约束最优化方法最优化方法ppt课件

合集下载

约束问题的最优化方法

约束问题的最优化方法

可用于处理等式约束。
§5.3 外点惩罚函数法
三. 几个参数的选择:
r(0) 的选择:
r(0) 过大,会使惩罚函数的等值线变形或偏心,求极值困难。r (0) 过小,迭代次数太多。
建议 :r0 max ru0 u 1,2,...m
其中:ru0
m gu
0.02 x0 f
x0
x(0) 的选择:
2
若均满足,停止迭代,有约束优化问题的最优点为 x* = xk*; 若有一个准则不满足,则令 x(0) xk * (r(k) ),r(k1) c r(k) , k k 1 并转入第 3 步,继续计算。
§5.2 内点惩罚函数法
算法框图
§5.2 内点惩罚函数法
四. 几个参数的选择: 1. 惩罚因子初始值 r(0) 的选择:
§5.1 引言
有解的条件: ① f(x) 和 g(x) 都连续可微; ② 存在一个有界的可行域; ③ 可行域为非空集; ④ 迭代要有目标函数的下降性和设计变量的可行性。
三. 间接解法的基本思想: 目的:将有约束优化问题转化为无约束优化问题来解决。
方法:以原目标函数和加权的约束函数共同构成一个新的目标函数
(略) 2. 数学模型:
设计变量 : X x1,x2 T t f ,h T
目标函数 : min. f x 120x1 x2
单位长度的质量
§5.2 内点惩罚函数法
约束函数 : g1x x1 0 g 2 x x2 0 g3 x 1 0.25x2 0
g4
x
1
7 45
x1x2
0
g5
x
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想:
外点法将新目标函数 Φ( x , r ) 构筑在可行域 D 外, 随着惩罚因子 r(k) 的不断递增, 生成一系列新目标函数 Φ(xk ,r(k)),在可行域外逐步迭 代,产生的极值点 xk*(r(k)) 序 列从可行域外部趋向原目标函 数的约束最优点 x* 。

最优化方法PPT

最优化方法PPT

共117页第8页
同时太阳系这个"整体"又是它所属的"更大整 体"--银河系的一个组成部分。世界上的具体系统是 纷繁复杂的,必须按照一定的标准,将千差万别的 系统分门别类,以便分析、研究和管理,如:教育 系统、医疗卫生系统、宇航系统、通讯系统等等。 如果系统与外界或它所处的外部环境有物质、能量 和信息的交流,那么这个系统就是一个开放系统, 否则就是一个封闭系统。开放系统具有很强的生命 力,它可能促进经济实力的迅速增长,使落后地区 尽早走上现代化。如改革开放以来已大大增强了我 们的综合国力。而我国的许多边远山区农村,由于 交通不便,相对封闭,还处于比较落后的状态。
会科学和思维科学的相互渗透与交融汇流,产生了 具有高度抽象性和广泛综合性的系统论、控制论和 信息论。
系统论是研究系统的模式、性能、行为和规律 的一门科学。它为人们认识各种系统的组成、结构、 性能、行为和发展规律提供了一般方法论的指导。 系统论的创始人是美籍奥地利理论生物学家和哲学 家路德维格·贝塔朗菲。系统是由若干相互联系的 基本要素构成的,它是具有确定的特性和功能的有 机整体。如太阳系是由太阳及其围绕它运转的行星 (金星、地球、火星、木星等等)和卫星构成的。
从数学上比较一般的观点来看,所谓最优化问题可 以概括为这样一种数学模型:给定一个“函数”,F(X), 以及“自变量”X应满足的一定条件,求X为怎样的值时, F(X)取得其最大值或最小值。这里在函数和自变量两个 词上之所以打上引号,是想强调它们的含意比中学数学 和大学微积分中函数的定义要广泛得多。通常,称F(X) 为“目标函数”,X应满足的条件为“约束条件”。约 束条件一般用一个集合D表示为:X∈D。求目标函数 F(X)在约束条件X∈D下的最小值或最大值问题,就是一 般最优问题的数学模型,它还可以利用数学符号更简洁 地表示成:Min F(X)或Max F(X)。

第四章约束问题的最优化方法

第四章约束问题的最优化方法

当limr(k) 0 k
则(x, r(k) ) f (x) , xk * x *
例: 用内点法求
min
f
(x)

x2 1

x2 2
s.t. g( x) 1 x1 0 的约束最优解。
解:
首先构造内点惩罚函数: (
x,
r)

x2 1

x2 2

rk
ln(x1
1)
用解析法求函数的极小值,运用极值条件:
二. 直接解法:
基本思想:合理选择初始点,确定搜索方向,以迭代公式 x(k+1)= x(k)+α(k)S(k)在可行域中寻优,经过若干次迭代,收敛至最优点。 适用范围:只能求解不等式约束优化问题的最优解。
基本要点:选取初始点、确定搜索方向及适当步长。
搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。 可行性:迭代点必须在约束条件所限制的可行域内,即满足
1
u1 gu (x)
② .(x, r(k) )
m
f (x) r(k)
1
u1 gu (x)
③ .(x, r (k) )
f (x)
m
r (k) u u 1
1 gu (x)
其中:gu (x) 0,u 1,2,...m
其中:gu (x) 0,u 1,2,...m
gu(x)0, u=1,2,…,p
适用性:当前迭代点的目标函数值较前一点是下降的,即满足 F(xk+1)<F(xk)
收敛条件:
• 边界点的收敛条件应该符合 K-T 条件;
• 内点的收敛条件为: xk1 xk 1

最优化方法4-1第四章 约束最优化方法-KKT条件

最优化方法4-1第四章  约束最优化方法-KKT条件
(I) x*为问题的局部最优解且 I*={i| c i (x*)=0, 1≤i≤m };
(II) f(x)和 c i (x)(i∈I*)在 x*点可微;
(III)c i (x)(i∈I\ I*)在 x*点连续
则 S={p∈Rn | ▽f(x*)Tp<0}
与 G={ p∈Rn |▽c i(x* )Tp>0, i∈I*} 的交是空集,
(iii)▽ci(x*)(i=1,2,…,l)线性无关;
则存在一组不全为零的实数 1*… l*使得
l
▽f(x*)- i *▽c i(x*)=0 1
定义 n+l 元函数:
l
L(x, )=f(x)- Tc(x)=f(x)- ici(x) i1 为 lagrange 函数,

1


1 2
x1 x2 1 0
的 KT 点为 x* (0, 3)T,相应乘子为* (1 ,0)T。
6
例 2:验证(2,1)T 为下面约束优化问题的 K-T 点.
min
f ( x1 , x2 ) ( x1 3)2 ( x2 2)2
恰好给出等式约束问题的一阶必要条件
及 c i(x*)=0,i=1, …,l
点(X*, *)称为 lagrange 函数 L(x, )的驻点。
几何意义是明显的:考虑一个约束的情况:
-▽f(x*)
-▽f(x ) x
▽c(x )
c(x)
▽c(x*)
这里 x* 是局部最优解,
▽f(x*)与▽c(x*) 共线,
称 为 lagrange 乘子向量。
lagrange 函数的梯度为
▽L(x, )=(▽xL,▽ L)T

《最优化理论》课件

《最优化理论》课件

机器学习中的应用
介绍最优化理论在神经网络训练 中的作用。
工程优化中的应用
应用最优化理论优化机械设计和 自动化控制系统。
总结
通过本课程的学习,您掌握了最优化理论的基本知识和应用方法,为实际问 题的解决提供了有力工具和支持。期待您在未来能够更好地应用这些知识, 为创新和发展做出更大的贡献。
凸优化问题的定义
详细讲解凸优化问题的定义和常用求解方法。
对偶问题
讲解凸优化问题的对偶问题和应用案例。
其他优化问题
1
整数规划
讲解整数规划在实际问题中的应用及其求解方法。
2
半正定规划
介绍半正定规划的定义和求解方式。
3
非线性规划
学习非线性规划问题的求解方法和应用案例。
应用案例
Hale Waihona Puke 经济学中的应用讲解最优化理论在竞争市场模型 中的应用。
数学符号与常用概念
介绍数学符号的含义和常用概念,为后 续学习内容打下基础。
一元函数的最优化问题
讲解一元函数求极值的方法,如牛顿法 和梯度下降法等。
无约束优化问题
一维搜索法
介绍线性搜索和二分搜索等一维 搜索算法。
牛顿法
讲解牛顿法的动机和实现方式。
梯度下降法
详细介绍梯度下降法的原理和特 点。
共轭梯度法
《最优化理论》PPT课件
最优化理论是数学中一项重要的领域,涉及到许多实际问题的求解,如经济 学、机器学习和工程优化等。本课程将为您介绍最优化理论的基础知识和应 用案例,帮助您深入了解这个精彩的领域。
优化理论的基础知识
1
函数的极值
2
学习函数的最值概念和求解方法。
3
多元函数的最优化问题

约束最优化条件KTT(课堂PPT)

约束最优化条件KTT(课堂PPT)
f(x*)T(x-x*)0, x D
.
3
考虑一般约束问题:
minf(x) s.t. gi(x)0,iI{1,2,,m 1}
hj(x)0,jE{m 11 ,,m}
(9.1)
可D 行 { x :g i( x 域 ) 0 ,i I ; : h j( x ) 0 ,j E }
这里我们假设 f , g函 i ,hj数 连续可微
i I
j E
x L ( x ,,) f( x ) . i g i( x ) j h j( x )5
i I
j E
一阶必要条件
定 理 9.2.1 设 x * D 是 问 题 (9 .1)的 一 个 局 部 最 优 解 ,如 果
SFD (x*,D ) LFD (x*,D )
思考
若函数,可 无导 约束问题的定 极是 值驻 ,点点 一 请问约束问题优 的解 局一 部 K 定 最 K点 是 T 吗??
不一定啦
.
7
例 9.2. 已知约束问题
x2
min f ( x) x2
g1(x) x(0, 2)
s.t. g( x) x ( x )

g2(x)
g ( x) x
令 x k x k d k ,由9 .1 定 .2 知 ,{ x k } 义 D .
为理解序列,可 我行 们方 来向 看看它 释的 :.11 Nhomakorabeaxk
D

dk

d
x
(a)点x在D内部
D
xk ●
dk
d
x ●
(b)点x在D的边界上
序列可行方向实际 序列可行方向包含可行
上就是可行方向
方向和边界的切线方向

最优化方法(约束优化问题的最优性条件)

最优化方法(约束优化问题的最优性条件)
最优解不一定是kt点kt带入约束条件可知满足约束条件并且有效约束集合为二阶连续可微ii为kt点且严格互补松弛条件成立
最优化方法补充内容10
约束优化问题的最优性条件
先看等式约束问题
回顾以前学的知识
什么定理?
推广到一般的情况
几何解释
二阶充分条件
不等式约束问题
不等式约束问题和等式约束问题之 间是否存在什么关系? 间是否存在什么关系?
Fritz-John一阶必要条件 一阶必要条件
举例验证
KT条件 条件
• KKT最优化条件是Karush[1939]以及Kuhn和Tucker[1951]先 后独立发表出來的。这组最优化条件在Kuhn和Tucker 发表之 后才逐渐受到重视,因此许多书只记载成「Kuhn-Tucker 最 优化条件 (Kuhn-Tucker conditions)」。
有效约束和非有效约束
再换句话说, 再换句话说,不等式约束问题的在最优解处的某 个小邻域内, 个小邻域内,看以看成等式约束问题
回想最优解的定义, 回想最优解的定义,可行的概念对 于不等式约束是怎么样的概念? 于不等式约束是怎么样的概念?
min f ( x) s.t. c( x) ≥ 0
可行域为 Q = { x | c( x) ≥ 0 }。
x1 + λ1 = 3 ⇒ x1 + λ 3 = 0 ⇒ λ 3 = − x1 < 0 ∴ λ1 − λ 3 = 3 x1 + λ1 − λ 2 = 3 矛盾。 这与 λ3 ≥ 0 矛盾。 x +λ −λ = 3 1 3 2 (4) 若 x1 ≠ 0 , x2 ≠ 0 : λ1 (4 − x1 − x 2 ) = 0 λ2 x1 = 0 ∴ λ2 = λ3 = 0 λ3 x2 = 0 x1 + λ1 = 3 x1 + x2 ≤ 4 ⇒ x1 = x2 ∴ λ , λ , λ , x , x ≥ 0 x 2 + λ1 = 3 1 2 3 1 2 若 x1 + x 2 < 4 ⇒ λ1 = 0 ⇒ x1 = x2 = 3

最优化方法全部ppt课件

最优化方法全部ppt课件
解法:Lagrange乘子法
1.2 实例
数据拟合问题 原料切割问题 运输问题 营养配餐问题 分配问题
1.3 基本概念
1. 最优化问题的向量表示法
设 xvx1,x2,L,xnT 则
m i n fx 1 ,x 2 ,L ,x n m i n fx v (1)
以向量为变量的实值函数 定义向量间的序关系(定义1.1):
②取 c0,1,4,9,L并画出相应的曲线(称之为等值线).
③确定极值点位置,并用以往所学方法求之。
易知本题的极小值点 xv* 2,1T。
再复杂点的情形见P13上的例1.7。 虽然三维及以上的问题不便于在平面上画图,图解 法失效,但仍有相应的等值面的概念,且等值面具有以 下性质:
①有不同函数值的等值面互不相交(因目标函数是单值 函数的缘故);
其中
g1 xv0
x1
g2 xv0
x1
L
gv
xv0
g1 xv0
x2
g2 xv0
x2
L
M
g1 xv0
xn
M
g2 xv0
xn
称为向量值函数 gv xv 在点
L
xv 0
g
m xv0
x1
g
m
xv0
x2
g
M
m xv0
xn
处的导数,
而gv xv0 T 称为向量值函数 gv xv 在点 xv 0 处的Jacobi矩阵。
称为最优化方法。最优化方法是在第二次世界大战前后,
在军事领域中对导弹、雷达控制的研究中逐渐发展起来 的。
最优化方法解决问题一般步骤: (1)提出需要进行最优化的问题,开始收集有关资 料和数据; (2)建立求解最优化问题的有关数学模型,确定变 量,列出目标函数和有关约束条件; (3)分析模型,选择合适的最优化方法; (4)求解方程。一般通过编制程序在电子计算机上 求得最优解; (5)最优解的验证和实施。 随着系统科学的发展和各个领域的需求,最优化方 法不断地应用于经济、自然、军事和社会研究的各个领 域。

第四章约束问题的最优化方法

第四章约束问题的最优化方法

迭代,产生的极值点 xk*(r(k))
4
序列从可行域外部趋向原目标
函数的约束最优点 x* 。
外点法可以用来求解含不等式和等式约束的优化问题。
二. 惩罚函数的形式:
m
l
( x, r) f ( x) r max[0, gi ( x)]2 r [hj ( x)]2
i1
j1
• 惩罚因子rk 是递增的,rk1 a rk ,a为递增系数,a 1
惩罚项:当迭代点在非可行域或不满足不等式约束条件时,在迭 代过程之中迫使迭代点逼近约束边界或等式约束曲面。
加权因子(即惩罚因子): r1 , r2
无约束优化问题:min . (x, r1, r2 )
Φ函数的极小点序列 x (k)* ( r1 (k) , r2 (k) ) k= 0,1,2…
其收敛必须满足:
这种方法是1968年由美国学者A.V.Fiacco和 G.P.Mcormick提出的,把不等式约束引入数学模型中,为求多 维有约束非线性规划问题开创了一个新局面。
适用范围:求解等式约束优化问题和一般约束优化问题。
§4.2 内点惩罚函数法(障碍函数法)
一. 基本思想: 内点法将新目标函数 Φ( x , r ) 构筑在可行域 D 内,随着惩罚
六. 举例:盖板问题
设计一个箱形截面的盖板。 已知:长度 l0= 600cm,宽度 b = 60cm, h 侧板厚度 ts = 0.5cm,翼板厚度为 tf(cm),高 度为 h(cm),承受最大的单位载荷 q = 0.01Mpa。
tf ts
b
要求:在满足强度、刚度和稳定性等条件下,设计一个最轻结构。
f (x) r1G[gu (x)] r2 H[hv (x)]

第五章约束问题的最优化方法

第五章约束问题的最优化方法
g1 ( x ) x1 x2 4,
g1 ( x) [ 1 , 1 ]T
g2 ( x) x1 ,
g2 ( x) [ 1 , 0 ]T 。
g3 ( x) x2 ,
g3 ( x) [ 0 , 1 ]T 。
18
由K T条件得
x1 3 1 1 0 x 3 1 1 2 0 3 1 0 2
第七讲 约束非线性规划
约束极值及最优性条件
等式约束 不等式约束 一般约束问题
约束极值问题的算法
外点法 内点法 乘子法
1
一 、约束极值问题的最优性条件
1、约束极值问题的表示 min f ( x ) hi ( x ) 0 i 1 , 2 ,, m s .t . g j ( x ) 0 j 1 , 2 , , l
8
2 g3 ( x ) 0。 2
I ( x ) { 1 , 2 }。
x2 g2 ( x ) 0
g3 ( x ) 0
O
g1 ( x ) 0
x
x1
②如何判断一个方向是可行方向?
9
定理1:
给 定 点x Q , 记 点 x 的 积 极 约 束 指 标 集 为 I ( x )。 给 定 向 量 d , 如果对任意的 i I ( x ) 有 gi ( x )T d 0 , 则 d 是 点 x 的 可 行 方 向 。
则 向 量d 是 点 x 处 的 可 行 下 降 方 向 。
证略
③极值点的必要条件: 定理3:
设 x* Q, I ( x*)是其积极约束指标集。
f ( x) 和 gi ( x) (i I ( x*)) 在点x * 处可微,

约束问题的最优化方法

约束问题的最优化方法

3. 优化方法: 选用内点惩罚法,惩罚函数形式为: 6 1 T k k x,r f x r 取 x 0 1,30 , r 0 3 , c 0.7 u 1 g x u 调用 Powell 法求序列无约束优化极值,以逐渐逼近原问 题的极值点。
k 2 x r ( 1 x ) x 1时; x, r k x 1时。 x
4
min.
s.t
f (x) = x
x ∈ R1
g (x) = 1-x ≤ 0


§5.3 外点惩罚函数法
二. 惩罚函数的形式:

x, r ( k ) f x r k maxg u x ,0 I u g u x 0 u 1,2,...,m,
(k ) (k ) m
1 u 1 g ( x ) u
m
其中:gu ( x) 0, u 1,2,...m
1 u 1 g ( x ) u m 1 (k ) (k ) ③ . ( x, r ) f ( x) ru u 1 g u ( x) m 1 (k ) (k ) ④ .( x, r ) f ( x) r 2 u 1 [ g ( x )] u
§5.2 内点惩罚函数法
4. 求解过程分析:
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想: 外点法将新目标函数
Φ( x , r )
构筑在可行域 D
外,随着惩罚因子 r(k) 的不断 递增,生成一系列新目标函数
Φ(xk ,r(k)),在可行域外逐步
迭代,产生的极值点 xk*(r(k)) 序列从可行域外部趋向原目标 函数的约束最优点 x* 。 例:求下述约束优化问题的最优点。 新目标函数:

《最优化理论》课件

《最优化理论》课件
递归法
递归地求解子问题,并存 储子问题的解以避免重复
计算。
备忘录法
使用备忘录存储子问题的 解,以避免重复计算,同 时避免因重复计算而导致
的内存消耗。
迭代法
通过迭代的方式求解子问 题,并逐渐逼近最优解。
动态规划的应用
生产计划问题
在生产过程中,需要制定生产计 划以满足市场需求,同时最小化 生产成本。动态规划可以用于求 解此类问题。
线性规划问题具有形式化 的特征,包括决策变量、 目标函数和约束条件。
线性规划问题通常用于解 决资源分配、生产计划、 运输和分配等问题。
线性规划的解法
线性规划的解法有多种,包括 单纯形法、椭球法、分解算法
等。
单纯形法是最常用的线性规 划解法,它通过迭代过程寻 找最优解,每次迭代都使目
标函数值减小。
椭球法和分解算法也是常用的 解法,但它们在处理大规模问
谢谢您的聆听
THANKS
线性规划问题
在目标函数和约束条 件均为线性时,寻找 最优解的问题。
非线性规划问题
在目标函数或约束条 件为非线性时,寻找 最优解的问题。
整数规划问题
在变量取整数值且约 束条件为整数时,寻 找最优解的问题。
最优化问题的求解方法
牛顿法
通过构造一个二次函数近似目 标函数,并利用牛顿公式求解 最优解。
共轭梯度法
要点二
详细描述
在生产领域,整数规划可以用于生产计划、资源分配等问 题,如安排生产线的生产计划、分配原材料等资源。在管 理领域,整数规划可以用于物流调度、车辆路径等问题, 如优化物流配送路线、制定车辆行驶计划等。在经济领域 ,整数规划可以用于投资组合、风险管理等问题,如优化 投资组合以实现最大收益或最小风险。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义4.1.1 若上述问题的一个可行点 使得某个
不等式约束cj(x)≥0中的等号成立,即
则该不等式约束cj(x)≥0称为关于 的有效约束.
否则,若对某个k,使得
则该不等式约
束ck(x)≥0称为关于 的非有效约束. 称所有在 处的有效约束的指标组成的集合.
为 处的有效(约束)集来自注:有时我们也将等式约束也视为有效约束.
aiTd<0(i=1,···,r) 成立的充要条件是,存在不全为零的非负实数
组l1,···,lr,使
20
Fritz-John一阶必要条件
证明概要(续)根据Gordan引理,存在不全为零
的数l0*≥0, li*≥0(i∈I*),使得 对于i∈I \ I*,只要令li*=0,即可得到Fritz-John
证明概要 设x*处的有效集为
I对显定*=于 理然I(无结有x*效论l)=i*约可{=i|0c束以.i(x描,由*)述=于0为c,ii=(存x1),在>20,·l,·若0·及,m定l}.理i(i∈的I结*)论,使成得立,
因为x*是局部最优解,在”指向有效约束的内 部的方向中”不含f(x)的下降方向.
16
均有 则x*是上面问题的严格局部极小点.
12
等式约束问题的二阶充分条件
定理4.1.2的几何意义是,
在Lagrange函数L(x,l)
s
的驻点处,若L(x,l)函数
关于x的Hesse矩阵在约
束超曲面的切平面上正
定(不要求在整个空间正
定),则x*就是严格局部
极小点.
13
4.1.1不等式约束问题的最优性条件
可以推出
引理4.1.5 在不等式约束问题中,假设
(i)x*为问题的局部最优解,且
I*={i|ci(x*)=0,i=1,2,···,m}; (ii)f(x)和ci(x)(i∈I*)在x*可微;
(iii)ci(x)(i∈I \ I*)在x*连续;则G∩S=f.
其中
表示下降方向
表示指向可行域内部的方向
18
Fritz-John一阶必要条件
证明概要(续)根据上述引理,不存在d∈Rn,使得
即 是这样一组向量,它们不
在过原点的任何超平面的同一侧. 于是我们总可以适当放大或缩小各向量的长 度,使得变化后的各向量的合成向量为零向量. 注:这一结论的依据是下面的Gordan引理.
19
Gordan引理
引理4.1.4 设a1,···,ar是n维向量,则不存在向量 d∈Rn使得
最优化方法
目录
第一章 最优化问题概述 第二章 线性规划 第三章 无约束最优化方法 第四章 约束最优化方法
2
第四章 约束最优化方法
作业
P212 4.4 (ii),(iii) P213 4.7 (ii) P214 4.9 (ii) 4.11
4
§4.1 约束最优化问题的最优性条件
问题
在求解问题之前,我们先讨论其最优解的必 要条件,充分条件和充要条件. 这些条件是最优化理论的重要组成部分,对 讨论算法起着关键的作用. 有的算法甚至可以直接用来求解问题.
5
4.1.1等式约束问题的最优性条件
问题
考虑n=2,l=1的情况.c1(x)=0表示二维平面的一 条曲线.最优点满足约束,必落在这一曲线上. 在最优点处作曲线的切线. 考虑f(x)在最优点处的负梯度方向
6
等式约束问题的最优性条件
-g* x*
f(x)=f*
c1(x)=0
若–g*与上述切线不垂直,则可以在曲线上移动充 分小的距离,使 f 的函数值下降. 这与”最优点”矛盾.因此梯度方向与切线垂直. 或,f(x)在最优点处的梯度方向就是c1(x)=0在该点 处的法向. 而c1(x)=0在该点处的法线方向为
条件.
21
例题 (Fritz-John条件)
例4.1.1 min f(x)=(x1-1)2+(x2-1)2 s.t. c1(x1,x2)=(1-x1-x2)3≥0
c2(x)=x1≥0 c3(x)=x2≥0 解:本问题是求点(1,1)T到如图三角形区域的最短 距离.显然唯一最优解为x*=(1/2,1/2)T.
在教材中有说法不一致的地方.
14
Fritz-John一阶必要条件
定理4.1.6 设x*为上述问题的局部最优解且 f(x),ci(x)(1≤i≤m)在x*点可微,则存在非零向量
l*=(l0*,l1*,···,lm*)使得
满足上面的条件的点称为Fritz-John点. 上面的条件仅仅是必要条件.
15
Fritz-John一阶必要条件
若(i)x*是上述问题的局部最优解;
(ii)f(x)与ci(x)(i=1,2,···,l)在x*的某邻域内连续可微;
(iii)
线性无关
则存在一组不全为零的数
使得
9
等式约束问题的一阶必要条件
对于上述问题,引入n+l元的Lagrange函数
其中c(x)=(c1(x),···,cl(x))T,l=(l1,···,ll)T. 称l为Lagrange乘子向量.
Lagrange函数的梯度为
10
等式约束问题的一阶必要条件
因此无约束问题min L(x,l)的最优性条件
恰好是原来问题的一阶必要条件及ci(x*),i=1,···,l.
所以求含n+l个未知数x1,···,xn,l1,···,ll的非线性 方程组的解(x*,l*),其中x*=(x1*,···,xn*)T在一定
条件下就是原来约束问题的最优解.
点(x*,l*)称为Lagrange函数L(x,l)的驻点.
11
等式约束问题的二阶充分条件
定理4.1.2 在上面的等式约束问题中,若 (i)f(x)与ci(x)(1≤i≤l)是二阶连续可微函数
(ii)存在x*∈Rn与l*∈Rl使得Lagrange函数的
梯度为零,即 (iii)对于任意非零向量s∈Rn,且
因为x*是局部最优解,在”指向有效约束的内 部的方向中”不含f(x)的下降方向.
如图显示的是三 个约束的例子
其中c3(x)≥0为无效约
束,
c1(x)≥0,
c2(x)≥0为有效约束.
黑色部分为可行域.
由最优点指向可行域内 部的方向d都具有性质
这种方向都不是 下降方向,因此
17
即由 因此有下面的引理
因此,存在数l1,使得
7
等式约束问题 的最优性条件
如果n=3,l=2,约束曲线在三 维空间中曲面c1(x)=0和曲 面c2(x)=0的交线.
同样可以说明(-)g*与曲线的切线垂直.
因此,曲面在x*处的法向量

梯度向量g*共面.
存在数l1, l2,使得
8
等式约束问题的一阶必要条件
定理4.1.1(一阶必要条件)
相关文档
最新文档