立体几何平行问题专题(学生版)

合集下载

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。

专项训练--立体几何--平行问题

专项训练--立体几何--平行问题

表示
图形
文字
符号
位置
平面与平 面平行的 判定定理
一个平面内的 两条相交直线 与另一个平面平行,则这两个平 面平行
a
b ab
P
a
b
⇒ α∥β
[例1] 如图所示,在直四棱柱ABCDA1B1C1D1中,底面是正方形,E,F,G分 别是棱B1B,D1D,DA的中点. 求证:平面AD1E∥平面BGF.
1、思想:线线平行 推出 线面平行
2、方法:平面问题 转化 空间问题
3、关键:★找线线平行★
4、线线平行的依据:
①在三角形、梯形中,中位线与底边相互平行. ②平行四边形的对边平行. ③平行线分线段成比例定理的推论. ④平行于同一条直线的两直线相互平行. ⑤垂直与同一个平面的两直线相互平行. ⑥线面平行,面面平行的性质定理.
E,F分别是AB,PD的中点, 求证:AF∥平面PCE.
②找平行四边形.证明线面平行.
1.已知P为长方形ABCD所在平面外一点,
M、N分别为AB,PD上的中点。
求证:MN∥平面PBC
P
法1:判定定理
N
(找平行四边形)
D
C
A
M
B
②找平行四边形.证明线面平行.
2、如图,在正方体ABCD——A1B1C1D1 中,E、F分别是棱BC与C1D1的中点。 求证:EF//平面BDD1B1.
N D
M
C
A
P
QB
如图,四棱锥A—DBCE中,O为底面 正方形DBCE对角线的交点,F为AE的 中点. 求证: AB//平面DCF.
A F
D
E
B
O C
①找三角形的中位线.证明线面平行.

立体几何证明平行的方法及专题训练(学生)

立体几何证明平行的方法及专题训练(学生)

立体几何证明平行的方法及专题训练 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。

(2) 利用三角形中位线的性质。

(3) 利用平行四边形的性质。

(4) 利用对应线段成比例。

(5) 利用面面平行的性质,等等。

(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;(第1题图)DE B 1A 1C 1CABFM 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形FGGCDEDEF(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。

分析:法一:连MD 交GF 于H ,易证EH 是△AMD 的中位线 法二:证平面EGF ∥平面ABC ,从而AM ∥平面EFG6、如图,直三棱柱///ABC A B C -,90BAC ∠=,2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。

大题 立体几何(精选30题)(学生版)

大题 立体几何(精选30题)(学生版)

大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD= 60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP =λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB (0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.。

专题3:立体几何中平行关系的证明基础练习题

专题3:立体几何中平行关系的证明基础练习题
【分析】
(1)连接 ,则 也为 的中点,由 可证 平面 ;
(2)存在, 为 的中点时,平面 平面 ,利用平面与平面平行的判定定理可证结论.
【详解】
(1)连接 ,则 也为 的中点,
因为 为 的中点,所以 为△ 的中位线,
所以 ,又 平面 , 平面 ,
所以 平
∴ 是 的中点,
又 是 的中点,
∴ ,
又 平面 , 平面 ,
∴ 平面 .
4.(1) 见解析;(2) 见解析;(3)见解析.
【分析】
(1)取BB1的中点M,连接HM、MC1,四边则HMC1D1是平行四边形,即可证明BF∥HD1;(2)取B1D1的中点O,易证四边形BEGO为平行四边形,故有OB∥GE,从而证明EG∥平面BB1D1D.(3)由正方体得BD∥B1D1,由四边形HBFD1是平行四边形,可得HD1∥BF,可证平面BDF∥平面B1D1H.
7.证明详见解析.
【解析】
【分析】
利用中位线,分别证明 ,由此证得平面内两条相交直线和另一个平面平行,从而证得两个平面平行.
【详解】
因为EF是△PAB的中位线,所以EF∥PA.
又EF 平面PAC,PA 平面PAC,所以EF∥平面PAC.
同理得EG∥平面PAC.
又EF 平面EFG,EG 平面EFG,EF∩EG=E,
5.(1)证明见解析;(2)
【分析】
(1)连接 ,通过证明 平面 与 平面 ,可得平面 平面 ;
(2)找到 为异面直线 和 所成角,求 即可.
【详解】
证明:(1)由题意可得,点 分别是 和 的中点,连接 ,

又 平面 平面 ,
平面 ,
同理: ,则 平面 ,
又 平面 平面 ,

立体几何平行垂直问题专题(精品)

立体几何平行垂直问题专题(精品)

立体几何平行、垂直问题专题训练20171027【基础知识点】一、平行问题1.直线与平面平行的判定与性质定义判定定理性质性质定理图形条件a∥α结论a∥αb∥αa∩α=a∥b2. 面面平行的判定与性质判定性质定义定理图形条件α∥β,a⊂β结论α∥βα∥βa∥b a∥α平行问题的转化关系:二、垂直问题一、直线与平面垂直1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直推论如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面3.直线与平面垂直的性质定理文字语言图形语言符号语言性质定理垂直于同一个平面的两条直线平行4.直线和平面垂直的常用性质①直线垂直于平面,则垂直于平面内任意直线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直1.平面与平面垂直的判定定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直2.平面与平面垂直的性质定理文字语言图形语言符号语言性质定理两个平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面【典例探究】类型一、平行与垂直例1、如图,已知三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D 为PB 中点,且△PMB 为正三角形。

(Ⅰ)求证:DM ∥平面APC ;(Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。

例2. 如图,已知三棱柱111ABC A B C -中,1AA ⊥底面ABC ,2AC BC ==,14AA =,22AB =,M ,N 分别是棱1CC ,AB 中点.(Ⅰ)求证:CN ⊥平面11ABB A ; (Ⅱ)求证://CN 平面1A M B ;ABCA 1B 1C 1M NMDAPBCFDEC1B1A1CBA【变式1】. 如图,三棱柱111C B A ABC -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形, 90=∠BAC ,且1AA AB =,F E D ,,分别是BC CC A B ,,11的中点。

立体几何平行问题练习题.

立体几何平行问题练习题.

专题:平行问题主要考点:线面平行面面平行线面平行的判定定理:如果一个平面内的一条直线和另平面内的一条直线平行,那么这条直线和这个平面平行。

定理模式:, , ////a b a b a ααα⊄⊂⇒面面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。

定理的模式://////a b a b P a b ββαβαα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭1、如右图所示,已知P 、Q 是正方体的面11A B BA 和面ABCD 的中心.证明:PQ ∥平面11C B BC2、如图,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC.3、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2, AA 1=2,E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。

证明:直线EE 1//平面FCC 1;4、两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM =FN ,求证:MN ∥平面BCE 。

E E 1 A B 11D _ P5、已知在四棱锥P-ABCD 中,ABCD 为平行四边形,E 为PC 的中点,O 为BD 的中点. 求证:OE //平面ADP6、在四棱锥P-ABCD 中,底面四边形ABCD 是平行四边形,E,F 分别是AB ,PD 的中点. 求证://AF 平面PCE3、如图所示,ABC ∆为正三角形,EC ⊥平面ABC ,//BD CE ,且2CE CA BD ==,F 、M 是CE 、EA 的中点。

求证:(1)//DM 平面ABC ;(2)面//FDM 面ABC .10.P 是△ABC 所在平面外一点,A ′、B ′、C ′分别是△PBC 、△PCA 、△PAB 的重心。

(1)求证:平面A ′B ′C ′∥平面ABC ;(2)S △A′B′C′∶S △ABC 的值。

立体几何平行专题(史上最全)

立体几何平行专题(史上最全)

立体几何专题――平行1、若直线l 不平行于平面a ,且l a ⊄,则 B(A) a 内所有直线与l 异面 (B) a 内不存在与l 平行的直线 (C) a 内存在唯一的直线与l 平行 (D) a 内的直线与l 都相交 2、一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( C )A.异面B.相交C.平行D.不能确定3、一个正方体的所有顶点都在同一球面上,若球的体积是4π3,则正方体的表面积是 A(A)8 (B)6 (C)4 (D)34、在正三棱柱ABC —A 1B 1C 1中,AA 1=AB,则AC 1与平面BB 1C 1C 所成的角的正弦值为( C ) A.22 B.515 C.46 D.36 5、某四棱锥的三视图如图所示,该四棱锥的表面积是B(B)16+(C)48 (D)16+1、线线平行的判断:(1)三角形中位线定理;(2)构造平行四边形,其对边平行; (3)对应线段成比例,两直线平行;(4)平行于同一直线的两直线平行;(平行的传递性)(5)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;(线面平行的性质)(6)如果两个平行平面同时和第三个平面相交,所得交线平行;(面面平行的性质) (7)垂直于同一平面的两直线平行;(线面垂直的性质) 2、线面平行的判断:(1)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(2)两个平面平行,其中一个平面内的直线必平行于另一个平面。

侧(左)视图 俯视图正(主)视图例1、(三角形中位线定理)如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,求证:1//A C 平面BDE 。

证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。

立体几何平行证明题

立体几何平行证明题

立体证明题(2)1•如图,直二面角D- AB- E中,四边形ABCD是正方形,AE=EB F为CE上的点,且BF丄平面ACE(1) 求证:AE丄平面BCE(2) 求二面角B-AC- E的余弦值.2•等腰△ ABC中, AC=BC= AB=2, E、F分别为AC BC的中点,将△ EFC沿EF折起,使得C 至U P,得至U四棱锥P— ABFE 且AP=BP=(1) 求证:平面EFP!平面ABFE(2) 求二面角B-AP- E的大小.3•如图,在四棱锥P- ABCD中,底面是正方形,侧面PADL底面ABCD且PA=PD= AD,若E、F分别为PC BD的中点.(I)求证:EF//平面PAD(n)求证:EF丄平面PDC4•如图:正△ ABC与Rt△ BCD所在平面互相垂直,且/ BCD=90°,/ CBD=30°(1)求证:AB丄CD(2)求二面角D- AB- C的正切值.5•如图,在四棱锥P- ABCD中,平面PADL平面ABCD^ PAD是等边三角形,四边形ABCD 是平行四边形,/ ADC=120 , AB=2AD(1)求证:平面PADL平面PBD(2)求二面角A- PB- C的余弦值.6•如图,在直三棱柱ABC- A1B1C1 中,/ ACB=90°, AC=CB=CC2, E是AB中点.(I)求证:AB丄平面ACE(H)求直线AG与平面ACE所成角的正弦值.7•如图,在四棱锥P- ABCD中, PA丄平面ABCD / DAB为直角,AB// CD, AD=CD=2AB=2E, F分别为PC, CD的中点.(I)证明:AB丄平面BEF;(H)若PA=求二面角E- BD- C.8•如图,在四棱锥P-ABCD 中,PA丄平面ABCD , PA=AB=AD=2,四边形ABCD 满足AB 丄AD , BC // AD 且BC=4,点M 为PC 中点.(I)求证:DM丄平面PBC;BE(2)若点E为BC边上的动点,且一一,是否存在实数人使得二面角P- DE - B的EC2余弦值为-?若存在,求出实数入的值;若不存在,请说明理由.39•如图,ABED是长方形,平面ABEDL平面ABC AB=AC=5 BC=BE=6且M是BC的中点(I) 求证:AM L平面BEC(H) 求三棱锥B- ACE的体积;(川)若点Q是线段AD上的一点,且平面QECL平面BEC求线段AQ的长.10. 如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直,AB// CD AB丄BC, AB=2CD=2BC EA L EB(1)求证:EA丄平面EBC(2)求二面角C- BE- D的余弦值.11. 如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD// BC, / ADC=90°,平面PADL 底面ABCD O为AD中点,M是棱PC上的点,AD=2BC(1)求证:平面POBL平面PAD12. 如图,三棱柱ABC- A1B1C中,侧棱AA丄平面ABC △ ABC为等腰直角三角形,/BAC=90,且AB=AA, E、F 分别是CC, BC的中点.(1)求证:平面ABF丄平面AEF;(2)求二面角B1- AE- F 的余弦值.13. 如图,在菱形ABCD中,/ ABC=60°, AC与BD相交于点Q AE丄平面ABCD CF/ AE, AB=AE=2.(I )求证:BD丄平面ACFE(II )当直线FO与平面BDE所成的角为45。

立体几何(学生版)--2025新高考数学新题型

立体几何(学生版)--2025新高考数学新题型

立体几何题型01 空间几何体的有关计算题型02 点线面位置关系、空间角及距离题型03 内切球、外接球问题题型04 空间向量题型01 空间几何体的有关计算1(2024·山西晋城·统考一模)若一个正n棱台的棱数大于15,且各棱的长度构成的集合为{2,3},则n 的最小值为,该棱台各棱的长度之和的最小值为.2(2024·浙江·校联考一模)已知圆台的上下底面半径分别是1,4,且侧面积为10π,则该圆台的母线长为.3(2024·安徽合肥·合肥一六八中学校考一模)球O的半径与圆锥M的底面半径相等,且它们的表面积也相等,则圆锥M的侧面展开图的圆心角大小为,球O的体积与圆锥M的体积的比值为.4(2024·湖南长沙·雅礼中学校考一模)已知圆锥的母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.5(2024·广东深圳·校考一模)已知圆锥的侧面展开图是一个半径为4的半圆.若用平行于圆锥的底面,且与底面的距离为3的平面截圆锥,将此圆锥截成一个小圆锥和一个圆台,则小圆锥和圆台的体积之比为.6(2024·辽宁沈阳·统考一模)正方体的8个顶点分别在4个互相平行的平面内,每个平面内至少有一个顶点,且相邻两个平面间的距离为1,则该正方体的棱长为()A.2B.3C.2D.57(2024·云南曲靖·统考一模)为努力推进“绿美校园”建设,营造更加优美的校园环境,某校准备开展校园绿化活动.已知栽种某绿色植物的花盆可近似看成圆台,圆台两底面直径分别为18厘米,9厘米,母线长约为7.5厘米.现有2000个该种花盆,假定每一个花盆装满营养土,请问共需要营养土约为( )(参考数据:π≈3.14)A.1.702立方米B.1.780立方米C.1.730立方米D.1.822立方米8(2024·新疆乌鲁木齐·统考一模)某广场设置了一些石凳供大家休息,这些石凳是由棱长为40cm的正方体截去八个一样的四面体得到的,则()A.该几何体的顶点数为12B.该几何体的棱数为24C.该几何体的表面积为(4800+8003)cm 2D.该几何体外接球的表面积是原正方体内切球、外接球表面积的等差中项9(2024·山西晋城·统考一模)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,AA 1=4,C 1 E =3EC,平面ABE 将该正四棱柱分为上、下两部分,记上部分对应的几何体为Ω上,下部分对应的几何体为Ω下,则()A.Ω下的体积为2B.Ω上的体积为12C.Ω下的外接球的表面积为9πD.平面ABE 截该正四棱柱所得截面的面积为25题型02 点线面位置关系、空间角及距离10(2024·河北·校联考一模)已知直线l 、m 、n 与平面α、β,下列命题正确的是()A.若α⎳β,l ⊂α,n ⊂β,则l ⎳nB.若α⊥β,l ⊂α,则l ⊥βC.若l ⊥n ,m ⊥n ,则l ⎳mD.若l ⊥α,l ⎳β,则α⊥β11(2024·浙江·校联考一模)已知直线a ,b 和平面α,a ⊄α,b ∥α,则“a ∥b ”是“a ∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12(2024·广东深圳·校考一模)已知α,β是两个不同的平面,m ,n 是两条不同的直线,则下列说法正确的是()A.若m ⊥n ,m ⊥α,n ⊥β,则α⊥βB.若m ⎳n ,m ⎳α,n ⎳β,则α⎳βC.若m ⊥n ,m ⎳α,α⊥β,则n ⊥βD.若m ⎳n ,m ⊥α,α⊥β,则n ⎳β13(2024·吉林白山·统考一模)正八面体可由连接正方体每个面的中心构成,如图所示,在棱长为2的正八面体中,则有()A.直线AE与CF是异面直线B.平面ABF⊥平面ABEC.该几何体的体积为432 D.平面ABE与平面DCF间的距离为26314(2024·河南郑州·郑州市宇华实验学校校考一模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,∠BAD=120°,AC⊥BD,△BCD是等边三角形.(1)证明:平面PAD⊥平面PCD.(2)求二面角B-PC-D的正弦值.15(2024·辽宁沈阳·统考一模)如图,在三棱锥A-BCD中,平面ABC⊥平面BCD,且BC=BD= BA,∠CBA=∠CBD=120°,点P在线段AC上,点Q在线段CD上.(1)求证:AD⊥BC;(2)若AC⊥平面BPQ,求BPBQ的值;(3)在(2)的条件下,求平面ABD与平面PBQ所成角的余弦值.16(2024·重庆·统考一模)如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB= AP,AB⊥AD,AB+AD=6,CD=2,∠CDA=45°.(1)若E为PB的中点,求证:平面PBC⊥平面ADE;(2)若平面PAB与平面PCD所成的角的余弦值为66.(ⅰ)求线段AB的长;(ⅱ)设G为△PAD内(含边界)的一点,且GB=2GA,求满足条件的所有点G组成的轨迹的长度.17(2024·云南曲靖·统考一模)在图1的直角梯形ABCD中,∠A=∠D=90°,AB=BC=2,DC=3,点E是DC边上靠近于点D的三等分点,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1= 6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在棱DC1上是否存在点P,使得二面角P-EB-C1的大小为45°?若存在,求出线段DP的长度,若不存在说明理由.18(2024·云南曲靖·统考一模)如图所示,正方体ABCD -A B C D 的棱长为1,E ,F 分别是棱AA ,CC 的中点,过直线EF 的平面分别与棱BB ,DD 交于点M ,N ,以下四个命题中正确的是()A.四边形EMFN 一定为菱形B.四棱锥A -MENF 体积为13C.平面EMFN ⊥平面DBB DD.四边形EMFN 的周长最小值为419(2024·山东济南·山东省实验中学校考一模)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PB 与底面ABCD 所成的角为π4,底面ABCD 为直角梯形,∠ABC =∠BAD =π2,AD =2,PA =BC =1,点E 为棱PD 上一点,满足PE =λPD0≤λ≤1 ,下列结论正确的是()A.平面PAC ⊥平面PCD ;B.在棱PD 上不存在点E ,使得CE ⎳平面PABC.当λ=12时,异面直线CE 与AB 所成角的余弦值为255;D.点P 到直线CD 的距离3;20(2024·新疆乌鲁木齐·统考一模)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA =AB ,点E ,F 分别是棱PB ,BC 的中点.(1)求直线AF 与平面PBC 所成角的正弦值;(2)在截面AEF 内是否存在点G ,使DG ⊥平面AEF ,并说明理由.21(2024·山西晋城·统考一模)如图,P 是边长为2的正六边形ABCDEF 所在平面外一点,BF 的中点O 为P 在平面ABCDEF 内的射影,PM =2MF.(1)证明:ME ⎳平面PBD .(2)若PA =2,二面角A -PB -D 的大小为θ,求cos2θ.22(2024·河南郑州·郑州市宇华实验学校校考一模)如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是AD 1的中点,点Q 是直线CD 1上的动点,则下列说法正确的是()A.△PBD 是直角三角形B.异面直线PD 与CD 1所成的角为π3C.当AB 的长度为定值时,三棱锥D -PBQ 的体积为定值D.平面PBD ⊥平面ACD123(2024·浙江·校联考一模)在三棱柱ABC-A1B1C1中,四边形BCC1B1是菱形,△ABC是等边三角形,点M是线段AB的中点,∠ABB1=60°.(1)证明:B1C⊥平面ABC1;(2)若平面ABB1A1⊥平面ABC,求直线B1C与平面A1MC1所成角的正弦值.24(2024·广东深圳·校考一模)如图,在圆锥SO中,AB是圆O的直径,且△SAB是边长为4的等边三角形,C,D为圆弧AB的两个三等分点,E是SB的中点.(1)证明:DE⎳平面SAC;(2)求平面SAC与平面SBD所成锐二面角的余弦值.25(2024·广西南宁·南宁三中校联考一模)在如图所示的五面体ABCDEF中,ABEF共面,△ADF是正三角形,四边形ABCD为菱形,∠ABC=2π3,EF⎳平面ABCD,AB=2EF=2,点M为BC中点.(1)证明:EM∥平面BDF;(2)已知EM=2,求平面BDF与平面BEC所成二面角的正弦值.26(2024·安徽合肥·合肥一六八中学校考一模)如图,菱形ABCD的对角线AC与BD交于点O,AB =5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H,将△DEF沿EF折到△DEF 位置,OD =10.(1)证明:D H⊥平面ABCD;(2)求平面BAD 与平面ACD 的夹角的余弦值.27(2024·安徽合肥·合肥一六八中学校考一模)设b、c表示两条直线,α、β表示两个平面,则下列命题正确的是()A.若b⎳α,c⊂α,则b⎳cB.若b⊂α,b⎳c,则c⊂αC.若c⎳α,α⊥β,则c⊥βD.若c⎳α,c⊥β,则α⊥β28(2024·吉林延边·统考一模)已知三棱柱ABC-A1B1C1,侧面AA1C1C是边长为2的菱形,∠CAA1 =πA1是矩形,且平面AA1C1C⊥平面ABB1A1,点D是棱A1B1的中点.3,侧面四边形ABB1(1)在棱AC上是否存在一点E,使得AD∥平面B1C1E,并说明理由;(2)当三棱锥B-A1DC1的体积为3时,求平面A1C1D与平面CC1D夹角的余弦值.29(2024·黑龙江齐齐哈尔·统考一模)如图1,在平面四边形PABC中,PA⊥AB,CD⎳AB,CD=2AB=2PD=2AD=4.点E是线段PC上靠近P端的三等分点,将△PDC沿CD折成四棱锥P-ABCD,且AP=22,连接PA,PB,BD,如图2.(1)在图2中,证明:PA⎳平面BDE;(2)求图2中,直线AP与平面PBC所成角的正弦值.30(2024·重庆·统考一模)如图,在边长为1的正方体ABCD-A1B1C1D1中,E是C1D1的中点,M是线段A1E上的一点,则下列说法正确的是()A.当M点与A1点重合时,直线AC1⊂平面ACMB.当点M移动时,点D到平面ACM的距离为定值C.当M点与E点重合时,平面ACM与平面CC1D1D夹角的正弦值为53D.当M点为线段A1E中点时,平面ACM截正方体ABCD-A1B1C1D1所得截面面积为73332 31(2024·福建厦门·统考一模)如图,在四棱锥E-ABCD中,AD⎳BC,2AD=BC=2,AB=2,AB⊥AD,EA⊥平面ABCD,过点B作平面α⊥BD.(1)证明:平面α⎳平面EAC;(2)已知点F为棱EC的中点,若EA=2,求直线AD与平面FBD所成角的正弦值.32(2024·吉林延边·统考一模)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,DE =BF =1,DE ∥BF ,DE ⊥平面ABCD ,动点P 在线段EF 上,则下列说法正确的是()A.AC ⊥DPB.存在点P ,使得DP ∥平面ACFC.三棱锥A -CDE 的外接球被平面ACF 所截取的截面面积是9π2D.当动点P 与点F 重合时,直线DP 与平面ACF 所成角的余弦值为3101033(2024·福建厦门·统考一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 题型03 内切球、外接球问题34(2024·黑龙江齐齐哈尔·统考一模)已知四面体ABCD 的各个面均为全等的等腰三角形,且CA =CB =2AB =4.设E 为空间内任一点,且A ,B ,C ,D ,E 五点在同一个球面上,则()A.AB ⊥CDB.四面体ABCD 的体积为214C.当AE =23时,点E 的轨迹长度为4πD.当三棱锥E -ABC 的体积为146时,点E 的轨迹长度为32π35(2024·吉林白山·统考一模)在四面体A -BCD 中,BC =22,BD =23,且满足BC ⊥BD ,AC ⊥BC ,AD ⊥BD .若该三棱锥的体积为863,则该锥体的外接球的体积为.36(2024·吉林延边·统考一模)已知一个圆锥的侧面展开图是一个圆心角为25π5,半径为5的扇形.若该圆锥的顶点及底面圆周都在球O 的表面上,则球O 的体积为.37(2024·河南郑州·郑州市宇华实验学校校考一模)已知正三棱柱ABC-A1B1C1的底面边长为2,以A1为球心、3为半径的球面与底面ABC的交线长为3π6,则三棱柱ABC-A1B1C1的表面在球内部分的总面积为.38(2024·江西吉安·吉安一中校考一模)已知球O的直径PQ=4,A,B,C是球O球面上的三点,△ABC是等边三角形,且∠APQ=∠BPQ=∠CPQ=30°,则三棱锥P-ABC的体积为( ).A.334B.934C.332D.273439(2024·湖南长沙·雅礼中学校考一模)如图所示,有一个棱长为4的正四面体P-ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是()A.直线AE与PB所成的角为π2B.△ABE的周长最小值为4+34C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为63D.如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为26-25 40(2024·江西吉安·吉安一中校考一模)如图,在正三棱锥P-ABC中,有一半径为1的半球,其底面圆O与正三棱锥的底面贴合,正三棱锥的三个侧面都和半球相切.设点D为BC的中点,∠ADP=α.(1)用α分别表示线段BC和PD长度;(2)当α∈0,π2时,求三棱锥的侧面积S的最小值.41(2024·江西吉安·吉安一中校考一模)地球仪是地理教学中的常用教具.如图1所示,地球仪的赤道面(与转轴垂直)与黄道面(与水平面平行)存在一个夹角,即黄赤交角,大小约为23.5°.为锻炼动手能力,某同学制作了一个半径为4cm 的地球仪(不含支架),并将其放入竖直放置的正三棱柱ABC -A 1B 1C 1中(姿态保持不变),使地球仪与该三棱柱的三个侧面相切,如图2所示.此时平面AB 1C 恰与地球仪的赤道面平行,则三棱柱ABC -A 1B 1C 1的外接球体积为.(参考数据:tan23.5°≈0.43)题型04 空间向量42(2024·福建厦门·统考一模)已知平面α的一个法向量为n=(1,0,1),且点A (1,2,3)在α内,则点B (1,1,1)到α的距离为.43(2024·广西南宁·南宁三中校联考一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB +yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为6344(2024·湖南长沙·雅礼中学校考一模)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =AD =AA 1=1,∠DAB =90°,cos <AA 1 ,AB >=22,cos <AA 1 ,AD >=12,点M 为BD 中点.(1)证明:B 1M ⎳平面A 1C 1D ;(2)求二面角B -AA 1-D 的正弦值.。

立体几何线面平行-题型全归纳(解析版)

立体几何线面平行-题型全归纳(解析版)

立体几何线面平行-题型全归纳题型一利用三角形中位线例题1、如图所示,在三棱柱ABC-111C B A 中,侧棱⊥1AA 底面ABC ,AB ⊥BC ,D 为AC 的中点。

求证:1AB //平面DBC 1证明:连接C B 1,交1BC 于点O,再连接OD,平面11B BCC 是平行四边形,∴O是1BC 的中点,又D是AC的中点,∴OD是1ACB ∆的中位线,1//AB OD ∴,⊂OD 平面D BC 1,⊄1AB 平面D BC 1,//OD ∴平面D BC 1。

解题步骤(1)把直线通过平移到平面上,得到线线平行的初步形状;(2)连接平行四边形的对角线,再连接两个中点,恰好为平移所得到的线段;(3)通过延长两条线段的端点,构成一个三角形,即可得到三角形的中位线。

变式训练1、如图,在直四棱柱ABCD-1111D C B A 中,底面ABCD 为菱形,E 为1DD 中点。

求证:1BD //平面ACE ;证明:连接BD,交AC于点O,再连接OE,在直四棱柱ABCD-1111D C B A 中,O为BD的中点,且E为1DD 的中点,∴OE是1BDD ∆的中位线,1//BD OE ∴,又OE⊂平面ACE,⊄1BD 平面ACE,∴1BD //平面ACE 。

变式训练2、如图,在斜三棱柱ABC-111C B A 中,CA=CB ,D 、E 分别是AB ,C B 1的中点,求证:DE//平面11A ACC ;证明:连接1BC ,连接1AC ,在斜三棱柱ABC-111C B A 中,∴点E在线段1BC 上,∴点E是1BC 的中点,又点D是AB的中点,∴DE是1ABC ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC 变式训练3、如图所示,正三棱柱ABC-111C B A 的高为2,点D 是B A 1的中点,点E 是11C B 的中点,求证:DE//平面11A ACC证明:连接1AB ,连接1AC ,在正三棱柱ABC-111C B A 中,∴点D在线段1AB 上,∴点D是1AB 的中点,又点E是11C B 的中点,∴DE是11C AB ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC题型二利用平行四边形的对边平行例题2、如图,在多面体ABCDE 中,AEB 为等边三角形,AD//BC ,BC AD 21=,F 为EB 的中点。

高中数学复习提升-高中数学专题——立体几何专题(学生版)

高中数学复习提升-高中数学专题——立体几何专题(学生版)

立体几何专题【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究.【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】题型1 空间几何体的三视图以及面积和体积计算一、看图选择正确的三视图1、(2010广东理数)6.如图1,△ABC为三角形,AA'//BB'//CC' ,CC'⊥平面ABC且3AA'=32BB'=CC'=AB,则多面体△ABC -A B C'''的正视图(也称主视图)是2、(2010北京理数)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为二、根据三视图求几何体的面积、体积1、(2010安徽理数)8、一个几何体的三视图如图,该几何体的表面积为A、280B、292C、360D、372A B C D2、(江苏省苏州市2009届高三教学调研测试第12题)已知一个正三棱锥P ABC -的主视图如图所示,若32AC BC ==, 6PC =_________.3、(2010全国卷1文数)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 2343 (C) 2383题型2 空间点、线、面位置关系的判断例1 (江苏苏州市2009届高三教学调研测试7)已知n m ,是两条不同的直线,βα,为两个不同的平面,有下列四个命题:①若βα⊥⊥n m ,,m n ⊥,则βα⊥;②若n m n m ⊥,//,//βα,则βα//; ③若n m n m ⊥⊥,//,βα,则βα//;④若βαβα//,//,n m ⊥,则n m ⊥.其中正确的命题是(填上所有正确命题的序号)_______________. 分析:根据空间线面位置关系的判定定理和性质定理逐个作出判断.例2 (浙江省2009年高考省教研室第一次抽样测试理科第5题)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题正确的是A .若,,//m n m n αβ⊥⊥,则//αβB .若//,//,//,m n αβαβ则//m nC .若,//,//m n αβαβ⊥,则m n ⊥D .若//,//,//,m n m n αβ则//αβ题型3 空间平行与垂直关系的证明、空间几何体的有关计算例1.(2009江苏泰州期末16)如图所示,在棱长为2的正方体 1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点. (1)求证:EF //平面11ABC D ;(2)求证:1EF B C ⊥; (3)求三棱锥EFC B V -1的体积.例2.(江苏省苏州市2009届高三教学调研测试第17题) 在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,22PA AB ==.(1)求四棱锥P ABCD -的体积V ;(2)若F 为PC 的中点,求证PC ⊥平面AEF ; (3)求证CE ∥平面PAB .题型4 求空间的角的大小一、异面直线所成的角例1(2007年广东理数)如图6所示,等腰三角形△ABC 的底边AB=66CD=3,点E 是线段BD 上异于B 、D 的动点,点F 在BC 边上,且E F ⊥AB ,现沿EF 将△BEF 折起到△PEF 的位置,使P E ⊥AE ,记BE=x ,V (x )表示四棱锥P-ACEF 的体积。

空间立体几何中的平行问题

空间立体几何中的平行问题
说明理由.
感 谢
感 谢
阅阅
读读
2023最新整理收集 do something
立体空间中的平行
复习定理
空间中的平行
解决空间直线与平面平行的相关问题,特别要注意下面的 转化关系:
空间平行之间的转化

② ①③ ④
复习定理
空间中的平行
1.直线与平面平行的判定
平面外一条直线与此平面内的一条直线平行,则 该直线与此平面平行.
a
b
a
//
CD / / AB, BC AB ,且 AB AE BE 2BC 2CD 2,动点 F 在棱 AE 上,且
EF FA.试探究 的值,使 CE / / 平面 BDF ,并给予证明;
E
●F
B
A
C
D
小结:
关键
高频 考点
线线平行-------- 线面平行------- 面面平行
转化思想:把空间问题转化为平面问题解决 证明推理过程要规范、严密,条件缺一不可!
a,b
a a
//
b
A
//
b //
☺ 简称:线面平行,面面平行.
复习定理
空间中的平行
4.平面与平面平行的判定与性质
➳性质:如果两个平面平行,那么其中一个平面内 的任何一条直线都平行于另外一个平面。
a
//
a
//
☺ 简称:面面平行,线面平行.
复习定理
空间中的平行
5.平面与平面平行的判定与性质
b
a // b
☺ 简称:线线平行,线面平行.
复习定理
空间中的平行
2.直线与平面平行的性质
一条直线与一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行.

高三一轮复习 立体几何中的平行问题

高三一轮复习   立体几何中的平行问题
1、 直线和平面位置关系 Nhomakorabeaa
α
a a
A
α
α
直线在平面α 内a α
有无数个交点
直线与平面α相交 a ∩ α= A 有且只有一个交点
直线与平面α 平行
a∥α无交点
2、直线与平面平行定义: 一条直线和一个平面没有公共点, 叫做直线与平面平行.
3、直线和平面平行的判定定理
①定义.
②判定定理
线线平行
线面平行
4.下列说法中正确的有(C E) A.如果一个平面内一条直线和另一个平面 平行,那么这两个平面平行。 B.如果一个平面内无数条直线和另一个平 面平行,那么这两个平面平行。 C.如果一个平面内的任何直线和另一个平 面平行,那么这两个平面平行。 D.如果两个平面平行于同一条直线,那么 这两个平面平行。 E.如果两个平面平行于同一个平面,那么 这两个平面平行。
(2)直线 a∥平面α,平面α内有无数条直线 交于 一点,那
么这无数条直线中与直线 a 平行的( B )
(A)至少有一条
(B)至多有一条
(C)有且只有一条
(D)不可能有
练习:
(3)如果一条直线和一个平面平行,则这条直线( D ) A 只和这个平面内一条直线平行; B 只和这个平面内两条相交直线不相交; C 和这个平面内的任意直线都平行; D 和这个平面内的任意直线都不相交。
(2009广东卷理)给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,
那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个
平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线
不垂直的直线与另一个平面也不垂直.

立体几何解答题训练(平行)

立体几何解答题训练(平行)

一、立体几何解答题训练(平行)1、如图,已知四棱锥P ABCD -的底面ABCD 是菱形,PA ⊥平面ABCD , 点F 为PC 的中点. (Ⅰ)求证://PA 平面BDF ; (Ⅱ)求证:平面PAC ⊥平面BDF .2、如图,矩形ABCD 中,ABE AD 平面⊥,2===BC EB AE ,F 为CE 上的点,且ACE BF 平面⊥(Ⅰ)求证:BCE AE 平面⊥; (Ⅱ)求证;BFD AE 平面//; (Ⅲ)求三棱锥BGF C -的体积.AFPDCBBC3、如图所示,四棱锥P-ABCD 底面是直角梯形,,,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底 面ABCD ,E 为PC 的中点。

PA =AD =AB =1。

(1)证明:PAD EB 平面; (2)证明:BE PDC ⊥平面; (3)求三棱锥B-PDC 的体积V 。

4.如图,已知棱柱1111D C B A ABCD -的底面是菱形,且⊥1AA 面ABCD ,60=∠DAB ,1AA AD =,F 为棱1AA 的中点,M 为线段1BD 的中点,(1)求证://MF 面ABCD ; (2)求证:⊥MF 面11B BDD ;AB CDA 1B 1C 1D 1FM5、如图3所示,在直三棱柱111ABC A B C -中,90ACB ∠=,2AB =, 1BC =,1AA = (Ⅰ)证明:1AC ⊥平面11AB C ; (Ⅱ)若D 是棱1CC 的中点,在棱AB 上是否存在一点E ,使DE 平面11AB C ?证明你的结论.6、如图,四棱锥P -ABCD 的底面为矩形,侧面P AD 是正三角形,且侧面P AD ⊥底面ABCD , E 是侧棱PD 上一点,且PB ∥平面EAC .(1)求证:E 是PD 的中点; (2)求证:AE ⊥平面PCD .E A BC D PA BCPD7、如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点. (Ⅰ)求证:EF //平面11ABC D ; (Ⅱ)求证:1EF B C ⊥; (Ⅲ)求三棱锥EFC B V -1的体积.8.如图4,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是 等边三角形,已知24BD AD ==,2AB DC == (1)求证:BD ⊥平面PAD ;(2)求三棱锥A PCD -的体积.CDBFE D 1C 1B 1A A 1DC 1A 1B 1CBA9. 如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点, 12A A AB ==,3BC =. (1)求证:1//AB 平面1BC D ; (2) 求四棱锥11-B AAC D 的体积.10.如图,已知三棱锥A —BPC 中,AP ⊥PC , AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三复习——立体几何平行问题专题(学生版)
——李洪波一、基础过关
1. 定理性质梳理
2.平行关系的总结
面面平行
线面平行线线平行
二、概念理解——判断下列命题真假
(1)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行;( ) (2)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;( ) (3)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点;( ) (4)平行于同一平面的两条直线互相平行;( )
(5)αα//,//a b b a ⇒⊂; ( ) (6)b a b a ////,//⇒αα; ( ) (7)αα////,//a b b a ⇒; ( ) (8)b a b a //,//⇒⊂αα; ( ) (9)已知平面
α,β
和直线
m ,若,//,m m αβ⊂,则
α
练习:如图13,正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一 .求证:PQ∥平面BCE.
点P、Q,且AP DQ
解法二:(简要过程)
A
B
C
D
F
E
P
Q
解法三:(简要过程)
A
B
C
D
F
E
P
Q
四、举一反三
1.(17文科1)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )
2.(17文科2)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =
1
2
AD ,
∠BAD =∠ABC =90°.证明:直线BC∥平面PAD ;
3.(16文科3)如图,四棱锥中,平面,AD BC ,AB ,
4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.证明MN
平面PAB .
五、课堂小结:找线线平行的方法:(1)中位线;(2)平行四边形;(3)对应线段成比例。

相关文档
最新文档