高中物理:稳恒电流

合集下载

高中物理稳恒电流试题经典及解析

高中物理稳恒电流试题经典及解析

高中物理稳恒电流试题经典及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v .(a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】(1)(a )电流Q I t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ=柱体体积V Sl =柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总= 设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆又压力Ft p =∆ 由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯ 【解析】 【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++; 电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm=联立解得46.2510/q C kg m-=⨯3.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g .(1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω= (3) 2mgd qBL ≤ω≤27mgd qBL 【解析】【分析】【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+ 解得52gr v =(2)杆转动的电动势21122BLv BL L BL εωω==⨯= 电阻R 的功率22424B L P R R εω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-= 从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mg E q= 杆转动的电动势21112BL εω=两板间电场强度11E d ε=联立解得12mgd qBL ω= 如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-= 杆转动的电动势22212BL εω=两板间电场强度22E d ε=联立解得227mgd qBL ω= 综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgd qBL qBL ω≤≤.4.如图所示,固定的水平金属导轨间距L =2 m .处在磁感应强度B =4×l0-2 T 的竖直向上的匀强磁场中,导体棒MN 垂直导轨放置,并始终处于静止状态.已知电源的电动势E =6 V ,内电阻r =0.5 Ω,电阻R =4.5 Ω,其他电阻忽略不计.闭合开关S ,待电流稳定后,试求: (1)导体棒中的电流;(2)导体棒受到的安培力的大小和方向.【答案】(1)1.2 A;(2)0.096 N,方向沿导轨水平向左【解析】【分析】【详解】(1)由闭合电路欧姆定律可得:I=64.50.5EAR r=++=1.2A(2)安培力的大小为:F=BIL=0.04×1.2×2N=0.096N安培力方向为沿导轨水平向左5.如图所示,已知R3=3Ω,理想电压表读数为3v,理想电流表读数为2A,某时刻由于电路中R3发生断路,电流表的读数2.5A,R1上的电压为5v,求:(1)R1大小、R3发生断路前R2上的电压、及R2阻值各是多少?(R3发生断路时R2上没有电流)(2)电源电动势E和内电阻r各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U 2 + I 2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】6.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端 分别与电源(串有一滑动变阻器 R )、定值电阻、电容器(原来不带电)和开关K 相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B .一质量为m ,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R0,不计导轨的电阻.(1)当K 接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L + 【解析】【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBL R r mg=- (2)由 220B L v mg R = 得 022mgR v B L =由动量定理,得mgt BILt mv -= 其中0BLs qIt R ==得44220220B L s m gR t mgR B L += (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L ∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.7.如图所示电路中,R 1=6 Ω,R 2=12 Ω,R 3=3 Ω,C =30 μF ,当开关S 断开,电路稳定时,电源总功率为4 W ,当开关S 闭合,电路稳定时,电源总功率为8 W ,求:(1)电源的电动势E 和内电阻r ;(2)在S 断开和闭合时,电容器所带的电荷量各是多少?【答案】(1)8V ,1Ω (2)1.8×10﹣4C ,0 C【解析】【详解】(1)S 断开时有:E=I 1(R 2+R 3)+I 1r…①P 1=EI 1…②S 闭合时有:E=I 2(R 3+1212R R R R +)+I 2r…③ P 2=EI 2…④由①②③④可得:E=8V ;I 1=0.5A ;r=1Ω;I 2=1A(3)S 断开时有:U=I 1R 2得:Q 1=CU=30×10-6×0.5×12C=1.8×10-4CS 闭合,电容器两端的电势差为零,则有:Q 2=08.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求:(1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量;(3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J 【解析】【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解.【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s感应电动势为:E 1=BL v 1根据欧姆定律有:E 1=I (R MN + R PQ )根据P =I 2 R PQ代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则速度为:v 2=at =6 m/s感应电动势为:E 2=BLv 2=12 V根据闭合电路欧姆定律:224MNPQE I A R R ==+ 安培力为:F 安=BI 2L =8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得:F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比, 安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安 【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.9.为了检查双线电缆CE 、FD 中的一根导线由于绝缘皮损坏而通地的某处,可以使用如图所示电路。

高中物理奥林匹克竞赛专题——稳恒电流(共24张PPT)

高中物理奥林匹克竞赛专题——稳恒电流(共24张PPT)

dA
dq
把单位正电荷从负极板经内电路搬 至正极板,电源非静电力做的功。
* 为了便于计算规定 的方向由 负极板经内电路指向正极板,即
+–
正电荷运动的方向。
单位:焦耳/库仑=(伏特)
* 越大表示电源将其它形式能量转换为电能的本
领越大。其大小与电源结构有关,与外电路无关。

第四章 稳恒电流
4.1 电流和电流密度 # 稳恒的含义是指物理量不随时间改变 # 形成电流的条件:
在导体内有可以自由移动的电荷或叫载流子 (如在半导体中载流子有电子或空穴;在金属 中是电子;在电解质溶液中是离子)。
在导体内要维持一个电场,或者说在导体两 端要存在有电势差。
本章仅限于讨论第一、第二类(电解质溶液) 导体中的传导电流。不能讨论超导体。
电流强度来描述就不够用了,有必要引入一个描
述空间不同点电流的大小。
定义电流密度矢量j 的方向为
空间某点处正电荷的运动方向,
它的大小等于单位时间内该点附
近垂直与电荷运动方向的单位截 面上所通过的电量。
lim
|j|
I dI dq
S 0S dS dtdS
j
lim
*
S
稳恒条件可说为电荷分布不随时间变化
dq

即场不变时达到稳恒。
dt
* 电流线不可能在任何地方中断,即是闭合曲线。
* 在没有分支的恒定电路中,通过各截面的电流
必定相等;而且恒定电路必定是闭合的。
* 恒定电流情况下的电荷分布(净电荷的宏观
分布不随时间改变 ) 产生恒定的电场与静电场 服从同样的基本规律。
* 提供非静电力的装置就是电源,

高中物理竞赛讲义稳恒电流

高中物理竞赛讲义稳恒电流

第九部分 稳恒电流第一讲 基本知识介绍第八部分《稳恒电流》包括两大块:一是“恒定电流”,二是“物质的导电性”。

前者是对于电路的外部计算,后者则是深入微观空间,去解释电流的成因和比较不同种类的物质导电的情形有什么区别。

应该说,第一块的知识和高考考纲对应得比较好,深化的部分是对复杂电路的计算(引入了一些新的处理手段)。

第二块虽是全新的内容,但近几年的考试已经很少涉及,以至于很多奥赛培训资料都把它删掉了。

鉴于在奥赛考纲中这部分内容还保留着,我们还是想粗略地介绍一下。

一、欧姆定律1、电阻定律a 、电阻定律 R = ρSlb 、金属的电阻率 ρ = ρ0(1 + αt )2、欧姆定律a 、外电路欧姆定律 U = IR ,顺着电流方向电势降落b 、含源电路欧姆定律在如图8-1所示的含源电路中,从A 点到B 点,遵照原则:①遇电阻,顺电流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负极到正极电势升高(与电流方向无关),可以得到以下关系U A − IR − ε − Ir = U B这就是含源电路欧姆定律。

c 、闭合电路欧姆定律在图8-1中,若将A 、B 两点短接,则电流方向只可能向左,含源电路欧姆定律成为 U A + IR − ε + Ir = U B = U A即 ε = IR + Ir ,或 I = r R +ε 这就是闭合电路欧姆定律。

值得注意的的是:①对于复杂电路,“干路电流I ”不能做绝对的理解(任何要考察的一条路均可视为干路);②电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;③外电阻R 可以是多个电阻的串、并联或混联,但不能包含电源。

二、复杂电路的计算1、戴维南定理:一个由独立源、线性电阻、线性受控源组成的二端网络,可以用一个电压源和电阻串联的二端网络来等效。

(事实上,也可等效为“电流源和电阻并联的的二端网络”——这就成了诺顿定理。

)应用方法:其等效电路的电压源的电动势等于网络的开路电压,其串联电阻等于从端钮看进去该网络中所有独立源为零值...时的等效电阻。

【高中物理】稳恒电流

【高中物理】稳恒电流

【高中物理】稳恒电流一. 教学内容:稳恒电流二. 重点、难点(一)电流1. 是电流的定义式,电流方向规定为电路中正电荷定向移动的方向,与负电荷运动方向相反。

常见有三种情况:(1)一种是电荷定向移动,直接用进行求解。

(2)一个电荷做高速圆周运动(环型电流)对这种情况关键是理解“间断和连续”之间的转化。

电荷运动时有两个特点:一是循环性,二是高速性。

正是这两个特性使问题从“间断”向“连续”转化,这种情况可用I=q/T来求。

(T为运动的周期)如:一质量为m、电荷量为q的带电粒子在磁感应强度为B的匀强磁场中做匀速圆周运动,其效果相当于一环形电流,则此环形电流I=________。

解析:由I=q/t知,则有,而不是。

2. I=neSv是电流的微观表达式,式中n为金属导体内部单位体积内自由电子数,S是导体横截面积,v是电子定向移动速率,e为电子电量。

电流是标量,但习惯上规定正电荷移动方向为电流方向,实际上反映的是电势的高低。

3. 三种速率的区别(1)电流传导速率等于光速,电路一连通,导体中的电子立即受到电场力作用而定向移动形成电流(对整体而言)。

(2)电子定向移动速率,其大小与电流有关,约为。

例1. 在彩色电视机的显像管中,从电子枪射出的电子(可认为初速度为零)在(个)显像管每小时耗电量为:答案:(二)部分电路欧姆定律1. 欧姆定律导体中电流跟它两端的电压成正比,跟它的电阻成反比,公式为,其中突然降低到零,物质成为超导体。

2. 导体的伏安特性曲线(1)定义建立平面直角坐标系,用纵轴表示电流I,用横轴表示电压U,画出的导体的I?DU图线叫做导体的伏安特性曲线。

(2)线性元件伏安特性是通过坐标原点的直线,表示电流与电压成正比,如图,其斜率等于电阻的倒数即(3)非线性元件伏安特性曲线不是直线的,即电流与电压不成正比的电学元件如图,是二极管的伏安特性曲线:二极管具有单向导电性。

加正向电压时,二极管电阻较小,通过二极管的电流较大;加反向电压时,二极管的电阻较大,通过二极管的电流很小。

稳恒电流课件参考模板范本

稳恒电流课件参考模板范本
西门子
σ—— 电导率( 米 )
一般 ρ ρ 0 (1α t)
α —— 电阻温度系数
3. 欧姆定律的定域形式(微分形式)
沿电流管取一小圆柱体,长Δl, 截面ΔS,电势差ΔU,电流ΔI , 如 图3.2.
U ΔS
U+ΔU ΔI
Δl
图3.2 一段电流管
由欧姆定律
I U , R 1 l
R
σ S

I σ U S , 或 I σ U
(S)
j
dS
dq dt
j dS 0
(S)
——电荷守恒
三. 欧姆定律的定域形式
稳恒电场与静电场相似,有
E dl 0
1. 欧姆定律
(L)
“电压”可引入
I = GU

G 1 , I U
R
R
2. 电阻率
R ρ l
S

σ 1, R1 l
ρ
σS
G —— 电导(西门子) R —— 电阻(欧姆)
ρ —— 电阻率(欧姆 ·米)
图3.3 一段电流管
五. 金属导电的经典解释 (电流形成与电阻机理)
导体中无电场(亦无电子数密度梯度、温度梯度或其它可使电
子宏观运动的因素),穿过任一截面的电流均值为零,即
j dS 0
(S)
电子作热运动,电子与原子核碰撞、散射,其路径是曲折的。
加外电场: 自由电子速度 = 原来的速度 其平均自值由称电为子漂加移速速度度:,形a成宏观e电E流,设为
ΔS
I
Δl
图3.4 一段电流管
则 Δq = - neuΔtΔS I = neuΔS j = neu
考虑方向
j neu

高中物理:稳恒电流

高中物理:稳恒电流
一.电动势(electromotive force, 简写作emf) -q (t) q (t)
I
一段不闭合电路

q (t)
E (t)
I FK
I (t)
要维持稳恒电流, 电路必须闭合。 而 E d l 0
L
+
必须有非静电力 FK 存在, 才
R
能在闭合电路中形成稳恒电流。
+q
Ii 0
i
i =1, 2,
— 基尔霍夫第一定律 (Kirchhoff first law)
规定从节点流出: I > 0 ,流入节点:I < 0 。 由基尔霍夫
第一定律可知
二端 网络 电路I
稳恒情况 必有 I = 0 I入 I出 电路II
稳恒情况必 有 I入 = I出
7
§6.4 电动势、温差电现象
(图示)


2
大块导体
定义:电流密度
I
dI Pபைடு நூலகம்
ev
v
j
dS
dI j ev d S
ev
dI 大小: j j d S d 对任意小面元 d S , I j d S j d S
dI
P 处正电荷定向移动 速度方向上的单位矢量
方向 // v
j
j nqv
I
v q定向移动速度
7.4 10 mm/s
2
对Cu:j 1 A/mm 2 时, v
∵电流有热效应,故应限制 j 的大小: 例如对Cu导线要求: j 6 A/mm 2 (粗)
j 15 A/mm (细)
2
对于超导导线,

(高中物理)稳恒电路

(高中物理)稳恒电路

稳恒电路第一讲:稳恒电路根底知识与根本方法〔一〕电流的形成、电流强度I=q/t 。

1.电流的形成:电荷定向移动形成电流(注意它和热运动的区别)。

2.形成电流条件:(1)存在自由电荷;(2)存在电势差(导体两端存在电热差)。

3.电流强度:I=q/t(如果是正、负离子同时定向移动形成电流,q 应是两种电荷量和)4.注意:I 有大小,有方向,但属于标量(运算法那么不符合平行四边形定那么),电流传导速率就是电场传导速率不等于电荷定向移动的速率(电场传导速率等于光速)。

〔二〕局部电路欧姆定律。

1.公式I=U/R,U=IR,R=U/I.2.含义:R 一定时,I ∝U,I 一定时,U ∝R ;U 一定时,I ∝l/R 。

(注意:R 与U 、I 无关)3.适用范围:纯电阻用电器(例如:适用于金属、液体导电,不适用于气体导电)。

4.图象表示:在R 一定的情况下,I 正比于U ,所以I —U 图线、U —I 图线是过原点的直线,且R=U/I ,所以在I —U 图线中,R=cot θ=1/k 斜率,斜率越大,R 越小;在U —I 图线中,R=tan θ=k 斜率,斜率越大,R 越大。

注意:(1)应用公式I=U/R 时,各量的对应关系,公式中的I 、U 、R 是表示同一局部电路的电流强度、电压和电阻,切不可将不同局部的电流强度、电压和电阻代入公式,(2)I 、U 、R 各物理量的单位均取国际单位,I(A)、U(A)、R(Ω);(3)当R 一定时,I ∝U ;I 一定时,U ∝R ;U 一定时,I ∝1/R ,但R 与I 、U 无关。

(三)电阻定律1.公式:R=ρL/S(注意:对某一导体,L 变化时S 也变化,L ·S=V 恒定)2.电阻率:ρ=RS/L ,与物体的长度L 、横截面积S 无关,和物体的材料、温度有关。

①金属材料的电阻率随温度的升高而增大,②半导体材料的电阻率随温度增加而减小③纯金属的电阻率较小,合金的电阻率较大,橡胶的电阻率最大。

高中物理竞赛辅导讲义-第篇-稳恒电流(精品)

高中物理竞赛辅导讲义-第篇-稳恒电流(精品)

高中物理竞赛辅导讲义第8篇 稳恒电流【知识梳理】一、基尔霍夫定律(适用于任何复杂电路) 1. 基尔霍夫第一定律(节点电流定律)流入电路任一节点(三条以上支路汇合点)的电流强度之和等于流出该节点的电流强度之和。

即∑I =0。

若某复杂电路有n 个节点,但只有(n −1)个独立的方程式。

2. 基尔霍夫第二定律(回路电压定律)对于电路中任一回路,沿回路环绕一周,电势降落的代数和为零。

即∑U =0。

若某复杂电路有m 个独立回路,就可写出m 个独立方程式。

二、等效电源定理1. 等效电压源定理(戴维宁定理)两端有源网络可以等效于一个电压源,其电动势等于网络的开路端电压,其内阻等于从网络两端看除源(将电动势短路,内阻仍保留在网络中)网络的电阻。

2. 等效电流源定理(诺尔顿定理)两端有源网络可等效于一个电流源,电流源的电流I 0等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除源网络的电阻。

三、叠加原理若电路中有多个电源,则通过电路中任一支路的电流等于各个电动势单独存在时,在该支路产生的电流之和(代数和)。

四、Y−△电路的等效代换如图所示的(a )(b )分别为Y 网络和△网络,两个网络中的6个电阻满足一定关系时完全等效。

1. Y 网络变换为△网络122331123R R R R R R R R ++=, 122331231R R R R R R R R ++=122331312R R R R R R R R ++=2. △网络变换为Y 网络12311122331R R R R R R =++,23122122331R R R R R R =++,31233122331R R R R R R =++五、电流强度与电流密度 1.电流强度 (1)定义式:q I t∆=∆。

(2)宏观决定式:U I R=。

(3)微观决定式:I neSv =。

2.电流密度在通常的电路问题中,流过导线截面的电流用电流强度描述就可以了,但在讨论大块导体中电流的流动情况时,用电流强度描述就过于粗糙了。

高二物理竞赛课件:稳恒电流

高二物理竞赛课件:稳恒电流

圆周运动向心力
电子作圆周运动的角速度
当施加外磁场后,电子除受fe 作用外,还受到磁 场力fm 的作用,就引起电子运动角速度的变化。
9
电子受磁场力fm 的方向与库仑 力fe 的方向相同,即指向原子核
0
B
fm
v
磁场力大小 fm=evB=erB
Δpm
0 增加到 = 0 + ,且 满足
Ze2
4π0r 2
7
也称逆磁性,抗磁质逆磁质
磁化率m<0,相对磁导率r<1 抗磁质 与 反向
只考虑一个电量-e的电子以角速度0半径r
绕原子核作圆周运动,相当于一个圆电流。
T与0有
2 T
0
等效圆对应轨道磁矩
m总与0反向
8
电子受到的库仑力fe 的大小为
Ze 2
f e 4 0r 2
库仑力等于电子
抗磁性的产生:加外磁场后的 m 抗磁质 与 反向
单个电子的轨道磁矩 m 方向总与0反向
考虑一个电量 –e 的电子以角速度0 半径 r 绕原
子核作圆周运动,相当于一个圆电流。
0
周期 T 2
0
等效圆电流 I
e
e0
r
v
T 2
对应轨道磁矩
4
电子受到的库仑力 fe 的大小为
库仑力等于电子圆 周运动向心力 电子作圆周运动的角速度
erB
2r
2 02 20Δ
10
受磁场力与库仑力反向,
角速度将从0 减小到=0 -
0
Δpm
v
fm
B
表明磁场所引起的附加角速度总与磁场方向相同。 电子运动角速度变化必将引起轨道磁矩的变化。
轨道磁矩 变化量为

高中物理电学

高中物理电学

高中物理之稳恒电流知识点总汇二、电场能的性质1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。

1、电流:(电荷的定向移动形一、电场基本规律2、库仑定律(1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。

(2)表达式:k=9.0×109N?m2/C2——静电力常量(3)适用条件:真空中静止的点电荷。

1、电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。

(1)三种带电方式:摩擦起电,感应起电,接触起电。

(2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=1.6×10-19C ——密立根测得e的值。

2、电势φ(1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。

(2)定义式:φ——单位:伏(V)——带正负号计算(3)特点:○1电势具有相对性,相对参考点而言。

但电势之差与参考点的选择无关。

○2电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。

○3电势的大小由电场本身决定,与Ep和q无关。

○4电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。

(4)电势高低的判断方法○1根据电场线判断:沿着电场线电势降低。

φA>φB○2根据电势能判断:正电荷:电势能大,电势高;电势能小,电势低。

负电荷:电势能大,电势低;电势能小,电势高。

结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。

3、电势能Ep(1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。

电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。

(2)定义式:——带正负号计算(3)特点:○1电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。

物理竞赛辅导教案稳恒电流

物理竞赛辅导教案稳恒电流

物理竞赛辅导教案稳恒电流辅导教案:稳恒电流一、教学目标:1.了解稳恒电流的概念;2.理解电流的定义和单位;3.掌握计算电流的方法;4.掌握串联电路和并联电路中计算电流的方法。

二、教学内容:1.稳恒电流的概念;2.电流的定义和单位;3.串联电路中的电流计算;4.并联电路中的电流计算。

三、教学过程:步骤一:导入新知识(10分钟)教师可以提问:你们能说出什么是电流吗?电流的单位是什么?请举例说明。

步骤二:学习稳恒电流的概念(15分钟)1.定义稳恒电流:稳恒电流是指在电路中,电荷在单位时间内通过特定点的数量,也就是电流表示了电荷的流动程度。

2.提示学生思考:电流的大小与电荷的量有关吗?与电流的时间有关吗?3.引导学生发现:电流与电荷的量和时间有关,电流的计算公式为I=Q/t,其中I代表电流,Q代表电荷量,t代表时间。

步骤三:学习电流的定义和单位(15分钟)1.电流的定义:电流是单位时间内通过导线横截面的电荷量,用公式I=ΔQ/Δt表示。

2.电流的单位:国际单位制中,电流的单位是安培(A),即1A等于每秒通过1库伦电荷。

步骤四:学习串联电路中的电流计算(20分钟)1.串联电路的特点:串联电路中的电流在各电器之间是相同的。

2.串联电路中的电流计算公式:根据串联电路的特点,可以利用欧姆定律计算串联电路中的电流,即I=U/R,其中I代表电流,U代表电压,R 代表电阻。

3.通过示例演练,让学生掌握串联电路中电流的计算方法。

步骤五:学习并联电路中的电流计算(20分钟)1.并联电路的特点:并联电路中的电流在各支路之间分担。

2.并联电路中的电流计算公式:根据并联电路的特点,可以利用欧姆定律和基尔霍夫定律计算并联电路中的电流。

欧姆定律:I1=U/R1,I2=U/R2,I3=U/R3基尔霍夫定律:I=I1+I2+I33.通过示例演练,让学生掌握并联电路中电流的计算方法。

步骤六:小结与拓展(10分钟)小结:通过本节课的学习,我们了解了稳恒电流的概念,掌握了电流的定义和单位,并学会了计算串联电路和并联电路中的电流。

高中物理稳恒电流技巧(很有用)及练习题及解析

高中物理稳恒电流技巧(很有用)及练习题及解析

高中物理稳恒电流技巧(很有用)及练习题及解析一、稳恒电流专项训练1.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电动机的电阻R 0=1.0Ω,电阻R 1=1.5Ω.电动机正常工作时,电压表的示数U 1=3.0V ,求:(1)电源释放的电功率;(2)电动机消耗的电功率.将电能转化为机械能的功率; 【答案】(1)20W (2)12W 8W . 【解析】 【分析】(1)通过电阻两端的电压求出电路中的电流I ,电源的总功率为P=EI ,即可求得; (2)由U 内=Ir 可求得电源内阻分得电压,电动机两端的电压为U=E-U 1-U 内,电动机消耗的功率为P 电=UI ;电动机将电能转化为机械能的功率为P 机=P 电-I 2R 0. 【详解】(1)电动机正常工作时,总电流为:I=1U RI=3.01.5A=2 A , 电源释放的电功率为:P=EI =10×2 W=20 W ; (2)电动机两端的电压为: U= E ﹣Ir ﹣U 1 则U =(10﹣2×0.5﹣3.0)V=6 V ;电动机消耗的电功率为: P 电=UI=6×2 W=12 W ; 电动机消耗的热功率为: P 热=I 2R 0 =22×1.0 W=4 W ;电动机将电能转化为机械能的功率,据能量守恒为:P 机=P 电﹣P 热 P 机=(12﹣4)W=8 W ; 【点睛】对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.2.能量守恒是自然界基本规律,能量转化通过做功实现。

研究发现,电容器存储的能最表达式为c E =21CU 2,其中U 为电容器两极板间的电势差.C 为电容器的电容。

现将一电容器、电源和某定值电阻按照如图所示电路进行连接。

已知电源电动势为0E ,电容器电容为0C ,定值电阻阻值为R ,其他电阻均不计,电容器原来不带电。

高考物理一轮复习知识清单稳恒电流

高考物理一轮复习知识清单稳恒电流

知识清单:稳恒电流●知识点1——电流强度(简称“电流”)●知识点2——电阻补充:金属导体的电阻率随温度的升高而增大,半导体的电阻率随温度的升高而减小。

●知识点3——电动势动势的物理含义:电动势表示电源把其他形式的能转化成电势能本领的大小,在数值上等于电源没有接入电路时两极间的电压。

2.表达式:E =W 非qE =U 外+Ir●知识点4——电功和电热实例 白炽灯、电炉、电饭锅、电热毯、电熨斗及转子被卡住的电动机等电动机、电解槽、日光灯等电功与电热W =Q =UIt =I 2Rt =U 2RtW =UIt >Q =I 2Rt 电功率与热功率P 电=P 热=UI =I 2R =U 2RP 电=UI >P 热=I 2RP 电=P 机+P 热2.电路中的功率及效率问题 (1)电源的总功率:P 总=E I(2)电源的输出功率:P 出=UI =EI -I 2r 若外电路是纯电阻电路,则有:P 出=I 2R =E 2R (R +r )2=E 2(R -r )2R+4r 当R =r 时,电源的输出功率最大为P max =E 24r 。

(3)电源的效率:η=P 出P 总×100%=UE ×100% ●知识点5——串并联律1.串联电路特点(1)总电阻:R =R 1+R 2+…+R n (2)各处的电流相等:I =I 1=I 2=…=I n (3)电路两端电压:U =U 1+U 2+…+U n 2.并联电路特点(1)总电阻:1R 并=1R 1+1R 2+…+1R n ,两个电阻的总电阻(积比和)R 1R 2R 1+R 2(2)各支路电压相等:U =U 1=U 2=…=U n (3)电路中的总电流:I =I 1+I 2+…+I n●知识点6——串正并反律1.串联电路中,各导体的电压或电功率都跟它们的电阻成正比。

(1)分压原理:U 1R 1=U 2R 2=…=U nR n(2)功率分配:P 1R 1=P 2R 2=…=P nR n2.并联电路中,各支路的电流或电功率都跟它们的支路电阻成反比。

高考物理复习精品知识点——稳恒电流

高考物理复习精品知识点——稳恒电流

高考物理复习精品知识点——稳恒电流十、稳恒电流1.电流---(1)定义:电荷的定向移动形成电流. (2)电流的方向:规定正电荷定向移动的方向为电流的方向.在外电路中电流由高电势点流向低电势点,在电源的内部电流由低电势点流向高电势点(由负极流向正极).2.电流强度: ------(1)定义:通过导体横截面的电量跟通过这些电量所用时间的比值,I=q/t(2)在国际单位制中电流的单位是安.1mA=10-3A,1μA=10-6A(3)电流强度的定义式中,如果是正、负离子同时定向移动,q应为正负离子的电荷量和.2.电阻--(1)定义:导体两端的电压与通过导体中的电流的比值叫导体的电阻. (2)定义式:R=U/I,单位:Ω(3)电阻是导体本身的属性,跟导体两端的电压及通过电流无关.3★★.电阻定律(1)内容:在温度不变时,导体的电阻R与它的长度L成正比,与它的横截面积S成反比.(2)公式:R=ρL/S. (3)适用条件:①粗细均匀的导线;②浓度均匀的电解液.4.电阻率:反映了材料对电流的阻碍作用.(1)有些材料的电阻率随温度升高而增大(如金属);有些材料的电阻率随温度升高而减小(如半导体和绝缘体);有些材料的电阻率几乎不受温度影响(如锰铜和康铜).(2)半导体:导电性能介于导体和绝缘体之间,而且电阻随温度的增加而减小,这种材料称为半导体,半导体有热敏特性,光敏特性,掺入微量杂质特性.(3)超导现象:当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫超导现象,处于这种状态的物体叫超导体.5.电功和电热(1)电功和电功率:电流做功的实质是电场力对电荷做功.电场力对电荷做功,电荷的电势能减少,电势能转化为其他形式的能.因此电功W=qU=UIt,这是计算电功普遍适用的公式.单位时间内电流做的功叫电功率,P=W/t=UI,这是计算电功率普遍适用的公式.(2)★焦耳定律:Q=I 2 Rt,式中Q表示电流通过导体产生的热量,单位是J.焦耳定律无论是对纯电阻电路还是对非纯电阻电路都是适用的.(3)电功和电热的关系①纯电阻电路消耗的电能全部转化为热能,电功和电热是相等的.所以有W=Q,UIt=I 2 Rt,U=IR (欧姆定律成立),②非纯电阻电路消耗的电能一部分转化为热能,另一部分转化为其他形式的能.所以有W>Q,UIt>I 2 Rt,U>IR(欧姆定律不成立).★6.串并联电路电路串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系 R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系 I总=I1=I2=I3I并=I1+I2+I3+电压关系 U总=U1+U2+U3+ U总=U1=U2=U3=功率分配 P总=P1+P2+P3+P总=P1+P2+P3+7.电动势 --(1)物理意义:反映电源把其他形式能转化为电能本领大小的物理量.例如一节干电池的电动势E=15V,物理意义是指:电路闭合后,电流通过电源,每通过1C的电荷,干电池就把15J的化学能转化为电能.(2)大小:等于电路中通过1C电荷量时电源所提供的电能的数值,等于电源没有接入电路时两极间的电压,在闭合电路中等于内外电路上电势降落之和E=U外+U内.★★8.闭合电路欧姆定律(1)内容:闭合电路的电流强度跟电源的电动势成正比,跟闭合电路总电阻成反比.(2)表达式:I=E/(R+r)(3)总电流I和路端电压U随外电阻R的变化规律当R增大时,I变小,又据U=E-Ir知,U变大.当R增大到∞时,I=0,U=E(断路).当R减小时,I变大,又据U=E-Ir知,U变小.当R减小到零时,I=E r ,U=0(短路).9.路端电压随电流变化关系图像U端=E-Ir.上式的函数图像是一条向下倾斜的直线.纵坐标轴上的截距等于电动势的大小;横坐标轴上的截距等于短路电流I短;图线的斜率值等于电源内阻的大小.10.闭合电路中的三个功率(1)电源的总功率:就是电源提供的总功率,即电源将其他形式的能转化为电能的功率,也叫电源消耗的功率P总=EI.(2)电源输出功率:整个外电路上消耗的电功率.对于纯电阻电路,电源的输出功率.P出=I 2 R=[E/(R+r)] 2 R ,当R=r时,电源输出功率最大,其最大输出功率为Pmax=E 2/ 4r(3)电源内耗功率:内电路上消耗的电功率 P内 =U内I=I 2 r(4)电源的效率:指电源的输出功率与电源的功率之比,即η=P出/P总=IU /IE =U /E .11.电阻的测量原理是欧姆定律.因此只要用电压表测出电阻两端的电压,用安培表测出通过电流,用R=U/ I 即可得到阻值.①内、外接的判断方法:若R x 大大大于R A ,采用内接法;R x 小小小于R V ,采用外接法.②滑动变阻器的两种接法:分压法的优势是电压变化范围大;限流接法的优势在于电路连接简便,附加功率损耗小.当两种接法均能满足实验要求时,一般选限流接法.当负载RL较小、变阻器总阻值较大时(RL的几倍),一般用限流接法.但以下三种情况必须采用分压式接法:a.要使某部分电路的电压或电流从零开始连接调节,只有分压电路才能满足.b.如果实验所提供的电压表、电流表量程或电阻元件允许最大电流较小,采用限流接法时,无论怎样调节,电路中实际电流(压)都会超过电表量程或电阻元件允许的最大电流(压),为了保护电表或电阻元件免受损坏,必须要采用分压接法电路.c.伏安法测电阻实验中,若所用的变阻器阻值远小于待测电阻阻值,采用限流接法时,即使变阻器触头从一端滑至另一端,待测电阻上的电流(压)变化也很小,这不利于多次测量求平均值或用图像法处理数据.为了在变阻器阻值远小于待测电阻阻值的情况下能大范围地调节待测电阻上的电流(压),应选择变阻器的分压接法.。

2.稳恒电流概论

2.稳恒电流概论

第二讲 恒定电流§2. 1 电流2.1 .1. 电流、电流强度、电流密度导体处于静电平衡时,导体内部场强处处为零。

如果导体内部场强不为零,带电粒子在电场力作用下发生定向移动,形成了电流。

形成电流条件是:存在自由电荷和导体两端有电势差(即导体中存在电场)。

自由电荷在不同种类导体内部是不同的,金属导体中自由电荷是电子;酸、碱、盐在水溶液中是正离子和负离子;在导电气体中是正离子、负离子和电子。

电流强度是描述电流强弱的物理量,单位时间通过导体横截面的电量叫做电流强度。

用定义式表示为t q I /=电流强度是标量。

但电流具有方向性,规定正电荷定向移动方向为电流方向。

在金属导体中电流强度的表达式是nevS I =n 是金属导体中自由电子密度,e 是电子电量,v 是电子定向移动平均速度,S 是导体的横截面积。

在垂直于电流方向上,单位面积内电流强度叫做电流密度,表示为S I j /=金属导体中,电流密度nev j =电流密度j 是矢量,其方向与电流方向一致。

2.1 .2 电阻定律 导体的电阻为S L S L R σρ==/式中ρ、σ称为导体电阻率、电导率⎪⎭⎫ ⎝⎛=σρ1,由导体的性质决定。

实验表明,多数材料的电阻率都随温度的升高而增大,在温度变化范围不大时,纯金属的电阻率与温度之间近似地有如下线性关系()t αρρ+=100ρ为0℃时电子率,ρ为t 时电阻率,α为电阻率的温度系数,多数纯金属α值接近于3104-⨯℃1-,而对半导体和绝缘体电阻率随温度 的升高而减小。

某些导体材料在温度接近某一临界温度时,其电阻率突减为零,这种现象叫超导现象。

超导材料除了具有零电阻特性外,还具有完全抗磁性,即超导体进入超导状态时,体内磁通量被排除在体外,可以用这样一个实验来形象地说明:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永磁铁,整个装置放入低温容器里,然后把温度降低到锡出现超导电性的温度。

这时可以看到,小磁铁竟然离开锡盘表面,飘然升起与锡盘保持一定距离后,悬在空中不动了,如图2-2-1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 稳恒电流 (Steady Current)
1
本章从“场”的角度出发, 以电场的规律为基础, 研究电路的基本规律。
§6.1电流密度(current density)
对细导线用电流强度 (electric current strength) 的概念就够了。 对大块导体, 还需电流密度的概念 来进一步描写电流的分布。 例如:电阻法探矿
d q内 对闭合曲面 S 有: j d s dt ds S
I
q内
S
j
—电荷守恒定律
稳恒条件:
j d s 0
S
d q内 稳恒情况有: 0 dt
(积分形式) (微分形式)

j 0
6
对电路的“节点”:
Ii 节点

S
j d s 0
S
△§6.5
含源电路
一 . 单闭合回路 考虑到 E K ,有: j ( E E K ) I j + E d l EK d l d l _r R L L L
0 总
I d l S L
总 I d R
L
总 IR总
对上图单回路: 总 I ( R r ) U Ir U ─ 电源的端电压
10
二 . 有分叉的回路
.
Ri
.
Ii
i
L
. a
b ─基尔霍夫第二定律 (Kirchhoff second law)
11
.
i I i Ri
I i、 i 与 L 绕向一致为正。
-
Fe
FK:电磁,化学,热,光,
原子,
8
定义非静电性场强
FK EK q
仿照电势差(电压)的定义
U 12
定义电动势
A电 E d l q (1)
( 2)
— 电势降
A非 12 E K d l q (1 )
( 2)
— 电势升
9
j
j nqv
I
v q定向移动速度
7.4 10 mm/s
2
对Cu:j 1 A/mm 2 时, v
∵电流有热效应,故应限制 j 的大小: 例如对Cu导线要求: j 6 A/mm 2 (粗)
j 15 A/mm (细)
2
对于超导导线,
j 可达104A/mm2。
5
§6.2 稳恒条件
三 . 一段含源电路 例如,上面电路从 a、b 间断开:
.
Ri
.
Ii
i
L
. a a
b .
b
i I i Ri ( b a ) , 令电压 U ab a b

— 一 段含源电路 U ab I i Ri i 的欧姆定律 沿电路 I i、 i 的正方向: 12
Ii 0
i
i =1, 2,
— 基尔霍夫第一定律 (Kirchhoff first law)
规定从节点流出: I > 0 ,流入节点:I < 0 。 由基尔霍夫
第一定律可知
二端 网络 电路I
稳恒情况 必有 I = 0 I入 I出 电路II
稳恒情况必 有 I入 = I出
7
§6.4 电动势、温差电现象
(图示)


2
大块导体
定义:电流密度
I
dI P
ev
v
j
dS
dI j ev d S
ev
dI 大小: j j d S d 对任意小面元 d S , I j d S j d S
dI
P 处正电荷定向移动 速度方向上的单位矢量
方向 // v
dS
j
对任意曲面S: I j d S
S
3
d S
为形象描写电流分布,引入“电流线”的概念:
要求: 1)电流线上某点的切向 与该点 j 的方向一致; 2)电流线的密度等于 j,
P
j
电流线
dN 即: j d S
dN dS
4
dN dI
v
电流线 qn dS=1
a b
一.电动势(electromotive force, 简写作emf) -q (t) q (t)
I
一段不闭合电路

q (t)
E (t)
I FK
I (t)
要维持稳恒电流, 电路必须闭合。 而 E d l 0
L
+
必须有非静电力 FK 存在, 才
R
能在闭合电路中形成稳恒电流。
+q
相关文档
最新文档