=⎦2、10ln xdx =⎰= .解 由于0lim ln x x →+=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε→+→+→+⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0l i m l n (1)1εεεε→+=---=- 3、 是积分0sin xdx xπ⎰的瑕点. 解 0lim1,lim sin sin x x x x x xπ→+→-==∞ x π∴=是积分0sin xdx xπ⎰的瑕点. 4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)m xdx m xπ->⎰在 时收敛,在 时发散. 解 0x = 是积分201cos (0)mxdx m x π->⎰的瑕点且 22001cos 1cos 1lim lim 2m m x x x x x x x -→+→+--⋅== ∴瑕积分201cos (0)mxdx m x π->⎰在03m <<时收敛,在3m ≥时发散.二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 11122211001111lim lim 21dx dx dx x x x x x εεεεεεε----→+→+-⎡⎤⎡⎤⎛⎫=+=--=-=∞⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦⎰⎰⎰ 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx 1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解 ⎰e x x 1ln ,⎰-101x e ,⎰20cos x是瑕积分. 3、下列瑕积分中,发散的是(C )A 、0⎰B 、11211--⎰x dxC 、2211ln dx x x⎰D 、1⎰解 对于积分10sin dxx⎰,0x =为瑕点,由于 0lim 1sin xx →= 故瑕积分10sin dx x⎰收敛.对于积分11211--⎰xdx ,1x =±为瑕点且12111211lim(1)lim lim (1)limx x x x x x →-→→-+→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x→+→-→-→-→----⋅=====+++故该积分发散;对于积分10⎰,0x =为瑕点且 121lim(0)1x x →--= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰badx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b a dxx f )(2发散;取()f x =,则瑕积分⎰b a dxx f )(收敛,⎰a dx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x -→+→+⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2) 1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim (0)lim 1x x x xx xx →+→+-⋅==故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim (0)lim 0ln lim(1lim 1x x x x x x x →+→+→-→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim,lim 111x x x xx x→+→-=∞=---,故0x =为瑕点.又由于 1200ln lim(0)lim 01x x x x x →+→+-⋅==- 故积分10ln 1xdx x-⎰收敛. (4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π→-→--⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy x xyx = . 解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰ 2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011lnln 11b a b b b y y a a a x x b dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰ 3、Γ函数与B 函数的关系为 .解 ()()(,)()p q B p q p q ΓΓ=Γ+4、12⎛⎫Γ ⎪⎝⎭= ,()1n Γ+=.解 12⎛⎫Γ= ⎪⎝⎭()1!n n Γ+=5、13,44B ⎛⎫= ⎪⎝⎭.解 由于()131313134444,134414444B ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭===ΓΓ ⎪ ⎪ ⎪Γ⎛⎫⎝⎭⎝⎭⎝⎭Γ+ ⎪⎝⎭,又由余元公式有1344sin 4ππ⎛⎫⎛⎫ΓΓ== ⎪⎪⎝⎭⎝⎭故13,44B ⎛⎫= ⎪⎝⎭.二、选择题1、21ln()d xy dy dx ⎰=( )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0y e dy +∞-⎰收敛,故含参变量无穷积分20x y edy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故2240221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰3、2x edx +∞-=⎰( )A 、πB 、πC 、2πD 、2π 解 2x e dx +∞-=⎰(课本P316例13)4、22x x e dx +∞--∞=⎰( C )A 、πB 、πC 、2πD 、2π 解 由于被积分函数为偶函数,故222202x x x e dx x e dx +∞+∞---∞=⎰⎰,对积分220x x e dx +∞-⎰,令x=则2112220000111311222242x tt tx e dx te dt t e dt t e dt +∞+∞+∞+∞----⎛⎫⎛⎫=⋅===Γ=Γ= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰22x x e d x+∞--∞=⎰5、1122(1)n x dx --⎰=( C )A 、12n +⎛⎫Γ ⎪⎝⎭B 、11,22n B +⎛⎫⎪⎝⎭C 、111,222n B +⎛⎫ ⎪⎝⎭D 、112,22n B +⎛⎫⎪⎝⎭解令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)tx e xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于s i n ,t x a x e x e a t --≤≤<+∞ 而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于232c o s 10,1101t t x t x t x ≤≤≤++ 而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛. 四、用Γ函数和B 函数求下列积分.(1)⎰ (2)642sin cos x xdx π⎰解 (1)()()111220331113322422(1),22338x x dx B π⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=-==== ⎪ΓΓ⎝⎭⎰⎰(2) ()64207553113111753222222222sin cos ,22265!512x xdx B ππ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓ⋅⋅⋅Γ⋅⋅⋅Γ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭====⎪Γ⎝⎭⎰1、2sin y xdy dx x ππππ-=⎰⎰.解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x xπππππππππ+-===-=⎰⎰⎰⎰⎰. 2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()()()22222220012RR Df x y dxdy d f r rdr d f r d r ππθθ'''+==⎰⎰⎰⎰⎰⎰ ()()()()2221020f R f d f R f πθπ⎡⎤=-⎣⎦⎡⎤=-⎣⎦⎰4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰=.解 作极坐标变换,则()22211x y fdxdy d f r rdr πθ+≤=⎰⎰⎰⎰5、改变累次积分的顺序: ⎰⎰⎰⎰+2242220),(),(y x y dx y x f dy dx y x f dy = .解2422202122(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y d x d y f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D ) A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.。
《数学分析III》期末考试卷5及 参考答案
红河学院XXXX —XXXX 学年秋季学期《数学分析Ш》期末试卷5 参考答案及评分标准一、判断题(正确的请在后边的括号内打“○”,错误的打“⨯”,每小题 4 分,共 20 分)1、×2、×3、 O4、×5、O二、填空题(每小题4分,共 24 分)1、定义域D={222(,)|x y x y r +≤};2、0a =;3、111123x y z ---==;4、(1,1,2,)|z x∂∂=231e -; 5、3210(,)ydyf x y dx -⎰; 6、8(3)16Γ=。
三、 计算题(每小题6分,共30分)1、 求2322 (,)(0,0)(,)0 (,)=(0,0) x y x y f x y x y x y ⎧≠⎪=+⎨⎪⎩在原点(0,0)的二阶偏导数(0,0)xy f 。
解:00(,0)(0,0)00(0,0)lim lim 0x x x f x f f xx ∆→∆→∆--===∆∆ ………………………2分 52222(,)()x xy f x y x y =+ …………………………………………4分 00(0,)(0,0)00(0,0)lim lim 0x x xy y y f y f f yy ∆→∆→∆--===∆∆ ……………………6分 2、设),,(xyz xy x f u =,计算du 。
解: x x u f =,2y u xf =, 3z u xyf = ………………………………3分123x y z x du u dx u dy u dz f dx xf dy xyf dz =++=++……………6分3、 11lim ln(1)x dx αααα+→++⎰ 解:验证ln(1),,(1)x ααα+++在区域D={(,)1+}x x ααα≤≤(0α>)上连续。
………………2分则 1211lim ln(1)ln(2)x dx x dx αααα+→++=+⎰⎰ …………………………4分 222211111ln(2)ln(2)|2ln 4ln31222x x dx x x dx dx x x +=+-=--+++⎰⎰⎰ =4ln4-2ln3-1………………………………………………6分4、计算(d S x y z S +++⎰⎰,其中S 为三点A (1,0,0),B (0,1,0),C(0,0,1)构成的三角形。
数学分析III复习试题
级数部分(12-15章)一、叙述题1、设函数项级数∑∞=1)(n n x u 的部分和为)(x S n ,叙述∑∞=1)(n n x u 在数集D 上一致收敛于和函数)(x S 的定义2、叙述函数列)(x f n 在数集D 上一致收敛于)(x f 的定义3、叙述函数列)(x f n 在D 上不一致收敛于)(x f 的定义4、叙述∑∞=1)(n n x u 在D 上一致收敛的柯西准则二、填空题1、级数⋅⋅⋅-+-+-5645342312的一般项是 。
2、级数)21)1(1(1n n n n -+∑∞=的和为 。
3、部分和数列}{n S 有界是正项级数∑∞=1n n u 收敛的 条件4、对级数∑∞=1n n u ,0lim =∞→n n u 是它收敛的 条件.5、级数)3,2,1,0()1(11 =>⋅-∑∞=-n u u n n n n ,若满足条件 则此级数收敛。
6、若级数∑∞=1n n u 绝对收敛,则级数∑∞=1n n u 必定 ;若级数∑∞=1n n u 条件收敛,则级数∑∞=1||n n u 必定 。
7、幂级数n n n x n∑∞=12的收敛区间为 。
8、幂级数n n x n )32(11-∑∞=的收敛区间为 。
9、∑∞=--11212n n n x 的收敛区间为 ,和函数S(x)为 。
10、nn n x a ∑∞=1在x=-3时收敛,则nn n x a ∑∞=1在3<x 时 。
11.函数)1ln(x +在0=x 的麦克劳林级数是 12、)(x f 满足收敛的条件,其傅立叶级数的和函数为S(x),已知f(x)在x =0处左连续,且)(lim ,2)0(,1)0(0x f S f x +→=-=则= 。
13、设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-+=ππππx x x x x x f 0,10,)(展成以π2为周期的傅立叶级数的和函数为S(x),则S (-3)= ,S (12)= ,S )(πk = ,k 为整数。
精品《数学分析(三)》练习题
《数学分析(三)》作业一.填空1. 2221)4ln(x y x z -+--=的定义域是___________。
2.=-+++⋅→⋅11lim2222)00()(y x y x y x _________________。
3. 设⎰⎰=⨯=Ddxdy y x D 22],1,0[]1,0[则_________________。
4. 设=-+=),(,tan),(22ty tx f xyxy y x y x f 则______________。
5.=+∞∞→y x y x xysin ),(),()11(lim ______________。
6.⎰⎰≤+=+12222)cos (sin y x dxdy y x ______________。
7、函数)1ln(22y x Z --=的定义域是_______。
8、设2)arctan()arctan(),(⎥⎦⎤⎢⎣⎡-+=y x y x y x f ,则_______)231,231(=-+f 。
9、设y x xy Z 33+=,则_______45=∂∂∂yx Z。
10、设,3735xy y x z +=则_______426=∂∂∂yx z。
11、设平面域[]2,22,2-⨯⎥⎦⎤⎢⎣⎡-=ππD ,则⎰⎰=Dxdxdy y _______sin 2。
12、若积分域{}x y x y x D -≤≤≤≤=10,10),(,则⎰⎰=Ddxdy ______。
二.判断对错1.{}2),(x y y x >是无界开区域。
2.若),(lim lim ),(lim lim 0000y x f y x f x x y y y y x x →→→→与中有一个不存在,则),(lim )(),(00y x f y x y x →不存在。
3.设平面区域由21,2,1x y y x x ====与围成,用x 型区域表示,则{}21,21),(x y x y x D ≤≤≤≤=。
数学分析第三学期试题
《数学分析》《第三学期》期末考试试题一.将函数()()2f x x x ππ=-≤≤展开为Fourier 级数(10分) 二.计算(每题9分共54分) 1. 求极限22limx y x yx xy y →∞→∞+-+2. 设()2arctan ,x z x y y e =+=,求x dzdx = 3.求二重积分22224x y ππ≤+≤⎰⎰4. 设函数(),z z x y =是由方程ln x zz y=确定的,求z x ∂∂及z y ∂∂5.求第二型曲线积分()()2211L x dy ydxI x y --=-+⎰ ,其中L 为环绕点()1,0的简单、可求长的闭曲线 6.求三重积分,V其中V 是由曲面222,1x y z z +==所界的区域三.判断反常积分30sin p x dx x +∞⎰关于p 在11,22⎡⎤-⎢⎥⎣⎦上的一致收敛性(10分) 四.(第1题10分,第2题16分共26分) 1.设()(),,,y f x y f x y 都在[][],,a b c d ⨯上连续,则()(),ba I y f x y dx =⎰在[],c d 上可微,并且在[],c d 上成立()(),b y a dI y f x y dx dy=⎰2.设()22220,0,,0x y f x y x y +≠=+=⎩证明:(1)(),f x y 在()0,0的邻域中连续;(2)(),f x y 在()0,0的邻域中具有有界的偏导函数(),x f x y ',(),y f x y ';(3)(),f x y 在点()0,0不能微分。
《数学分析》《第三学期》期末考试试题一. 概念题(5分)叙述含参变量的无穷积分1(,)f x y dx +∞⎰关于参数y 在数集Y 上不一致收敛的定义.二. 填空题(每题3分,共15分)1. 函数u xyz =在点(1,1,1)沿()2,1,3l =-的方向导数为 .2. 设()x x y =是由方程22221x y a b+=所确定的函数, 则dxdy= . 3. 01sin limx y xyx →→= .4. 设(,)z z x y =是由方程2222221x y z a b c ++=所确定的函数, 则zx∂=∂ . 5. 螺旋线cos ,sin ,x a t y a t z ct ===上对应3t π=处的切线为 .三. 计算题(每题6分,共30分)1. 求22()()x y D I edxdy -+=⎰⎰的值, 其中()D 是闭圆域2220x y R ≤+≤.2. 设(,)u f x y =, 且其一阶、二阶偏导数都存在且连续. 若cos ,sin x r y r θθ==, 求22u r ∂∂,22uθ∂∂.3. 用柱坐标变换计算()V I zdxdydz =⎰⎰⎰, 其中()V 是上半球体:2221,0x y z z ++≤≥.4. 求函数222u x xy y x y =-+-+的极值.5. 计算333()S x dydz y dzdx z dxdy++⎰⎰外, 其中()S 为球面222x y z R++=. 四. 解答题(每题10分,共50分) 1. 求224L xdy ydxI x y+-=+⎰, 其中L 为以(1,0)为圆心, R 为半径的圆周(1)R ≠, L +表示 逆时针方向.2. 设函数(,)f x y 在矩形[,][,]a b c d ⨯上连续, 则()(,)ba y f x y dxϕ=⎰在[,]c d 上连续. 3.试验证函数(,)h x y =在原点(0,0)点连续, 且两个偏导数都存在, 但在(0,0) 不可微.4. 求22(2sin )(2cos sin )x y x dx y x x y dy -+-的原函数.5. 设平面区域()D 在x 轴和y 轴上投影长度分别为,x y l l , (),αβ为()D 内任一点,证明: 22()1()()4x y D x x dxdy l l αβ--≤⎰⎰.。
数学分析3考试题及答案
数学分析3考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2在区间[0,1]上是:A. 增函数B. 减函数C. 常数函数D. 非单调函数2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. ∞3. 以下哪个级数是收敛的:A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 2 + 3 + 4 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ...4. 函数f(x)=x^3-3x在区间(-∞,+∞)上:A. 有唯一极值点B. 有两个极值点C. 有三个极值点D. 没有极值点5. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. -1D. 26. 函数f(x)=|x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导7. 函数f(x)=x^2+2x+1的不定积分是:A. (x^3+x^2)/3 + CB. (x^3+x^2+2x)/3 + CC. (x^3+x^2+2x+1)/3 + CD. (x^3+x^2+x)/3 + C8. 以下哪个函数是周期函数:A. f(x)=x^2B. f(x)=sin(x)C. f(x)=e^xD. f(x)=ln(x)9. 函数f(x)=x^3在x=1处的泰勒展开式是:A. 1 + 3(x-1) + 3(x-1)^2 + (x-1)^3B. 1 + 3(x-1) + 3(x-1)^2C. 1 + 3(x-1) + (x-1)^3D. 1 + 3(x-1) + 3(x-1)^2 + 6(x-1)^310. 函数f(x)=x^2在区间[0,1]上的定积分是:A. 1/3B. 1/2C. 2/3D. 1二、填空题(每题4分,共20分)1. 函数f(x)=x^3在x=1处的导数值为______。
2. 函数f(x)=sin(x)在x=π/2处的二阶导数值为______。
数学分析三试卷及复习资料
数学分析三试卷及复习资料《数学分析》(三)――参考答案及评分标准一. 计算题(共8题,每题9分,共72分)。
1.求函数11(,)f x y y x =在点(0,0)处的二次极限与二重极限.解:11(,)f x y y x ==,因此二重极限为0.……(4分)因为011x y x →+与011y y x→+均不存在,故二次极限均不存在。
……(9分)2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dzdx.解:对两方程分别关于x 求偏导:,……(4分)。
解此方程组并整理得()()()()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-='++. ……(9分)3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程222z z zz x x y x ++=?。
设,,22y x y x y w ze μν+-=== (假设出现的导数皆连续).解:z 看成是,x y 的复合函数如下:,(,),,22y w x y x yz w w e μνμν+-====。
……(4分) 代人原方程,并将,,x y z 变换为,,w μν。
整理得:2222w ww μμν+=。
……(9分)4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中目标函数: 222S rh r ππ=+表,()()(1)0x yz dzdy f x y xf x y dx dx dy dz F F F dx dx ?'=++++++=??约束条件: 21r h π=。
……(3分) 构造Lagrange 函数:22(,,)22(1)F r h rh r r h λππλπ=++-。
《数学分析III 》期末考试卷06
第 1 页 共 5 页红河学院XXXX -XXXX 学年秋季学期期末考试卷9考试科目: 数学分析III 考试日期:一、 填空题(第1题每空2分,第2、3、4、5、6、7题每题4分,共30分)1、已知 sin()u xy =,,则u x∂∂= ,uy∂=∂ ,du = ;2、设22L 4x y +=:,则Lxdy ydx -=⎰ ;3、设L :cos sin x t y t=⎧⎨=⎩ 02t π≤≤,则22()Lx y ds +⎰= ;4、21(,)x dx f x y dy ⎰⎰交换积分顺序后为: ;5、221x y I xdxdy +≤=⎰⎰= ;6、令x u v y u v =+⎧⎨=-⎩,则(,)J u v = ;7、[0,1][0,1][0,1]V =⨯⨯,则Vxyzdxdydz ⎰⎰⎰= .第 2 页 共 5 页二、判断题(对的打√,错的打×,每空3分,共15分)1、若函数(,)z f x y =在00(,)x y 的邻域内存在二阶偏导数,则0000(,)(,)x y y x f x y f x y =;( )2、若函数(,)z f x y =在00(,)x y 可微,则(,)z f x y =在点00(,)x y 一定连续; ( )3、若函数(,)z f x y =区域D 上存在偏导数,且0x y f f =≡,则()f x C ≡; ( )4、若函数(,)z f x y =在区域D 上可积,且12D D D ⋃=,则有12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰; ( )5、函数(,)z f x y =的稳定点一定是极值点. ( )三、计算题(每题9分,共45分)1、利用二重积分计算椭圆面:22194x y +≤的面积第 3 页 共 5 页2、计算22()VI x y dxdydz =+⎰⎰⎰,其中V 是由222x y z +=与1z =围成的立体.3、求曲面22z x y =+与1z =所围立体的体积.第 4 页 共 5 页4、计算第二型曲面积分:SI zdxdy =⎰⎰,其中S 是椭球面2221x y z ++=的上半部分并取外侧为正向.5、利用高斯公式计算234SI x d y d z y d z d x z d x d y=++⎰⎰ ,其中S 是单位球面2221x y z ++=的外侧.第 5 页 共 5 页四、应用题(10分)1、将正数a 分成三个正数之和,使这三个数的乘积最大,求这三个数.第 6 页共5 页。
数学分析Ⅲ习题及参考答案
一、填空题1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}11,00,(0,0)n m n m ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭为整数为整数3、设(,)ln 1f x y x y =--,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= .解 222200000lim lim (,)lim lim lim11x y x y x x y f x y x y →→→→→-===+ ()222200000lim lim (,)lim lim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y=的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D )A 、闭区域B 、开区域C 、开集D 、闭集 解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域. 2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A )A 、开区域必为开集B 、闭区域必为有界闭集C 、开集必为开区域D 、闭集必为闭区域 4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在.5、下列说法正确的是( A )A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则f 在0P 处连续.三、用ε-δ定义证明22200lim 0.x y x yx y →→=+证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+ 四、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y ¹时2222222220x y y xx x y x y ?祝++,而200lim 0x y x →→=所以222200lim 0x y x y x y →→=+. 2、2200x y →→解 因为())2222221111x y x y +==++-所以()2222000limlim11211x x y y x y x y =+++=++-.1、设xy e z =,则z x∂=∂ ,zy ∂=∂ .解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x∆→+∆=∆ ,000(,)limy f x y y y ∆→+∆=∆ . 解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++ (1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解2222cos(),cos()z zxy x y x x y x y ∂∂==∂∂ ()22222c o s ()c o s ()c o s ()2d z x y x y d x x x y d y x x y y d x x d y∴=+=+ 5、求曲面arctany z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y ⅱ=-=++ 11(1,1),(1,1)22x y z z ⅱ\=-=故曲面arctan y z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩1、设),(y x f 在点(,)a b 处偏导数存在,则lim(,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b '解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim),(),(lim 00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)0l i ml i m 0,l i m l i m 0x x y x f x f f y f x x y y∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''== 4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;0000C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在; D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微.解 P172定理1 三、求解下列各题 1、求曲面xy z =上一点,使得曲面在该点的切平面平行于平面093=+++z y x ,并写出这切平面方程和法线方程.解 设所求的点为000(,,)x y z .由于,x y z y z x ''== 故000000(,),(,)x y z x y y z x y x ''==于是曲面xy z =在点000(,,)x y z 的切平面方程为00000()()()0y x x x yy z z -+---= 由已知切平面与平面093=+++z y x 平行,故001131y x -==于是000003,1,3x y z x y =-=-==,故所求的点为(3,1,3)--.曲面在点(3,1,3)--的切平面方程为(3)3(1)(3)0x y z -+-+--=,即330x y z +++= 法线方程为313131x y z ++-==---,即1333y x z ++==-2、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在附近的连续性、偏导数的存在性及可微性.解2221(,)(0,0)02x y x y x x y ≠≤≤+当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()3300222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂222l n 2z z x z y u x y xv x v y v vy∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂ 2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u uf f s t∂∂==∂∂,则 11222211,,.u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =-的方向导数.解 由于l 的方向余弦为212cos ,cos ,cos 333αβγ====-==()0000()22,()1,()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB 上的方向导数. 解 由于(4,3,12)AB =,故它的方向余弦为4312cos ,cos ,cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==21、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y∂=∂∂ . 解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解222221,1,0,1,0,0(2)n m n m f f f f f f y x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂ 22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x yf f f f f f n m +''''''''∴======+> (,)f x y x y x y ∴=++在点)2,1(的泰勒公式为 (,)f x y x y x y=++ 1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(x y x y =+-+-+-- 4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2,(,)0,(,)2xy xyf x y f x y f x y ''''''=-==-222(2,2)20,(2,2)0,(2,2)2,40xy x y A f B f C f B AC ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A )A 、(1,0)B 、(1,2)C 、(-3,0)D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于22(,)66,(,)0,(,)66xy xyf x y x f x y f x y y ''''''=+==+在点(1,0),2120,0,6,720A B C B AC =>==∆=-=-<在点(3,0)-,212,0,6,720A B C B AC =-==∆=-=> 在点(1,2)-,212,0,6,720A B C B AC ===-∆=-=>在点(3,2)--,2120,0,6,720A B C B AC =-<==-∆=-=-<故函数339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C )A 、(-1,-1)B 、(0,0)C 、(1,1)D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于22(,)4,(,)2,(,)2xy xyf x y f x y f x y ''''''==-=240,2,2,40A B CB AC =>=-=∆=-=-< 故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2D 、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点. ③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令00xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于22(,)0,(,)1,(,)0xy x y z x y z x y z x y ''''''=== 20,1,0,10A B C B A C ===∆=-=> 故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B )A 、最大值点B 、稳定点C 、连续点D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题1、求函数333(0)z axy x y a =-->的极值.解 令22330330xy z ay x z ax y ¢ï=-=ïí¢ï=-=ïî 得稳定点(0,0)和(,)a a .226,3,6xy x yz x z a z y ⅱ?=-==- 对于点(0,0),220,3,0,90A B a C B AC a ===D =-=>故点(0,0)不是极值点.对于点(,)a a ,2260,3,6,270A a B a C a B AC a =-<==-D =-=-< 故点(,)a a 是极大点,极大值为3(,)z a a a =.2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令()()22162054216205xy x y S x x y S y ì+-ïï¢=+=ïïïíï+-ï¢ï=+=ïïî得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.2212418,,555xy x y S S S ⅱⅱⅱ===2124180,,,80555A B C B A C =>==D =-=-<故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,),(,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2c o s20x d y d y y e y x y d x d x ⎛⎫⋅+-+⋅= ⎪⎝⎭ 2cos 2x dy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则zx∂=∂ ,z y ∂=∂ .解法一 令(,,)z F x y z e xyz =-,则 (,,),(,,),(,,)zx y zF x y z y z F x y z x z F x y z ex y'''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y zz z F x y z yzx F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y yy ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)(,)2(,)x y u v u v ==∂∂∂ 二、选择题1、下列命题正确的是( D )A 、任何方程都可以确定一个隐函数;B 、任何方程所确定的隐函数是唯一的;C 、任何方程所确定的隐函数一定是初等函数;D 、如果一个方程在某点满足隐函数存在定理的条件,则它确定的隐函数是唯一的. 2、方程0sin 2=++xy y x 在原点(0,0)的某邻域内必可确定的隐函数形式为( A )A 、)(x f y =B 、)(y g x =C 、两种形式均可D 、无法确定 3、隐函数存在定理中的条件是隐函数存在的( A )A 、充分条件B 、必要条件C 、充要条件D 、无关条件4、方程组22201x y z x y z ++=⎧⎨++=⎩所确定的隐函数组()()x f z y g z =⎧⎨=⎩的导数为 ( B ) A 、,dx y z dy z xdz y x dz x y --=--= B 、,dx y z dy z x dz x y dz x y --==-- C 、,dx y z dy x z dz x y dz x y--==-- D 、,dx y z dy x z dz y x dz x y--==-- 解 方程两边分别对z 求导得102220dx dydz dzdx dy x y z dz dz ⎧++=⎪⎪⎨⎪⋅+⋅+=⎪⎩解方程得,dx y z dy z x dz x y dz x y--==--. 三、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x x y z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+'四、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u v u y x xv u v u x x x ì抖ïï--=ïï抖íï抖ï---=ïï抖ïî解此方程组得24u v uy x uv xy ?=?,224v u x x xy uv?=?1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69,(,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y d y F x y x yd x F x y y x'-=-=-'- (2,1)54dy k dx ==- 故所求的切线方程为51(2)4y x -=--,即54140x y +-=.法线方程为41(2)5y x -=-,即4530x y --=.3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---==法平面方程为(1)2(1)3(1)x y z -+-+-=,即2360x y z ++-=. 4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 . 解 由于222(,,)236F x y z x y z =++-,则(,,)4,(,,)6,(,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4,(1,1,1)6,(1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)x yz -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B )A 、只有一条B 、只有二条C 、至少有三条D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线2226x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解 令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩该直线平行于xoz 平面.1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为()20,a a >则问题转换为求函数(),,,f x y z xyz =在条件()22xy yz xz a ++=下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩ 解得x y z === 根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x y ìï++=ïíï=+ïî在点(1,1,2)-的切线与法平面方程. 解 设222222(,,)239,(,,)3F x y z x y z G x y z z x y =++-=--,在点(1,1,2)-处有4,6,4x y z F F F ⅱ?==-=,6,2,4x y zG G G ⅱ?=-== (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y 抖?=-=-=-抖?所以切线的法向量为(8,10,7),切线方程为1128107x y z -+-==法平面方程为8(1)10(1)7(2)0x y z -+++-=或8107120x y z ++-=.1、=++⎰+∞0284x x dx.解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、2x xe dx +∞-=⎰= .解()()2222200111limlim lim 1222AA x x x A A A A xedx xedx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxxp 1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3). 4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn nx x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx x x n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin p xdx x+∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin pxdx x +∞⎰在1p >时绝对收敛,在1p ≤时条件收敛.二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立.2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a⎰+∞收敛,则 )(dx x f c⎰+∞必收敛.B 、如果 )(dx x f a⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()x e f x -在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Ax x x aace f x dx e f x dx e f x dx ---=+⎰⎰⎰故l i m ()()l i m (x x xaac A A e f x dxe f x dx e f x dx ---→+∞→+∞=+⎰⎰⎰ 即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞adx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( B )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x+∞⎰收敛,但无穷积分sin a x dx x +∞⎰发散(P275,例11). 三、讨论下列无穷限积分的敛散性(1)0+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x +∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x +∞+⎰收敛.(4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x x dx e +∞-⎰收敛,从而无穷积分11x xdx e +∞-⎰也收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性00 解 (1) 由于()22sgn sin 111x x x ≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令()()cos f x g x x ==,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分dx ⎰收敛.另一方面)21cos 2121002(100)2100100x x x xx x x ⎡⎤+=≥==+⎢⎥++++⎣⎦可证0100dx x +∞+⎰发散,而02100x dx x +∞+⎰收敛,故0⎰发散,原积分条件收敛.五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有 ()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.1、10=⎰. 解 由于1limx →=∞,故1x =为瑕点,由瑕积分定义知()1112000001lim lim 1lim 2x εεεεεε---→+→+→==--=-⎰⎰⎰0lim 11ε→+⎤=--=⎦2、10ln xdx =⎰= .解 由于0lim ln x x →+=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε→+→+→+⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0l i m l n (1)1εεεε→+=---=- 3、 是积分0sin xdx xπ⎰的瑕点. 解 0lim 1,lim sin sin x x x xx xπ→+→-==∞x π∴=是积分0sin xdx xπ⎰的瑕点.4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)m xdx m xπ->⎰在 时收敛,在 时发散. 解 0x =是积分201cos (0)mxdx m x π->⎰的瑕点且 22001cos 1cos 1lim lim 2m m x x x x x x x -→+→+--⋅== ∴瑕积分201cos (0)mxdx m x π->⎰在03m <<时收敛,在3m ≥时发散. 二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 11122211001111lim lim 21dx dx dx x x x x x εεεεεεε----→+→+-⎡⎤⎡⎤⎛⎫=+=--=-=∞⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦⎰⎰⎰ 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx 1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解 ⎰e x x 1ln ,⎰-101x e ,⎰20cos x是瑕积分. 3、下列瑕积分中,发散的是( C )A 、10sin dx x ⎰B 、11211--⎰x dx C 、2211ln dx x x⎰D 、1⎰解 对于积分0⎰,0x =为瑕点,由于 0lim 1x→= 故瑕积分0⎰收敛. 对于积分11211--⎰x dx,1x =±为瑕点且12111211lim(1)lim lim (1)limx x x x x x →-→→-+→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x→+→-→-→-→----⋅=====+++故该积分发散;对于积分10⎰,0x =为瑕点且 121lim(0)1x x →--= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰ba dx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b adx x f )(2发散;取()f x =,则瑕积分⎰b adxx f )(收敛,⎰a dx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x -→+→+⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2) 1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim (0)lim 1x x x xx xx →+→+-⋅==故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim(0)lim 0ln lim(1lim 1x x x x x x x →+→+→-→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim ,lim 111x x x xx x→+→-=∞=---,故0x =为瑕点.又由于1200ln lim (0)lim 01x x x x x →+→+-⋅==- 故积分10ln 1xdx x-⎰收敛.(4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π→-→--⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy xxyx = .解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011ln ln 11b a b b b y y a a a x x b dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰3、Γ函数与B 函数的关系为 .解 ()()(,)()p q B p q p q ΓΓ=Γ+4、12⎛⎫Γ ⎪⎝⎭= ,()1n Γ+=.解 12⎛⎫Γ= ⎪⎝⎭()1!n n Γ+=5、13,44B ⎛⎫= ⎪⎝⎭.解 由于()131313134444,134414444B ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭===ΓΓ ⎪ ⎪ ⎪Γ⎛⎫⎝⎭⎝⎭⎝⎭Γ+ ⎪⎝⎭,又由余元公式有1344sin 4ππ⎛⎫⎛⎫ΓΓ== ⎪⎪⎝⎭⎝⎭故13,44B ⎛⎫= ⎪⎝⎭.二、选择题1、21ln()d xy dy dx ⎰=( )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0ye dy +∞-⎰收敛,故含参变量无穷积分20x yedy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故 22400221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰ 3、2x e dx +∞-=⎰( )A 、πB 、πC 、2πD 、2π 解 22x e dx +∞-=⎰(课本P316例13)4、22x x e dx +∞--∞=⎰( C )A 、πB 、πC 、2π D 、2π 解 由于被积分函数为偶函数,故222202x x x e dx x e dx +∞+∞---∞=⎰⎰,对积分22x x e dx +∞-⎰,令x =则2112220000111311222242x tt tx e dx te dt t e dt t e dt +∞+∞+∞+∞----⎛⎫⎛⎫=⋅===Γ=Γ= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰222x x e d x+∞--∞=⎰5、1122(1)n x dx --⎰=( C )A 、12n +⎛⎫Γ ⎪⎝⎭B 、11,22n B +⎛⎫⎪⎝⎭ C 、111,222n B +⎛⎫⎪⎝⎭ D 、112,22n B +⎛⎫⎪⎝⎭ 解令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰ 三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)tx e xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于s i n ,t x a x e x e a t --≤≤<+∞而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于 232c o s 10,1101t t x t x t x ≤≤≤++ 而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛. 四、用Γ函数和B 函数求下列积分.(1)⎰(2)642sin cos x xdx π⎰解 (1) ()()1112200331113322422(1),22338x x dx B π⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=-==== ⎪ΓΓ⎝⎭⎰⎰(2) ()64207553113111753222222222sin cos ,22265!512x xdx B ππ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓ⋅⋅⋅Γ⋅⋅⋅Γ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭====⎪Γ⎝⎭⎰1、2sin y xdy dx x ππππ-=⎰⎰.解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x xπππππππππ+-===-=⎰⎰⎰⎰⎰.2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()()()22222220012RR Df xy dxdy d f r rdr d f r d r ππθθ'''+==⎰⎰⎰⎰⎰⎰()()()()2221020f R f d f R f πθπ⎡⎤=-⎣⎦⎡⎤=-⎣⎦⎰4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰=.解 作极坐标变换,则()22211x y fdxdy d f r rdr πθ+≤=⎰⎰⎰⎰5、改变累次积分的顺序: ⎰⎰⎰⎰+224222),(),(y x y dx y x f dy dx y x f dy = .解2422202122(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y d x d y f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D ) A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.。
数学分析期末复习题
13数学分析(三)复习范围一、计算题(每小题10分,共70分) 1. 全微分计算题2. 求隐函数(组)的一阶偏导数3. 求抽象函数的二阶偏导数4. 求曲线的切线与法平面方程或求曲面的切平面与法线方程5. 求函数的极值6. 计算第一型曲面积分7. 计算第二型曲面积分8. 计算第二型曲线积分(格林公式) 9. 二重积分的计算10. 高斯公式与斯托克斯公式 11. 求多元函数的方向导数 12. 曲线积分与路径无关问题13. 将三次积分用柱坐标与球坐标表示14. 应用--求曲面面积(二重积分)或质量问题(第一型曲线积分)15. 利用余元公式B(p,1-p)=ππp sin ,计算⎰+∞+01n x dx 类积分值二、解答与证明题(第小题10分,共30分)1. 用定义证明多元函数的极限2. 证明多元函数的连续性3. 研究含参量积分的一致收敛性4. 证明含参量非正常积分的连续性5. 三重积分的证明题6. 有关多维空间的聚点或开闭集问题7. 证明二重极限不存在8. 多元函数的可微性证明例题一、计算题1. 全微分计算题公式:du=u x ∂∂dx+u y ∂∂dy+uz∂∂dz 。
例1:求函数u=2222z x x y -+的全微分;例2:已知函数z=z(x,y)是由方程x 2+y 2+z 2-3x=0所确定的函数,求z(x,y)的全微分。
2. 求隐函数(组)的偏导数例3:设zy e z x +=,求yx z ∂∂∂2。
例4:设2x+y+3z=0,x+y+z=e -(x+y+z),求dx dy ,dxdz。
3. 求抽象函数的二阶偏导数例5:设u=f(ax+by,by+cz,cz+ax),求z x u∂∂∂2,22u y ∂∂其中f 具有二阶连续的偏导数;例6:设u=f(x 2-y 2,xye ),求yx u∂∂∂2,其中f 具有二阶连续偏导数。
4. 求曲线的切线与法平面方程或曲面的切平面与法线例7:求曲线:x 2+y 2+z 2=6,x+y+z=0在点(1,-2,1)处的法平面方程。
数学分析3(80学时)试题及答案(新)
所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。
考试形式: [闭卷] _____班姓名________考试题组:[ A ] 考务编号…………………………………………………○……装……………订……………线……○………………………………………………………命题教师:教研室主任审核:所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。
法平面方程是:22222220()()sin 2(cos )()4()tttF t d d f r r dr f r r dr f r r dr πππθϕϕπϕπ==⋅-=⎰⎰⎰⎰⎰所以,22()4()F t t f t π'=三、(10分)证明:设22212,1F x y z F x y z =++=++-,则 (1)1112221,2,2,2F F F F F F x y z x y zxyz ∂∂∂∂∂∂======∂∂∂∂∂∂在点11(,,0)22P -邻域内连续; (2)12()()0F P F P ==;(3)1211(,)4022(,)2p p F F x y x y ∂==-≠∂ 由定理3知,在点00z =的邻域内存在唯一一组有连续导数的隐函数组12(),()x f z y f z ==,将方程两边对z 求导:1dx dydz dzdx dy x y z dzdz ⎧+=-⎪⎪⎨⎪+=-⎪⎩, 解得:,dx z y dy x zdz y x dz y x--==-- 四、(10分)解:设长方体的长、宽、高分别是,,x y z ,体积V ,则表面积2()S xy xz yz =++满足条件V xyz =,设 2()()L xy xz yz xyz V λ=+++-令 2()02()02()00x yz L y z yz L x z xz L x y xy L xyz V λλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪=-=⎩ 解得3x y z V ===所以体积一定而表面积最小的长方体是正方体。
《数学分析III》期末试卷+参考答案
《数学分析(III )》试题2005.1一.在球面上找点,满足,,,使得该球面在点处的切平面与三个坐标平面围成的四面体的体积最小。
1222=++z y x ),,(0000z y x P 00>x 00>y 00>z 0P二.求球面()被平面2222a z y x =++0>a 4a z =与2az =所夹部分的面积。
三.计算二重积分()∫∫+Ddxdy x y x 24,其中是由D x 轴,直线x y =以及曲线1=+y x ,2=+y x 所围成的平面闭区域。
四.计算三重积分∫∫∫,其中。
Ωdxdydz e z ||}1|),,({222≤++=Ωz y x z y x五. 计算曲线积分∫+Lds z y 222,其中L 是球面()与平面2222a z y x =++0>a y x =相交而成的圆周。
六.计算曲面积分,其中∫∫Σ++dxdy z dzdx y dydz x 222Σ为锥面在平面与()之间的部分,定向为下侧。
222z y x =+0=z h z =0>h七.设是右半平面j i λλ)()(2),(24224y x x y x xy y x A +−+=}0|),({>=x y x D 上的向量场,试确定常数λ,使得为上函数的梯度场,并求出。
),(y x A D ),(y x u ),(y x u八.将|(sin |)(x x f =ππ≤≤−x )展开为Fourier 级数,并分别求级数∑∞=−12141n n ,()∑∞=−122141n n的和。
九.设∫∞++=12)1(cos )(dt t t xtx f ,),(∞+−∞∈x 。
(1)证明积分∫∞++12)1(cos dt t t xt关于x 在),(∞+−∞上一致收敛; (2)证明;0)(lim =+∞→x f x (3)证明在上一致连续。
)(x f ),(∞+−∞《数学分析(III )》试题答案2005.1一.(本题满分10分)33000===z y x 。
数学分析三考试题
数学分析三考试题一、选择题(每题5分,共20分)1. 以下哪个函数在区间(0,1)上是单调递增的?A. \( f(x) = x^2 \)B. \( f(x) = \ln(x) \)C. \( f(x) = e^{-x} \)D. \( f(x) = \frac{1}{x} \)2. 极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值是多少?A. 0B. 1C. \(\frac{1}{2}\)D. 不存在3. 函数 \( f(x) = x^3 - 3x^2 + 2 \) 的导数是?A. \( f'(x) = 3x^2 - 6x \)B. \( f'(x) = 3x^2 - 6x + 2 \)C. \( f'(x) = x^2 - 6x + 2 \)D. \( f'(x) = x^3 - 3x^2 \)4. 以下哪个级数是收敛的?A. \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)B. \(\sum_{n=1}^{\infty} \frac{1}{n}\)C. \(\sum_{n=1}^{\infty} \frac{1}{n^3}\)D. \(\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}\)二、填空题(每题5分,共20分)1. 若 \(\lim_{x \to 2} f(x) = 3\),则 \(f(2)\) 的值是 _______。
2. 函数 \( f(x) = x^2 - 4x + 4 \) 的最小值是 _______。
3. 函数 \( f(x) = \sin(x) \) 在区间 \([0, \pi]\) 上的定积分是_______。
4. 若 \(\int_{a}^{b} f(x) \, dx = 3\) 且 \( f(x) \) 在 \([a,b]\) 上连续,则 \( f(a) \) 和 \( f(b) \) 至少有一个大于等于_______。
《数学分析III》期末考试卷及参考答案05
第 1 页 共 6 页数学分析下册期末试题及参考答案05一、 填空题(第1题每空2分,第2、3、4、5、6题每题4分,共26分)1、已知、已知 22xy u e-=,,则u x¶¶= ,uy¶=¶ , du = ;2、cos sin x ar y br q q =ìí=î,则(,)J r q = ;3、设L :cos sin x a t y b t=ìí=î 0t p ££,则22()Lx y ds +ò= ;4、120(,)ydyf x y dx òò交换积分顺序后为:交换积分顺序后为: ; 5、2221x y I x ydxdy +£=òò= ;6、令设222L x y a +=:,则Lydx xdy -=ò . 第 2 页 共 6 页二、判断题(对的打√,错的打×,每空3分,共15分)1、若函数(,)z f x y =的重极限和两个累次极限都存在,的重极限和两个累次极限都存在,则他们必相等;则他们必相等; ( )2、若函数(,)z f x y =在00(,)x y 可微,则(,)z f x y =在点00(,)x y 一定连续;一定连续; ( )3、若函数(,)z f x y =在闭区域D 上连续,则函数(,)z f x y =在D 上可积;上可积; ( )4、(,,)P x y z 是定义在双侧曲面S 上的函数,则上的函数,则(,,)(,,)SSP x y z dxdy P x y z dxdy =-òòòò; ( )5、若函数(,)z f x y =的偏导数在00(,)x y 的邻域内存在,则(,)f x y 在点00(,)x y 可微;( )三、计算题(第3、6题各7分,其余每题8分,共46分)1、求曲面22z x y =+与22z x y =+所围立体的体积. 得 分分 阅卷人阅卷人得 分分 阅卷人阅卷人第 3 页 共 6 页2、计算222VI x y z dxdydz =++òòò,其中V 是由222x y z z ++=-所围成的区域. 3、利用二重积分计算椭圆面:22221x y a b+£的面积的面积任教姓学考生答题不得过此线密封线课教师:学班号:名:号:装订线第 4 页 共 6 页4、计算第二型曲面积分:1SI dxdy z =òò,其中S 是椭球面2222221x y z a b c ++=的外侧. 5、计算22()SI x y ds =+òò,其中S 为立体221x y z +££的边界曲面.第 5 页 共 6 页6、利用高斯公式计算235SI xdydz ydzdx zdxdy =++òò,其中S 是单位球面2221x y z ++=的外侧. 四、证明题(四、证明题(66分)1、证明(3sin )(cos )x y dx x y dy ++是全微分,并求原函数(,)u x y得 分分 阅卷人阅卷人 考生答题不得过此线密封线任课教师:教学班号:姓名:学号:装订线得 分分 阅卷人阅卷人第 7 页 共 6 页1、求曲面22z x y =+与22z x y =+所围立体的体积 解:设所求体积为V,V,则则2222[()]xyD V x y x y dxdy =+-+òò,其中,22:1xy D x y +£(3分),令cos ,sin x r y r q q ==,则xy D 可表示为:02,01r q p ££££(4分),所以,,所以, 21200()V d r r rdr pq =-òò(5分)=6p (8分)分)2、计算222VI x y z dxdydz =++òòò,其中V 是由222x y z z ++=-所围成的区域解:令sin cos ,sin sin ,cos x r y r z r j q j q j ===(2分), 则V 可表示为:02,,0cos 2r pq p j p j ££££££-(4分),所以, 222VI x y z dxdydz =++òòò=2cos 3002sin d d r dr ppjp q j j -òòò(5分) =10p(8分)3、利用二重积分计算椭圆面:22221x y a b+£的面积解:设所求面积为S,则Ds dxdy =òò,其中D 为:22221x y a b +£(2分),令cos ,sin x ar y br q q ==(3分),则D 可表示为:02,01r q p ££££(4分),所以, 2100S d abrdr pq =òò(5分),所以S ab p =(7分). 4、计算第二型曲面积分:1S I dxdy z =òò,其中S 是椭球面2222221x y z a b c ++=的外侧解:记1S 为椭球面0z ³的一侧,2S 为椭球面0z £的一侧,则的一侧,则12111S S SI dxdy dxdy dxdy z z z ==+òòòòòò(2分),则12,S S 在xoy 面上的投影都是2222:1xy x y D a b +£(3分),所以222222221111xyxyDD I dxdy dxdy x y x y c c aba b =------òòòò22221x y c a b --21dr c r-=4ab cp(,则221x y z z ++=22x y =+,则2212x y z z ++=(22222)+2)+=(12)2p +23Sxdydz ydzdx +òò235Sxdydz ydzdx =++òò分),所以10I =D 44033p p ´=分)分)则y x ==¶¶,所以第 9 页 共 6 页则00(,)(3sin )(cos )3cos x yM Mu x y x y dx x y dy xdx x ydy =++=+òòòò(5分)分)=23sin 2x x y +(6分)(说明:原函数可以直接观察得出!)五、应用题(五、应用题(77分) 一页长方形白纸,要求印刷面积占2Acm ,并使所留页边空白为:上部与下部宽度之和为:a b h +=cm,左部与右部宽度之和为:c d r +=cm (A,r,h 为已知数),求页面的长(y)和宽(x),使它的面积最小.解:由题意,目标函数与约束条件分别为xy S =与.))(( , ,A h y r x h y r x =-->>(1分)作Lagrange 函数],))([(A h y r x xy L ---+=l (2分)则有分)则有ïîïíì=---==-+==-+=.0))(( ,0)( ,0)(A h y r x L r x x L h y y L yx l l l (3分)分) 由此解得由此解得, , 111r h Ah x y r l l l l l æö===-+ç÷ç÷++èø(5分)分) 于是有于是有. ,h rAhy r h Arx +=+=(6分)分)根据问题的实际意义知,此时页面的面积是最小的根据问题的实际意义知,此时页面的面积是最小的..(7分)分)。
2019数学分析(3)复习参考题word精品文档8页
数学分析(3)复习参考题1.叙述并证明2R 上的柯西准则、闭域套及聚点存在定理.2.叙述重极限与累次极限概念,并论述它们的关系.3.证明下述极限:(1)0)()(lim 2/32222)0,0(),(=+-⋅→y x y x xy y x ;(2)221lim),2(),(=+-+∞→y xy y x4.讨论下述函数),(y x f 在)0,0(处的累次极限与重极限的存在性: (1)2222),(y x y x y x f +-=;(2)yx xyy x f +=),(;(3)222)sin(),(y x y x y x f +=.5.论述二元函数连续与单变量连续之间的关系.6.证明:若),(y x f 在有界闭域)(2R D ⊂上连续,则),(y x f 在D 上有界、一致连续而且最值存在. 7.叙述二元函数可导与可微的概念;论述可微、可导及连续之间的关系.8.求下列函数的偏导数与全微分:(1)22arcsinyx x z +=;(2)xyy xz ⋅=(3)),(12-=xy xy f x z ;(4)),,(xyz xy x f u =.9.论述可微、方向导数存在及连续之间的关系.10.叙述高阶偏导数与高阶全微分的概念;叙述并证明二元函数中值定理及泰勒公式. 11.叙述并证明二元函数极值存在的必要条件与充条件.12.求下述函数的二阶偏导数: (1))sin(22y x z +=;(2))arctan(1y x z -=; (3))()(1y x y xy f x z ++=-ϕ;(4)),(1y x xy f z -=.13.求下述函数在)0,0(处的二阶泰勒展开式: (1))1ln(y x z ++=;(2))(22y x f z +=; (3)),(y x f z =,其中2t x =,3t y =. 14.求下列函数的极值: (1)684222++-+=y x y x z ; (2)22y xy x z +-=; (3))(2222)(y x e y x z +-+=.15.求函数2222),(y y x x y x f ++=在}1|),{(22≤+=y x y x D 上的最大值与最小值.16.叙述二元(及n 元)隐函数存在唯一性、连续性及可微性定理;叙述隐函数组及反函数组存在可微性定理.17证明方程0sin 21=---y x y 在)0,0(的某邻域内能确定隐函数)(x y y =,并求)(x y '18.试问由方程xyz z y x 62332=++在)1,1,1(附近能确定什么样的函数?在此基础上,进一步设)(222z y x f u ++=(其中f 是可微函数),试问如何计算)1,1,1(xu ?19.设由方程0),(=+++z y x y x F 确定隐函数),(y x z z =,试求xxz 与dz .20.(1)求抛物面22by ax z +=在点),,(000z y x M 上的切平面与法线方程;(2)求球面50222=++z y x 与锥面222z y x =+的交线在)5,4,3(0P 处的切线与法平面方程.21.叙述条件极值的拉格郎日乘子法及条件极值的必要条件与充分条件.22.(1)求函数z y x z y x f ++=),,(在条件3c xyz =(其中0>c )下的极值;(2)求函数z y x z y x f ln 3ln 2ln ),,(++=在22226r z y x =++的极值;并证明:0,,>∀c b a ,有6326108⎪⎭⎫⎝⎛++<c b a c ab .23.叙述第一型与第二型曲线积分的概念、几何意义、物理意义及基本性质.24.给出第一型曲线与第二型曲线积分的联系公式.25.计算下列曲线积分:(1)⎰+=Ly x ds e I 22,其中L 由0=y ,x y =及222a y x =+所围区域在第一象限的扇形区域的整个边界; (2)⎰+=Lds y x J 22)32(,其中L 为)(222y x y x +=+; (3)⎰+=Ldy y ydx x K 32,其中L 为23x y =和x y =所围成的封闭曲线(按逆时针方向);(4)⎰-+++=Ldz y x ydy xdx M )1(,其中L 为由点)1,1,1(到点)4,3,1(的直线段.26.叙述二重积分的概念及基本性质;证明二重积分的中值定理及保序性定理.27.(1)设),(y x f 为连续函数.证明:⎰⎰≤+→=222)0,0(),(1lim20r y x r f dxdy y x f r π;(2)估计积分⎰⎰≤+---122224y x dxdy y x yx 的取值范围.28.更改下述累次积分的次序:(1)⎰⎰π 0sin 0),(x dyy x f dx ; (2)⎰⎰---26- 2 )4(4 21),( xx dyy x f dx .29.计算下述二重积分: (1)⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛2 14 2 22sin 2sin xx x dy y x dx dy y x dx ππ;(2)⎰⎰Ddxdy y x y x },max{sin sin ,其中],0[],0[ππ⨯=D ;(3)⎰⎰Ddxdy y x 22,其中D 是由1=xy ,2=xy 及x y =与x y 4=)0(>x 所围成的区域;(4)⎰⎰-Ddxdyy x)arctan(1,其中D 是由122=+y x,922=+y x 及xy =,0=y 所围成的区域;(5)⎰⎰≤+22222sin sin R y x dxdyy x; (6)⎰⎰≤++122|43|y x dxdy y x .30.计算下列三重积分: (1)⎰⎰⎰-Vdxdydzx y21,其中V 由221z x y ---=,122=+z x及1=y 所围成;(2)⎰⎰⎰+Vdxdydz y x )(,其中V 由0=x ,1=x ,222221bz a y x +=+所围成; (3)⎰⎰⎰+Vdxdydzy x z22,其中V 是由22x x y -=及0=z ,)0(>=a a z ,0=y 围成的立体;(4)⎰⎰⎰+Vdxdydzy x)(22,其中V 由222y x b z --=,222y x a z --=)0(>>a b 与0=z 所围成.31.(1)求椭圆内部1)()(22222111=+++++c y b x a c y b x a 的点所构成的区域D 的面积(其中1221b a b a ≠);(2)求由曲面c z by a x 22222=+,b ya x by a x +=+2222与平面0=z 所围立体的体积;(3)由xyz z y x 27)(3222=++所围立体的体积; (4)求曲面22y x z -=含在柱面)()(222222y x a y x -=+内的部分的面积.32.叙述第一型与第二型曲面积分的概念、基本性质以及几何意义与物理意义. 33.计算下述曲面积分:(1)⎰⎰++Sy x dS2)1(,其中S 为1=++z y x ,0≥x ,0≥y ,0≥z ; (2)⎰⎰++S dSz y x)32(222,其中S yz y x2:222=++;(3)⎰⎰Sdydz x 3,其中S 为:1222222=++c z b y a x 的上半部)0(≥z 取外侧;(4)⎰⎰∑-+z z dxdyy dzdx x x dydz 222cos cos cos 2,其中∑为球面1222=++z y x 的外侧.34.叙述并证明关于平面曲线积分的格林公式及保守场定理.35.试用格林公式计算下列曲线积分: (1)⎰++-Lydy ye x dx y x 2)3()2(,其中L 由0=y ,22=+y x 及左上半圆弧122=+y x 所围成的闭区域D 的边界按顺时针方向;(2)⎰+-ldy x dx x xy y 222)cos()]sin(2[,其中l 为椭圆12222=+--y b x a 的右半部分)0(≥x 的逆时针方向. 36.叙述并证明关于三重积分的高斯公式. 37.叙述关于空间曲线的斯托克斯公式以及空间曲线积分与路径无关的条件.38.利用高斯公式计算下述曲面积分:(1)⎰⎰++-+Sdxdy z y xy dzdx z y x dydz xz )2()(2322,其中S 为上半球面2222a z y x=++的上侧;(2)⎰⎰++Syzdxdy xydzdx zxdydz ,其中S由hz =,222k y x =+)0,0(>>k h 及三个坐标平面所围成的第一卦限部分的外侧.39.利用斯托克斯公式计算下列曲线积分: (1)⎰-+-+-Cdz y x dy x z dx x y 222222)()()(,其中C 是立方体],0[],0[],0[a a a V ⨯⨯=的表面与平面2/3a z y x =++的交线,C 的定向是从z 轴正向看去为逆时针方向;(2)⎰+++++Cdz y x dy x z dx z y 222222)()()(,其中Rx z y x 2222=++与rx y x 222=+(其中)0,0><<z R r 的交线,C 的定向使得C 所包围的球面上较小区域保持在左边.40.叙述含参变量定积分的概念及基本性质.41.叙述含参变量广义积分一致收敛的概念及基本性质.42.叙述Γ函数与B 函数的概念、基本性质及常用计算方法.43.设⎰-=badx x y x f y F ||)()((其中b a <),f 为可微函数,试求)(y F ''.44.讨论下述含参变量广义积分在指定区间上的一致收敛性: (1)⎰∞+-+ 12)(xdy y x ,(i )),0[+∞∈x ,(ii )],0[b x ∈;(2)⎰∞+= 1)(px dxp I ,(i )),1[+∞+∈σp )0(>σ,(ii )),1(+∞∈p .45.求函数⎰∞+-+= 03)1ln()(dxx x y I y 的连续区间.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析III 复习题一、填空题1.设函数⎪⎩⎪⎨⎧=+≠++=,0,,0,0,),(222222y x y x y x xyy x f 则当00→→y x 及时),(y x f 的重极限为 ,两个累次极限分别为 和 .2.()()=-+++→11lim22220,0,y x y x y x .3.()()()=++→220,0,1sinlimy x y x y x .4. 设()y x e z x+=sin 则=dz .5.设()⎪⎩⎪⎨⎧=+≠++=0,00,1sin ,222222y x y x yx xy y x f 则()=0,0df 6. 设32),,(yz xy z y x f +=,)1,1,2(0-P 则=)(0P gradf . 7.设2),,(y xz z y x f +=,则 f 在点)1,1,1(0p 沿方向)1,2,2(:-l 的方向导数为 .8.曲面x yz arctan=在点⎪⎭⎫ ⎝⎛4,1,1π处的切平面方程 法线方程 9.方程02=+--zxy e z e 确定的隐函数的偏导数x z ∂∂= ,=∂∂y z10. 函数()yx y x f =,在点()4,1处3阶泰勒公式中()21-x 项的系数为 .11.设,tan ,sin 3,23x v x u v u z ==+=则=dz12.设()0,=--bz y az x ϕ,则=∂∂+∂∂y zb xz a13.()x F =⎰+2)()3(x dyy f y x 则()='x F14.()⎰+→3020lim dxe x x ααα= 15.()⎰+→120cos lim xdxx ααα= .16.()⎰⎰2ln 0,e xdyy x f dx 交换积分次序得17.π=⎪⎭⎫ ⎝⎛Γ21,则=⎪⎭⎫ ⎝⎛Γ27 =⎪⎭⎫⎝⎛+Γn 2318.若()y x u ,是()()dy y x Q dx y x p ,,+的原函数,则应有 . 19. 若曲线积分⎰+LQdypdx 与路线无关,则必有 .20. ()dy y y y x ydx y cos sin sin ++的原函数是 .=⎰⎰--1112),(,.21x x dy y x f dx 交换积分次序.)sin ,cos (:.2220cos 0=⎰⎰πθθθθrdr r r f d 的累次积分分转换成直角坐标系中将极坐标系中的累次积⎰==+Lds x y x L ||,1.2322则表示圆周设⎰=++Lds z y x O A L 2)(,)0,0,0()2,1,2(.24则的直线段到原点为点设⎰=+++++=-+-Ldy y x x y x dx y x y x L )]ln(5[,,1)1()1(.25222222则取逆时针方向表示圆周设.______,)0(,0.26222222=++=+>==∑⎰⎰∑zy x dSR y x H H z z 则上的那一部分之间圆柱面是介于两平面已知二、选择填空()可微但不可求偏导可微连续且偏导数存在但不偏导数存在但不连续连续但偏导数不存在在原点函数....)0,0(0,00,),(.1222222D C B A y x y x y x xy y x f ⎪⎩⎪⎨⎧=+≠++= ()的极值点可能不是的极大值点必是的极小值点必是的极值点必不是是则且满足阶偏导数的某个邻域内有连续二在若函数),(.),(.),(.),(.),(,0),(),()],([,)(),(.200000020000y x f D y x f C y x f B y x f A y x 、y x f y x f y x f y x y x f yy xx xy <-()只有四条只有三条只有二条只有一条的切线平行与平面的所有切线中在曲线....42,,,.332D C B A z y x t z t y t x =++===()⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=+≤+≤=⎰⎰⎰⎰⎰⎰⎰⎰1022022110202122222)()(2.)(2.)()(2.)(2.)(,},21|),{(.4dr r rf dr r rf D drr rf C dr r rf dr r rf B drr rf A dxdy y x f D f y x y x D Dππππ则上的连续函数是区域设区域()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-++=--+=2040cos 222040cos 202012201112222sin 4.4.4.4.11.52ππθππθππϕϕθϕθθθrrr r drr d d D rdrd d C dzrdr d B dzrdr d A y x z y x z 所围成的立体体积为与锥面由球面().,0.)sin cos (4.2.sin cos 2.)sin cos (,,)1,1(),1,1(),1,1(.61111被积函数的奇偶性注意积分区域的对称性则积分的部分在第一象限是为顶点的三角形区域是平面上以点设D dxdyy x xy C xydxdyB ydxdyx A dxdy y x xy I D D D D D D D⎰⎰⎰⎰⎰⎰⎰⎰+=+=---()1.81.2..),(,1,0,),(),(,),(.72++====+=⎰⎰xy D xy C xyB xyA y x f x x y y D dxdy y x f xy y x f y x f D则所围成的区域和是由其中且连续设()333322231.51.61.41.)()()(,),0,()0,0,()0,0(2sin cos .8h D h C h B h A dz xy z dy xz y dx yz xh R B R A h R t h z t R y t R x L L=-+-+->>⎪⎪⎩⎪⎪⎨⎧===⎰曲线积分则的一段弧到上从是螺线设π().cos .9.6.)cos cos cos (),cos ,cos ,(cos ),30(.922222D dSz C a B a A AdS z y x z a y x ⎰⎰⎰⎰∑∑=++=≤≤=+∑γππγβαγβα则其向外的单位法向量为为柱面设()0.0.0.0.,.10222222=====++∑⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑dydz y D xdydz C ydydz B dydz x A a z y x 是则下列式子中错误的的上半部分的上侧为球面设三、.,632.3.,),(,)(),,()2(.2.,.1222222dxdz dx dy z y x y x z yx zv u g t f xy x g y x f z dz yx yx arctgz 求设求具有连续二阶偏导数二阶可导其中设求设⎩⎨⎧=+++=+-=-+=∂∂∂.,:,0),(,.42的函数只是在极坐标系中证明满足可微函数上设在θf f y f x y x f R y x ='+'.,,),()(1.522y x z C f y x y xy f x z ∂∂∂∈++=求其中设ϕϕ.,)(),(,)(.620yx wdt t x f ey x w u f yy∂∂∂+=⎰-求一阶可导设函数..sin ,2:)(),(,),,(.70dxdu dt t t e xy e x z z x y y z y x f u z x xxy 求分别由下列两式确定又函数有连续一阶偏导数设⎰-==-=== .,0062.8222222a v u zy z y x z x z azx v y x u 求常数化简为把方程设=∂∂∂=∂∂-∂∂∂+∂∂⎩⎨⎧+=-=.)(,]1,0[.91022为极小意义下最佳近似的积分才能使它在平方误差来代替曲线上用怎样的直线在⎰-==+=dxy J x y b ax ζζ.ln ,0,1.10成立不等式时证明当y e x x x xy y x +-≤≥≥11.从等式⎰----=babx ax xyx e e dy e 出发计算积分dx x e e bxax⎰∞+---0,()0>>a b12.应用积分号下的积分法计算下列积分:()()0ln ln cos 10>>-⎰a b dx x x x x ab13.利用p a p b dx x ax bx e px arctan arctan sin sin 0-=-⎰∞+-()0,>>p a b 计算dx x ax ⎰∞+0sin14.应用积分号下微分或积分的方法计算下列积分:⎰∏<20)1()(a dx tgx atgx arctg.)0,0(,,,,)sin(.1522222围成的区域是由其中计算二重积分q p b a qx y px y by x ay x D dxdy y xy x D <<<<====⎰⎰ }.,|),{(.)()()(,],[)(.162b y a b x a y x D a b dxdy y f x f b a x f D ≤≤≤≤=-≥⎰⎰其中证明上的正值连续函数是设 )0()()(1)()(,)(.171>-=-⎰⎰⎰-a dtt f t x n dt t f t s ds t f xan x asan 证明是连续函数设.)(lim ,,,0:,)]([)(,)(.1820222222tt F dt dF t y x h z d y x f zt F t f t →Ω≤+≤≤Ω++=⎰⎰⎰求其中连续设函数.1)0,1(,),(),(2),,(.1921=+=-==⎰⎰u xydydx y x u I dyy x u xydx I y x u u LL并适合都与路径无关及使曲线积分求一个二元可微函数.)cos ,cos ,(cos ,2,)cos cos cos (.20222量的外法线的单位方向向是是球面其中计算∑==++∑++⎰⎰∑γβαγβαn z z y x dS z y x.cos cos cos 21,,)cos ,cos ,(cos ,cos cos cos .21⎰Γ=∑ΓΓ==++Γzyxdz dy dx S S n p z y x γβαγβαγβα明证上所围成的面积乐为在成逆时针方向看位向量对着平面的单上的一条简单闭曲线是平面设22.求二重积分dx xxdy y ⎰⎰660cos ππ.23.求二次积分242sin xI dy dx x ππ=⎰.24.计算⎰⎰⎰Ω=zdV I ,其中Ω为球面4222=++z y x 与抛物面z y x 322=+所围立体.25.计算dxdy y x e dzdx dydz x I z ⎰⎰∑+++=222.其中∑为:22y x z +=在21≤≤z 之间部分的外侧表面.26.求曲线积分3222(2cos )(12sin 3)Lxy y x dx y x x y dy-+-+⎰,其L 为抛物线22x y π=上由点(0,0)到(,1)2π的一段弧;27.求曲线积分(12)(cos )y y Lxy e dx y xe dy +--⎰,其L 是沿曲线2y x =从点(1,1)A -到(0,0)O ,再沿x 轴到点(2,0)B 的有向弧段;。