一元二次方程全章测试卷(精品范文).doc

合集下载

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 一元二次方程的一般形式是:A. ax^2 + bx + c = 0B. ax^2 + bx = 0C. ax^2 + c = 0D. ax + b = 0答案:A2. 下列哪个方程不是一元二次方程?A. x^2 - 3x + 2 = 0B. x^2 - 5 = 0C. 2x + 5 = 0D. 3x^2 - 7x = 0答案:C3. 一元二次方程 ax^2 + bx + c = 0 的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A二、填空题4. 解一元二次方程 x^2 - 5x + 6 = 0,其判别式为 _______ 。

答案:15. 如果一元二次方程的根是 x1 = 2 和 x2 = 3,那么这个方程可以写成 _______ 。

答案:x^2 - 5x + 6 = 0三、解答题6. 解一元二次方程 2x^2 - 7x + 3 = 0。

解:首先计算判别式Δ = b^2 - 4ac = (-7)^2 - 4 * 2 * 3 = 49 - 24 = 25。

由于Δ > 0,方程有两个不相等的实数根。

根据求根公式 x = (-b ± √Δ) / (2a),我们得到:x1 = (7 + √25) / 4 = (7 + 5) / 4 = 12 / 4 = 3,x2 = (7 - √25) / 4 = (7 - 5) / 4 = 2 / 4 = 0.5。

7. 已知方程 x^2 + 4x + k = 0 的一个根是 x = -2,求 k 的值。

解:将 x = -2 代入方程,得到 (-2)^2 + 4 * (-2) + k = 0。

简化得 4 - 8 + k = 0,解得 k = 4。

四、应用题8. 一个长方形的长是宽的两倍,面积是 24 平方米,求这个长方形的长和宽。

解:设宽为 x 米,长为 2x 米。

(完整版)一元二次方程全章测试题(基础卷)

(完整版)一元二次方程全章测试题(基础卷)

一元二次方程(一)一、选择题1.一元二次方程2210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根2.若关于z 的一元二次方程 2.20x x m -+=没有实数根,则实数m 的取值范围是 ( )A .m<lB .m>-1C .m>lD .m<-1 3.一元二次方程x 2+x +2=0的根的情况是 ( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根D .有两个相等的实数根4.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5.已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <07.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )A.-1或34B.-1C.34D.不存在 8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A.x 2+4=0B.4x 2-4x +1=0C.x 2+x +3=0D.x 2+2x -1=09.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A.200(1+a%)2=148B.200(1-a%)2=148图(7)C.200(1-2a%)=148D.200(1-a 2%)=148 10.下列方程中有实数根的是( ) A.x 2+2x +3=0B.x 2+1=0C.x 2+3x +1=0D.111x x x =-- 11.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围 是 ( ) A . m >-1 B . m <-2 C .m ≥0 D .m <0 12.如果2是一元二次方程x 2=c 的一个根,那么常数c 是( ) A.2 B.-2 C.4 D.-4二、填空题13.已知一元二次方程22310x x --=的两根为1x 、2x ,则12x x += 14.方程()214x -=的解为 。

(完整版)_一元二次方程单元测试题(含答案)

(完整版)_一元二次方程单元测试题(含答案)

第二章一元二次方程测试题(1)姓名学号一、选择题(每题 3 分,共 30 分)1.以下方程属于一元二次方程的是().( A )( x2- 2)·x=x 2 (B ) ax2 +bx+c=01( D )x2=0 ( C)x+ =5x2.方程 x( x-1 ) =5( x-1 )的解是().(A)1 (B)5 (C)1或 5 ( D)无解3.已知 x=2 是对于 x 的方程 3 x2- 2a=0 的一个根,则2a-1 的值是().2(A)3(B)4(C)5(D)64.把方程 x2-4x-6=0 配方,化为( x+m )2=n 的形式应为().( A)( x-4 )2=6 ( B)( x-2 )2=4 ( C)( x-2 )2=0 (D)( x- 2)2=10 5.以下方程中,无实数根的是().( A) x2+2x+5=0 ( B) x2-x-2=0 ( C) 2x2+x-10 =0 ( D) 2x2-x-1=06.今世数式 x2+3x+5 的值为 7 时,代数式3x2+9x-2 的值是().(A)4 (B)0 (C)-2 (D)-47.方程( x+1)( x+2) =6 的解是().( A )x =- 1, x =- 2 ( B )x =1, x =- 4 ( C) x =- 1, x =4 ( D) x =2 , x =31 2 1 2 1 2 1 28.假如对于 x 的一元二次方程 2 的两根分别为 1 2 ,?那么这个一元二次x +px+q=0 x =3 ,x =1 方程是().( A )x2+3x+4=0 ( B) x2-4x+3= 0 ( C) x2+4x-3= 0 (D ) x2+3x -4=09.某市计划经过两年时间,绿地面积增添44% , ?这两年均匀每年绿地面积的增添率是().(A ) 19% ( B) 20% ( C)21% (D ) 22% 10.在一幅长80cm,宽 50cm 的矩形景色画的周围镶一条金色纸边, ?制成一幅矩形挂图,如下图.假如要使整个挂图的面积是 5 400cm2,设金色纸边的宽为 xcm, ?那么 x 知足的方程是().( A) x2+130x-1 40 0=0 ( B) x2+65x-350=0( C) x2-130x-1 400=0 ( D) x2-65x-350=0二、填空题(每题 3 分,共 24 分)11.方程 2x2-x-2=0 的二次项系数是 ________,一次项系数是 ________, ?常数项是 ________.12.若方程ax2+bx+c=0 的一个根为 -1 ,则 a-b+c=_ ______.13.已知 x2-2x-3与x+7的值相等,则x 的值是 ________.14.请写出两根分别为-2 , 3 的一个一元二次方程_________.15.假如( 2a+2b+1)( 2a+2b-1 ) =63,那么 a+b 的值是 ________.16.已知 x2+y2-4x+6y+13=0 , x, y 为实数,则x y=_________.17.已知三角形的两边分别是 1 和 2,第三边的数值是方程2x2 -5x+3=0 的根,则这个三角形的周长为 _______.18.若 -2 是对于 x 的一元二次方程(k2-1 ) x2+2kx+4=0 的一个根,则k=________ .三、解答题(共46 分)19.解方程:8x2=24x(x+2) 2=3x+6(7x-1) 2 =9x2(3x-1)2=10x2+6x=1-2x2+13x-15=0 .x2 2 2x 2 2 x21x 136 2 20.(此题 8 分)李先生计入银行 1 万元,先存一个一年按期,?一年后将本息自动转存另一个一年按期,两年后共得本息 1.045 5 万元.存款的年利率为多少?(?不考虑利息税)21.(此题 8 分)现将进货为 40 元的商品按 50 元售出时,就能卖出 500 件. ?已知这批商品每件涨价 1 元,其销售量将减少 10 个.问为了赚取 8 000 元收益,售价应定为多少?这时应进货多少件?第二章一元二次方程测试题(2)一、选择题(每题 3 分,共 30 分)1 .方程( y+8)2 =4y+(2y-1 )2 化成一般式后 a,b,c 的值是()A .a=3,b=-16 ,c=-63;B . a=1,b=4,c=(2y-1 )2C .a=2,b=-16 ,c=-63;D . a=3,b=4,c=(2y-1 )22 .方程 x2-4x+4=0 根的状况是()A .有两个不相等的实数根 ;B .有两个相等的实数根 ;C .有一个实数根 ;D .没有实数根3 .方程 y2+4y+4=0 的左侧配成完整平方后得()A .(y+4)2 =0B .(y-4 )2 =0C .(y+2)2=0D .( y-2 )2=04 .设方程 x2+x-2=0 的两个根为α,β,那么(α -1 )(β -1 )的值等于()A.-4B.-2 C .0 D .25 .以下各方程中,无解的方程是()A . x 2 =-1B . 3( x-2 )+1=0C .x2-1=0D .x=2 x 16 .已知方程 x x 3 =0,则方程的实数解为()A.3 B.0 C.0,1 D .0,37 .已知 2y 2+y-2 的值为 3,则 4y 2+2y+1 的值为( ) 8 A .10 B .11 C .10或 11 D .3或 11) .方程 x 2有两个不相等的实根,则 , 知足的关系式是( +2px+q=0 p q A .p 2-4q>0 B .p 2-q ≥0 C .p 2-4q ≥ 0 D . p 2-q>09 .已知对于 x 的一元二次方程( m-1)x 2+x+m 2+2m-3=0的一个根为 0,则 m 的值为( )A .1B .-3C .1 或-3D .不等于 1 的随意实数10 .已知 m 是整数,且知足2m1 0,则对于 x 的方程 m 2x 2-4x-2= ( m+2)5 2m 1x 2+3x+4 的解为( )6D .x 13 或 A .x 1 , 2=- 3 B .x 1 , 2 = 3 C . x=- , 2=-2 x 2 =2 x 2=-2x =27x=673 分,共 30 分)二、填空题(每题11.一元二次方程 x 2+2x+4=0的根的状况是 ________.12.方程 x 2( x-1 )( x-2 )=0 的解有 ________个. 13.假如( 2a+2b+1)( 2a+2b-2) =4,那么 a+b 的值为 ________.14.已知二次方程 3x 2-(2a-5 )x-3a-1=0 有一个根为 2,则另一个根为 ________. 15.对于 x 的一元二次方程 x 2 +bx+c=0的两根为 -1 ,3,则 x 2+bx+c?分解因式的结果为 _________.16.若方程 x 2-4x+m=0有两个相等的实数根,则 m 的值是 ________. 17.若 b (b ≠0)是方程 x 2+cx+b=0 的根,则 b+c 的值为 ________.18.一元二次方程( 1-k )x 2-2x-1=?0? 有两个不相等的实根数, ?则 k?的取值范围是 ______.19.若对于 x 的一元二次方程 x 2+bx+c=0 没有实数根,则切合条件的一组 b , c 的实数值能够是 b=______,c=_______.20.等腰三角形 ABC 中, BC=8,AB , AC 的长是对于 x 的方程 x 2-10x+m=0 的两根,则 m?的值是 ________. 三、解答题21.(12 分)采用适合的方法解以下方程:(1)(x+1)( 6x-5 ) =0; ( 2) 2x 2+ 3 x-9=0 ;(3)2(x+5)2=x ( x+5);(4) 2 x 2-4 3 x-2 2 =0.22.(5 分)不解方程,鉴别以下方程的根的状况:(1)2x 2+3x-4=0;(2)16y 2+9=24y ;(3) 3 x 2- 2 x+2=0;(4)3t 2-3 6 t+2=0 ;(5)5(x 2+1) -7x=0 .23.(4 分)已知一元二次方程 ax 2+bx+c=0(a ≠0)的一个根是 1,且 a ,b 满 足 b= a 2 + 2 a -3 ,?求对于 y 的方程 1y 2-c=0 的根.424.(4 分)已知方程 x 2+kx-6=0 的一个根是 2,求它的另一个根及 k 的值. 25.(4 分)某村的粮食年产量,在两年内从 60 万千克增添到 72.6 万千克,问 均匀每年增添的百分率是多少?26.(5 分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了 使用“峰谷电”的政策及收费标准(见表) .已知王老师家 4 月份使用“峰谷 电”95kMh ,缴电费 43.40 元,问王老师家 4 月份“峰电”和“谷电”各用了 多少 kMh ?峰电 08:00 —22:00 元 /kWh 谷电 22:00 —08:00元 /kWh27.(6 分)印刷一张矩形的张贴广告(如图) ,?它的印刷面积是 32dm 2,?上 下空白各 1dm ,两边空白各,设印刷部分从上到下的长是 xdm ,周围空白处的面积为 Sdm 2.( 1)求 S 与 x 的关系式;2( 2)当要求周围空白的面积为 18dm 时,求用来印刷这张广告的纸张的长和宽各是多少?。

第21章《一元二次方程》单元测试(word版 附参考答案)

第21章《一元二次方程》单元测试(word版 附参考答案)

第21章《一元二次方程》单元测试班级: 姓名: 得分:——A 卷(60分)——一、选择题(每小题3分,共21分)1.下列方程中是关于x 的一元二次方程的是( )A.20ax bx c ++=B.2250x x --=C.223x x x -=+D.2120x x -= 2.关于x 的方程2320ax x -+=是一元二次方程,则( )A.0a >B.0a ≠C.1a =D.a ≥03.用配方法解下列方程,其中应在左右两边同时加上4的是( )A.225x x -=B.2245x x -=C.245x x +=D.225x x +=4.方程(1)0x x -=的根是( )A.0x =B.1x =C.10x =,21x =D.110x x ==5.解方程① x 2+2x -3=0,②x 2-3x -2=0,③(x +1)2=2(x +1),方法选择适当的是( )A.①公式法;②因式分解法;③配方法B.①因式分解法;②公式法;③配方法C.①公式法;②配方法;③因式分解法D.①配方法;②公式法;③因式分解法6.已知关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,则k ( )A. 2k =B. 2k >C. 2k <D.2k ≠7.某厂一月份的产量为500吨,三月份的产量达到720吨。

若平均每月增长率是x ,则可以列方程( )A .720)21(500=+xB .720)1(5002=+xC .720)1(5002=+xD .500)1(7202=+x二、填空题(每小题3分,共18分)8.若(a -1)x 2+3ax -1=0是关于x 的一元二次方程,那么a 的取值范围是 .9.将方程3x (x -1)=5(x +2)化成一般形式为 .10.方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是 . 11.22___)(_____6+=++x x x .12.方程230x kx +-=的一个根是1,则k 的值是 .13.已知关于的x 方程240x mx -+=有两个相等实数根,那么=m .三、解方程(每小题5分,共10分)14.22990x x --=(配方法) 15.2450x x --=(公式法)四、解答题(第16题5分,第17题6分,共11分)16.学校组织了一次篮球比赛(每两队之间只进行一场比赛),共进行了6场比赛,那么共有多少个球队参加了这次比赛?17.某蔬菜有限公司一年四季都有大量新鲜蔬菜销往全国各地,近年来它的蔬菜产值不断增加,2013年蔬菜的产值是1000万元,2015年产值达到1210万元.求这两年蔬菜产值的年平均增长率是多少?——B 卷(40分)——一、选择题(每小题2分,共6分)1. 关于x 的方程21(1)310m m x x +++-=是一元二次方程,则( )A. 1m =B. 1m =-C. 1m =±D. m 为全体实数2.以3和1-为两根的一元二次方程是 ( );A.0322=-+x xB.0322=++x xC.0322=--x xD.0322=+-x x3.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. 6-B. 1C. 6-或1D. 2二、填空题(每小题3分,共6分)4.已知m 是方程x 2-x -2=0的一个根,则代数式m 2-m 的值等于 .5.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数为 .三、解方程(每小题5分,共10分)6.)12(3)12(2+=+x x 7.01072=+-x x四、解答题(每小题9分,共18分)8.如图,矩形ABCD中,AB=6厘米,BC=12厘米,点P从点A出发沿AB边向点B 以1厘米/秒的速度移动,点Q从点B出发沿BC边向点C以2厘米/秒的速度移动,如果P、Q分别是从A、B同时出发,经过几秒时△PBQ的面积等于8平方厘米?P9.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?——C 卷(20分)——一、选择题(每小题2分,共4分)1. 已知222246140x y z x y z +++-++=,则x y z ++的值是( )A. 1B. -1C. 2D. -2 2.已知a 是210x x +-=的一个根,则22211a a a---的值是( )二、填空题(每小题3分,共6分) 3.已知一元二次方程2560x x -+=的两个根是12,x x ,则1211x x += . 4.若一个三角形的三边长均满足方程2680x x -+=,则此三角形的周长为 .三、解答题(每小题5分,共10分)5.先化简,再求值:3(1)1x x +--÷2441x x x -+-,其中x 满足方程260x x +-=.6.已知a 是2201610x x -+=的一个根,试求22201620151a a a -++的值.第21章《一元二次方程》单元测试参考答案一、选择题(每小题3分,共21分)1.B 2.B 3.C 4.C 5.D 6.C 7.B二、填空题(每小题3分,共18分)8.a ≠1 9.3x 2-5x -10=0 10.2、-3 、-1 11.9、3 12.2 13.±4三、解方程(每小题5分,共10分)14.22990x x --=(配方法) 15.2450x x --=(公式法) 解:移项,得 2299x x -= 解:1,4,c 5.a b ==-=-配方,得 221991x x -+=+ 224(4)41(5)360b ac ∆=-=--⨯⨯-=> 即 2(1)100x -= 方程有两个不等实数根由此可得 110x -=± 462x ±=== 111x =,29x =- 15x =,21x =-四、解答题(第16题5分,第17题6分,共11分)16.解:共有x 个球队参加了这次比赛,由题意得12×x (x -1)=6解得 x 1=4,x 2=-3(不合题意,舍去)答:共有4个球队参加了这次比赛.17.解:设这两年蔬菜产值的年平均增长率是x ,由题意得1000(1+x )2=1210解得 x 1=0.1,x 2=-2.1(不合题意,舍去)∴ x =0.1=10%答:这两年绿地面积的年平均增长率为10%.——B 卷(40分)——一、选择题(每小题2分,共6分)1.A 2.C 3.C二、填空题(每小题3分,共6分)4.2 5.25或36.三、解方程(每小题5分,共10分) 6.)12(3)12(2+=+x x 7.01072=+-x x 解:移项,得 2(21)3(21)0x x +-+= 解:1,7,c 10.a b ==-=因式分解,得(21)(213)0x x ++-= 224(7)410019b ac ∆=-=--⨯⨯=>于是,得210x +=,或2130x +-= 9732x ±== 112x =-,21x = 15x =,22x =四、解答题(每小题9分,共18分)8.解:设经过x 秒时△PBQ 的面积等于 8 平方厘米,由题意得 12×2x (6-x )=8解得 x 1=2,x 2=4经检验x 1,x 2均符合题意答:经过2秒或4秒时△PBQ 的面积等于 8 平方厘米。

一元二次方程与二次函数综合测试题及参考答案(精品范文).doc

一元二次方程与二次函数综合测试题及参考答案(精品范文).doc

【最新整理,下载后即可编辑】一、选择题1、设、是关于的一元二次方程的两个实数根,且,,则()A.B.C.D.2、下列命题:①若,则;②若,则一元二次方程有两个不相等的实数根;③若,则一元二次方程有两个不相等的实数根;④若,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④3、若一次函数的图象过第一、三、四象限,则函数()A.有最大值B.有最大值-C.有最小值D.有最小值-4、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A. 3个B. 2个C. 1个D. 0个5、关于的一元二次方程的两个实数根分别是,且,则的值是()A.1 B.12 C.13 D.25二、填空题6、设、是方程的两根,则代数式= 。

7、已知关于一元二次方程有一根是,则。

三、计算题8、已知:关于的方程(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是,求另一个根及值.9、解方程:四、综合题10、已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.11、如图:抛物线与轴交于A、B两点,点A的坐标是(1,0),与轴交于点C.(1)求抛物线的对称轴和点B的坐标;(2)过点C作CP⊥对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且∠BPD=∠BCP,求抛物线的解析式。

12、已知关于x的二次函数y=x2-(2m-1)x+m2+3m+4.(1)探究m满足什么条件时,二次函数y的图象与x轴的交点的个数. (2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且+=5,与y轴的交点为C,它的顶点为M,求直线CM的解析式.13、如图,已知点,直线交轴于点,交轴于点(1)求对称轴平行于轴,且过三点的抛物线解析式;(2)若直线平分∠ABC,求直线的解析式;(3)若直线产(>0)交(1)中抛物线于两点,问:为何值时,以为边的正方形的面积为9?14、如图,抛物线交轴于点、,交轴于点,连结,是线段上一动点,以为一边向右侧作正方形,连结,交于点.(1)试判断的形状,并说明理由;(2)求证:;(3)连结,记的面积为,的面积为,若,试探究的最小值.15、如图,抛物线y =-x2+bx +c 与x 轴交于A、B两点,与y 轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E 在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.五、简答题16、已知的两边,的长是关于的一元二次方程的两个实数根,第三边的长是.(1)为何值时,是以为斜边的直角三角形;(2)为何值时,是等腰三角形,并求的周长17、已知关于的一元二次方程:.(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为(其中).若是关于的函数,且,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量的取值范围满足什么条件时,.18、已知抛物线y = ax2-x + c经过点Q(-2,),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、B两点,如图.(1)求抛物线的解析式;(2)求A、B两点的坐标;(3)设PB于y轴交于C点,求△ABC的面积.19、如图,已知抛物线的顶点为A(1,4)、抛物线与y 轴交于点B (0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式.(2)当PA+PB的值最小时,求点P的坐标.20、已知二次函数的部分图象如图7所示,抛物线与轴的一个交点坐标为,对称轴为直线.(1)若,求的值;(2)若实数,比较与的大小,并说明理由.参考答案一、选择题1、C2、B3、B4、考点:二次函数图象与系数的关系。

一元二次方程单元试卷(word版含答案)

一元二次方程单元试卷(word版含答案)

一元二次方程单元试卷(word 版含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在平面直角坐标系中,()4,0A -,()0,4B ,四边形ABCO 为平行四边形,4,03D ⎛⎫- ⎪⎝⎭在x 轴上一定点,P 为x 轴上一动点,且点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,已知P 点运动时间为t . (1)点C 坐标为________,P 点坐标为________;(直接写出结果,可用t 表示) (2)当t 为何值时,BDP ∆为等腰三角形;(3)P 点在运动过程中,是否存在t ,使得ABD OBP ∠=∠,若存在,请求出t 的值,若不存在,请说明理由!【答案】(1)(4,4),(43t ,0);(2)1101-,4; (3)存在,3109t【解析】 【分析】(1)利用平行四边形的性质和根据P 点的运动速度,利用路程公式求解即可; (2)分三种情况:①当BD BP 时,②当BD DP =时,③当BP DP =时,分别讨论求解,即可得出结果; (3)过D 点作DF BP 交BP 于点F ,设OP x =,则可得224BPx ,43DPx ,453DF,利用1122BDPS DP BO BP DF ,即可求出OP 的长,利用路程公式可求得t 的值。

【详解】解:(1)∵()4,0-A ,()0,4B ,四边形ABCO 为平行四边形, ∴点C 坐标为(4,4),又∵P 为x 轴上一动点,点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,P 点运动时间为t ,∴P 点坐标为(43t ,0), (2)∵B ,D 的坐标分别为:()0,4B ,4,03D ⎛⎫- ⎪⎝⎭, ∴4OB =,43OD =, 由勾股定理有:22224441033DB OBOD, 当BDP ∆为等腰三角形时, ①如图所示,当BDBP 时,OD OP =,∴P 点坐标为(43,0), ∴1t =②如图所示,当BD DP =时,∵4103DB ,OP DP OD∴44410101333OP ,∴101t③如图所示,当BP DP =时,设P 点坐标为:(x ,0) 则有:2224BP x,2243DPx, ∴222443xx,解之得:163x = ∴P 点坐标为(163,0), ∴4t =综上所述,当t 为1,101-,4时,BDP ∆为等腰三角形;(3)答:存在t ,使得ABD OBP ∠=∠。

九年级上册一元二次方程单元综合测试(Word版 含答案)

九年级上册一元二次方程单元综合测试(Word版 含答案)

九年级上册一元二次方程单元综合测试(Word版含答案)一、初三数学一元二次方程易错题压轴题(难)1.阅读下面材料:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,它通常用字母d表示,我们可以用公式(1)2n nS na d-=+⨯来计算等差数列的和.(公式中的n表示数的个数,a表示第一个数的值,)例如:3+5+7+9+11+13+15+17+19+21=10×3+10(101)2-×2=120.用上面的知识解决下列问题.(1)计算:2+8+14+20+26+32+38+44+50+56+62+68+74+80+86+92+98+104+110+116(2)某县决定对坡荒地进行退耕还林.从2009年起在坡荒地上植树造林,以后每年植树后坡荒地的实际面积按一定规律减少,下表为2009、2010、2011、2012四年的坡荒地面积的统计数据.问到哪一年,可以将全县所有坡荒地全部种上树木.【答案】(1)1180;(2)到2017年,可以将全县所有的坡荒地全部种上树木.【解析】【分析】(1)根据题意,由公式(1)2n nS na d-=+⨯来计算等差数列的和,即可得到答案;(2)根据题意,设再过x年可以将全县所有的坡荒地全部种上树木.列出方程,解方程即可得到答案.【详解】解:(1)由题意,得6d=,20n=,2a=,∵(1)2n nS na d-=+⨯,∴20(201)22062S-=⨯+⨯401140=1180=+;(2)解:设再过x年可以将全县所有的坡荒地全部种上树木.根据题意,得1200x+(1)2x x-×400=25200,整理得:(x ﹣9)(x+14)=0,∴x =9或x =﹣14(负值舍去).∴2009+9-1=2017;答:到2017年,可以将全县所有的坡荒地全部种上树木.【点睛】本题考查了一元二次方程的应用,解一元二次方程,以及计算等差数列的和公式,解题的关键是熟练掌握题意,正确找出等量关系,列出方程进行解题.2.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?【答案】(1)这两年藏书的年均增长率是20%;(2)到2018年底中外古典名著的册数占藏书总量的10%.【解析】【分析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率; (2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.【详解】解:(1)设这两年藏书的年均增长率是x ,()2517.2x +=,解得,10.2x =,2 2.2x =-(舍去),答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有()7.2520%0.44-⨯=(万册), 到2018年底中外古典名著的册数占藏书总量的百分比是:5 5.6%0.44100%10%7.2⨯+⨯=, 答:到2018年底中外古典名著的册数占藏书总量的10%.【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.3.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其 他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价?【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件【解析】 【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= ,解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=,解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件.【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.4.阅读下列材料计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t ,则:原式=(1﹣t )(t +)﹣(1﹣t ﹣)t =t +﹣t 2﹣+t 2= 在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+) (2)因式分解:(a 2﹣5a +3)(a 2﹣5a +7)+4(3)解方程:(x 2+4x +1)(x 2+4x +3)=3【答案】(1);(2)(a 2﹣5a +5)2;(3)x 1=0,x 2=﹣4,x 3=x 4=﹣2【解析】【分析】(1)仿照材料内容,令+=t代入原式计算.(2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a.(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.【详解】(1)令+=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=(2)令a2﹣5a=t,则:原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2(3)令x2+4x=t,则原方程转化为:(t+1)(t+3)=3t2+4t+3=3t(t+4)=0∴t1=0,t2=﹣4当x2+4x=0时,x(x+4)=0解得:x1=0,x2=﹣4当x2+4x=﹣4时,x2+4x+4=0(x+2)2=0解得:x3=x4=﹣2【点睛】本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.5.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg );(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x 千克,则x{1﹣[60%+1.6%(90﹣x )]}=12,整理得:x 2﹣65x ﹣750=0,(x ﹣75)(x+10)=0,解得:x 1=75,x 2=﹣10(舍去),60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用6.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根.(1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值.【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x 1+x 2=﹣2-6a a ,x 1x 2=-6a a ,由(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣66a - 是是负整数,即可得66a -是正整数.根据a 是整数,即可求得a 的值2.【详解】(1)∵原方程有两实数根, ∴260(2)4(6)*0a a a a -≠⎧⎨∆=-->⎩, ∴a≥0且a≠6.(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根,∴x 1+x 2=﹣26a a -,x 1x 2=6a a -,∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=-6a a ﹣26a a -+1=﹣66a -. ∵(x 1+1)(x 2+1)是负整数, ∴﹣66a -是负整数,即66a -是正整数. ∵a 是整数,∴a ﹣6的值为1、2、3或6,∴a 的值为7、8、9或12.【点睛】 本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.7.有n 个方程:x 2+2x ﹣8=0;x 2+2×2x ﹣8×22=0;…x 2+2nx ﹣8n 2=0.小静同学解第一个方程x 2+2x ﹣8=0的步骤为:“①x 2+2x=8;②x 2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x 1=4,x 2=﹣2.” (1)小静的解法是从步骤 开始出现错误的.(2)用配方法解第n 个方程x 2+2nx ﹣8n 2=0.(用含有n 的式子表示方程的根)【答案】(1)⑤;(2)x 1=2n ,x 2=﹣4n .【解析】【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【详解】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x 2+2nx ﹣8n 2=0,x 2+2nx=8n 2,x 2+2nx+n 2=8n 2+n 2,(x+n )2=9n 2,x+n=±3n ,x 1=2n ,x 2=﹣4n .8.如图,在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA 、OB 的长分别是一元二次方程x 2﹣7x+12=0的两个根(OA >OB ).(1)求点D 的坐标.(2)求直线BC 的解析式.(3)在直线BC 上是否存在点P ,使△PCD 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.【答案】(1)D(4,7)(2)y=3944x (3)详见解析【解析】试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE 和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b (k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.试题解析:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,∵DE⊥AE∴∠AED=90°=∠AOB,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,解得,∴y=x﹣;(3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数9.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32 ,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.10.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH 是正方形ABCD的外接正方形.探究一:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE2EB=x,则BF2﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE2﹣x在Rt△AEB中,由勾股定理,得x2+2﹣x)2=12解得,x1=x2=2 2∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍探究二:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)探究三:已知边长为1的正方形ABCD,一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)【答案】不存在,详见解析【解析】【分析】探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.【详解】探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,所以EF=FG=GH=HE,设EB=x,则BF x,∵Rt△AEB≌Rt△BFC,∴BF=AE﹣x,在Rt△AEB中,由勾股定理,得,x2+x)2=12,整理得x2x+1=0,b2﹣4ac=3﹣4<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x,∵Rt△AEB≌Rt△BFC,∴BF=AE=2﹣x,在Rt△AEB中,由勾股定理,得,x2+(2﹣x)2=12,整理得2x2﹣4x+3=0,b2﹣4ac=16﹣24<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍,故答案为不存在;探究四:因为正方形ABCD的面积为1,则正方形EFGH的面积为n,所以EF=FG=GH=HE,设EB=x,则BF﹣x,∵Rt△AEB≌Rt△BFC,∴BF=AE﹣x,在Rt△AEB中,由勾股定理,得,x2+﹣x)2=12,整理得2x2﹣+n﹣1=0,b2﹣4ac=8﹣4n<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、一元二次方程的解法等知识.读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键.。

一元二次方程综合测试卷(word含答案)

一元二次方程综合测试卷(word含答案)

一元二次方程综合测试卷(word 含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在矩形ABCD 中,6AB cm =,8AD cm =,点P 从点A 出发沿AD 向点D 匀速运动,速度是1/cm s ,过点P 作PE AC ∥交DC 于点E ,同时,点Q 从点C 出发沿CB 方向,在射线CB 上匀速运动,速度是2/cm s ,连接PQ 、QE ,PQ 与AC 交与点F ,设运动时间为()(08)<<t s t .(1)当t 为何值时,四边形PFCE 是平行四边形;(2)设PQE 的面积为2()s cm ,求s 与t 的函数关系式;(3)是否存在某一时刻t ,使得PQE 的面积为矩形ABCD 面积的932; (4)是否存在某一时刻t ,使得点E 在线段PQ 的垂直平分线上.【答案】(1)83t =;(2)S =299(08)8t t t -+<<;(3)当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932;(4)当573256=t 时,点E 在线段PQ 的垂直平分线上 【解析】 【分析】(1)由四边形PFCE 是平行四边形,可得,PF CE ∥由PD QC 得四边形CDPQ 为平行四边形,即PD CQ =,列式82t t -=,计算可解. (2)由PE AC ∥,得=DP DE DA DC ,代入时间t ,得886-=t DE 解得364=-DE t ,34CE t =再通过S S =梯形CDPQ PDE CEQ S S --△△构建联系,可列函数式299(08)8S t t t =-+<<.(3)由PQE 的面积为矩形ABCD 面积的932得299986832S t t =-+=⨯⨯,可解当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932. (4)当点E 在线段PQ 的垂直平分线上时,=EQ PE ,得22=EQ PE ,由Rt CEQ 与△Rt PDE 可得,222+=CE CQ EQ ,222PD DE PE +=,即2222+=+CE CQ PD DE ,代入364=-DE t ,34CE t =,2CQ t =,8PD t =-可得222233(2)(8)644⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭t t t t ,计算验证可解.【详解】(1)当四边形PFCE 是平行四边形时,∥PF CE , 又∵PD QC ,∴四边形CDPQ 为平行四边形, ∴PD CQ =, 即82t t -=, ∴83t =(2)∵PE AC ∥,∴=DP DEDA DC , 即886-=t DE, ∴364=-DE t , ∴336644=-+=CE t t ,∴21133(8)66242248⎛⎫=⋅=--=-+ ⎪⎝⎭△PDE S PD DE t t t t , 2113322244=⋅=⨯⨯=△CEQ S CE CQ t t t ,S 梯形11()(28)632422=+⋅=+-⋅=+CDPQ QC PD CD t t t ,∴S S =梯形299(08)8--=-+<<△△CDPQ PDE CEQ S S t t t(3)由题意,299986832-+=⨯⨯t t 解得12t =,26t =所以当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932.(4)当点E 在线段PQ 的垂直平分线上时,=EQ PE , ∴22=EQ PE ,在Rt CEQ 中,222+=CE CQ EQ , 在△Rt PDE 中,222PD DE PE +=, ∴2222+=+CE CQ PD DE ,即222233(2)(8)644⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭t t t t 解得1573256-=t ,2573256+=-t (舍)所以当573256-=t 时,点E 在线段PQ 的垂直平分线上. 【点睛】本题考查的是一次函数与几何图形的实际应用,勾股定理,平行线的性质,解一元二次方程,需要注意的是在解一元二次方程的实际应用中经常会涉及到解的验证,不可忽略.2.Rt △ABC 中,∠ACB =90°,AC =BC =6,动点P 从点A 出发,在线段AC 上以每秒1个单位长度的速度向点C 作匀速运动,到达点C 停止运动.设运动时间为t 秒(1)如图1,过点P 作PD ⊥AC ,交AB 于D ,若△PBC 与△PAD 的面积和是△ABC 的面积的79,求t 的值; (2)点Q 在射线PC 上,且PQ =2AP ,以线段PQ 为边向上作正方形PQNM .在运动过程中,若设正方形PQNM 与△ABC 重叠部分的面积为8,求t 的值. 【答案】(1)t 1=2,t 2=4;(2)t 47758. 【解析】 【分析】(1)先求出△ABC 的面积,然后根据题意可得AP =t ,CP =6﹣t ,然后再△PBC 与△PAD的面积和是△ABC 的面积的79,列出方程、解方程即可解答; (2)根据不同时间段分三种情况进行解答即可. 【详解】(1)∵Rt △ABC 中,∠ACB =90°,AC =BC =6,∴S △ABC =12×6×6=18, ∵AP =t ,CP =6﹣t ,∴△PBC 与△PAD 的面积和=12t 2+12×6×(6﹣t ), ∵△PBC 与△PAD 的面积和是△ABC 的面积的79, ∴12t 2+12×6×(6﹣t )=18×79, 解之,得t 1=2,t 2=4; (2)∵AP =t ,PQ =2AP , ∴PQ =2t ,①如图1,当0≤t ≤2时,S =(2t )2﹣12t 2=72t 2=8, 解得:t 1=477,t 2=﹣477(不合题意,舍去), ②如图2,当2≤t ≤3时,S =12×6×6﹣12t 2﹣12(6﹣2t )2=12t ﹣25t 2=8, 解得:t 1=4(不合题意,舍去),t 2=45(不合题意,舍去), ③如图3,当3≤t ≤6时,S =12⨯ 6×6﹣12t 2=8, 解得:t 1=25,t 2=﹣25(不合题意,舍去), 综上,t 的值为477或25时,重叠面积为8.【点睛】本题考查了三角形和矩形上的动点问题,根据题意列出方程和分情况讨论是解答本题的关键.3.如图,直角坐标系xOy 中,一次函数y kx b =+的图象1l 分别与x 轴,y 轴交于A ,B 两点,点A 坐标为()9,0,正比例函数12y x =的图象2l 与1l 交于点(),3C m ,点(),0N n在x 轴上一个动点,过点N 作x 轴的垂线与直线1l 和2l 分别交于P 、Q 两点.(1)求m 的值及直线1l 所对应的一次函数表达式; (2)当03PQ <时,求n 的取值范围; (3)求出当n 为何值时,PQC ∆面积为12?【答案】(1)6m =;9y x =-+;(2)46n <或68n <;(3)2n =或10. 【解析】 【分析】(1)直接将点C 代入正比例函数,可求得m 的值,然后将点C 和点A 代入一次函数,可求得一次函数解析式;(2)用含n 的式子表示出PQ 的长,然后解不等式即可;(3)用含有n 的式子表示出△PQC 的底边长和高的长,然后求解算式即可得. 【详解】(1)将点C(m ,3)代入正比例函数12y x =得: 3=1m 2,解得:m=6 则点C(6,3) ∵A(9,0)将点A ,C 代入一次函数y kx b =+得:0936k bk b=+⎧⎨=+⎩ 解得:k=-1,b=9∴一次函数解析式为:y=-x+9 (2)∵N(n ,0) ∴P(n ,9-n),Q(n ,12n )∴PQ=192n n --∵要使03PQ < ∴0<1932n n --≤ 解得:46n <或68n <(3)在△PQC 中,以PQ 的长为底,则点C 到PQ 的距离为高,设为h 第(2)已知:PQ=139922n n n --=- 由图形可知,h=6n - ∵△PQC 的面积为12 ∴12=136922nn -- 情况一:当n <6是,则原式化简为:12=()136922n n ⎛⎫--⎪⎝⎭ 解得:n=2或n=10(舍)情况二:当n ≥6时,则原式化简为:12=()136922n n ⎛⎫-- ⎪⎝⎭解得:n=2(舍)或n=10 综上得:n=2或n=10. 【点睛】本题考查一次函数的综合,用到了解一元二次方程,求三角形面积等知识点,解题关键是用含n 的算式表示出PQ 的长度,注意需要添加绝对值符号.4.如图,在平面直角坐标系中,O 为原点,点A (0,8),点B (m ,0),且m >0.把△AOB 绕点A 逆时针旋转90°,得△ACD ,点O ,B 旋转后的对应点为C ,D , (1)点C 的坐标为 ;(2)①设△BCD 的面积为S ,用含m 的式子表示S ,并写出m 的取值范围; ②当S=6时,求点B 的坐标(直接写出结果即可).【答案】(1)C (8,8);(2)①S=0.5m 2﹣4m (m >8),或S=﹣0.5m 2+4m (0<m <8);②点B 的坐标为(7,0)或(2,0)或(6,0). 【解析】【分析】(1)由旋转的性质得出AC=AO=8,∠OAC=90°,得出C(8,8)即可;(2)①由旋转的性质得出DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,得出∠ACE=90°,证出四边形OACE是矩形,得出DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,得出BE=OB−OE=m−8,由三角形的面积公式得出S =0.5m2−4m(m>8)即可;b、当点B在线段OE上(点B不与O,E重合)时,BE=OE−OB=8−m,由三角形的面积公式得出S=−0.5m2+4m(0<m<8)即可;c、当点B与E重合时,即m=8,△BCD不存在;②当S=6,m>8时,得出0.5m2−4m=6,解方程求出m即可;当S=6,0<m<8时,得出−0.5m2+4m=6,解方程求出m即可.【详解】(1)∵点A(0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:m=4±27(负值舍去),∴m=4+27;当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B的坐标为(4+27,0)或(2,0)或(6,0).【点睛】本题是三角形综合题目,考查了坐标与图形性质、旋转的性质、矩形的判定与性质、三角形面积公式、一元二次方程的解法等知识;本题综合性强,有一定难度.5.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根. (1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值. 【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12. 【解析】 【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x 1+x 2=﹣2-6a a ,x 1x 2=-6a a ,由(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣66a - 是是负整数,即可得66a -是正整数.根据a 是整数,即可求得a 的值2. 【详解】(1)∵原方程有两实数根,∴260(2)4(6)*0a a a a -≠⎧⎨∆=-->⎩, ∴a≥0且a≠6.(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根, ∴x 1+x 2=﹣26a a -,x 1x 2=6aa -, ∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=-6a a ﹣26a a -+1=﹣66a -. ∵(x 1+1)(x 2+1)是负整数,∴﹣66a -是负整数,即66a -是正整数. ∵a 是整数,∴a ﹣6的值为1、2、3或6, ∴a 的值为7、8、9或12. 【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.6.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.7.如图,平面直角坐标系中,直线l 分别交x 轴、y 轴于A 、B 两点(OA <OB )且OA 、OB 的长分别是一元二次方程()2x 31x 30-++=的两个根,点C 在x 轴负半轴上,且AB :AC=1:2(1)求A 、C 两点的坐标;(2)若点M 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连接AM ,设△ABM 的面积为S ,点M 的运动时间为t ,写出S 关于t 的函数关系式,并写出自变量的取值范围; (3)点P 是y 轴上的点,在坐标平面内是否存在点Q ,使以 A 、B 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,请说明理由. 【答案】解:(1)解()2x 31x 30-++=得(x ﹣3)(x ﹣1)=0,解得x 1=3,x 2=1。

(完整版)(一元二次方程)单元综合测试题含解析.doc

(完整版)(一元二次方程)单元综合测试题含解析.doc

( 一元二次方程 ) 单元综合测试题含分析【一】填空题〔每题 2 分,共 20 分〕1、方程 1x 〔x -3〕 =5〔x -3〕的根是 _______、22、以下方程中,是关于 x 的一元二次方程的有 ________、2 2 12〔1〕2y +y -1=0;〔2〕x 〔 2x -1〕=2x ;〔3〕 x 2 -2x=1;〔4〕ax +bx+c=0;〔5〕1x 2=0、23、把方程〔 1-2x 〕〔 1+2x 〕=2x 2-1 化为一元二次方程的一般形式为 ________、4、假如 12 - 2 -8=0,那么 1的值是 ________、x x x5、关于2 2 是一元二次方程的条件是 x 的方程〔 m -1〕x +〔m - 1〕x+2m - 1=0 ________、6、关于 x 的一元二次方程 x 2-x -3m=0?有两个不相等的实数根,那么 m?的取值范围是定 ______________、7、 x 2 -5│x │+4=0 的全部实数根的和是 ________、8、方程 x 4-5x 2+6=0,设 y=x 2,那么原方程变形 _________ 原方程的根为 ________、9、以- 1 为一根的一元二次方程可为 _____________〔写一个即可〕、10、代数式 1x 2+8x+5 的最小值是 _________、2【二】选择题〔每题 3 分,共 18 分〕11、假设方程〔 a - b 〕x 2 +〔b -c 〕x+〔c - a 〕=0 是关于 x 的一元二次方程,那么必有〔〕、A 、 a=b=cB 、一根为 1C 、一根为- 1D 、以上都不对12、假设分式x 2x 6的值为 0,那么 x 的值为〔〕、x 23x2A 、 3 或- 2B 、3C 、- 2D 、- 3 或 213、〔x 2+y 2+1〕〔 x 2 +y 2+3〕=8,那么 x 2 +y 2 的值为〔〕、A 、- 5 或 1B 、1C 、 5D 、5 或- 114、方程 x 2+px+q=0 的两个根分别是 2 和- 3,那么 x 2-px+q 可分解为〔〕、A 、〔x+2〕〔x+3〕B 、〔 x -2〕〔 x - 3〕 C 、〔x -2〕〔x+3〕D 、〔 x+2〕〔 x - 3〕15α,β是方程 x 2+2006x+1=0的两个根,那么〔 1+2017α+α2〕〔1+2017β+β2〕的值为〔〕、A、 1B、2C、3D、416、三角形两边长分别为2 和 4,第三边是方程 x2-6x+8=0 的解,?那么这个三角形的周长是〔〕、A、 8B、8 或 10C、10D、8 和 10【三】用合适的方法解方程〔每题 4 分,共 16 分〕17、〔1〕2〔x+2〕2- 8=0;〔 2〕 x〔 x- 3〕 =x;〔3〕 3 x2=6x- 3 ;〔4〕〔x+3〕2+3〔x+3〕-4=0、【四】解答题〔 18, 19,20, 21 题每题 7 分, 22, 23 题各 9 分,共 46 分〕18、假如 x2-10x+y2-16y+89=0,求x的值、y19、阅读下边的资料,回答以下问题:解方程 x4- 5x2+4=0,这是一个一元四次方程,依据该方程的特色,它的解法平时是:设 x2=y,那么 x4=y2,于是原方程可变成 y2-5y+4=0①,解得 y1 =1,y2=4、当 y=1 时, x2=1,∴ x=± 1;当 y=4 时, x2=4,∴ x=± 2;∴原方程有四个根: x1=1,x2=-1,x3=2, x4 =- 2、〔1〕在由原方程获得方程①的过程中,利用___________法达到 ________的目的, ?表达了数学的转变思想、〔2〕解方程〔 x2 +x〕2- 4〔 x2 +x〕- 12=0、20、如图,是丽水市统计局宣告的 2000~ 2003 年全社会用电量的折线统计图、( 1)填写统计表:2000~2003 年丽水市全社会用电量统计表:年份2000 2001 2002 2003全社会用电量〔单位:亿 kW· h〕3〔2〕依据丽水市 2001 年至 2003 年全社会用电量统计数据,求这两年年均匀增加的百分率〔保留两个有效数字〕、21、某商场衣饰部销售一种名牌衬衫,均匀每日可售出30件,每件盈余40元、为了扩大销售,减少库存,商场决定降价销售,经检查,每件降价 1 元时,均匀每日可多卖出 2 件、〔1〕假设商场要求该衣饰部每日盈余 1200 元,每件衬衫应降价多少元?〔2〕试说明每件衬衫降价多少元时,商场衣饰部每日盈余最多、22、设 a,b,c 是△ ABC的三条边,关于x 的方程1x2+ b x+c-1a=0 有两个22相等的实数根, ?方程 3cx+2b=2a 的根为 x=0、〔1〕试判断△ ABC的形状、22 223、关于 x 的方程 a x +〔2a-1〕x+1=0 有两个不相等的实数根x1,x2、〔1〕求a 的取值范围;〔2〕能否存在实数 a,使方程的两个实数根互为相反数?假如存在,求出 a 的值;假如不存在,说明原由、解:〔1〕依据题意,得△ =〔2a- 1〕2-4a2>0,解得 a< 1、4∴当 a<0 时,方程有两个不相等的实数根、〔2〕存在,假如方程的两个实数根x1, x2互为相反数,那么x1+x2=-2a1 =0 a①,解得 a= 1,经检验, a=1是方程①的根、22∴当 a= 1时,方程的两个实数根x1与 x2互为相反数、2上述解答过程能否有错误?假如有,请指犯错误之处,并解答、24、如图, A、B、C、D 为矩形的 4 个极点, AB=16cm,BC=6cm,动点 P、Q分别从点 A、C同时出发,点 P 以 3cm/s 的速度向点 B 挪动,向来到达点 B 为止;点 Q以 2cm/s 的速度向点 B 挪动,经过多长时间 P、Q两点之间的距离是 10cm? 25、如图,在△ ABC中,∠ B=90°, BC= 12cm,AB=6cm,点 P 从点 A 开始沿AB边向点 B 以 2cm/s 的速度挪动〔不与 B 点重合〕,动直线 QD从 AB开始以 2cm/s速度向上平行挪动,而且分别与 BC 、AC 交于 Q 、D 点,连结 DP ,设动点 P 与动 直线 QD 同时出发,运动时间为 t 秒,〔1〕试判断四边形 BPDQ 是什么特别的四 边形?假如 P 点的速度是以 1cm/s , 那么四边形 BPDQ 还会是梯形吗?那又是什么特别的四边形呢? C 〔2〕求 t 为什么值时,四边形 BPDQ 的面积最大,最大面积是多少?1、如图,在平面直角坐标系内,点 A(0, 6) 、点 B(8,0) ,动点 P 从点 A 开始 在线段 AO 上以每秒 1 个单位长度的速度向点 O 挪动,同时动点 Q 从点 B 开始在 线段 BA 上以每秒 2 个单位长度的速度向点 A 挪动,设点 P 、Q 挪动的时间为 tQDy秒,A ↑〔1〕当 t 为什么值时,△ APQ 与△ AOB 相似?PB←〔2〕当 t 为什么值时,△ APQ 的面积为24个平方单位? PQ5 O2、有一边为 5cm 的正方形 ABCD 和等腰三角形 PQR ,PQ =PR =5cm ,QR =8cm ,点 B 、C 、Q 、R 在同向来线 l 上,当 C 、Q 两点重合时,等腰三角形 PQR 以 1cm/s 的速度沿直线 l 按箭头方向匀速运动,〔1〕t 秒后正方形 ABCD 与等腰三角形 PQR 重合部分的面积为 5,求时间 t ;〔2〕当正方形 ABCD 与等腰三角形 PQR 重合部分的面积为 7,求时间 t ;3、以以下图,在平面直角坐标中, 四边形 OABC 是等腰梯形, CB ∥OA ,OA=7,AB=4,∠COA=60°,点 P 为 x 轴上的—个动点,点 P 不与点 0、点 A 重合、连结 CP ,过点 P 作 PD 交 AB 于点 D ,(1) 求点 B 的坐标; (2) 当点 P 运动什么地点时,△ OCP 为等腰三角形,求这时点 P 的坐标;(3) 当点 P 运动什么地点时,使得∠ CPD=∠OAB ,yAB x且BD 5,求这时点 P 的坐标;BA 8CB答案 :1、 x =3, x =10122、〔 5〕点拨:正确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是D2,整式方程、O PAx3、 6x 2- 2=04、 4- 2 点拨:把1看做一个整体、x5、 m ≠± 16、 m>- 1点拨:理解定义是要点、127、 0 点拨:绝对值方程的解法要掌握分类谈论的思想、8、 y 2- 5y+6=0x 1= 2 , x 2=- 2 , x 3= 3 , x 4=- 39、 x2- x=0〔答案不独一〕10、- 2711、 D 点拨:满足一元二次方程的条件是二次项系数不为0、12、 A 点拨:正确掌握分式值为0 的条件,同时灵巧解方程是要点、13、B 点拨:理解运用整体思想或换元法是解决问题的要点,同时要注意x2+y2式子自己的属性、14、 C 点拨:灵巧掌握因式分解法解方程的思想特色是要点、15、 D 点拨:此题的要点是整体思想的运用、16、 C 点拨: ?此题的要点是对方程解的看法的理解和三角形三边关系定理的运用、217、〔 1〕整理得〔 x+2〕 =4,∴x1=0, x2=- 4〔2〕 x〔 x- 3〕- x=0,x〔 x- 3- 1〕 =0,x〔 x- 4〕 =0,∴x1=0, x2=4、〔 3〕整理得 3 x2+ 3 -6x=0,x2-2 3 x+1=0,由求根公式得x1= 3 + 2 ,x2= 3 - 2 、〔4〕设 x+3=y,原式可变成 y2+3y- 4=0,解得 y1=- 4, y2=1,即x+3=- 4, x=- 7、由x+3=1,得 x=- 2、∴原方程的解为 x1=- 7, x2=- 2、2218、由 x - 10x+y - 16y+89=0,∴x=5, y=8,∴x=5、y 819、〔 1〕换元降次〔2〕设 x2+x=y,原方程可化为 y2- 4y - 12=0,解得 y1=6, y2=- 2、由 x2+x=6,得 x1=- 3, x2=2、由x2+x=- 2,得方程 x2+x+2=0,b2-4ac=1 -4× 2=- 7<0,此时方程无解、因此原方程的解为 x 1=- 3, x 2=2、 20、〔 1〕年份2000200120022003全社会用电量〔单位:亿 kW · h 〕 3 3 5 2〔 2〕设 2001 年至 2003 年均匀每年增加率为 x ,那么 2001 年用电量为亿 kW · h ,2002 年为 14.73 〔 1+x 〕亿 kW · h ,2003 年为 14.73 〔 1+x 〕 2 亿 kW ·h 、那么可列方程: 14.73 〔 1+x 〕 2=21.92 , 1+x=± 1.22 , ∴ x 1=0.22=22%, x 2=- 2.22 〔舍去〕、 那么 2001~ 2003 年年均匀增加率的百分率为 22%、21、〔 1〕设每件应降价 x 元,由题意可列方程为〔40- x 〕·〔 30+2x 〕 =1200,解得 x 1=0, x 2=25,当 x=0 时,能卖出 30 件;当 x=25 时,能卖出 80 件、 依据题意, x=25 时能卖出 80 件,吻合题意、故每件衬衫应降价25 元、〔 2〕设商场每日盈余为W 元、W=〔 40- x 〕〔 30+2x 〕 =- 2x 2+50x+1200=- 2〔 x 2- 25x 〕 +1200=- 2〔 x - 12.5 〕2当每件衬衫降价为 12.5 元时,商场衣饰部每日盈余最多,为1512.5 元、22、∵ 1x 2+b x+c - 1a=0 有两个相等的实数根,22∴鉴识式 =〔b 〕2- 4× 1 〔 c - 1a 〕 =0,2 2整理得 a+b - 2c=0 ①,又∵ 3cx+2b=2a 的根为 x=0,∴ a=b ②、把②代入①得 a=c ,∴ a=b=c ,∴△ ABC 为等边三角形、〔 2〕 a , b 是方程 x 2+mx - 3m=0的两个根, 22因此 m - 4×〔- 3m 〕 =0,即 m+12m=0,∴ m 1=0, m 2=- 12、当 m=0时,原方程的解为 x=0〔不吻合题意,舍去〕 , ∴ m=12、23、上述解答有错误、〔 1〕假设方程有两个不相等实数根,那么方程第一满足是一元二次方程,∴ a 2≠ 0 且满足〔 2a - 1〕 2- 4a 2>0,∴ a< 1且 a ≠0、4〔 2〕 a 不行能等于1 、2a< 1∵〔 1〕中求得方程有两个不相等实数根,同时a 的取值范围是 且 a ≠0,4而 a= 1 > 1〔不吻合题意〕2 4因此不存在这样的 a 值,使方程的两个实数根互为相反数、。

九年级上册一元二次方程单元测试卷 (word版,含解析)

九年级上册一元二次方程单元测试卷 (word版,含解析)

九年级上册一元二次方程单元测试卷 (word 版,含解析)一、初三数学 一元二次方程易错题压轴题(难)1.如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒25OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析 【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =-+, 当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得: 11(3)22t =--+,解得:t=1; (2)存在,143t =,使得9136S =. 根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4, 设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =+, 当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3), 当点H 落在AB 边上时,将点H 代入122y x =+,得: 13(3)22t t -=-+,解得:133t =; 此时重叠的面积为221316(3)(3)39t -=-=, ∵169﹤9136,∴133﹤t ﹤5, 如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+, 解得:x=2t-10,∴点S(2t-10,t-3), 将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-, ∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -, 211(7)24BET S BE ET t ∆==-, 21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-, 由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去), ∴143t =;(3)可能,35≤t≤1或t=4. ∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=255易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇; 当12﹤t ﹤1时, 12+12÷(1+4)=35秒, ∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤; 当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤ 当t=2时,点M 运动返回到点O 处停止运动,当 t=3时,点E 运动返回到点O 处, 当 t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.2.已知:在平面直角坐标系xoy 中,直线k y x b =+分别交x 、y 轴于点A 、B 两点,OA=5,∠OAB=60°.(1)如图1,求直线AB 的解析式;(2)如图2,点P 为直线AB 上一点,连接OP ,点D 在OA 延长线上,分别过点P 、D 作OA 、OP 的平行线,两平行线交于点C ,连接AC,设AD=m,△ABC 的面积为S,求S 与m 的函数关系式;(3)如图3,在(2)的条件下,在PA 上取点E ,使PE=AD, 连接EC,DE,若∠ECD=60°,四边形ADCE 的周长等于22,求S 的值.【答案】(1)直线解析式为353y x =-+53253+;(3)203S =. 【解析】【分析】 (1)先求出点B 坐标,设AB 解析式为y kx b =+,把点A(5,0),B(0,3分别代入,利用待定系数法进行求解即可;(2)由题意可得四边形ODCP 是平行四边形,∠OAB=∠APC=60°,则有PC=OD=5+m ,∠PCH=30°,过点C 作CH ⊥AB ,在Rt △PCH 中 利用勾股定理可求得)35m +,再由S=12AB •CH 代入相关数据进行整理即可得; (3) 先求得∠PEC=∠ADC ,设∠OPA=α,则∠OPC= ∠ADC= ∠PEC=60°+α,在BA 延长线上截取AK=AD ,连接OK ,DK ,DE ,证明△ADK 是等边三角形,继而证明△PEC ≌△DKO ,通过推导可得到OP=OK=CE=CD ,再证明△CDE 是等边三角形,可得CE=CD=DE ,连接OE ,证明△OPE ≌△EDA ,继而可得△OAE 是等边三角形,得到OA=AE=5 ,根据四边形ADCE 的周长等于22,可得ED=172m -,过点E 作EN ⊥OD 于点N ,则DN=52m +,由勾股定理得222EN DN DE +=, 可得关于m 的方程,解方程求得m 的值后即可求得答案.【详解】(1)在Rt △ABO 中OA=5,∠OAB=60°,∴∠OBA=30°,AB=10 ,由勾股定理可得OB=53,∴B(0,3,设AB 解析式为y kx b =+,把点A(5,0),B(0,53)分别代入,得0553k b b =+⎧⎪⎨=⎪⎩, ∴353k b ⎧=⎪⎨=⎪⎩, ∴直线解析式为353y x =+(2)∵CP//OD ,OP//CD ,∴四边形ODCP 是平行四边形,∠OAB=∠APC=60°,∴PC=OD=5+m,∠PCH=30°,过点C作CH⊥AB,在Rt△PCH中 PH=52m+,由勾股定理得CH=()35m+,∴S=12AB•CH=135325310(5)2m m⨯⨯+=+;(3) ∵∠ECD=∠OAB=60°,∴∠EAD+∠ECD=180°,∠CEA+∠ADC=180°,∴∠PEC=∠ADC,设∠OPA=α,则∠OPC= ∠ADC= ∠PEC=60°+α,在BA延长线上截取AK=AD,连接OK,DK,DE,∵∠DAK=60°,∴△ADK是等边三角形,∴AD=DK=PE,∠ODK=∠APC,∵PC=OD,∴△PEC≌△DKO,∴OK=CE,∠OKD=∠PEC=∠OPC=60°+α,∠AKD= ∠APC=60°,∴∠OPK= ∠OKB,∴OP=OK=CE=CD,又∵∠ECD=60°,∴△CDE是等边三角形,∴CE=CD=DE,连接OE,∵∠ADE=∠APO,DE=CD=OP,∴△OPE≌△EDA,∴AE=OE,∠OAE=60°,∴△OAE是等边三角形,∴OA=AE=5 ,∵四边形ADCE的周长等于22,∴AD+2DE=17,∴ED=172m -, 过点E 作EN ⊥OD 于点N ,则DN=52m +, 由勾股定理得222EN DN DE +=, 即22253517()()()22m m -++=, 解得13m =,221m =-(舍去),∴S=15325322+=203.【点睛】本题考查的四边形综合题,涉及了待定系数法,平行四边形的判定与性质,勾股定理,全等三角形的判定与性质,等边三角形的判定与性质,解一元二次方程等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.3.阅读与应用:阅读1:a ,b 为实数,且a >0,b >0,因为()2≥0,所以a ﹣2+b ≥0,从而a +b ≥2(当a =b 时取等号). 阅读2:若函数y =x +(m >0,x >0,m 为常数),由阅读1结论可知:x +≥2,所以当x =,即x =时,函数y =x +的最小值为2. 阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x ,则另一边长为,周长为2(x +),求当x =时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L.若该汽车以每小时x公里的速度匀速行驶,1h的耗油量为yL.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量.【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度.【详解】(1)∵x+≥2=4,∴当x=时,2(x+)有最小值8.即x=2时,周长的最小值为8;故答案是:2;8;问题2:,当且仅当,即x=90时,“=”成立,所以,当x=90时,函数取得最小值9,此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L.【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.4.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从去年年底至今年3月20日,猪肉价格不断走高,3月20日比去年年底价格上涨了60%.某市民在今年3月20日购买2.5千克猪肉至少要花200元钱,那么去年年底猪肉的最低价格为每千克多少元?(2)3月20日,猪肉价格为每千克60元,3月21日,某市决定投入储备猪肉并规定其销售价在每千克60元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克60元的情况下,该天的两种猪肉总销量比3月20日增加了a%,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比3月20日提高了1%10a,求a的值.【答案】(1)去年年底猪肉的最低价格为每千克50元;(2)a的值为20.【解析】【分析】(1)设去年年底猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设3月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【详解】解:(1)设去年年底猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥200,解得:x≥50.答:去年年底猪肉的最低价格为每千克50元;(2)设3月20日的总销量为1;根据题意得:60(1﹣a%)×34(1+a%)+60×14(1+a%)=60(1+110a%),令a%=y,原方程化为:60(1﹣y)×34(1+y)+60×14(1+y)=60(1+110y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.5.(1)课本情境:如图,已知矩形AOBC,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动,出发时,点P和点Q之间的距离是10cm;(2)逆向发散:当运动时间为2s时,P,Q两点的距离为多少?当运动时间为4s时,P,Q 两点的距离为多少?(3)拓展应用:若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q从点C移动到点B停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12cm2?【答案】(1)85s或245s(2)62cm;213cm(3)4s或6s【解析】【分析】(1)过点P作PE⊥BC于E,得到AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,利用勾股定理得到方程,故可求解;(2)根据运动时间求出EQ、PE,利用勾股定理即可求解;(3) 分当点P在AO上时,当点P在OC上时和当点P在CB上时,根据三角形的面积公式列出方程即可求解.【详解】解:(1)设运动时间为t秒时,如图,过点P作PE⊥BC于E,由运动知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10 cm,∴62+(16﹣5t)2=100,解得t1=85,t2=245,∴t=85s或245s.故答案为85s或245s(2)t=2时,由运动知AP=3×2=6 cm,CQ=2×2=4 cm,∴四边形APEB是矩形,∴PE=AB=6,BE=6,∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,根据勾股定理得PQ=2262PE EQ +=,∴当t =2 s 时,P ,Q 两点的距离为62 cm ;当t =4 s 时,由运动知AP =3×4=12 cm ,CQ =2×4=8cm , ∴四边形APEB 是矩形,∴PE =AB =6,BQ =8,CE=OP=4∴EQ =BC ﹣CE ﹣BQ =16﹣4﹣8=4,根据勾股定理得PQ=22213PE EQ +=,P ,Q 两点的距离为213cm .(3)点Q 从C 点移动到B 点所花的时间为16÷2=8s ,当点P 在AO 上时,S △POQ =2PO CO ⋅=(163)62t -⋅=12, 解得t =4.当点P 在OC 上时,S △POQ =2PO CQ ⋅=(316)22t t -⋅=12, 解得t =6或﹣23(舍弃). 当点P 在CB 上时,S △POQ =2PQ CO ⋅=(2223)62t t +-⨯=12, 解得t =18>8(不符合题意舍弃),综上所述,经过4 s 或6 s 时,△POQ 的面积为12 cm 2.【点睛】此题主要考查勾股定理的应用、一元二次方程与动点问题,解题的关键是熟知勾股定理的应用,根据三角形的面积公式找到等量关系列出方程求解.6.已知二次函数y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ①求a 的值;②求当a ≤x ≤b 时,一次函数y =ax +b 的最大值及最小值;【答案】①a 的值是﹣2或﹣4;②最大值=13,最小值=9【解析】【分析】①根据题意解一元二次方程即可得到a 的值;②根据a ≤x ≤b ,b =﹣3求得a=-4,由此得到一次函数为y =﹣4x ﹣3,根据函数的性质当x =﹣4时,函数取得最大值,x =﹣3时,函数取得最小值,分别计算即可.【详解】解:①∵y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ∴4=9×(﹣1)2﹣6a ×(﹣1)+a 2+3,解得,a 1=﹣2,a 2=﹣4,∴a 的值是﹣2或﹣4;②∵a ≤x ≤b ,b =﹣3∴a =﹣2舍去,∴a =﹣4,∴﹣4≤x ≤﹣3,∴一次函数y =﹣4x ﹣3,∵一次函数y =﹣4x ﹣3为单调递减函数,∴当x =﹣4时,函数取得最大值,y =﹣4×(﹣4)﹣3=13x =﹣3时,函数取得最小值,y =﹣4×(﹣3)﹣3=9.【点睛】此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a 、b 的关系得到函数解析式是解题的关键.7.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣18.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】【分析】(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.【详解】(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,. ∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-,代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.9.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值. 【答案】(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【详解】(1)在ABC ∆中,90ACB ∠=︒.∴90B A ∠=︒-∠9028=︒-︒62=︒,∵BC BD =,∴1802B BCD BDC ︒-∠∠=∠= 180622︒-︒= 59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒31=︒.(2)①BD BC a ==,∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,22AB AC BC =+22a b =+∵2220x ax b +-=,∴x =a =-a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根.②∵AE AD =,又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+, ∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+, ∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.10.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点.己知函数222(3)y x mx m =--+(m m 为常数). (1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM的函数解析式. 【答案】(1)当m =0时,该函数的零点为6和6-.(2)见解析, (3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点.(3)依题意有, 由解得.∴函数的解析式为. 令y=0,解得∴A(),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’,则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10).连结CB’,则∠BCD=45°∴BC=CB’=6,∠B’CD=∠BCD=45°∴∠BCB’=90°即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.。

一元二次方程全章检测卷(含答案)

一元二次方程全章检测卷(含答案)

一元二次方程检测卷一、选择题:(每小题2分,共20分)1.下列方程中不一定是一元二次方程的是( )A.(a-3)x2=8 (a≠0)B.ax2+bx+c=02320 57x+-=2.已知一元二次方程ax2+c=0(a≠0),若方程有解,则必须有C等于( )A.-12B.-1C.12D.不能确定3.若关于x的方程ax2+2(a-b)x+(b-a)=0有两个相等的实数根,则a:b等于( )A.-1或2B.1或12C.-12或1 D.-2或14.若关于y的一元二次方程ky2-4y-3=3y+4有实根,则k的取值范围是( )A.k>-74B.k≥-74且k≠0 C.k≥-74D.k>74且k≠05.已知方程11x ax a+=+的两根分别为a,1a, 则方程1111x ax a+=+--的根是( )A.1,1aa-B.11,1aa--C.11,aa- D.,1aaa-6.关于x的方程x2+2(k+2)x+k2=0的两个实数根之和大于-4,则k的取值范围是( )A.k>-1B.k<0C.-1<k<0D.-1≤k<07.若方程x2-kx+6=0的两个实数根分别比方程x2+kx+6=0的两个实数根大5,则k的值为( )8.使分式2561x xx--+的值等于零的x是( )A.6B.-1或6C.-1D.-69.方程x2-4│x│+3=0的解是( )A.x=±1或x=±3B.x=1和x=3C.x=-1或x=-3D.无实数根10.如果关于x的方程x2-k2-16=0和x2-3k+12=0有相同的实数根,那么k的值是( )A.-7B.-7或4C.-4D.4二、填空题:(每小题3分,共30分)11.已知x2+mx+7=0的一个根,则m=________,另一根为_______.12.已知方程3ax2-bx-1=0和ax2+2bx-5=0,有共同的根-1, 则a= ______, b=______.13.若一元二次方程ax2+bx+c=0(a≠0)有一个根为1,则a+b+c=______;若有一个根为-1,则b 与a、c之间的关系为_______;若有一个根为零,则c=_______.14.若方程2x2-8x+7=0的两根恰好是一个直角三角形两条直角边的长,则这个直角三角形的斜边长是___________.15.一元二次方程x2-3x-1=0与x2-x+3=0的所有实数根的和等于____.16.某食品连续两次涨价10%后价格是a元,那么原价是__________.17.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是_______.18.如果关于x 的方程x 2-2(1-k)+k 2=0有实数根α,β,那么α+β的取值范围是_______. 19.设A 是方程x 2的所有根的绝对值之和,则A 2=________.20.长方形铁片四角各截去一个边长为5cm 的正方形, 而后折起来做一个没盖的盒子,铁片的长是宽的2倍,作成的盒子容积为1. 5 立方分米, 则铁片的长等于_____,宽等于____. 三、解答题:(每题10分,共30分)21.设x 1,x 2是关于x 的方程x 2-(k+2)x+2k+1=0的两个实数根,且x 12+x 22=11.(1)求k 的值;(2)利用根与系数的关系求一个一元二次方程,使它的一个根是原方程两个根的和,另一根是原方程两根差的平方22.设a 、b 、c 是△ABC 的三条边,关于x 的方程x 2x+2c-a=0有两个相等的实数根,方程3cx+2b=2a 的根为0.(1)求证:△ABC 为等边三角形;(2)若a,b 为方程x 2+mx-3m=0的两根,求m 的值.23.如图,已知△ABC 中,∠ACB=90°,过C 点作CD ⊥AB,垂足为D,且AD=m,BD= n,AC 2:BC 2=2:1,又关于x 的方程14x 2-2(n-1)x+m 2-12=0 两实数根的差的平方小于192,求:m,n 为整数时, 一次函数y=mx+n 的解析式.nmCDBA四、解da题:(10分)24.小李和小张各自加工15个玩具,小李每小时比小张多加工1个,结果比小张少12小时完成任务.问两个每小时各加工多少个玩具?五、列方程解应用题:( 10分)25.国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x元(叫做税率x%), 则每年的产销量将减少10x万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?26.已知一个小灯泡的额定功率为1.8W,额定电压小于8V.当它与一个30 的电阻并联后接入电路时,干流电路的电流是0.5A,且灯泡正常发光. 求小灯泡的额定电压.全章检测卷答案一、1.B 点拨:ax 2+bx+c=0,只有当满足a ≠0时,才是一元二次方程.2.D 点拨:一元二次方程ax 2+c=0(a ≠0)有解,则ax 2=-c,x 2=ca-,因为x 2≥0, ∴0ca-≥, 其解若干,故不能确定. 3.B 点拨:根据一元二次方程的根的判别式,方程有两个相等的实数根,则△=0,△=[2(a-b)]2-4³a(b-a)=4(a-b)(2a-b),即4(a-b)(2a-b)=0, ∴a=b 或a=2b , 即a:b=1或a:b=1:2 .4.B 点拨:由一元二次方程的定义知k ≠0,由一元二次方程的根的判别式知方程有实根,则△≥0,即k ≥74-,故k ≥74-且k ≠0,本题易漏k ≠0和△=0两个条件. 5.D 点拨:由11x a x a +=+,得 1111x a x a +=+-- ,可变为111111x a x a -+=-+--,所以其解为x-1=a-1,即x=a 或x-1=11a - ,即x=1a a -.此题易误解为x=a 或x=11a -.6.D. 点拨:方程有两个实数根,所以△≥0,即[2(k+2)]2-4k 2≥0,解得k ≥-1, 两实数根之和大于-4,即-2(k+2)>-4,k<0,∴-1≤k<0.本题易忽略有两实根, 需满足△≥0这个重要条件.7.D. 点拨:设x 2-kx+b=0的两根为x 1,x 2,则x 2+kx+6=0的两根为x 1+5,x 2+5,因为x 1+x 2=k, (x 1+5)+(x 2+5)=-k 所以k=-5.8.A 点拨:使分式的值为零的条件:分子=0分母≠0,x 2-5x-6=0,x=6或-1,x+ 1≠0,x ≠-1,故x=6,本题易漏分母不能为零这个条件.9.A 点拨:∵x 2≥0,│x │≥0,∴x 2-4│x │+3=0的解就是方程│x │2-4│x │+3=0的解,(│x │-3)(│x │-1)=0,x=±3或x=±1.10.D 点拨:两方程有相同实根,则x 2+k 2-16=x 2-3k+12,解得k=-7或4,当k=- 7时,方程无实根,∴k=4. 二、11.m=-6,另一根为点拨:根据一元二次方程根与系数的关系, 设方程另一个根为x 1 ,则1=7,x 1则m=-6.12.a=1,b=-2. 点拨:-1是两方程的根,则3a+b-1=0,a-2b-5=0,解得a=1,b=-2. 13.a+b+c=0,b=a+c,c=0.14.3 点拨:设两根为x 1,x 2,根据根与系数的关系x 1+x 2=4, x 1²x 2=72, 由勾股定理斜边长的平方=(x 1+x 2)2-2x 1x 2=16-2³72=9,∴斜边长为3. 15.3 点拨:x 2-3x-1=0的△=13>0,x 2-x+3=0的△=-11<0所有实根和,就是方程x 2-3x-1=0中两根之和,由根与系数的关系求得两根之和等于3.16.100121a元点拨:设原价x元,则x(1+10%)2=a,解得x=100121a.17.x2+7x+12=0或x2-7x+12=0 点拨:设两数为a,b,则ab=12,a2+b2=25, ∴( a+b)2-2ab=25,(a+b)2=49,(a+b)=±7,所以以a,b为根的方程为x2+7x+12= 0 或x2-7x+12=0.18.a+β≥1 点拨:方程有实根,则△≥0,则k≤12, 即-k≥-12,1-k≥1-12,2(1-k)≥1,∵a+β=2(1-k),∴a+β≥1.19.4083 点拨:由公式法得,则=22+=∴A2=408320.60,30 解:设宽为xcm,则长为2xcm,由题意得(2x-10)³(x-10)³5=1500,解得x1=20,x2=-5(舍去),2x=40. 本题注意单位要一致.三、21.k=-3,y2-20y-21=0解:(1)由题意得x1+x2=k+2, x1²x2=2k+1, x12+x22=(x1+x2)2-2 x1²x2=k2+2,又x12+x22=11,∴k2+2=11,k=±3,当k=3时,△=-3<0, 原方程无实数解;当k=-3时,△=21>0,原方程有实数解,故k=-3.(2)当k=-3时, 原方程为x2+x-5=0,设所求方程为y2+py+q=0,两根为y1,y2,则y1=x1+x2=-1,y2=(x1-x2)2=x12+x22-2x1x2=11+10=21,∴y1+y2=20,y1y2=-21,故所求方程是y2-20y-21=0.点拨:要求k的值,须利用根与系数的关系及条件x12+x22=(x1+x2)2-2 x1²x2,构造关于k的方程,同时,要注意所求出的k值,应使方程有两个实数根,即先求后检.(2)构造方程时,要利用p=-(y1+y2),q=y1y2,则以y1,y2为根的一元二次方程为y2+py+q=0.22.(1)证明:方程x2有两个相等的实根,∴△=0,即△2-4³(2c-a)=0,解得a+b=2c,方程3cx+2b=2a的根为0,则2b=2a,a=b, ∴2a=2c,a=c,∴a=b=c,故△ABC为等边三角形.(2)解:∵a、b相等,∴x2+mx-3m=0有两个相等的实根,∴△=0,∴△=m2+4³1³3m=0,即m1=0,m2=-12.∵a、b为正数,∴m1=0(舍),故m=-12.23.解:如答图,易证△ABC∽△ADC,∴AC ABAD AC=,AC2=AD²AB.同理BC2=BD³AB,∴AC ABAD AC=, ∵2221AC BC =, ∴21m n =,∴m=2n ①. ∵关于x 的方程 14x 2-2(n-1)x+m 2-12=0有两实数根,∴△=[-2(n-1)2-4³14³(m 2-12)≥0,∴4n 2-m 2-8n+16≥0,把①代入上式得n ≤2 ②.设关于x 的方程 x 2-2(n-1)x+m 2-12=0的两个实数根分别为x 1,x 2, 则x 1+x 2=8(n-1), x 1²x 2=4(m 2-2),依题意有(x 1-x 2)2<192, 即[8(n-1)]2-4(m 2-12)]<192, ∴4n 2—m 2-8n+4<0,把①式代入上式得n>12 ③,由②、③得 12<n ≤2, ∵m 、n 为整数,∴n 的整数值为1,2,当n=1,m=2时,所求解析式为y=2x+1,当n=2,m=4时,解析式为y=4x+2. 四、24.解:设小张每小时加工x 个零件,则小李每小时加工x+1个,根据题意得1515112x x -=+,解得 x 1=-6(舍), x 2=5. 所以小张每小时加工5个零件,只要符合条件就行,本题是开放性题目,答案不惟一. 五、25.解:根据题意得70(100-10x).x%=168,x 2-10x+24=0,解得 x 1=6, x 2=4,当x 2=4时,100-10³4=60>50,不符合题意,舍去, x 1=6时,100-10³6=40<50, ∴税率应确定为6%.点拨:这是有关现实生活知识应用题,是近几年中考题的重要类型, 要切实理解,掌握. 26.解:设小灯炮的额定电压为U,根据题意得: P U I U R =+, 1.80.530W U A U =+Ω,解得U 1=6,U 2=9(舍去) ∵额定电压小于8V,∴U=6.答:小灯泡的额定电压是6V.点拨:这是一道物理与数学学科间的综合题目,解答此问题的关键是熟记物理公式并会解可化为一元二次方程的分式方程,检验是本题的易忽略点.。

九年级数学一元二次方程单元测试卷 (word版,含解析)

九年级数学一元二次方程单元测试卷 (word版,含解析)

九年级数学一元二次方程单元测试卷 (word 版,含解析)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在长方形ABCD 中,边AB 、BC 的长(AB <BC )是方程x 2-7x +12=0的两个根.点P 从点A 出发,以每秒1个单位的速度沿△ABC 边 A →B →C →A 的方向运动,运动时间为t (秒).(1)求AB 与BC 的长;(2)当点P 运动到边BC 上时,试求出使AP 长为10时运动时间t 的值;(3)当点P 运动到边AC 上时,是否存在点P ,使△CDP 是等腰三角形?若存在,请求出运动时间t 的值;若不存在,请说明理由.【答案】(1) AB =3,BC =4;(2) t =4;(3) t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形. 【解析】试题分析:(1)解一元二次方程即可求得边长; (2)结合图形,利用勾股定理求解即可;(3)根据题意,分为:PC =PD ,PD =PC ,PD =CD ,三种情况分别可求解. 试题解析:(1)∵x 2-7x +12=(x -3)(x -4)=0 ∴1x =3或2x =4 . 则AB =3,BC =4(2)由题意得()223t-310?+=() ∴14t =,22t =(舍去) 则t =4时,AP 10.(3)存在点P ,使△CDP 是等腰三角形. ①当PC =PD =3时, t =3431++ =10(秒). ②当PD =PC(即P 为对角线AC 中点)时,AB =3,BC =4. 2234+=5,CP 1= 12AC =2.5 ∴t=34 2.51++ =9.5(秒)③当PD=CD=3时,作DQ⊥AC于Q.1341221552DQ⨯⨯==⨯,22129355PQ⎛⎫=-=⎪⎝⎭∴PC=2PQ=18 5∴183453515t++==(秒)可知当t为10秒或9.5秒或535秒时,△CDP是等腰三角形.2.阅读与应用:阅读1:a,b为实数,且a>0,b>0,因为()2≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L.若该汽车以每小时x公里的速度匀速行驶,1h的耗油量为yL.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量.【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度.【详解】(1)∵x+≥2=4,∴当x=时,2(x+)有最小值8.即x=2时,周长的最小值为8;故答案是:2;8;问题2:,当且仅当,即x=90时,“=”成立,所以,当x=90时,函数取得最小值9,此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L.【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.3.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.4.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.5.如图,在平面直角坐标系中,O为原点,点A(0,8),点B(m,0),且m>0.把△AOB绕点A逆时针旋转90°,得△ACD,点O,B旋转后的对应点为C,D,(1)点C的坐标为;(2)①设△BCD的面积为S,用含m的式子表示S,并写出m的取值范围;②当S=6时,求点B的坐标(直接写出结果即可).【答案】(1)C(8,8);(2)①S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②点B的坐标为(7,0)或(2,0)或(6,0).【解析】【分析】(1)由旋转的性质得出AC=AO=8,∠OAC=90°,得出C(8,8)即可;(2)①由旋转的性质得出DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,得出∠ACE=90°,证出四边形OACE是矩形,得出DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,得出BE=OB−OE=m−8,由三角形的面积公式得出S =0.5m2−4m(m>8)即可;b、当点B在线段OE上(点B不与O,E重合)时,BE=OE−OB=8−m,由三角形的面积公式得出S=−0.5m2+4m(0<m<8)即可;c、当点B与E重合时,即m=8,△BCD不存在;②当S=6,m>8时,得出0.5m2−4m=6,解方程求出m即可;当S=6,0<m<8时,得出−0.5m2+4m=6,解方程求出m即可.【详解】(1)∵点A(0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:7(负值舍去),∴7当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B 的坐标为(4+27,0)或(2,0)或(6,0).【点睛】本题是三角形综合题目,考查了坐标与图形性质、旋转的性质、矩形的判定与性质、三角形面积公式、一元二次方程的解法等知识;本题综合性强,有一定难度.6.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其 他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价? 【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件 【解析】 【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= , 解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=, 解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件. 【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.7.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题8.(本题满分10分)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,直线CD与x轴、y轴分别交于点C、D,AB与CD相交于点E,线段OA、OC的长是一元二次方程-18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.【答案】(1)、A(12,0),C(﹣6,0);(2)、k=36;(3)、6个;Q1(10,﹣12),Q2(﹣3,6﹣3).【解析】试题分析:(1)、首先求出方程的解,根据OA>OC求出两点的坐标;(2)、根据∠ABO的正切值求出OB的长度,根据Rt△AOB得出AB的长度,作EM⊥x轴,根据三角形相似得出点E的坐标,然后求出k的值;(3)、分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q.试题解析:(1)由题意,解方程得:x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∠AOB=90°∴∴OB=16.在Rt△AOB中,由勾股定理,得AB=20∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,即:∴EM=12,AM=9,∴OM=12﹣9=3.∴E(3,12).∴k=36;(3)满足条件的点Q的个数是6,x轴的下方的Q1(10,﹣12),Q2(﹣3,6﹣3);方法:如下图①分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;(有三种)②以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q;(有三种)如图①∵E (3,12),C (﹣6,0), ∴CG=9,EG=12, ∴EG 2=CG•GP , ∴GP=16, ∵△CPE 与△PCQ 是中心对称,∴CH=GP=16,QH=FG=12, ∵OC=6, ∴OH=10, ∴Q (10,﹣12),如图②作MN ∥x 轴,交EG 于点N ,EH ⊥y 轴于点H ∵E (3,12),C (﹣6,0), ∴CG=9,EG=12, ∴CE=15, ∵MN=CG=, 可以求得PH=3﹣6,同时可得PH=QR ,HE=CR ∴Q (﹣3,6﹣3),考点:三角形相似的应用、三角函数、一元二次方程.9.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0时,该函数的零点为6和6-. (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.10.定南县某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【答案】(1)10%;(2)方案②【解析】试题分析:首先设下调的百分率为x ,根据题意列出方程进行求解,得出答案;分别求出两种方案所需要花费的钱数,然后进行比较.试题解析:(1)设平均每次下调的百分率是x ,依题意得,4000(1-x )2=3240解之得:x=0.1=10%或x=1.9(不合题意,舍去)答:平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元 方案②实际花费=100×3240-100×80=316000元∵317520>316000 ∴方案②更优惠考点:一元二次方程的应用。

(完整版)最新一元二次方程单元综合测试题(含答案)

(完整版)最新一元二次方程单元综合测试题(含答案)

方圆学校九年级第21章一元二次方程单元综合测试题一、填空题(每题2分,共20分)11.方程x(x-3)=5(x-3)的根是_______.22.下列方程中,是关于x的一元二次方程的有________.1222+bx+c=0;(54)ax);(3)-2x=1;)2y)+y-1=0;(2x(2x-1)=2x ((12x12x=0.22-1化为一元二次方程的一般形式为=2x________..把方程(1-2x)(1+2x)32114.如果--8=0,则的值是________.2xxx22+(m-1)x+2m-1)x-1=05.关于x的方程(m是一元二次方程的条件是________.2-x-3m=0?有两个不相等的实数根,则m?6.关于x的一元二次方程x的取值范围是定______________.2-5│x│+4=07.x的所有实数根的和是________.422,则原方程变形y=x_________ +6=08.方程x,设-5x原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).12+8x+5的最小值是_________x. 10.代数式2二、选择题(每题3分,共18分)2+(b-c)x+(c-a11.若方程(a-b)x)=0是关于x的一元二次方程,则必有().A.a=b=c B.一根为1 C.一根为-1 D.以上都不对2?x?6x12.若分式的值为0,则x的值为().2x?3x?2 A.3或-2 B.3 C.-2 D.-3或2222222的值为( +y)+y.+3)=8,则13.已知(xx+y+1)(xA.-5或1 B.1 C.5 D.5或-122-px+q可分解为(则x ). 14.已知方程x,+px+q=0的两个根分别是2和-3 A.(x+2)(x+3) B.(x-2)(x-3)C.(x-2)(x+3) D.(x+2)(x-3)22)(1+2008αβx++2006x+1=0的两个根,则(1+2008α+15已知α,β是方程2)的值为().βA.1 B.2 C.3 D.42-6x+8=0的解,?则这个三角416.三角形两边长分别为2和,第三边是方程x形的周长是().10和8.D 10 .C 10 或8.B 8 .A三、用适当的方法解方程(每小题4分,共16分)2-8=0;(2. 17(1)2(x+2))x(x-3)=x;2233+3(x+3)-4=0.(4)(x+3x=6x)-;(3 )四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)x22的值.,求-18.如果x16y+89=0-10x+y y19.阅读下面的材料,回答问题:42+4=0,这是一个一元四次方程,根据该方程的特点,它的解-5x解方程x法通常是:2422-5y+4=0 ①,解得y=1,,那么xy=y=4,于是原方程可变为y.设x=y212=1,∴x=±时,x1;当y=12=4,∴x=±2; x 当y=4时,∴原方程有四个根:x=1,x=-1,x=2,x=-2.4213(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,?体现了数学的转化思想.222+x)-12=0.4(x(2)解方程(x +x)-20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.(1)填写统计表:2000~2003年丽水市全社会用电量统计表:年份 2000 2001 2002 2003全社会用电量 13.33(单位:亿kW·h)(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平.均增长的百分率(保留两个有效数字).为.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.21元时,平均1了扩大销售,减少库存,商场决定降价销售,经调查,每件降价件.每天可多卖出2 元,每件衬衫应降价多少元?)若商场要求该服装部每天盈利1200 (12)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.(112b有两个x+ca=0+22.设a,b,c是△ABC的三条边,关于x-的方程x22x=0相等的实数根,?方程3cx+2b=2a的根为.(1)试判断△ABC的形状.2-3m=0的两个根,求ma(2)若,b为方程x的值.+mx22)1.(,+(2a-1)x+1=0有两个不相等的实数根x23.已知关于的方程axxx21,使方程的两个实数根互为相反数?如果a2)是否存在实数求a的取值范围;( a存在,求出的值;如果不存在,说明理由.122-4aa<>0,解得.1解:(1)根据题意,得△=(2a-)4时,方程有两个不相等的实数根.∴当a<0 1?2a-==0 则存在,2)如果方程的两个实数根x,x互为相反数,x+x (2121a①,11是方程①的根.解得 a=a=,经检验,221a=时,方程的两个实数根x与∴当 x互为相反数.212上述解答过程是否有错误?如果有,请指出错误之处,并解答.、P,BC=6cm,动点C、D为矩形的4个顶点,AB=16cmA24、如图,、B、B 移动,一直到达点以3cm/s的速度向点BQ分别从点A、C同时出发,点P两点之间的距离QB移动,经过多长时间P、为止;点Q以2cm/s的速度向点10cm? 是 D C QB A P开,点P从点ABC=12cm,AB=6cm9025、如图,在△ABC中,∠B=°,开QD从ABB以2cm/s的速度移动(不与B点重合),动直线边向点始沿AB,D 点,连结DP速度向上平行移动,并且分别与BC、AC交于Q、始以2cm/s 同时出发,运动时间为t秒,设动点P与动直线QD 1cm/s,1)试判断四边形BPDQ是什么特殊的四边形?如果P点的速度是以( BPDQ还会是梯形吗?那又是什么特殊的四边形呢?则四边形C的面积最大,最大面积是多少? 2)求t为何值时,四边形BPDQ(QDA从点,动点、点B(8P,0)1、如图,在平面直角坐标系内,已知点A(0,6)↑从点Q移动,同时动点B上以每秒1个单位长度的速度向点O开始在线段AO A B ←P 移动的、Q个单位长度的速度向点A移动,设点P开始在线段BA上以每秒2yt秒,时间为A1)当t为何值时,△APQ与△(AOB相似?PQ 24(2)当t为何值时,△APQ的面积为个平方单位?5Ox B2、有一边为5cm的正方形ABCD和等腰三角形PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一直线l上,当C、Q两点重合时,等腰三角形PQR以1cm/s 的速度沿直线l按箭头方向匀速运动,(1)t秒后正方形ABCD与等腰三角形PQR重合部分的面积为5,求时间t;(2)当正方形ABCD与等腰三角形PQR重合部分的面积为7,求时间t;A DPlQRCB3、如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D,(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,yCBDxAPO5BD且P的坐标;,求这时点?8BA:答案=10 x=3,1.x21,2点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是) 52.(整式方程.22=0 6x-3.1点拨:把2 .44 -看做一个整体.x 5.m≠±11点拨:理解定义是关键..m>- 6127.0 点拨:绝对值方程的解法要掌握分类讨论的思想.33222--,,.yx-5y+6=0 xx==,x==842132-x=0(答案不唯一).x 910.-27 11.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.22式子本身点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x+y13.B的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.15.D 点拨:本题的关键是整体思想的运用.16.C 点拨:?本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.2=4,x+2) 17.(1)整理得(即(x+2)=±2,∴x=0,x=-421(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x=0,x=4.21332-6x=0,(3+)整理得 x32x+1=0,- 2 x 3322.=+-,x 由求根公式得x =212+3y-4=0y,(4)设x+3=y,原式可变为解得y=-4,y=1,21即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x=-7,x=-2.2122-16y+89=0,-10x+y 18.由已知x22=0,-8-5))+(y得( x x5=,∴.∴x=5,y=8y819.(1)换元降次22-4y-y12=0,)设(2x +x=y,原方程可化为解得y=6,y=-2.212+x=6,得x=-3,由xx=2.2122,+x+2=0x,得方程2-+x=x由2-4ac=1-4×2=-7<0 b,此时方程无解.所以原方程的解为x=-3,x=2.2120.(1)年份2000200120022003全社会用电量13.33 14.73 17.05 21.92(单位:亿kW·h)(2)设2001年至2003年平均每年增长率为x,则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2亿kW·h. 2003年为14.73(1+x)2=21.92,1+x=±1.22,则可列方程:14.73(1+x)∴x=0.22=22%,x=-2.22(舍去).21则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x=0,x=25,21当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.222+1512.5 12.5)2(x-2(x-25x)+1200=- W=(40x)(30+2x)=-2x-+50x+1200=-当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.11b2x+c-a=0有两个相等的实数根, 22.∵x+2211b2,a)=0-4×(c∴判别式=(-)22整理得a+b-2c=0 ①,又∵3cx+2b=2a的根为x=0,∴a=b ②.把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形.2+mx-3m=0的两个根,b是方程x (2)a,22+12m=0,)=0,即所以mm-4×(-3m ∴m=0,m=-12.21当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,1222且a≠0,∴a<. 2a ∴a≠0且满足(-1)-4a>041.)2a不可能等于(21且a≠0, a<的取值范围是a)中求得方程有两个不相等实数根,同时1∵(4.11>(不符合题意)a=而42所以不存在这样的a值,使方程的两个实数根互为相反数.。

一元二次方程全章测试题

一元二次方程全章测试题

一元二次方程全章测试卷班级 姓名 成绩一、选择题:(本大题共12个小题,每小题3分,共36分)1. 关于x 的一元二次方程()22120a x x -+-=是一元二次方程,则a 满足( ) A.1a ≠ B. 1a ≠-C. 1a ≠± D .为任意实数 2.用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -= 3.方程(3)(2)0x x -+=的解是( )A .3x = B. 2x =- C.123,2,x x =-= D. 123,2x x ==-4. 已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 1B. -1C. 0D. 25.若关于x 的一元二次方程2210kx x --=有两个不等实根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D .1k <且0k ≠6.若把代数式2223(),x x x m k m k -+-+化为形式,其中为常数,结果为( )A .2(1)4x ++B .2(1)4x -+C .2(1)2x -+D .2(1)2x ++7. 方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定 8.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛110场,共有( )个队参加比赛?A .8B . 9 C. 10 D. 119. 下面是某同学在一次数学测验中解答的填空题,其中答对的是( )A .若x 2=4,则x =2B .若3x 2=6x ,则x =2C .02=-+k x x 的一个根是-1,则k =2D .若分式()xx x 2- 的值为零,则x =2 10.已知实数12121212,+=7=12,x x x x x x x x 满足,,则以为根的一元二次方程是( )A .27120x x -+=B .27120x x --=C .27120x x +-=D .27120x x ++=11.一元二次方程22(1)230m x x m m -+++-=的一个根为0,则m 的值为( )A .-3B .1C .1或-3D .-4或212.某商店购进一种商品,单价为30元.试销中发现这种商品,每天的销售量P (件)与每件的销售价x (元)满足关系:P=100-2x .若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是( )A .(30)(1002)200x x --=B .(1002)200x x -=C .(30)(1002)200x x --=D .(30)(2100)200x x --=二. 填空题:(本大题共6个小题,每小题3分,共18分)13..一元二次方程x 2=16的解是 .14.方程2(1)5322x x -+=化为一元二次方程的一般形式是 它的一次项系数是 . 15. 若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是 .16. 如果2x 2+1与4x 2-2x -5互为相反数,则x 的值为________.17. 已知代数式532++x x 的值是7,则代数式2932-+x x 的值是 。

(完整版)一元二次方程全章测试及答案

(完整版)一元二次方程全章测试及答案

一元二次方程全章测试及答案一、填空题1.一元二次方程x 2-2x +1=0的解是______.2.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.3.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是x =______.4.当a ______时,方程(x -b )2=-a 有实数解,实数解为______.5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =______.6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =______.7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =______.8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化简结果是______.二、选择题9.方程x 2-3x +2=0的解是( ).A .1和2B .-1和-2C .1和-2D .-1和210.关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ).A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定11.已知a ,b ,c 分别是三角形的三边,则方程(a +b )x 2+2cx +(a +b )=0的根的情况是( ).A .没有实数根B .可能有且只有一个实数根C .有两个不相等的实数根D .有两个不相等的实数根12.如果关于x 的一元二次方程0222=+-k x x 没有实数根,那么k 的最小整数值是( ).A .0B .1C .2D .313.关于x 的方程x 2+m (1-x )-2(1-x )=0,下面结论正确的是( ).A .m 不能为0,否则方程无解B .m 为任何实数时,方程都有实数解C .当2<m <6时,方程无实数解D .当m 取某些实数时,方程有无穷多个解三、解答题14.选择最佳方法解下列关于x 的方程:(1)(x +1)2=(1-2x )2.(2)x 2-6x +8=0.(3).02222=+-x x (4)x (x +4)=21.(5)-2x 2+2x +1=0.(6)x 2-(2a -b )x +a 2-ab =0.15.应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取任何实数值,二次三项式的值都是正数.16.关于x 的方程x 2-2x +k -1=0有两个不等的实数根.(1)求k 的取值范围;(2)若k +1是方程x 2-2x +k -1=4的一个解,求k 的值.17.已知关于x 的两个一元二次方程:方程:02132)12(22=+-+-+k k x k x ①方程:0492)2(2=+++-k x k x ②(1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.18.已知a ,b ,c 分别是△ABC 的三边长,当m >0时,关于x 的一元二次方程+2(x c 02)()2=--+ax m m x b m 有两个相等的实数根,试说明△ABC 一定是直角三角形.19.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m ,BD =6m ,动点M 从A 出发沿AC方向以2m/s 匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,ΔMON 的面积为?m 412答案与提示一元二次方程全章测试1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤5.4. 6.⋅-49 7.2. 8.3.9.A. 10.A. 11.A. 12.D. 13.C.14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x (4)x 1=-7,x 2=3; (5);31,3121-=+=x x (6)x 1=a ,x 2=a -b .15.变为2(x -1)2+4,证略.16.(1)k <2;(2)k =-3.17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆2>0> ∆ 1;(3)k =5时,方程②的根为;2721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x 18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2.19.设出发后x 秒时,⋅=∆41MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--41)3)(24(21x x 解得);s (225,2)s (225,21-=∴<±=x x x x (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(21x x --⋅=41解得);s (2521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(21x x ⋅41解得).s (225+=x 综上所述,出发后s,225+或s 25时,△MON 的面积为.m 412。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】一元二次方程全章测试卷一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中.1. 关于x 的一元二次方程()22120a x x -+-=是一元二次方程,则a 满足( ) A. 1a ≠ B. 1a ≠- C. 1a ≠± D.为任意实数2.已知一元二次方程已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 23.用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x += D .()229x -=4.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B 。

1k >-且0k ≠ C.。

1k < D 。

1k <且0k ≠5.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6 B .7 C .8 D .96.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定7.下面是某同学在一次数学测验中解答的填空题,其中答对的是( ) A .若x 2=4,则x=2 B 若3x 2=6x ,则x=2 C .02=-+k x x 的一个根是1,则k=2 D .若分式()xx x 2- 的值为零,则x=28. 在创建“国家园林县城”工作中,荣昌县通过切实加强园林绿化的组织管理、规划设计、景观保护、绿化建设、公园建设、生态建设、市政建设等工作,城区的园林绿化得到了长足的发展。

到2010年,该县绿化覆盖率达到48.85%,人为了让荣昌的山更绿、水更清,计划2012年实现绿化覆盖率达到53%的目标,设从2010年起我县绿化覆盖率的年平均增长率为x ,则可列方程( ) A .48.85(1+2x)=53% B .48.85(1+2x)=53C. 48.85(1+x )2=53%D. 48.85(1+x )2=53%9.一元二次方程22(1)230m x x m m -+++-=的一个根为0,则m 的值为( ) A :-3 B :1 C :1或-3 D :-4或210.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .2009二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将答案填在题后的横线上.11..一元二次方程x 2=16的解是 .12. 若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是 .13.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.14.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.15. .已知代数式532++x x 的值是7,则代数式2932-+x x 的值是 16.若()()06522222=-+-+y x y x ,则=+22y x __________。

三、解答题:(本大题共4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤17.解方程(1)x 2-4x -3=0 (2)(x -3)2+2x(x -3)=018. 解方程(1)(1)(3)8x x --= (2) (23)46x x x +=+19.已知关于x 的一元二次方程x ²-4x +m -1=0有两个相等实数根,求的m 值20.已知a 、b 、c21(3)0b c +++=,求方程02=++c bx ax 的根。

四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤. 21.已知关于x 的方程()0214122=⎪⎭⎫⎝⎛-++-k x k x ,若等腰三角形ABC 的一边长a=4,另一边长b 、c 恰好是这个方程的两个实数根,求ΔABC 的周长。

22.某农场要建一个长方形的养鸡场,鸡场的一边靠墙,(墙长25m )另外三边用木栏围成,木栏长40m 。

(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长。

(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由。

24、关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根.(1)求k 的取值范围。

(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由五、解答题:(本大题共2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤. 25.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物— “福娃”平均每天可售出20套,每件盈利40元。

为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。

经市场调查发现:如果每套降价4元,那么平均每天就可多售出8套。

要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?26.荣昌县某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?一、选择题(每小题3分,共21分) 1.方程x 2-2x=0的根是( ).A .x 1=0,x 2=2B .x 1=0,x 2=-2C .x=0D .x=2 2.若x 1,x 2是一元二次方程3x 2+x -1=0的两个根,则1211x x +的值是( ).A .-1B .0C .1D .23.已知一直角三角形的三边长为a 、b 、c ,∠B=90°,那么关于x 的方程a (x 2-1)•-2x+b (x 2+1)=0的根的情况为( ).A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定4.一元二次方程x 2-3x -1=0与x 2-x+3=0的所有实数根的和等于( ). A .2 B .-4 C .4 D .35.某农场粮食产量是:2003年为1 200万千克,2005年为1 452万千克,•如果平均每年增长率为x ,则x 满足的方程是( ).A .1200(1+x )2=1 452B .2000(1+2x )=1 452C .1200(1+x%)2=1 452D .12 00(1+x%)=1 452 6.方程231xx -+=2的根是( ).A .-2B .12C .-2,12D .-2,17.方程2111x x x =--的增根是( ).A .x=0B .x=-1C .x=1D .x=±1二、填空题(每小题3分,共24分)8.x 2+8x+_______=(x+_____)2;x 3-32x+______=(x -______)2. 9.如果x 2-5x+k=0的两根之差的平方是16,则k=________.10.方程2x 2+x+m=0有两个不相等的实数根,则m 的取值范围是_______. 11.若2x 2-5x+28251x x -+-5=0,则2x 2-5x -1的值为_________.12.若x 1,x 2是方程x 2-2x+m 的两个实数根,且1211x x +=4,则m=________.13.已知一元二次方程x 2-6x+5-k=0•的根的判别式△=4,则这个方程的根为_______.14.设方程2x 2+3x+1=0•的两个根为x 1,x 2,•不解方程,•作以x 12,•x 22•为两根的方程为______.15.若一个两位正整数,它的个位数字与十位数的和是5,数字的平方和是17,求这个两位数.解:设这个两位数的十位数字是x ,•则它的个位数字为__________,•所以这两位数是_______,根据题意,得__________________________________. 三、解答题(共75分) 16.(24分)解下列方程 (1)用配方法解方程3x 2-6x+1=0; (2)用换元法解(1x x +)2+5(1xx +)-6=0;(3)用因式分解法解3x (x)-x ;(4)用公式法解方程2x (x -3)=x -3. 17.(10分)某采购员到察尔汗钾盐厂购钾盐36t 运往内地,•如果租用甲种货车若干辆刚好装满,租用乙种货车,可少租1辆并且最后1辆还差4t 才能装满,•已知甲种货车的载重量比乙种货车少2t ,求甲、乙两种货车的载重量各是多少吨?18.(14分)阅读材料:x 4-6x 2+5=0是一个一元四次方程,根据该方程的特点,它的通常解法是:设x 2=y ,那么x 4=y 2,于是原方程变为x 2-6y+5=0①,解这个方程,得y 1=1,y 2=5;•当y 1=1时,x 2=1,x=±1;当y=5时,x 2=5,x=±x 1=1,x 2=-1,x 3,x 2=(1)在由原方程得到方程①的过程中,利用________法达到降次的目的,•体现了_______的数学思想.(2)解方程(x 2-x )-4(x 2-x )-12=0. 19.(14分)已知:关于x 的方程x 2+(8-4m )x+4m 2=0.(1)若方程有两个相等的实数根,求m 的值,并求出这时的根. (2)问:是否存在正数m ,使方程的两个实数根的平方和等于136;若存在,•请求出满足条件的m 值;若不存在,请说明理由. 20.(13分)如图,客轮沿折线A ─B ─C 从A 出发经B 再到C 匀速航行,•货轮从AC 的中点D 出发沿某一方向匀速直线航行,将一批物品送达客轮,两船同时起航,并同时到达折线A ─B ─C 上的某点E 处,已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍. (1)选择:两船相遇之处E 点( )A .在线段AB 上 B .在线段BC 上C.可以在线段AB上,也可以在线段BC上(2)求货轮从出发到两船相遇共航行了多少海里?一、填空题(每小题4分,共40分)1、一元二次方程2x2+4x-1=0的二次项系数_______一次项系数____常数项为_______。

相关文档
最新文档