制作电子管功率放大器
30瓦电子管5.1声道功放制作
30瓦电子管5.1声道功放制作一提起5.1 声道,很多朋友都会联想起家庭影剧院,其实,这是个误解。
不论是两个声道的立体声,还是多声道的 5.1、7.1 声道,都是从单声道发展而来的,家庭影剧院的多声道,同样也是如此,5.1 的出现,最早还是因为人们想用两个音箱,达到“炸弹在背后爆炸”“飞机在头顶盘旋”的感觉,也因此发展了环绕声(SRS)、重低音的音频信号处理技术。
笔者曾经在双声道胆功放电路中,采取过“分信号交叉处理”(就是将左(或右)声道的音频信号取出一部分,通过电容耦合到右(左)声道进行放大),通过调整耦合电容的大小,获得过“SRS”的感觉。
上了 50 岁年纪的胆机爱好者一定还记得,上个世纪七八十年代之前,听惯了一个音箱放音的人们,为了获取好的听感,采取过功放分级、分频电路、大小扬声器搭配、音箱分频、高低音调提升等等措施,还费劲心思的在箱子上大做文章,什么迷宫式、多级反射式,甚至于箱子的材质也很讲究,有木材、塑料、水泥混凝土、石头、玻璃钢等等,还有障板、全频等等。
当然,这些努力没有白费,对于改善人的听感还是起到了一定的作用,至今仍然不少烧友还在坚持玩。
但,真正能够满足人们愿望的,还是继模拟 5.1 声道之后的数字解码技术。
对数字解码技术,笔者是外行,不敢妄加评论。
只是知道,数字解码技术采用电子管电路(以下简称'胆机’)实现实在是极其麻烦!而采用晶体管,集成电路(以下简称'石机’)却是小菜一碟!数字音频解码设备的价位,从初期的千元级别,现在已经降到几百元甚至于数十元即可购得。
胆机和石机,从听音角度看,各有其长短,喜爱玩胆机的朋友,何不来个胆石混合?不需要再纠结胆解码的问题了。
好了,以上纯属个人观点,还是书归正传。
这台石解码的30 瓦电子管5.1 声道功放,是在本人尝试过6*1瓦的电子管5.1 声道的美声之后,再一次的实验。
本机机架由铝、木混合,手工加工,见图 1---图 3。
机器由 6 个声道(3 个相同的双声道独立功放)组成,每个声道设计输出功率为5 瓦左右,总输出功率为30 瓦。
6p3p电子管功放制作心得
电子报/2013年/7月/14日/第015版音响技术6P3P电子管功放制作心得江苏陈洪伟胆机是音响放大器中古老而又经久不衰的长青树,其显著的优点是声音甜美柔和自然,尤其动态范围之大,线性之好,绝非其他放大器所能轻易替代。
对于刚刚接触电子管放大器的爱好者来说,选择简洁、优秀的单端甲类电路为首选。
单端甲类电子管功放具有音色圆润、甜美,制作成功率高的特点。
本文介绍的线路采用524P整流,6N1前级输入,6P3P功率放大,采用标准接法。
6P3P为入门级产品,品质相当出众,低廉的价格使制作成本较低。
只要设计合理,精心制作,也能将6P3P玩到发烧境界。
更重要的是,本线路让那些刚刚喜欢上电子管功放的初级发烧友,通过尝试逐步熟悉电子管功放的制作。
一、电路原理如图1所示。
该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。
功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源相连。
这种接法的特点是放大效率高。
6P3P栅-负压19V,屏极电压300V,屏级电流60mA。
输出功率约7.5W,能够满足一般家居环境放音要求。
电源电路采用传统的电子管整流,CLC型滤波器,使整机音色达到和谐与平衡。
电子管整流在开机时的预热过程具有保护功率电子管的作用,这一点在使用天价电子管时显得尤为重要。
CLC型滤波方式滤波效果好,电源内阻低,对降低噪音,提高整机动态有极大的益处。
输出变压器是电子管功放电路的重要部件,如果自制条件不具备,可以构买成品。
本机所用输出变压器铁芯为32mmx65mm,初极3300圈,分两层。
线径为Φ0.82mm;次级共172圈,分三层,所用线径为Φ0.82mm。
硅钢片空气隙0.08mm,工作电流70mA、功率10W。
二、装配本机线路简洁,所用元件较少,可采用搭棚焊接,制作调试简单,成功率高。
制作时可以三焊接电源与灯丝供电部分,电源正常之后再焊接放大电路,要注意的是,电源空载时,电压稍高,电容耐压一定要满足要求。
FU7电子管功率放大器制作
FU-7电子管功放电路图FU-7电子管功放电路电路图·[图文]电子管发威!CAV日本发布新款迷你音...·[图文]用6p1制作的电子管短波发射机·[图文]四灯电子管发射机电路·[图文]电子管组成的无线对讲机的制作与设...·[图文]直流放大器静电电子管·用电子管收音机修复断丝显像管·[图文]判断电子管衰老的简单办法·[图文]电子管管脚排列图·[图文]部分电子管的图形符号·[图文]电子管FU29+6N9P组成的30W并联单端...·[图文]是-否电子管电压表电路图·[图文]电子管和晶体管混合式放大器电路图...·[图文]电子管交流电子稳压器电路图·[图文]电子管式稳压电源电路图·[图文]低噪声电子管前级电源原理图·电子管热丝和灯丝电流和电压的测试...·FU—113F 型电子管·浅析电子管机输出变压器·复件6159B.pdf 电子管资料数据手册...·GEC功放设计范例.pdf 电子管资料数...·G108-1K.pdf 电子管资料数据手册·G105-1D.pdf 电子管资料数据手册·G75-2D.pdf 电子管资料数据手册·ELC16J.pdf 电子管资料数据手册·ELC6J-A.pdf 电子管资料数据手册·ELC3J-A.pdf 电子管资料数据手册·ELC3J.pdf 电子管资料数据手册·ELC1K.pdf 电子管资料数据手册·ELC1B-A.pdf 电子管资料数据手册·EL6F.pdf 电子管资料数据手册FU-7推动的胆机功放电路图+电源电路图自制一款优质的胆功放,其电路原理如图1所示。
供电电路如图2所示。
电子管功放制作技巧和要领(转帖)
电子管功放制作技巧和要领(转帖)搭棚式接法普通将功放机内的各种元器件分为3—4层,装置元件的步骤是由下而上。
接地线与灯丝走线普通置于接近底板的最下层,其地线贴紧底板,并坚持最好的接触;第二层多为各电子管阴极与栅极接地的元器件。
留意同一管子阴极与栅极的相关元件接地最好就近在同一点接地;第三层是各缩小级之间的耦合电容等元件;最下层那么为以高压架空接法衔接的阻容等元件。
高压元件置于下层可以有效地防止高压电场对各级电路形成的搅扰。
二、关于一点接地一点接地,在电子管功放电路的布线中是一项值得注重的措施。
图8—2为一点接地表示图。
关于输入级与电压缩小级的元件接地效果尤为重要。
需务实行一点接地的元件,主要有栅极电阻、阴极电阻与旁路电容等。
最好仅用元件引线直接焊接,尽量不运用导线,否那么极易发生交流杂声搅扰。
栅极电阻敏理性最强,因此对前级功耗很小的栅极电阻,其体积越小越好,可采用0.25-0.5w的小体积电阻为宜。
其电阻一端应直接焊接在管座上;另一端直接通地。
假设因元件尺寸或位置关系,难以做到同一点接地时,亦可就近接在同一根粗的地线上。
图8—3为近端接地表示图。
三、焊接要领由于电子管功放的零部件尺寸较大,而且接地线又与金属底板直接相通,焊接时的散热性较强,所以在焊接时必需采用50W左右的内热式电烙铁才干保证焊锡的充沛熔化。
而普通用来焊接晶体管元件的25W左右电烙铁热量不够,容易发生假焊或脱焊等现象。
焊接时所运用的助焊剂,应该采用松香或一级的中性焊剂,防止运用酸性助焊剂。
由于酸性焊剂不但有腐蚀作用,而且会惹起电路漏电现象。
对普通元件的焊接,其电烙铁与元件间最好坚持45度左右的倾斜角,这样接触面较大,热量平均,容易焊牢。
其焊接时间普通应坚持1—2秒为宜,时间过长容易损坏元件;接地线的焊接时间可适当加长一些;元件焊上支架前应先将元件引线在支架绕牢,或穿进孔内勾牢,然后再停止焊接。
关于元件,在焊接前必需将引脚外表氧化层用砂皮擦清,并镀好焊锡后再焊接。
6N11电子管前级放大器
6N11电子管前级放大器2018年2月21日17:066N11电子管前级放大器电子管放大器的音色是发烧友们所喜好的,下面介绍一个用6N11制作的胆前级。
放大器分前级和后级,我们常说的功放是将两者合二为一的机器。
前级主要作用是对输入的微弱信号进行电压放大,以推动后续的功率放大管。
一般情况下。
前级放大器因工作电流较小,元器件比较简单,材料容易购买而制作相对容易。
自制放大器时线路的选取很重要,考虑到业余条件的限制,DIY时选取简洁线路较容易取得成功。
在设计电压放大级时主要考虑是有足够的增益,频响和失真、噪声等特性。
在晶体管(俗称“石”)和电子管(俗称“胆”)放大器中,由于电子管的放大因数(μ)很大,往往用一个电子管就相当于用几个晶体管构成的电路,因此两者比较电子管功放制作的成功率远高于晶体管机。
用于前级电压放大的电子管,一般有6N1、6N3、6N11、12AX7、12AT7、12AU7、6SL7、6SN7、6SJ7和EF86等多种三极管和五极管。
由于等效输入噪声较大,6SJ7、EF86等五极管现在一般已不常采用。
了解一只电子管的特点和衡量它的性能,常用跨导(S)、内阻(Ri)、放大因数(μ)表示,其中跨导是电子管栅压对屏流的控制能力;内阻是当栅极电压为定值时,屏极电压的变化量与相应的屏极电流变化量之比,内阻越小,电子管的负载能力、频响方面要好些,应优先采用;放大因数是用来表示放大品质的量。
跨导、内阻、放大因数三者的关系是:μ=S×Ri。
前级电压放大用电子管,常常按它们的放大因数分成高μ、中μ、低μ类型。
μ值大于35的叫高μ管。
如以上列举的12AX7、12AT7、6SL7。
μ值大的管子,放大倍数较大,但输入范围较小。
适合做小信号前级和功放的第一级。
μ值在20-35之间的称为中μ管.如12AU7、6SN7、6N3、6N11等,它们的特点是输入范围要大一些,有相对较小的失真。
6N11(国外同类产品称为6DJ8或6922)是高频低噪声双三极九脚电子管。
6P3P单端A类电子管功放的制作
本 机线 路简 洁 ,所用 元 件较 少 , 可 采用 措棚 焊接 .制作调 试 简单 .成 功 率高 。
制作 时可以先 焊接 电源 与灯丝 供 电部分 .电源正常 之后再 焊接放大 电 路 ,要注意 的是 ,电源空载 时 .电压稍 高 ,电容耐压 一定 要满足 图 一1的 要 求。该 图所标注 的几 个测试点电压是本 人制作时的实测电压 .可作 为制作时的 参考 .在电网 电压变动不大 时 .应接 近 上述 测试值 .这 样成 功就 不在 话下 。 R2、R3、R4、R6可改 变整机工 作状态 .
要取决于 vT1。同时 。、rr1、VT2交流通 为 6N3放 大系数 ,值 为 35;Ri为 6N3
路对输入级 负载 电阻 R4 c即功率输 出 内阻。值 为 5 8k。
1输入电压放大级
级 vT3的栅极电阻 )而言 等效为 并
2_功宰输出级
片 机 制
维普资讯
功率管 6P3P采用标准接法 .信号 由控制栅极(⑤ 脚 )输入,帘栅极(④ 脚 ) 与电源 +B1直接相连 。这种 接法的特 点是 :放 大效率高 。能达 到特性表 中功 放管所规定的输出功率。R6为输出级 阴 极 电阻 ,将 输 出级栅 负 压确 定 在 一 20V。6P3P屏极 电压 为 290V.栅负压 为 一20V,屏流 为 50mA.作 A类放大 . 输出功率约为 5 5W.基本满足一般家 居环境放音的要求。
SRPP电路【亦称并联 调整式推 挽 电路 l是一种 深受推崇的 电路 。该电 路 具有失真小、噪声低 、频 晌宽 等特 点,是 目前 电子 管功放电路 中常见的优秀 线 路 之 一 。
电路见圈 1。vT1、v-r2直流通路串 联 .vT1构成普 通 的三极 管共 阴放 大 器 .VT2构成阴极输 出器 .对 VT.而言 vT2是一个带电流负反馈的高阻负载。 音频信号 由 6N3③脚输人 ,经 vT1共 阴放 大后从第④脚输出 。进入 VT2构 成 的阴极输 出器 .然后 由 vT2⑨ 脚输 出.进入后级电路 。vT2接成阴极输 出 器形 式.其电压放大倍数接近于 1.故 输 入级 SRPP电路 的电压放大 倍数主
6_5W_2电子管功率放大器的制作
615W @2电子管功率放大器的制作戴洪志本刊制作栏目是为焊机的朋友保留一个交流的园地,过去我们焊机可能是为了省些银子,现在焊机更多地是兴趣、爱好和学习。
说实在话,中国的发烧友在这方面还是有些差距,我们常常看我们的邻邦日本的杂志,每月音响制作方面的文章至少有十几篇,而且每篇的制作过程、简单的设计计算、电路图、结构图、实体照片都十分齐全,最后的测试报告、测试曲线都十分专业地提供给读者。
反观我们国内的爱好者,翻开国内的各个音响杂志,一个月内能发表的文章廖廖无几,而且错误百出。
为何如此?心态的浮躁,这不仅仅是发烧友的问题,厂家、经营者何况不是如此。
因此包括我们媒体在内都应该反思一下,脚踏实地地为我们国家的音响事业的进步做一点踏实的工作。
本文制作资料比较详尽,推荐给大家,电子管机玩起来别有一些情趣。
实际上做电子管机比做晶体管容易出好声,发烧友不妨一试。
)))编者 听惯了晶体管或集成电路放大器的朋友,如果听一听电子管放大器放出的乐声,就会觉得音乐感更好,音色更优美、甜润一些(当然,顶级的晶体管机和电子管机的音色是不易分出差别的),特别是以数码音源为主的放音系统,如果功放用电子管机,重播效果将另是一番天地。
一部好一点的电子管功率放大器价格不菲,要比同档次的晶体管机贵得多。
由于电子管机要比晶体管机简单,有焊晶体管放大器的经验者,焊电子管机也没什么问题。
笔者焊了几部电子管前级放大器后,便搜集各种优秀线路,焊了一部电子管后级功率放大器,效果不错,信噪比也很高,别看615瓦@2的输出功率,在20m 2以下的房间听古典音乐、室内乐、人声,都十分舒适。
下面将该机的制作介绍给各位。
线 路每声道采用一级A 类电压放大,一级阴极输出器和单端A 类功率输出,电源部分用晶体管整流,电子管灯丝用交流供电,电压放大级采用稳压电源,线路结构清晰,力求失真小而效率高,电路框图见图1,线路见图2,主放大部分只画出一个声道。
除电压放大级的稳压供电部分不同之外,其他线路均为标准线路的接法。
电子管OTL功放电路及原理
电子管OTL功放电路及原理OTL 是英文Output Transformer Less Amplifier 的简称,是一种无输出变压器的功率放大器。
一.OTL 电子管功放电路的特点普通电子管功率放大器的输出负载为动圈式扬声器,其阻抗非常低,仅为4~16Ω。
而一般功放电子管的内阻均比较高,在普通推挽功放中屏极至屏极的负载阻抗一般为5~10kΩ,故不能直接驱动低阻抗的扬声器,必须采用输出变压器来进行阻抗变换。
由于输出变压器是一种电感元件,通过变压器的信号频率不同,其电感线圈所呈现的阻抗也不同。
为了延伸低频响应,线圈的电感量应足够大,圈数也就越多,因此在每层之间的分布电容也相应增大,使高频扩展受到限制,此外还会造成非线性失真与相位失真。
为了消除这些不良影响,各种不同形式的电子管OTL 无输出变压器功率放大器应运而生,许多适用于OTL 功放的新型功率电子管在国外也不断被设计制造出来。
电子管OTL 功率放大器的音质清澄透明,保真度高,频率响应宽阔,高频段与低频段的频率延伸范围一般可达10HZ~100kHz,而且其相位失真、非线性失真、瞬态响应等技术性能均有明显提高。
二电子管OTL 功放电路的形式图1(a)~图1(f)是OTL 无输出功放基本电路。
图1(a)和图1(b)为OTL 功放两种供电结构的方式,即正负双电源式和单电源供电方式。
在正负双电源式OTL 功放中,中心为地电位。
这样可保证推挽电路的对称性,因此可以省略输出电容,使功放的频率响应特性更佳。
单电源式OTL 电路为了使两只推挽管具有相同的工作电压,必须使中心点的工作电压等于电源电压的一半。
同时,其输出电容C1 的容量必须足够大,不影响输出阻抗与低频响应的要求。
图1(c)和图1(d)为OTL 功放电子管栅极偏置的取。
用6C19电子管制作的AB类推挽功率放大器
用6C19电子管制作的AB类推挽功率放大器一、电路特点 采用6N11做电压放大和P—K分割倒相,6N6推动。
6C19功率输出,电路见下图。
6C19功率管采用自给偏压,静态电流55mA左右,可通过调整R13的阻值调整阴极电压,从而调整其偏压值和工作点。
R13可用多只电阻并联使用。
总瓦数大一些好。
一般认为,P—K分割倒相电路无须调整。
在电子管的屏极和阴极接人阻值相同的电阻,因为它们是串联关系。
串联电路电流处处相等。
就会得到幅度相等而相位相反的两组电压。
其实不然,实际上在分割倒相电路中,由于负载是输出变压器。
不是纯电阻,它的阻抗是随频率变化的。
输出阻抗的不同导致不同频率时两路输出不平衡,造成阴极输出端的信号电压总是高于屏极输出端的信号电压,这是P—K分割倒相电路的特点同时也是它的弱点。
因此屏极电阻R4的值应该比阴极电阻R5的值大一些,并且应该在调整中确定其阻值。
具体方法是在输入端输入3kHz-5kHz正弦波信号。
测最两路输出电压,通过调整R4和R5的阻值,使输出电压基本相等即可。
二、输出变压器 6C19内阻低,输出变压器绕制相对简单。
用片厚0.35mm,舌宽32mm.叠厚45mm的EI型高硅片铁芯。
初级用φ0.27mm漆包线绕1100匝+1100匝(800FZ),次级用φ0.80mm漆包线绕105匝(8Ω)。
初、次级采用3夹2结构,初级1100匝+1100匝。
次级35匝+35匝+35匝,初级夹在次级之间,硅钢片交叉插,见图。
三、电源变压器 电源变压器采用成本较低、片厚0.5mm的电脑USP电源拆机铁芯。
舌宽40mm,叠厚60mm,初级220V用φ0.80mm漆包线绕550匝,次级高压180V用φ0.5mm漆包线绕450匝,6N11、6N6灯丝绕组用φ1.62mm漆包线绕16匝。
6C19灯丝绕组用φ1.50mm漆包线绕16匝。
初次级之间用厚0.2mm 铜皮做静电屏蔽。
四、整流滤波电路 整流采用摩托罗拉快恢复二极管。
FD422电子管功率放大器的原理及制作
FD422 电子管功率放大器的原理及制作
一、FD422 功放电路原理
电路见附图。
音频信号由输入端子送入,经100kΩ音量电位器后送到输入级6N1 电子管的栅极,R1 是栅漏电阻。
6N1 是一只解析力高、音色柔和的胆管,适合SRPP 电路。
SRPP 电路的特点是高频放大线性较佳,输人阻抗高,输出阻抗低,失真小,频响宽阔,动态范围大,高频瞬态响应好,音质清丽柔和。
SRPP 电路具有共阴极放大与阴极跟随器的优点,能使输人级与功放级达到最佳的阻抗匹配。
功率放大级由FD422 直热式五极管接成三极管,组成单端甲类功率放大电路。
屏极负载阻抗3.5kΩ,屏极电压416V,阴极电压27v,屏极电流
77mA,采用自给栅负压方式。
功放级的功耗为P=UI=(416-27)
×0.077=30w。
按照甲类功率放最大输出效率35%计算,本机最大输出功率为P=30×0.35=10.5w。
二、电源部分。
电子管功放简易设计,写给初学者!
电子管功放简易设计,写给初学者!常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。
电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。
一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。
以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。
功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。
这里的初学者指有一定的电路理论基础,最好有一定的实做基础且对电子管工作原理有一定了解的(1)整机及各单元级估算1,由于功放常根据其输出功率来分类。
因此先根据实际需求确定自己所需要设计功放的输出功率。
对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W 左右输出功率,80db音箱需要120W左右输出功率。
当然实际可以根据个人需求调整。
2,根据功率确定功放输出级电路程式。
对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。
3,根据音源和输出功率确定整机电压增益。
一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。
由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。
例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍4,根据功率和输出级电路程式确定电压放大级所需增益及程式。
(OTL功放不在讨论之列)目前常用功率三极管有2A3,300B,811,211,845,805常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P (807),EL34,FU50,KT88,EL156,813束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。
6922电子管前级放大器电子管前级放大器制作_电路图
6922电子管前级放大器电子管前级放大器制作_电路图6922电子管前级放大器|电子管前级放大器制作_电路图6922电子管前级放大器前级放大器电源电路图前级放大器电路如图1所示,左右声道完全相同。
它由两级电压放大加阴极输出器组成,V1为第一级电压放大。
现代数码音源CD、DVD的输出电压一般都在2V左右,信号从IN输入,经R1衰减,通过栅极防振电阻R 2加至V1栅极,V1将信号放大,然后从屏极取出放大后的信号电压经C1耦合到下一级。
W1为V1交流负载的一部分,又是V2的栅极回路,同时起着总音量的控制作用。
V2a为第二级电压放大,将放大后的信号电压直接送到V2b栅极,这就叫做直接耦合。
采用直接耦合的V2a与V2b屏栅电位一致,在静态时足以使V2b管屏流截止而不工作,在动态时由于信号电压的加入,才能使V2b进人工作状态。
这种直接耦合,由于少用了一只耦合电容,不存在信号的电路损耗。
传输效率高,传真度好,减少了低频衰减,有利于改善幅频特性。
V1、V2a阴极电阻R4、R6都未并接旁路电容,有本级电流负反馈作用,能够提高音质、消除失真。
V2b为阴极输出器,把前级放大的音频信号电压从阴极引出,经C2传送给功率放大器。
阴极输出器具有非线性失真小,频率响应宽的特点,它没有放大作用,电压增益小于1,但它有一定的电流输出,有恒压输出特性,带负载能力很强,推动任何纯后级功率放大器从容不迫、轻松自如。
它的输入阻抗高,输出阻抗低,大约才几百欧姆,能和末级功放很好地匹配,即使用较长的信号线传输,也不会造成高频损失,抗干扰能力强,可以提高信噪比,提高音乐的纯度,音质较好。
一台靓声、工作稳定可靠的放大器,离不开优质的电源作保证,特别是前级放大器,对电源的品质要求相当高,不应有交流声和噪声,哪怕只有一丁点儿,经过功率放大后,都会产生可怕的声压级,会严重影响音质。
图2是前级放大器的电源电路图,高压部分采用晶体二极管作桥式整流,用扼流圈作n型滤波,电子管稳压供电。
FU_50超线性放大器制作
推动 信 号 经C3输 送 到V4的 栅 极, 本 机 采 用 固定栅负压可减少阴极电阻电源功率消耗, 避 免直流效率降低, 省掉大功率电阻及旁路电容, 杜绝阴极电阻工作时产生的热量, 节省机内有 限 的 空 间 , FU-50的 栅 负 压 为-55V左 右 , 通 过 调整W1在R8上端的栅负压为-55V, R11是向帘 栅提供电压并加C6起 到 旁 路 作 用 , 进 一 步净 化 帘栅压的D1和D2是两只串连的稳压二极管 , 在 这里稳压有二个作用。
在超线性电路中大多数都是依照各电子管的特性和 输出变压器的电气指标决定抽头位置。 本机电路在设计
时考虑到FU-50这只管与其他电子管有所不同, 如FU-50 管的屏压是800V, 最高可达1000V, 而帘栅压只有250V, 帘栅电流仅7mA, 所以笔者认为要想在输出变压器上为 帘栅提供必要电压是不可能。 于是笔者直接从B+中用电 阻降压后可得到250V电压, 供作帘栅压使用。
为了求得有三极管优美的音质和较大的输出功率, 笔者只有求助于超线性电路。 超线性甲类放大器电路中, 由于功放管帘栅极回路内加有较深的负反馈, 因此其内 阻较低, 这样即可使放大级的阻尼特性与瞬态变得更好, 它具有三极管的高保真输出的特点, 又具备超线性放大 电路高效率输出的特点, 使之重放音变的更加清晰明亮, 保真度也得以提高。
六、 放歌享受
整机调试完成后, 自然迫不及待的是想听听它的音 效 。 于是马 上 连 接 好 我 的索 尼 CDP-227ESD CD机 和 KEF的CRESTA3号 箱 , 以 及 自 制的 怪 兽 扁 平 音 箱 线 和 自 制 的 怪 兽 101信 号 线 。
电子管功放制作技巧和要领
电子管功放制作技巧和要领电子管音频功率放大器,以其卓越的重放音质,广受hifi发烧友的青睐。
市售成品电子管功放动辄数千元,乃至上万元,如此高价是大多数爱好者无法企及的。
爱好者说得好:“自己动手,丰衣足食”。
只要你有一定的电子知识和一定的动手能力,自制一台物美价廉的电子管功放并非难事。
电子管功放较之晶体管功放,看似庞大复杂,但当你了解了电子管电路的工作方式后,会发现,电子管劝放电路较之晶体管分立元件功放相对简洁,所用元件也少得多。
除输出变压器自制有一定难度外,其他元器件只要选配得当,电路调试有方,一台靓声的电子管功放就会在你的手上诞生。
本章首先简要介绍了自制电子管功率放大器的元件选择、安装步骤、调试技巧和关键制造要点。
当你准备好并渴望尝试时,你就可以开始操作了。
第一节电子管功放的装配与焊接技巧一、搭棚焊接方式国内外许多著名的电子管功率放大器都曾使用过,现在都使用了焊接。
因为棚接法的优点是接线可以走捷径,使接线最接近,实现合理接线。
另一个外,电子管功放的元件数量不多,体积较大,借助元件引脚,即可搭接,减少了过多引线带来的弊病。
只要布局合理,易收到较好的效果。
图8―1为搭棚式接法示意图。
棚式连接方式一般将功放中的各个部件分为3-4层,安装部件的步骤从下到上。
接地线和灯丝布线一般布置在靠近底板的最底层,其接地线靠近底板,保持最佳接触;第二层主要是电子管阴极和栅极接地的组件。
注意同一管的阴极和栅极的相关元件应在附近的同一点接地;第三层是放大级之间的耦合电容和其他元件;最上面一层是电阻电容和其他通过高压架空连接的元件。
放置在上层的高压元件可以有效地防止高压电场对各级电路的干扰。
二、关于一点接地一点接地是电子管功放电路布线中的一项重要措施。
图8-2为一点接地示意图。
对于输入级与电压放大级的元件接地问题尤为重对需要一点接地的元件主要包括栅极电阻、阴极电阻和旁路电容。
最好只使用元件引线直接焊接,尽量不要使用导线,否则容易产生交流噪声干扰。
电子管2A3功放DIY
--实验2A3功放/耳放两用机--- 实验2A3功放/耳放两用机(图片添加中)古老的2A3由于内阻低,线性好,音质甜美; 在电子管音频放大器的历史长河中弥久历新,和300B一样保持了旺盛的生命力.2A3/300B同为三极管,这是最初的功率放大管. 由于三极管的效率低,在后来追求大功率的角逐中逐渐被功率五级管和束射四级管所取代,以至于后来家用电子管功放都几乎被807/6L6/KT88这类四,五级管所垄断.上个世纪70年代,晶体管的长足进步,逐渐把电子管置于了死地,无论是三极管四级管还是五极管统统被打入冷宫.据一个资深收音机收藏家回忆:当年他听说有一个收破烂的老头收走了一万多只电子管,他赶去准备为收音机配一些备管,结果老人告诉他:个头大一点的管子已经全部被砸烂收集里面的金属片当废铁卖给废品收购站了....只剩下一些砸半天弄不到多少金属片的小管子....到了电子管起死回生的时代,电子管扮演的角色有了很大变化:人们不再追求大功率(再大也大不过石机),而是惊讶地发现在数码音源(CD)时代,胆机能够很好地祛除所谓的"数码声",使得在相对廉价的条件(与天价的HI-END石机相比),获得还原度比较高的音质.基于人们追求的是音质而不是效率/功率,这时候线性好,失真度低的三极管就脱颖而出,以甜美的音色战胜了它们的后辈:失真度较大的束射四级管和五极管,成为一代新宠.....闲话休叙,言归正传....典型的2A3电路有单5级管推动和双三极管推动等等(当然还有用SRPP推动的,因为我前面在做6C33胆机时发现SRPP电路有诸多不稳定的因素,请参见:/read.php?tid=102677&keyword= 当然也可能是眼高手低,未能伺候好.总之这次实验就排除在外了).<先上两个实验参考图,实验样机明天上图>功率放大级:拿到一个功率输出电子管,如何确定它的工作参数呢?首先,作为一个功率放大级,以一个四端网络模型来分析,无非是输入和输出两大要素:输出端口:要有一个初级阻抗与所用电子管匹配的输出变压器.不同的电子管,不同的工作参数设置都会影响到功率管的输出阻抗;好在2A3这样的名管已经有很多前辈作出了大量的实验,我们就选取初级阻抗为2.5-3.2K左右的输出变压器(在实验中修改参数,取得最佳值),而不去用它的输出特性曲线来求解了.(对输出变压器的设计有兴趣的同学可以参考:/read.php?tid=133153&keyword=)输入端口:简单的设计原则--看一个电子管的栅负偏压数据就可以判知其输入特性.2A3的参数表参见附图,可见其栅偏压高达-45V.由于三极管的放大倍数远低于束射四级管/五极管,所以加在其输入栅极上的信号电压就远比后者高得多,换句话说就是说三极管远没有束射四级管/五极管好推.例如4P1S只需要+/- 6V的信号电压就能推动了,而2A3需要的推动电压是它的7倍多!如此高的信号推动电压就决定了三极管对前置电压放大级有着很苛刻的要求:既要大摆幅还得低失真.前置放大级:一般而言,采用两级中u三极管放大的前级放大电路比较容易满足增益/摆幅,对于功放来说,是没有问题的.但是耳放对信噪比有着特殊的要求: 在耳朵紧贴喇叭都听不到噪声的功放电路,插上灵敏度高达100多分贝/mW的耳机,就有可能有严重底噪! 所以对于以耳放为主的放大器中,在能够满足放大摆幅的前提下,电压放大级数是越少越好.因此,单5级管的前置放大电路就成为首选.现代CD的输出摆幅已经高达2Vrms, 考虑到放大量的富裕度, 以0.5 Vrms的设计值来计算:由2A3的输出特性曲线可知,当输入信号在工作点-43.5V摆动时,电路可以取得最大输出功率.43.5(单峰值电压)/(根号2)=31(Vrms)31/0.5 = 62(倍)这对于一个五极管放大电路来说,只要仔细选择工作点和负载电阻,还是可以做到的.<相关的实验数据随后附上>此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:[此贴子已经被作者于2006-5-27 20:44:21编辑过]-- 作者:neo-- 发布时间:2006-5-26 22:40:00--一直想要做的JJ.....-- 作者:南海赢民-- 发布时间:2006-5-26 22:58:00--S版又有大动作啦~~-- 作者:sword_yang-- 发布时间:2006-5-27 10:51:00--资料添加中....-- 作者:昔日情怀-- 发布时间:2006-5-28 10:59:00--关注,学习中。
电子管放大器的自制与调试
电子管放大器的自制与调试制作电子管放大器时应重点把握以下几个方面的问题。
一、供电系统供电系统的优劣直接影响到系统的稳定性和功放电路各项性能的良好发挥。
1. 电源变压器:在电子管放大器中,功放管(耗电大户)对电源变压器索取的是高电压与小电流,通常情况下其功率就取在功放满功率输出时的2 倍以上。
对电源变压器应重点加强屏蔽措施,因为高电压输出的电源变压器比低电压输出的电源变压器的辐射干扰能力大得多。
2. 整流、滤波电路:在电子管放大器电路中,一般做法是整个电路共用一组直流电源。
整流器的耐压和整流电流应选择得高一些,耐压一般应在电源电压的1 倍以上,通过电流应在整机满功率时输出电流的2 倍以上。
直流电源滤波应尽量选择π型、LC 型以及滤波性能优异的并联谐振型滤波器或设置电子稳压电路。
因为电子管功放中的主电压通常设计得较高(一般在200V 以上),所以必须注意在整流、滤波后的直流电源与地间并联一只合适功率与阻值的电阻(泄放电阻),以便在关机状态下对整流器进行调整、检修时及时泄放掉滤波电容内存储的电荷。
另外还应充分做好各级之间的电源隔离与退耦工作。
3. 灯丝电源:在电子管放大器中,灯丝的50Hz 干扰早已判为是造成整机信噪比过低的罪魁祸首,解决问题的途径有三:一是采用直流电压为灯丝供电;再者就是灯丝交流电压供电,但必须采用悬浮供电的方式。
做法是把变压器次级为灯丝供电绕组的中心抽头接地,在灯丝电压输出端子之间加入交流声平衡电路,即在两端子间跨接一只阻值合适的线绕电位器,将其中心滑动片接地,通过调整此交流声平衡电位器来达到降低或消除交流声的目的;三是将电子管灯丝任意一端接地,另一端接变压器灯丝绕组的一个端点(假设此端为A ,另一端为B接地) ,通过改变市电交流插头插入电源插座的方向和A、B 两点之间的交换,此时监听扬声器中50Hz 交流声的干扰会出现明显的变化。
当判定某种接法的交流声最小时,即可将此连接方式固定下来,并记住交流电源插头插入电源插座中的方向。
原创 如何制作简单电子管功放
原创如何制作简单电子管功放(更新中)解决方法, 电烙铁, 电子管, 开孔器, 氯化锌现在好多人都喜欢电子管功放,但是没有经验,为了让大家少走弯路,我准备写写我的经验与大家分享工具篇最主要的工具是电烙铁,功率最好是50W的尖头外热烙铁,我一直用的就是.助焊剂最好用松香,如果松香不好用,应该使用更厉害的氯化锌水溶液,他的腐蚀性强,焊接后一定要洗净.还有一种重要的工具是止血钳,医生手术用的,非常好用.电钻很有用,机壳制造有了电钻和锉刀就不难了机壳篇大家最头疼的就是机壳了,简单解决方法就是使用光驱铁壳,电钻在上面一出溜一个洞.管座的孔是用开孔器打的,开孔器有个中间钻头,最好不用,钻头的作用是固定开孔器,固定的很不好.解决办法是制作个铁质模板,上面有个和开孔器尺寸一样的孔,把这个板固定在需要打孔的工件上,用螺丝固定,这样开孔器旋转时就不会乱跑了.钻孔时一定要浇水冷却,千万不要让水进到电钻里,也不要让电线碰水,否则后果很严重.零件篇电子管前级管建议使用6N3,它的SRPP接法很棒,功放管建议使用6P1 6P6P6P14,这些管都不错.6P14有假的,是6P15擦掉型号印上6P14,真的管第三栅是与阴极相通的,云母片上没有屏蔽,6P15有.电阻电阻建议使用金膜电阻,金膜电阻时蓝色的.普通地方用1W的就够. 电容高压电解市售的良莠不齐,最好用品牌家用电器的开关电源高压滤波电容,一般质量不错.耦合电容用开关电源EMI滤波的安规电容,质量可靠.阴极电容可以用开关电源上的低压滤波电容,但是要测测好坏.退偶电容用云母不错变压器输出变压器可以使用成品,但是贵得很,可以找变压器厂定做.如果做6P1输出变压器,就让厂家按220V输出6V9V定做C形变压器,铁心留0.08毫米气息,铁心要20W的,最重要的是铁心的硅钢片一定不能有断点.输出9V的是8欧,6V的是4欧.电源变压器直接给参数到厂家就可以了.电感电感用日光灯镇流器就行,也可以把40W的电源变压器拆开,铁心顺插,垫层打印纸再装好,使用初级绕组.制作篇一定要一点接地,不能有接地回路否则很闹心.有的管座经过反复插拔接触不良了,一定要用新管座,否则有故障很难发现.音量输入的插座一定不能安装在底板上,不能与底板直接相通,接地端一定要用屏蔽线接到前级管的地上,否则有噪音.灯丝电位要垫高,要30V左右,一定要加强这个电压的滤波,10微法电解加4700P云母.这个电压可以在高压电源上用电阻分压得到,这样能有效减少噪声.接上负反馈后如果自激,对调输出变压器次级接线就好了.布线篇支持使用接线架,焊接之前一定要画出来草图,每个零件位置必须确定,这样就不至于过乱。