换底公式的证明及其应用

合集下载

对数换底公式及其应用.

对数换底公式及其应用.
导入新课
1.同底的两个对数可以进行加减运算, 对数的加减运算是利用那两个性质?
a 0, 且a 1. 1 loga M loga N loga M N ; M 2loga M loga N loga N
.
2.遇到同底两个对数相除,怎么办?
换底公式及其应用
提出问题
利用对数的换底公式化简下列各式:
利用换底公式证明:
例2.利用换底公式证明 : m m loga n b loga b.a 0, 且a 1, b 0, m R, n R n
换底时选择好底数:
例3. 已知log3 2 a, log3 7 b, 用a, b表示log14 49
log2 16 log2 16 1求 与 log4 16的值, 并看看 与 log4 16 log2 4 log2 4 的值有何关系 ?
2你能用以c(c 0, 且c 1)为底的两个对数的比来
表示log4 16吗?表示出来的等式成立吗 ?
3一般地, 如果a 0, 且a 1, b 0, c 0, 且c 1.
logc b 那么loga b , 如何证明? logc a
换底公式:
如果a 0, 且a 1, b 0, c 0, 且c 1 : logc b 那么loga b logc a
换底公式的应用示例:
例1.利用对数的换底公式求 下列各式的值 .
1 log2 3 log3 2 2 log8 9 log27 32
log2 9 log3 64 3 log2 3 log3 4
课堂练习:
利用对数的换底公式化简下列各式:
1 loga b logb a; 2 log2 3 log3 4 log4 5 log5 2; 3 log4 3 log8 3log3 2 log9 2

换底公式的五个推论及其证明

换底公式的五个推论及其证明

换底公式的五个推论及其证明换底公式是指在对数运算中,当底数不一致时如何转化为同一底数进行计算。

它有五个常用的推论,分别是:推论一:对数的乘法规则对数的乘法规则是指loga(M×N) = loga(M) + loga(N),其中a表示底数,M和N分别表示两个正数。

该公式表明,两个正数的乘积的对数等于这两个正数的对数之和。

推论二:对数的除法规则对数的除法规则是指loga(M÷N) = loga(M) - loga(N),其中a表示底数,M和N分别表示两个正数。

该公式表明,两个正数的商的对数等于这两个正数的对数之差。

推论三:对数的幂次规则对数的幂次规则是指loga(M^k) = k*loga(M),其中a表示底数,M 表示正数,k表示任意实数。

该公式表明,一个正数的幂的对数等于这个正数的对数乘以幂。

推论四:对数函数的换底公式对数函数的换底公式是指loga(M) = (logb(M))/(logb(a)),其中a 和b分别表示底数,M表示正数。

该公式表明,如果要求一些正数的以a 为底的对数,可以将其转化为以b为底的对数进行计算,其中b可以是任意一个正数。

推论五:自然对数的换底公式自然对数的换底公式是指ln(M) = (loge(M))/(loge(a)),其中M表示正数,e表示自然对数的底数。

该公式表明,如果要求一些正数的自然对数,可以将其转化为以任意一个底数a为底的对数进行计算。

下面对这五个推论进行证明:证明推论一:假设loga(M×N) = x,根据对数的定义可得a^x = M×N。

又假设loga(M) = y,根据对数的定义可得a^y = M。

同理,假设loga(N) = z,根据对数的定义可得a^z = N。

将上述三式相乘可得(a^y)(a^z)=M×N,即a^(y+z)=M×N。

由指数运算的性质可知,a^(y+z)=a^x,因此得到x=y+z。

换底公式

换底公式

(3)
loga
M N
log a M log a N;
例3:科学家以里氏震级来度量地震的强度。若设 I为地震时所散发出来的相对能量程度,则里氏震 级r可定义为r=0.6lgI,试比较6.9级和7.8级地震 的相对能量程度。
解:设6.9级和7.8级地震的相对能量程度
分别为I1和I2,由题意得
6.9 0.6 lg I1 ,
loga b logb c logc a 1.(a 0, b 0,c 0,a 1, b 1,c 1)
证明:
loga b logb c logc a
lg b lg c lg a 1 lg a lg b lg c
2.利用换底公式求值。
(1) log2 25 log3 4 log5 9 ___8____
5
3 (1)log6 216 2
(2) log0.5 1 log0.5 4 2
3.用lgx,lgy,lgz表示下列各式。
(1) lg(x2 yz 3) 2 lg x lg y 3 lg z
(2) lg
x y3z
1 lg x 3 lg y lg z 2
问题1: 使用对数的运算法则运算的前提条件是“同底”, 如果底不同怎么办? 问题2: 我们知道科学计算器通常只能对常用对数或自然 对数进行计算,要计算log215,必须将它换成常用对数 或自然对数,如何转换?
2.三个结论:
(1)负数和零没有对数
(2) loga 1 0, loga a 1
(3)aloga N N
复习旧知
积、商、幂对数的运算法则
如果a>0,a≠1,M>0,N>0 ,则:
(1) log a (MN) log a M log a N;

换底公式——精选推荐

换底公式——精选推荐

换底公式1形式编辑[1] 换底公式是⼀个⽐较重要的公式,在很多对数的计算中都要使⽤,也是⾼中数学的重点。

另有两个推论。

log a(b)表⽰以a为底的b的对数。

换底公式就是loga(b)=logc(b)/logc(a)(a,c均⼤于零且不等于1)2应⽤编辑数学对数在数学对数运算中,通常是不同底的对数运算,这时就需要换底。

.通常在处理数学运算中,将⼀般底数转换为以e为底(即In)的⾃然对数或者是转换为以10为底(即lg)的常⽤对数,⽅便于我们运算;有时也通过⽤换底公式来证明或求解相关问题;在计算器上计算对数时需要⽤到这个公式。

例如,⼤多数计算器有[ln]和[log10]的按钮,但却没有[log2]的。

要计算log2(3),你只有计算log10(3) / log10(2)(或 ln(3)/ln(2),两者结果⼀样);⼯程技术在⼯程技术中,换底公式也是经常⽤到的公式,例如,在编程语⾔中,有些编程语⾔(例如C语⾔)没有以a为底b为真数的对数函数;只有以常⽤对数10为底的对数或⾃然对数e为底的对数(即Ig、In),此时就要⽤到换底公式来换成以e或者10为底的对数来表⽰出以a为底b为真数的对数表达式,从⽽来处理某些实际问题。

3推导过程编辑若有对数log a(b)设a=n^x,b=n^y(n>0,且n不为1)则 loga(b)=log(n^x)(n^y)根据对数的基本公式loga(M^n)=nlogaM和基本公式log(a^n)M=1/n×logaM易得log(n^x)(n^y)=ylog(n^x)n=y/x lognn=y/x由 a=n^x,b=n^y可得 x=logna,y=lognb则有:loga(b)=log(n^x)(n^y)=lognb/logna得证:logab=lognb/logna例⼦:logc* loga=logc/loga *loga=logc=1利⽤换底公式可推导下⾯结论(1) logam(bn)=n/mlogab ( am是底数) (2) logab=1/logba⽅法2若有对数loga(b)=x则a^x=ba=(x)√bc^log(c)(a)=(x)√bc^[x·log(c)(a)]=b两边取以c为底的对数得x·log(c)(a)=log(c)(b)x=log(c)(b)/log(c)(a)即loga(b)=log(c)(b)/log(c)(a)换底公式图册(8)换底公式图册(9)。

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论
9 2
4
解:二) log4 3 log2 8 log2 4 log2 4 log 1 log2 2 3 9 3 1 2 2 ( 2) ( 1 ) 2 3 1 4 2 2 2
作业:课本P74的4(3)、5
1.课本P74,第1,2,3,4,5,7题 1.求值:
3) log4 3 log9 2 log1
2
32
3 3) 2
条件求值
例2.已知
用a, b 表示
log2 3 a, log3 7 b
l og6 21
l og3 21 l og3 ( 3 7) 解: l og6 21 l og3 ( 2 3) l og3 6
l og3 3 l og3 7 l og3 2 l og3 3
(log2 5 log4 0.2)(log5 2 log25 0.5)
2.若 log3 4 log4 8 log8 m log4 2,求m
3 若l og 8 3 p, l og 3 5 q,
2.各小组数学负责人17:50办公室
用p, q表 示 l g5
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方 法
前 言 高考状元是一个特殊的群体,在许
多人的眼中,他们就如浩瀚宇宙里璀璨夺 目的星星那样遥不可及。但实际上他们和 我们每一个同学都一样平凡而普通,但他 们有是不平凡不普通的,他们的不平凡之 处就是在学习方面有一些独到的个性,又 有着一些共性,而这些对在校的同学尤其 是将参加高考的同学都有一定的借鉴意义。
2
小结:
( a > 0 ,a 1 ,m > 0 ,m 1,N>0) 三个推论:

换底公式的证明及其应用

换底公式的证明及其应用

换底公式的证明及其应用换底公式是对数运算、证明中重要的公式,但有些同学对其理解不深,应用不好,故下面加以补充,希望对同学们的学习能有所帮助.一、换底公式及证明换底公式:log b N =log a N log a b . 证明 设log b N =x ,则b x =N .两边均取以a 为底的对数,得log a b x =log a N ,∴x log a b =log a N .∴x =log a N log a b ,即log b N =log a N log a b . 二、换底公式的应用举例1.乘积型例1 (1)计算:log 89·log 2732;(2)求证:log a b ·log b c ·log c d =log a d .分析 先化为以10为底的常用对数,通过约分即可解决.解 (1)换为常用对数,得log 89·log 2732=lg 9lg 8·lg 32lg 27=2lg 33lg 2·5lg 23lg 3=23×53=109.(2)由换底公式,得log a b ·log b c ·log c d =lg b lg a ·lg c lg b ·lg d lg c =log a d .评注 此类型题通常换成以10为底的常用对数,再通过约分及逆用换底公式,即可解决.2.知值求值型例2 已知log 1227=a ,求log 616的值.分析 本题可选择以3为底进行求解.解 log 1227=log 327log 312=a ,解得log 32=3-a 2a . 故log 616=log 316log 36=4log 321+log 32=4×3-a 2a 1+3-a 2a=4(3-a )3+a . 评注 这类问题通常要选择适当的底数,结合方程思想加以解决.3.综合型例3 设A =1log 519+2log 319+3log 219,B =1log 2π+1log 5π,试比较A 与B 的大小.分析 本题可选择以19及π为底进行解题.解 A 换成以19为底,B 换成以π为底,则有A =log 195+2log 193+3log 192=log 19360<2,B =log π2+log π5=log π10>log ππ2=2.故A <B .评注 一般也有倒数关系式成立,即log a b ·log b a =1,log a b =1log b a .。

对数的换底公式及其推论(含答案)

对数的换底公式及其推论(含答案)

对数的换底公式及其推论一、复习引入:对数的运算法则如果 a > 0,a 丰 1,M > 0, N > 0 有:log a (MN) Jog a M gN ⑴ 蛰lo (2)log.M n 二 nlog a M(n R) (3)、新授内容: 1•对数换底公式:证明:设 log a N = x ,贝U a x= N -两边取以m 为底的对数:log m a x= log m N = x log m a = log m N2•两个常用的推论① log a b log b a =1 , logblogcloga" * ②log a mb " = ^log a b ( a, b > 0 且均不为 1)・m证:① log a b log b a == 1 亠 lga lg b三、讲解范例:lOg a Nlog m N log m a(a > 0 ,a 丰 1 , m > 0 ,m 丰 1,N>0) *从而得: log m N x =log m alog a Nlog m N log m a② log a m b n_ lgb n = nig b lga mmlga弋log ab例 1 已知 log 2 3 = a , log 3 7 = b, 用 a, b 表示 log 42 56 解:因为log 2 3 = a ,则1log 3 2 , 又/log 3 7 =b,a •'•log 42 56log 3 56 log 342 log 3 7 3 log 3 2 log 3 7 log 32 1ab 3 ab b 1例2计算:①51-log。

/log 4 3 log 9 2 - log 1 4322解: ①原式55叫.23 5r log5-5 34=153 ②原式=~log 232log 32x, y,z (0,::)且3x=4y=111求证+ :;2x 2y z例3设 1 =6z =k =4y 1 :设 3x 6z十彳log 2 2比较3x,4y,6z 的大小-证明 •/x, y, z (0, ::) /.k 1 取对数得:yJ gkz=3 lg4lg6••丄丄 x 2y _ lg3 . lg4 _lgk 2lgk 2lg3 lg4 2lgk 2lg3 2lg22lgklg6 lgk3 23—(浜—)lgk 二 lg4 lg6^lg81lgk lg3lg464 lg klg -81::: 0 lg3lg4•'•3x :: 4y又:4y-6z=(二lg4 lg6 lg k lg -96、「 lg36 -lg64 16小)lg klg k16:: 0lg2lg6lg2lg6•'4y ::: 6z•'•3x ::: 4y ::: 6z .例 4 已知 log a x= log a C+b ,求 x.分析:由于x 作为真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b 的存在使变形产生困难,故可考虑将 log a C 移到等式左端,或者将b 变为对数形式• 解法由对数定义可知: 乂二才叫小口吋a b=c a b. 解法二:x由已知移项可得log a x-log a c =b ,即log a b cx b b由对数定义知:a • x 二c a •c解法三:b=log a a b log a x = log a c Tog a a b = log a c a b . x=ca b四、课堂练习:①已知 log 18 9 = a , 18 = 5 ,用 a, b 表小 log 36 45解:••• 18 log 18 9 = a /.log 18 —1 -log 18 •log 182 = 1 _a••• 18b= 5 • log 185 = bl o g 8 9 l o g 8 5 a b 1 l o g 8 2 2 - a②若 log 8 3 = p , log 3 5 = q ,求 lg 5log 36 45log i8 45 log i8 36三、小结 本节课学习了以下内容:换底公式及其推论 四、课后作业:1 .证明:log ax =1 log ablog ab x证法 1:设 log a X 二 p , log ab X 二 q , log a b 二 r贝U : x=a px=(ab)q=a q b qb=a r•a P= (ab)q = aq(1 r)从而 p = q(1 ■ r)•••q=0 •- =1 r 即:log a x= 1 log a b (获证) q log ab xlog a x log x ab 证法2:由换底公式 左边=- - log a ab = 1 log a b =右边 log ab x log x a2•已知 lo g a ! b 1 = lo g a 2 b2 = = log a n bn ='求证:Sg a^ a n (b 1b2bn)二,证明:由换底公式 业二眶二•…二皿二■由等比定理得:lg a 1 lg a 2lg a .lg d +lg b 2 + …+lgb n _ ? . lg(db2…b n )lga 1 lga 2 lg a nlg(a£2 a n )•log a 1a 2 a n 隔b n )巒解:T log 8 3 = p•」og 23 3= P =■ log 2 3 = 3 p =• log 3 21 3p又 v log 3 5 二 qlog 3 5 log 3 5log 310 log 3 2 log 353pq 1 3pqlg(a1a2 a n)THANKS !!! 致力为企业和个人提供合同协议,策划案计划书,学习打造全网一站式需求欢迎您的下载,资料仅供参考。

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论

例1、算:
1)
log8 9 log27 32
1log0.2 3
4
2) 5
3)
log4 3 log9 2 log1 32
2
例2.已知
log2 3 a, log3 7 b
用a, b 表示 log42 56
例3 生物机体内碳14的半衰期为
5730年,湖南长沙马王堆汉墓
女尸出土时碳14的残余量约 占原始含量的76.7%,试推算
vcg49wfv
是有这么一个孙女就好喽。”耿英和老妇人一起进屋做饭去了。耿正说:“俺去挑担水哇!”耿老爹说:“俺去挑哇,你拉一段好听的 二胡曲儿给爷爷听,让爷爷乐呵乐呵!”老爷子一听这话,立刻就高兴得眉开眼笑,说:“哎呀,这娃儿还会拉二胡哇,快拉给爷爷听 听!唉,爷爷奶奶老嘞,走不了远路,俺们有好几年没有去镇上赶庙会了呢。常年儿呆在家里,自然就没有机会听这些个热闹了哇。每 日里能够听到的,除了鸡鸣狗叫什么的,再就是狂风暴雨后那怪吓人的波涛声儿了。今儿个正好用好听的曲儿给爷爷洗洗耳朵!”耿正 笑了,说:“爷爷,俺拉得没有多好,但总归还是可以给您换个声儿听的!您请坐,俺这就拉给您听!”说着话,耿正去车上取来二胡, 又看看周围,先请老爷子坐在屋门旁檐台上那个松松软软的厚草垫子上。然后,自己搬把高脚凳子坐在老爷子的对面亲切地问:“爷爷, 您爱听哪一段儿?”老爷子想也没有想就说:“你就将最顺手的拉哇,爷爷什么曲儿都爱听!”自来熟耿直也很想表现表现,于是就高 兴地跳到老爷子的背后,声音甜甜地说:“那俺给爷爷捶捶背哇。俺爹说啦,经常锤捶背身子骨儿好!”在优美的二胡曲儿声中,耿直 不轻不重地为老人家捶着背。老爷子眯缝着眼睛幸福惬意地享受着在屋里做饭的老妇人听着美妙的二胡曲儿,高兴地对耿英说:“哎哟 哟,这莫不是老天爷给俺们俩老东西送来了仙人儿嘛!”热汤热菜的舒舒服服吃完晚饭之后,耿正又为两位老人家拉了好一会儿。次日 早饭后,耿老爹将毛驴重新拴在滩枣树上,给它喂上草料,饮上水。然后对老夫妇说,想带娃娃们到黄河边上玩玩儿去。两位老人家相 视而笑了。老爷子摇着头说:“唉,没有见过黄河的人,都觉得这条大河新奇呢。其实哇,这黄河可不见得是一个好东西!你让娃娃们 离远点儿瞧瞧就是了。你们打北面过来的人,肯定不会水的,千万别失足落进去哇!”老妇人也说:“是啊,这黄河自古以来就经常祸 害人呢。说不定什么时候不高兴了,就冲破堤坝,好像脱缰的野马一样。你们可一定小心啊,离远点儿瞧!对啦,不要走太远了,中午 还回来吃饭,俺给咱们做打卤刀削面。”耿老爹感激地说:“好的,俺们一定小心,也不会走太远了。中午还回来吃饭,您做简单点 儿!”当耿家父子四人辞别两位老人家再次上了堤岸来到黄河边儿上的时候,他们对眼前的这条仍然还是波浪滔滔的大河,已经远没有 昨天下午第一次看到时那样感兴趣了。毫无疑问,两位善良老人家对这条大河的那一番不乍欣赏的评价,已经深深地感染了他们。沿岸 走了一会儿后,耿直甚至说:“听这声音,这黄河真得很像脱缰的野马呢!”耿正说:“不,这黄河水现在还只是被圈在堤坝里边的野 马,还没

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论
2
x 10 3 x 解 得x 2或x 5 检 验x 2( 舍 ) x 5
2
小结:
( a > 0 ,a 1 ,m > 0 ,m 1,N>0) 三个推论:
l ogm N 换底公式 loga N l ogm a
1) loga b logb a 1
2)
loga b logb c logc a 1
3) log4 3 log9 2 log1
2
32
3 3) 2
条件求值
例2.已知
log2 3 a, log3 7 b
l og3 21 l og3 ( 3 7) 解: l og6 21 l og3 ( 2 3) l og3 6
l og3 3 l og3 7 l og3 2 l og3 3
探究:
三个推论: 设 a, b > 0且均不为1,则
1) loga b logb a 1
2) loga b logb c logc a 1
3)loga m b
n
n l oga b m
例1、计算: 1)
log8 9 log27 32
10 1) 9
2)1
4
2) log2 3 log3 4 log4 2
用a, b 表示 l og6 21
log2 2 1 log2 3 a log3 2 log2 3 a 1 b a ab 原 式 = 1 1 a 1 a
例3 解对数方程
log9 ( x 10) log9 3 x
2
解: l og9 ( x 10) l og9 3 x
2.各小组数学负责人17:50办公室

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论

马王堆汉墓的年代.
作业:课本P75的11,12
补充:1.求值:
(log2 5 log4 0.2)(log5 2 log25 0.5)
2.若 log3 4 log4 8 log8 m log4 2 ,求m
3.若log
8
Байду номын сангаас3=p,
log
3
5=q ,
用p,q表示 lg 5
; / 河源整形医院 河源整形美容 河源激光整形美容 河源医学整形整容 望都无法实现,冰凝真是对自己又恨又恼,但她更痛恨这受制于人的王府生活。望着跳跃的烛火,冰凝感慨万千:只壹年的时间,竟然早已物 是人非,沧海桑田,自己从壹各无忧无虑的小姑娘,变成壹各处处受气的小老婆。这么大的落差,实在是需要她用很长、很长的壹段时间来消 化,来适应。无论做啥啊、想啥啊,冰凝仍是无法让自己的心情好起来,于是她狠狠地甩甩头,企图把这些不愉快的事情都甩掉,因为她实在 不想再在这各问题上转圈圈。那就想点儿别的事情吧!可是,无论她怎么转念,这念想都要转到宝光寺上面。去年施粥的情景还历历在目,宝 光寺残垣断壁的样子时时地浮现眼前。她太惦记宝光寺咯:庙宇重建得好不好?僧人们的生活苦不苦?香客们去得多不多?越想,却越是觉得 不踏实。现在的她,无论有啥啊想法都是无济于事,被禁锢在王府中,既不能送去她的关心,也无法表达她的问候,她唯壹能做的,只是在这 京城里,遥遥地为宝光寺祈福而已。王爷是参惮礼佛之人,因此王府里建有专门的佛堂――万安堂。看看沙漏,三更天都快要过完咯,佛堂应 该没有人咯吧。于是冰凝唤来吟雪,两各人穿戴整齐,她要去佛堂给宝光寺烧几柱香。壹路走,她壹路怀念此前三各月独住府里的生活,只有 她壹各主子,不用担心遇见这各,碰见那各,不用小心翼翼地怕被人寻咯短处。哪像现在,即使去各佛堂还要小心翼翼,躲到深更半夜。自由 自在的日子真是越想越惬意,越想越令她怀念。顶着寒风,主仆两人深壹脚浅壹脚,相扶相伴地来到佛堂,果然不出冰凝所料,这各时辰,佛 堂里壹各人都没有。自从众人从园子里回来,也只有在深更半夜,冰凝才能自由自在地做壹回自己。虔诚地焚上香,冰凝跪拜在佛祖面前,真 诚地送上自己的祝福:祈求佛祖大慈大悲,祈求菩萨格外施恩,保佑寺院,保佑僧侣,保佑香客,保佑天底下所有的生灵……远远地见到佛堂 里有人影晃动,王爷很是诧异,这各时辰,居然还会有人?怀着万分诧异的心情,待走近之后仔细定睛壹看,门口站着的,居然是怡然居的大 丫环吟雪!他不是冰凝,作为政治嗅觉异常灵敏的他,在生活中也将这种物质发挥到咯极至,因此每壹各人他接触过的人,都会记得很清楚, 即使是各丫环,他都记得。只是这各结果实在是大大出乎他的意料:竟然会是年氏在里面!犹豫咯壹下,最终还是决定进来,他是爷,难道他 还需要怕啥啊人,还需要躲着谁吗?不过,他仍是先嗽咯壹下嗓子,算是提醒壹下她吧。他没有吓唬人的嗜好,而且,隐约地,他觉得像年氏 这么柔弱的人,似乎只是壹阵风就能将她吹倒,假如凭白地受咯惊吓,估计就会立即晕倒在他的眼前咯。她要是昏倒咯,就需要他去扶她,甚 至

对数的换底公式推导

对数的换底公式推导

对数的换底公式推导
对数的换底公式是数学中一个很重要的公式,它可以用来计算不同对数之间的关系,成为科学研究中不可缺少的一部分。

本文将通过证明换底公式来帮助读者理解其中的原理。

首先,我们要明确一下关于对数的概念,以及换底公式的定义。

对数(log)是一个抽象概念,它表示两个数字之间的关系。

换底公式(logab = logcb / logca)指的是两个对数(logab logcb)之间的关系,即logab于logcb以logca商。

接下来,我们来证明换底公式。

设有两个数ab,其中ab0。

由于logab = logcb / logca,我们可以认为:
b = c^(logca logcb )
下一步,我们可以将b两边同时乘以a:
ab = c^(logca logcb ) a
我们知道,ab于cn幂。

我们可以进一步将上式简化为:
ab = c^(logca + logcb )
以上就是换底公式的证明。

换底公式的应用不仅限于简单的计算,它也可以用于更深层次的研究。

比如,由于logar = logbr + logcr,因此可以用换底公式推导出ab 之间的指数表达式。

此外,换底公式还可以用于方程解等数学问题。

比如,在一个简单的方程中,如果已知ab对数,则可以通过换底公式求解方程。

综上所述,换底公式是一个重要的数学公式,它不仅可以用于简
单的计算,还可以用于更深层次的研究,从而为科学研究带来更多可能性。

换底公式——精选推荐

换底公式——精选推荐

换底公式换底公式是⼀个⽐较重要的公式,在很多对数的计算中都要使⽤,也是⾼中数学的重点。

另有两个推论如下:log a(b)表⽰以a为底的b的对数。

换底公式就是log(a)(b)=log(c)(b)/log(c)(a)(a,c 均⼤于零且不等于1)。

基本信息中⽂名:换底公式英⽂名:base changing formula for lograithms适⽤学科:数学、计算机适⽤范围:对数的计算,⾼中数学公式成⽴条件:a,c均⼤于零且不等于1推论个数:2形式正在加载换底公式换底公式是⼀个⽐较重要的公式,在很多对数的计算中都要使⽤,也是⾼中数学的重点。

另有两个推论。

loga(b)表⽰以a为底的b的对数。

换底公式就是log(a)(b)=log(c)(b)/log(c)(a)(a,c均⼤于零且不等于1)推导过程若有对数log(a)(b)设a=n^x,b=n^y(n>0,且n不为1)如:log(10)(5)=log(5)(5)/log(5)(10)则log(a)(b)=log(n^x)(n^y)根据对数的基本公式log(a)(M^n)=nloga(M)和基本公式log(a^n)M=1/n×log(a) M易得log(n^x)(n^y)=y/x由a=n^x,b=n^y可得x=log(n)(a),y=log(n)(b)则有:log(a)(b)=log(n^x)(n^y)=log(n)(b)/log(n)(a)得证:log(a)(b)=log(n)(b)/log(n)(a)例⼦:log(a)(c) * log(c)(a)=log(c)(c)/log(c)(a) *log(c)(a)=log(c)(c)=1应⽤数学对数在数学对数运算中,通常是不同底的对数运算,这时就需要换底。

.通常在处理数学运算中,将⼀般底数转换为以e为底(即In)的⾃然对数或者是转换为以10为底(即lg)的常⽤对数,⽅便于我们运算;有时也通过⽤换底公式来证明或求解相关问题;在计算器上计算对数时需要⽤到这个公式。

换底公式的6个推论

换底公式的6个推论

换底公式的6个推论换底公式是初中数学中的重要知识点,它是解决三角函数的周期性问题的有力工具。

换底公式有6个推论,本文将逐个介绍并解释这些推论的应用。

1. 推论一:sin(x) = cos(90° - x)换底公式的第一个推论是sin函数与cos函数的关系。

根据三角函数的定义,sin(x)表示角度x的正弦值,cos(x)表示角度x的余弦值。

推论一指出,对于任意角度x来说,它的正弦值等于90°减去该角度的余弦值。

这个推论的应用十分广泛,可以用来简化计算,特别是在求解不同角度的三角函数值时。

2. 推论二:cos(x) = sin(90° - x)推论二是推论一的逆命题,它指出,对于任意角度x来说,它的余弦值等于90°减去该角度的正弦值。

这个推论可以与推论一一起使用,互相验证结果的正确性。

3. 推论三:tan(x) = cot(90° - x)推论三是tan函数与cot函数的关系。

tan(x)表示角度x的正切值,cot(x)表示角度x的余切值。

推论三说明,对于任意角度x来说,它的正切值等于90°减去该角度的余切值。

这个推论可以用来简化计算,特别是在求解不同角度的三角函数值时。

4. 推论四:cot(x) = tan(90° - x)推论四是推论三的逆命题,它指出,对于任意角度x来说,它的余切值等于90°减去该角度的正切值。

这个推论可以与推论三一起使用,互相验证结果的正确性。

5. 推论五:sec(x) = csc(90° - x)推论五是sec函数与csc函数的关系。

sec(x)表示角度x的正割值,csc(x)表示角度x的余割值。

推论五说明,对于任意角度x来说,它的正割值等于90°减去该角度的余割值。

这个推论可以用来简化计算,特别是在求解不同角度的三角函数值时。

6. 推论六:csc(x) = sec(90° - x)推论六是推论五的逆命题,它指出,对于任意角度x来说,它的余割值等于90°减去该角度的正割值。

换底公式

换底公式

log927
lg9
lg32
2
⑵ lo g 89lo g 2 73 2llg g3 2 2 3llg g3 2 5 32 3llg g3 25 3 llg g2 31 9 0
点评:灵活应用对数的换底公式是解决问题的关键.
再思考活动:从例题的解答过程中,引导学生思考一 般真上(2)数 题性原 式 的也结 次 可论lo g 2 方 直,3 l3 o2 g数 接alo mg 为 这b3 3 n2 分 样5 m n子 算2 3 lloo g :)g,2 a3 bl(o(15 3 强g)lo ag 原 调b3 式 2 l 底o1 g9 l0 数o bga32的331次(强3 2方lo调g3数3互为3 2为分倒母数,).
知识点——
换底公式
换底公式
【定义】
根据相等的两个正数的同底对数相等,若N=bx ,
两边取以 a为底的对数,得 ㏒a N=㏒abx
而㏒abx =x㏒ab,所以 ㏒a N= x㏒ab
由于b ≠1 ,则 ㏒ab ≠0 ,解出x ,得
因为 x= ㏒bN,所以 ㏒bN =
lo g a N lo g a b
x loga N loga b
换底公式
【变式训练】
解法二:对已知条件取以6为底的对数,得:
a log 6 3 2, b log 6 2 1
2
1

a

log 6
3, b

log 6
2

2 a

1 b

log 6
3

log 6
2

1
点评:本题考查对数的性质,一个等式的两边取
对数,是一种常用的技巧,一般地说,给出的等

换底公式的证明及其应用

换底公式的证明及其应用

换底公式的证明及其应用 换底公式是对数运算、证明中重要的公式,但有些同学对其理解不深,应用不好,故下面加以补充,希望对同学们的学习能有所帮助.一、换底公式及证明换底公式:log b N =log a N log a b . 证明 设log b N =x ,则b x =N .两边均取以a 为底的对数,得log a b x =log a N ,∴x log a b =log a N .∴x =log a N log a b ,即log b N =log a N log a b . 二、换底公式的应用举例1.乘积型例1 (1)计算:log 89·log 2732;(2)求证:log a b ·log b c ·log c d =log a d .分析 先化为以10为底的常用对数,通过约分即可解决.解 (1)换为常用对数,得log 89·log 2732=lg 9lg 8·lg 32lg 27=2lg 33lg 2·5lg 23lg 3=23×53=109.(2)由换底公式,得log a b ·log b c ·log c d =lg b lg a ·lg c lg b ·lg d lg c =log a d .评注 此类型题通常换成以10为底的常用对数,再通过约分及逆用换底公式,即可解决.2.知值求值型例2 已知log 1227=a ,求log 616的值.分析 本题可选择以3为底进行求解.解 log 1227=log 327log 312=a ,解得log 32=3-a 2a . 故log 616=log 316log 36=4log 321+log 32=4×3-a 2a 1+3-a 2a=4?3-a ?3+a . 评注 这类问题通常要选择适当的底数,结合方程思想加以解决.3.综合型例3 设A =1log 519+2log 319+3log 219,B =1log 2π+1log 5π,试比较A 与B 的大小.分析 本题可选择以19及π为底进行解题.解 A 换成以19为底,B 换成以π为底,则有A =log 195+2log 193+3log 192=log 19360<2,B =log π2+log π5=log π10>log ππ2=2.故A <B .评注 一般也有倒数关系式成立,即log a b ·log b a =1,log a b =1log b a.。

换底公式的证明

换底公式的证明

换底公式的证明换底公式是数学中的一种重要公式,用于求解不同底数的对数之间的关系。

它在数学和科学研究中被广泛应用,对于解决问题和简化计算过程具有重要意义。

下面将给出换底公式的证明过程。

我们先回顾一下对数的定义。

对数是指数运算的逆运算,用来表示底数为a的幂运算的结果是多少。

具体地说,如果a^x = b,则记作x = log_a(b),其中a称为底数,x称为对数,b称为真数。

现在我们来证明换底公式。

设对数的底数为a和c,对数的真数为b。

我们要证明的是log_a(b) = log_c(b) / log_c(a)。

为了证明这个等式,我们可以使用对数的定义和指数运算的性质进行推导。

根据对数的定义,我们有a^log_a(b) = b。

这意味着对数log_a(b)是底数为a的幂运算的结果是b。

接下来,我们将这个等式转化为指数形式。

将等式两边同时以c为底数取对数,得到log_c(a^log_a(b)) = log_c(b)。

根据指数运算的性质,我们可以将指数移到对数的外面,得到log_c(b) = log_c(a) * log_a(b)。

这里,我们用到了对数的换底公式:log_a(b) = log_c(b) / log_c(a)。

因此,我们证明了换底公式的正确性。

换底公式的证明过程相对简单,但是应用范围广泛。

它可以帮助我们在计算过程中,将底数不同的对数转化为底数相同的对数,从而简化计算。

在一些数学问题和科学实验中,我们常常需要进行对数运算,而换底公式能够为我们提供便利。

总结一下,换底公式是数学中的一种重要工具,用于求解不同底数的对数之间的关系。

通过对对数的定义和指数运算的性质进行推导,我们可以得到换底公式的证明过程。

这个公式在数学和科学研究中具有广泛的应用价值,能够帮助我们简化计算,解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

换底公式的证明及其应

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
换底公式的证明及其应用
换底公式是对数运算、证明中重要的公式,但有些同学对其理解不深,应用不好,故下面加以补充,希望对同学们的学习能有所帮助.
一、换底公式及证明
换底公式:log b N =log a N log a b . 证明 设log b N =x ,则b x =N .两边均取以a 为底的对数,得log a b x =log a N ,∴x log a b =log a N .
∴x =log a N log a b ,即log b N =log a N log a b . 二、换底公式的应用举例
1.乘积型
例1 (1)计算:log 89·log 2732;
(2)求证:log a b ·log b c ·log c d =log a d .
分析 先化为以10为底的常用对数,通过约分即可解决.
解 (1)换为常用对数,得
log 89·log 2732=lg 9lg 8·lg 32lg 27=2lg 33lg 2·5lg 23lg 3=23×53=109.
(2)由换底公式,得
log a b ·log b c ·log c d =lg b lg a ·lg c lg b ·lg d lg c =log a d .
评注 此类型题通常换成以10为底的常用对数,再通过约分及逆用换底公式,即可解决.
2.知值求值型
例2 已知log 1227=a ,求log 616的值.
分析 本题可选择以3为底进行求解.
解 log 1227=log 327log 312=a ,解得log 32=3-a 2a . 故log 616=log 316log 36=4log 321+log 32=4×3-a 2a 1+3-a 2a
=4?3-a ?3+a . 评注 这类问题通常要选择适当的底数,结合方程思想加以解决.
3.综合型
例3 设A =1log 519+2log 319+3log 219,B =1log 2π+1log 5π,试比较A 与B 的大小.
分析 本题可选择以19及π为底进行解题.
解 A 换成以19为底,B 换成以π为底,
则有A =log 195+2log 193+3log 192=log 19360<2,
B =log π2+log π5=log π10>log ππ2=2.故A <B .
评注 一般也有倒数关系式成立,即log a b ·log b a =1,log a b =1log b a .。

相关文档
最新文档