中考数学模拟试题基础题
【好题】数学中考模拟试题(带答案)
【好题】数学中考模拟试题(带答案)一、选择题1 .二次函数y= x 2-6x+m 满足以下条件:当-2vxv-1时,它的图象位于 x 轴的下方;当8vxv9时,它的图象位于 x 轴的上方,则 m 的值为()A. 27B. 9C. - 7D. - 162 .下列各式中能用完全平方公式进行因式分解的是( )A. x 2+x+1B. x 2+2x- 1C. x 2- 1D. x 2- 6x+93 .已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中 间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是(B.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是 50m minD.林茂从文具店回家的平均速度是60m min4 .若一元二次方程 x 2- 2kx+k 2= 0的一根为x= - 1,则k 的值为( ) A. - 1B. 0C. 1 或-1D. 2 或 05 .有31位学生参加学校举行的最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定 不发生变化的是()A.中位数B.平均数C.众数D.方差6 .如图,AB, AC 分别是。
O 的直径和弦,OD AC 于点D,连接BD, BC,且AB 10, AC 8,则 BD 的长为()A. 2V 5B. 4C. 2辰D. 4.87 .如图,某小区规划在一个长 16ml 宽9m 的矩形场地ABCDh,修建同样宽的小路,使其中两条与AB 平行,另一条与 AD 平行,其余部分种草,如果使草坪部分的总面积为 112m2,设小路的宽为xm,那么x 满足的方程是()x 表不时)A.体育场离林茂家2.5km8 .如图是二次函数 y=ax 2+bx+c (a, b, c 是常数,a 为)图象的一部分,与 x 轴的交点A 在点(2, 0)和(3, 0)之间,对称轴是 x=1 .对于下列说法:①ab <0;②2a+b=0 ;③3a+c>0;④a+b>m (am+b ) ( m 为实数); ⑤ 当-1vxv3时,y>0,其中正确的是( .)11.绿水青山就是金山银山某工程队承接了 ।季的到来,实际B. x 2-25x+32=0C. x 2-17x+16=0D. x 2-17x-16=0B.①②⑤C.②③④D.③④⑤B. - 4,AG 平分C. ID. 11EFC 40°,则 GAF 的度数为()115° C. 125° D. 130°60万平方米的荒山绿化任务,为了迎接雨'25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米, A. C.12.A. 606030(1 25%) x(1 25%) 60 旬 ------ - 30 x已知实数a a-7 > b-7xb,若a>b,则下列结论错误的是 B. 6+a>b+660 60 ,(1 25%) x x60 60 (1 25%)xx30 D. -3a>-3bA. 2x 2-25x+16=0A.①②④结果大于19.根据以下程序,当输入 x= 2时,输出结果为(A. 一 1则下面所列方程中正确的是(B.D.工作时每天的工作效率比原计划提高了二、填空题13.关于x的一元二次方程ax2 3X 1 0的两个不相等的实数根都在-1和0之间(不包^^-1和0),则a的取值范围是14.在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计摸出黑球”的概率是(结果保留小数点后一位).15.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为.16.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后秒与甲相遇.,评)A,Q 30 120 M秒)17.如图,矩形ABCD中,AB=3, BC=4,点E是BC边上一点,连接AE,把/ B沿AE折叠,使点B落在点g 处,当为直角三角形时,BE的长为—.18.分解因式:2x2 -18 =19.从-2, - 1, 1, 2四个数中,随机抽取两个数相乘,积为大于- 4小于2的概率是20.如图,在矩形ABCD中,AB=3, AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos/EFC的值是三、解答题21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.某校开展了互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出进取”所对应的圆心角的度数;(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).配等四灌取23.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价X (元)(0 x 20)之间满足一次函数关系,其图象如图所示:【参考答案】***试卷处理标记,请不要删除一、选择题1. D解析:D 【解析】 【分析】先确定抛物线的对称轴为直线 x=3,根据抛物线的对称性得到 x=-2和 相等,然后根据题意判断抛物线与x 轴的交点坐标为(-2,0), ( 8,1(-2 , 0)代入y = x 2-6x+m 可求得m 的值.【详解】—6解:♦.•抛物线的对称轴为直线x= -------- =3,⑴ (2) 求y 与x 之间的函数关系式;商贸公司要想获利 2090元,则这种干果每千克应降价多少元?24 .直线AB 交。
【必考题】数学中考模拟试题(含答案)
【必考题】数学中考模拟试题(含答案)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米 3.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣14.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A.14cm B.4cm C.15cm D.3cm6.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°9.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,在半径为13的Oe中,弦AB与CD交于点E,75DEB∠=︒,6,1AB AE==,则CD的长是()A.26B.210C.211D.4312.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.17.若一个数的平方等于5,则这个数等于_____.18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.19.分解因式:2x 2﹣18=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD22200100-3∴AB=AD+BD=3100(3故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-g=21xx-【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
2024年河北省邢台市威县威县第三中学中考模拟数学试题
2024年河北省邢台市威县威县第三中学中考模拟数学试题一、单选题1.x 表示一个两位数,把6写到x 的右边组成一个三位数,则表示这个三位数的式子是( ) A .6xB .106x +C .1006x +D .600x +2.如图,已知、AB CD 分别表示两幢相距50米的大楼,小明在CD 大楼10楼E 处观察,观测仰角为30︒时,恰好看到大楼AB 的顶端点A ;观测俯角为45︒时,恰好看到大楼AB 的底端点B ,那么视线EA 和视线EB 组成的AEB ∠度数为( )A .60︒B .75︒C .90︒D .100︒3.化简221()y y x y -÷⨯,正确的是( )A .42y x-B .42y xC .22y x -D .22y x4.下列事件中,是随机事件的是( ) A .对顶角相等B .太阳从东方升起C .任意画一个三角形,其内角和为360︒D .两条直线被第三条直线所截,同位角相等 5.如图,图中三角形有一个是等腰三角形,则x 的值是( )A .5B .8C .9D .166.若一个整数202400…用科学记数法表示为102.02410⨯,则原数中“0”的个数为( ) A .7B .8C .10D .117.如图,两个正方形的边长分别为a ,()b a b >,若10a b +=,6ab =,则阴影部分的面积为()A.40 B.41 C.42 D.438a不可能的值为()A.14B.12C.2 D.89.已知ABCV(如图1),求作:平行四边形ABCD.如图2、图3是嘉琪的作图方案,其依据是()A.两组对边分别平行的四边形是平行四边形B.对角线互相平分的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形10.近年来,河北省迁安市践行绿水青山就是金山银山的理念,全面推进矿山生态修复和综合整治,今年计划将1000亩矿山进行绿化,实际绿化时,工作效率是原计划的1.4倍,进而比原计划提前20天完成绿化任务,设原来平均每天绿化荒山x亩,根据题意可列方程为()A.10001000201.4x x+=B.10001000201.4x x-=C.1.411000100020x x-= D.1.411000100020x x+=11.如图,将一张正六边形纸片的阴影部分剪下,恰好拼成一个菱形,若拼成的菱形的面积为2,则原正六边形纸片的面积为()A .4B .6C .8D .1012.小刚在解关于x 的方程()200ax bx c a ++=≠时,只抄对了1,4a c ==,解出其中一个根是=1x -.他核对时发现所抄的b 是原方程中b 的相反数.则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是=1x -D .不存在实数根13.如图是由5个相同小正方体搭成的几何体,若将小正方体A 放到小正方体B 的正上方,则关于该几何体变化前后的三视图,下列说法正确的是( )A .主视图改变B .左视图改变C .俯视图改变D .以上三种视图都改变14.如图,两张等宽的纸条交叉叠放在一起,重合部分构成一个四边形ABCD ,在其中一张纸条转动的过程中,下列结论错误的是( )A .AD CD =B .四边形ABCD 面积AC BD =⋅ C .AC BD ⊥D .四边形ABCD 的周长4AB =15.如图,A ,B ,C ,D 为O e 的四等分点,动点P 从圆心O 发,沿O C D O ---运动.设运动时间为()s t ,P 到圆心O 的距离为y ,则下列图象中表示y 与t 之间函数关系最恰当的是( )A .B .C .D .16.抛物线265y x x =-+-的图象与x 轴交于A ,B 两点,把x 轴下方的图象沿x 轴翻折形成一个新的图象,有一条平行于x 轴的直线y a =,它与新图象的交点为P ,则以下说法正确的是( )A .当5a =时,则满足条件的P 有三个B .当4a <时,则满足条件的P 有4个C .当5a >时,则满足条件的P 有两个D .当4a =时,则满足条件的P 只有一个二、填空题17.如图,在平面直角坐标系中,矩形OABC 面积为4,反比例函数(0)ky k x=≠与边BC 、AB 有交点,请写出一个符合条件的k 的整数值.18.如图,两摞规格完全相同的作业本整齐地叠放在桌面上,根据图中所给出的数据信息,回答下列问题:(1)每本作业本的厚度为mm;(2)若有一摞这种规格作业本x本整齐放在桌面上,这摞作业本顶部距离地面高度为h(单位:mm),则h .(用含x的代数式表示)19.如图,正六边形ABCDEF的面积为6,以顶点C为旋转中心,将正六边形ABCDEF按顺时针方向旋转,使得D的对应点D¢落在直线BC上,则正六边形ABCDEF至少旋转度,此时,两个正六边形重合部分面积为.三、解答题20.请根据图中提供的信息,回答下列问题:(1)求一个暖水瓶与一个水杯的价格分别是多少元?(2)某商场出售这样的暖水瓶和水杯,为了迎接新年,商场搞促销活动,规定:暖水瓶打八折.若某单位想要买5个暖水瓶和20个水杯,总共要花多少钱?21.已知,图1中阴影面积为1S,图2中阴影面积为S.2(1)用含x 的代数式表示1S ,2S ;当1x =时,求12S S +的值; (2)比较1S 与2S 的大小,并说明理由.22.“感受数学魅力,提升数学素养”,某学校在其举办的数学文化节上开展趣味数学知识竞赛,从九年级(1)班和(2)班两班各随机抽取了10名学生的成绩,整理如下:(成绩得分用x 表示,共分成四组:A .8085x ≤<,B .8590x ≤<,C .9095x ≤<,D .95100x ≤≤) 九年级(1)班10名学生的成绩是:80,82,86,89,92,96,96,98,99,100. 九年级(2)班10名学生的成绩在C 组中的数据是:90,93,93. 通过数据分析,得到如下统计表与统计图: 九年级(1)班、(2)班抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)直接写出上述a 、b 、c 的值:=a ________,b =________,c =________;(2)学校欲选派成绩更稳定的班级参加下一阶段的活动,根据表格中的数据,学校会选派哪一个班级?说明理由.(3)九年级两个班共100人参加了此次调查活动,估计两班参加此次调查活动成绩优秀()90x ≥的学生总人数是多少?23.某超市一段时期内对某种商品经销情况进行统计分析:得到该商品的销售数量P (件)由基础销售量与浮动销售量两个部分组成,其中基本销售量保持不变,浮动销售量与售价x (元/件,50200x <<)成正比例,销售过程中得到的部分数据如下:(1)求P 与x 之间的函数关系式;(2)当该商品销售数量为40件时,求每件商品的售价; (3)设销售总额为W ,求W 的最大值.24.如图,在Rt ABC △中,90C ∠=︒,BAC ∠的角平分线AD 交BC 边于D ,以AB 上一点O 为圆心,OA 为半径作O e ,分别交BC 、AB 于点D 、E .(1)判断直线BC 与O e 的位置关系,并说明理由; (2)若O e 的半径为8,AD BD =.①求线段BD 与»DE的长度,并比较大小; ②直接写出线段BD 、BE 与»DE 围成的阴影部分的图形面积________.(结果保留根号和π)25.如图,小强组装了一款遥控车,并在长度为320m 的跑道AB 上试验它在不同速度下的运行情况.从点A 出发,先以4m/s 的速度行进了20s ,接着以6m/s 的速度行进到终点B ,为记录,全程安装了拍摄设备,拍摄设备在与起点A 距离80m 处的P 点.设遥控车的运动时间为()s x ,遥控车与拍摄点的距离为()m y .(1)求y 与x 之间的函数关系式;(2)求遥控车距离拍摄点20m 时的运动时间;(3)当遥控车从点A 出发时,一个机器人从拍摄点出发以m/s a 的速度向点B 行进,并在与点B 相距30m 内(不包含30m ,不与点B 重合)被遥控车追上;直接写出a 的取值范围.26.如图1,在等腰三角形ABC 中,10AC BC ==,16AB =,点D 从A 点出发向终点B 运动,过点D 作DG AB ⊥交折线AC CB -于点G ,设AD x =.(1)BD =________;(用含x 的代数式表示)(2)连接BG ,设BDG V 的面积为y ,求y 与x 的函数表达式,并直接写出当x 取何值时,y 有最大值;(3)如图2,当点G 在边AC 上时,作点G 关于点C 的对称点M .当G 是AM 的三等分点时,求x 的值.。
2024年浙江省宁波市中考数学模拟试题(六)
2024年浙江省宁波市中考数学模拟试题(六)一、单选题1.下列算式的结果等于6-的是( )A .()122--B .()122÷-C .()42+-D .()42⨯- 2.下列运算正确的是( )AB -C5±D 347=+ 3.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 4.设a b c ,,均为实数,( )A .若a b >,则ac bc >B .若a b =,则ac bc =C .若ac bc >,则a b >D .若ac bc =,则a b =5.某中老年合唱团成员的平均年龄为52岁,方差为210岁,在人员没有变动的情况下,两年后这批成员的( )A .平均年龄为52岁,方差为210岁B .平均年龄为54岁,方差为210岁C .平均年龄为52岁,方差为212岁D .平均年龄为54岁,方差为212岁 6.如图,设O 为ABC V 的边AB 上一点,O e 经过点B 且恰好与边AC 相切于点C .若30,3B AC ∠=︒=,则阴影部分的面积为( )A 2πB 2πC πD π- 7.在面积等于3的所有矩形卡片中,周长不可能是( )A .12B .10C .8D .68.如图,锐角三角形ABC 中,AB AC =,D ,E 分别在边AB ,AC 上,连接BE ,CD ,下列命题中,假命题是( )A .若CD BE =,则DCB EBC ∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC ∠=∠D .若DCB EBC ∠=∠,则BD CE =9.四名同学在研究函数22y x bx c =++(b c ,为已知数)时,甲发现该函数的图象经过点()1,0;乙发现当2x =时,该函数有最小值;丙发现3x =是方程222x bx c ++=的一个根;丁发现该函数图象与y 轴交点的坐标为()0,6.已知这四名同学中只有一人发现的结论是错误的( )A .甲B .乙C .丙D .丁10.如图,ABC V 的两条高线AD BE ,交于点F ,过B ,C ,E 三点作O e ,延长AD 交O e 于点G ,连接GO GC ,.设53AF DF ==,,则下列线段中可求长度的是( )A .GB B .GDC .GOD .GC二、填空题11.分解因式:224x y -+=.12.在一个不透明的纸箱中装有4个白球和n 个黄球,它们只有颜色不同.为了估计黄球的个数,杨老师进行了如下试验:每次从中随机摸出1个球,杨老师发现摸到白球的频率稳定在13附近,则纸箱中大约有黄球个. 13.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.8元,设每箱中有凉茶x 罐,则可列方程:.14.如图,在Rt ABC V 中,已知90C ∠=︒,3CD BD =,cos ABC ∠sin BAD ∠=.15.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(Rt DAE V ,Rt ABF V ,Rt BCG V ,Rt CDH △)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,连接BE .设BAF α∠=,BEF β∠=,正方形EFGH 和正方形ABCD 的面积分别为1S 和2S ,若90αβ+=︒,则21S S =:.16.已知关于x 的一元二次方程20x ax b ++=有两个根1x ,2x ,且满足1212x x <<<.记=+t a b ,则t 的取值范围是 .三、解答题17.(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭; (2)已知2410x x --=,求代数式()()()22311x x x --+-的值. 18.圆圆和方方在做一道练习题:已知0a b <<,试比较a b 与11a b ++的大小. 圆圆说:“当12a b ==,时,有12a b =,1213a b +=+;因为1223<,所以11a ab b +<+”. 方方说:“圆圆的做法不正确,因为12a b ==,只是一个特例,不具一般性.可以……”请你将方方的做法补充完整.19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理和分析,部分信息如下:a .七年级成绩频数分布直方图;b .七年级成绩在7080x ≤<这一组的是:70,72,74,75,76,76,77,77,77,77,78;c .七、八年级成绩的平均数、中位数如表:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有 人,表中m 的值为 ;(2)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级50名测试学生中的排名谁更靠前;(3)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.8分的人数. 20.某同学尝试在已知的ABCD Y 中利用尺规作出一个菱形,如图所示.(1)根据作图痕迹,能确定四边形AECF 是菱形吗?请说明理由.(2)若=60B ∠︒,2BA =,4BC =,求四边形AECF 的面积.21.小丽家饮水机中水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温()y ℃与开机时间()min x 满足一次函数关系,随后水温开始下降,此过程中水温()y ℃与开机时间()min x 成反比例关系,当水温降至20℃时,根据图中提供的信息,解答问题.(1)当010x ≤≤时,求水温()y ℃关于开机时间()min x(2)求图中t 的值.(3)若小丽在将饮水机通电开机后外出散步,请你预测小丽散步70min 回到家时,饮水机中水的温度.22.在等边三角形ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接CD ,交AP 于点E ,连接BE .(1)依题意补全如图;(2)若20PAB ∠=︒,求ACE ∠;(3)若060PAB ︒<∠<︒,用等式表示线段DE ,EC ,CA 之间的数量关系并证明.23.已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ≥. (1)当0t =时.①求y 关于x 的函数解析式,求出当x 为何值时,y 有最大值?最大值为多少? ②当x a =和x b =时()a b ≠,函数值相等,求a 的值.(2)当0t >时,在08x ≤≤范围内,y 有最大值18,求相应的t 和x 的值.24.如图,作半径为3的O e 的内接矩形ABCD ,设E 是弦BC 的中点,连接AE 并延长,交O e 于点F ,G 是»AB 的中点,CG 分别交AB AF ,于点H ,P ,若4BC =.(1)求BH ;(2)求:AP PE .(3)求tan APH .。
模拟中考数学试题及答案
模拟中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 1/3答案:B2. 已知函数y=2x+1,当x=3时,y的值为:A. 7B. 5C. 3D. 1答案:A3. 一个长方形的长是宽的两倍,如果宽增加2米,长减少2米,面积不变,那么原来长方形的长是:A. 4米B. 6米C. 8米D. 10米答案:B4. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 平行四边形B. 正五边形C. 不规则多边形D. 圆答案:D6. 一个圆的半径是3厘米,那么它的周长是:A. 18.84厘米B. 9.42厘米C. 6.28厘米D. 3.14厘米答案:A7. 一个等腰三角形的底边长为6厘米,底角为45度,那么它的高是:A. 3厘米B. 4厘米C. 6厘米D. 9厘米答案:B8. 以下哪个选项是二次函数的一般形式?A. y=ax^2+bx+cB. y=ax^2+bxC. y=a(x+b)(x+c)D. y=ax+b答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题3分,共30分)11. 一个数的立方根是2,那么这个数是______。
答案:812. 一个数的倒数是1/4,那么这个数是______。
答案:413. 一个三角形的内角和是______度。
答案:18014. 一个等差数列的首项是3,公差是2,那么它的第五项是______。
答案:1115. 一个等比数列的首项是2,公比是3,那么它的第三项是______。
答案:1816. 一个直角三角形的两直角边长分别是3和4,那么它的斜边长是______。
答案:517. 一个圆的直径是10厘米,那么它的面积是______平方厘米。
2024年北京市三帆中学中考模拟数学试题(解析版)
2024年北京市三帆中学中考模拟数学试题一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 下列几何体的三视图之一是长方形的是( )A B. C. D.【答案】B【解析】【分析】分别写出各个立体图形的三视图,判断即可.【详解】解:A 、圆锥的主视图、左视图都是三角形,俯视图是圆形,故本选项不合题意;B 、圆柱的左视图和主视图是长方形,俯视图是圆,故本选项符合题意;C 、球体的主视图、左视图、俯视图都是圆形,故本选项不合题意;D 、三棱锥的三视图都不是长方形,故本选项不合题意.故选:B .【点睛】此题考查了简单几何体的三视图,熟练掌握简单几何体的三视图是解本题的关键.2. 某种新冠病毒的直径约为120纳米,已知1纳米=0.000001毫米,120纳米用科学记数法表示为( )A. 毫米B. 毫米C. 毫米D. 毫米【答案】A【解析】【分析】将其化为的形式,其中满足,为整数即可求解.【详解】120纳米=毫米=0.00012毫米=毫米,故选:A【点睛】此题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数,表示时关键要确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数绝对值大于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.3. 如图,直线,直线EF 分别与直线AB ,CD 交于点E ,F ,点G 在直线CD 上,GE ⊥EF .若.41.210-⨯51.210-⨯51210-⨯612010-⨯10n a ⨯a 110a ≤∣∣<n 120×0.00000141.210-⨯10n a ⨯110a ≤∣∣<n //AB CD,则∠2的大小为( )A. 145°B. 135°C. 125°D. 120°【答案】A【解析】【分析】根据,由两直线平行同位角相等可推导;根据GE ⊥EF ,可知;然后借助三角形外角的性质“三角形外角等于不相邻的两个内角和”,利用()计算∠2即可.【详解】解:∵,∴,∵GE ⊥EF ,∴,∴.故选:A .【点睛】本题主要考查了平行线的性质及三角形外角的定义和性质,解题关键是熟练掌握相关性质并灵活运用.4. 有理数a ,b 在数轴上的表示如图所示,则下列结论正确的是( )甲:;乙:;丙:A. 只有甲正确B. 只有甲、乙正确C. 只有甲、丙正确D. 只有丙正确【答案】C【解析】【分析】根据数轴上点的位置关系,可得、的大小,根据绝对值的意义,判断即可.【详解】解:由数轴上点的位置关系,得,.∴,故甲正确;,故乙错误;,故丙正确;155∠=︒//AB CD 1EFG =∠∠90FEG ∠=︒EFG FEG +∠∠//AB CD 155EFG ==︒∠∠90FEG ∠=︒25590145EFG FEG =+=︒+︒=︒∠∠∠b a -<0ab >b a a b-=-a b 0a b >>||||a b >b a -<0ab <()b a b a a b -=--=-故选:C .【点睛】本题考查了有理数的大小比较,利用数轴确定、的大小即与的大小是解题关键.5. 在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A. -3B. -2C. -1D. 1【答案】A【解析】【分析】根据CO=BO 可得点C 表示的数为-2,据此可得a=-2-1=-3.【详解】解:∵点C 在原点的左侧,且CO=BO ,∴点C 表示的数为-2,∴a=-2-1=-3.故选A .【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.6. 已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A. ∠COM=∠CODB. 若OM=MN ,则∠AOB=20°C. MN ∥CDD. MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.a b ||a ||b PQPQ【详解】解:由作图知CM=CD=DN ,∴∠COM=∠COD ,故A 选项正确;∵OM=ON=MN ,∴△OMN 是等边三角形,∴∠MON=60°,∵CM=CD=DN ,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B 选项正确;∵∠MOA=∠AOB=∠BON ,∴∠OCD=∠OCM= ,∴∠MCD=,又∠CMN=∠AON=∠COD ,∴∠MCD+∠CMN=180°,∴MN ∥CD ,故C 选项正确;∵MC+CD+DN >MN ,且CM=CD=DN ,∴3CD >MN ,故D 选项错误;故选D .【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.7. 已知,,,,精确到的近似值是()A. B. C. D. 【答案】B【解析】的取值范围,再利用四舍五入找出近似值即可.13180-COD2︒∠180-COD ︒∠1223.512.25=23.612.96=23.713.69=23.814.44=0.13.5 3.6 3.7 3.8【详解】解:,,,,精确到的近似值是,故选B .【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.8. 下面三个问题中都有两个变量:①如图1,货车匀速通过隧道(隧道长大于货车长),货车在隧道内的长度y 与从车头进入隧道至车尾离开隧道的时间x ;②如图2,实线是王大爷从家出发匀速散步行走的路线(圆心O 表示王大爷家的位置),他离家的距离y 与散步的时间x ;③如图3,往空杯中匀速倒水,倒满后停止,一段时间后,再匀速倒出杯中的水,杯中水的体积y 与所用时间x其中,变量y 与x 之间的函数关系大致符合下图的是( )A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】【分析】根据y 值随x 的变化情况,逐一判断.【详解】解:①当货车开始进入隧道时y 逐渐变大,当货车完全进入隧道,由于隧道长大于货车长,此时y 不变且最大,当货车开始离开隧道时y 逐渐变小.故①正确;②王大爷距离家先y 逐渐变大,他走的是一段弧线时,此时y不变且最大,之后逐渐离家越来越近直至回223.612.961313.69 3.7=<<=3.6 3.7∴<<23.612.9613=≈ 23.713.6914=≈0.1 3.6家,即y 逐渐变小,故②正确;③往空杯中匀速倒水,倒满后停止,水的体积逐渐增加,一段时间后,再匀速倒出杯中的水,这期间,水量先保持不变,然后逐渐减少,杯中水的体积y 与所用时间x ,变量y 与x 之间的函数关系符合图象,故③正确;故选:D .【点睛】本题主要考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.二、填空题(本题共16分,每小题2分)9.在实数范围内有意义,则的取值范围是______.【答案】【解析】【分析】本题考查了二次根式有意义的条件,解题的关键是掌握二次根式被开方数为非负数.据此即可解答.【详解】解:在实数范围内有意义,∴,解得:,故答案:.10. 因式分解:3a 2-12a +12=______.【答案】【解析】【分析】直接提取公因式3,再利用完全平方公式分解因式即可.【详解】解:==故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.11. 分式方程的解是______.【答案】【解析】为x 3x ≥-30x +≥3x ≥-3x ≥-()232a -231212a a -+()2344a a -+()232a -()232a -422x x=-2x =-【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:,解得:,检验:当时,,∴原方程解为.故答案为:【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.12. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.【答案】##【解析】【分析】延长FA 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =,再求出正六边形内角∠FAB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长FA 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =,∠FAB =180°-∠GAB =180°-60°=120°,的()224x x -=2x =-2x =-()20x x -≠2x =-2x =-43π43π360606︒=︒360606︒=︒∴,故答案为.【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.13. 如图,在中,,过点B 作,交于点D ,若,则的长度为_________.【答案】2【解析】【分析】过点B 作BE ⊥AC 于点E ,设DE=x ,然后通过直角三角形30°角的性质求得BD=2x ,CD=4x ,CE=3x ,再运用由等腰三角形的性质得到AE=CE ,列方程求解x ,即可求出CD 的长.【详解】解:如图,过点B 作BE ⊥AC 于点E ,设DE=x ,则AE=AD+DE=1+x .∵AB=BC ,∠ABC=120°,∴∠A=∠C=30°∵,∴∠DBC=90°∴∠EDB=60°,∠DBE=30°∴BD=2DE=2x ,DC=2DB=4x∴CE=DC-DE=3x∵AB=BC , BE ⊥AC ,∴AE=CE∴1+x=3x ,解得x=∴CD=4x=2.2120443603603FABn r S πππ⨯⨯===扇形43πABC ,120AB BC ABC =∠=︒BD BC ⊥AC 1AD =CD BD BC ⊥12【点睛】本题考查等腰三角形的性质和直角三角形30°所对的边等于斜边的一般,需要熟练运用考查的性质进行解题.14. 如图,在平面直角坐标系中,已知点,将关于直线对称,得到,则点C 的对应点的坐标为___________;再将向上平移一个单位长度,得到,则点的对应点的坐标为_________.【答案】①. ②. 【解析】【分析】根据对称点的性质可知,对应点的纵坐标与点C 的纵坐标相同,然后利用中点坐标公式计算出点C 的横坐标即可解决;点是由点向上平移一个单位长度得到,根据平移规律解决即可.【详解】解:根据对称的性质可知,点的纵坐标为2,设点的横坐标为m ,∵两点关于直线x=4对称∴,∴m=5,∴的坐标为(5,2)根据平移的规律可知,点是由点向上平移一个单位长度得到,故的横坐标不变为5,的纵坐标为:2+1=3.故点的坐标.xOy ()3,2C ABC 4x =111A B C △1C 111A B C △222A B C △1C 2C ()5,2()5,31C 2C 1C 1C 1C 3+m 42=1C 2C 1C 2C 2C 2C ()5,3故答案是:;【点睛】本题考查了对称的性质以及点的平移规律,解决本题的关键是正确理解题意,熟练掌握点的坐标平移规律和计算方法.15. 一组学生春游,预计共需要费用120元,后来又有2人参加进来,总费用不变,于是每人可少摊3元,若设原来这组学生人数为x ,那么可列方程为_____.【答案】【解析】【分析】理解题意找出题意中存在的等量关系,未增加人前每人摊的费用增加人后每人摊的费用,列出方程即可.【详解】解:解:设原来这组学生人数为x ,则原来每人摊的费用为,又有2人参加进来,此时每人摊的费用为,根据题意可列方程为,故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键在于找出题中的等量关系.16. 如图,在Rt △ABC 中,∠ABC =90°,∠A =32°,点B 、C 在上,边AB 、AC 分别交于D 、E 两点﹐点B 是的中点,则∠ABE =__________.【答案】【解析】【分析】如图,连接 先证明再证明利用三角形的外角可得:再利用直角三角形中两锐角互余可得:再解方程可得答案.()5,2()5,312012032x x -=+-3=120x 1202x +12012032x x -=+12012032x x -=+O O CD13︒,DC ,BDC BCD ∠=∠,ABE ACD ∠=∠,BDC A ACD A ABE ∠=∠+∠=∠+∠()2902,BDC A ABE ∠=︒-∠+∠【详解】解:如图,连接是的中点,故答案为:【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.三、解答题(本大题共11小题,共63分)17. 计算:.【答案】【解析】【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.【详解】解:原式=.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.,DC B CD,,BDBC BDC BCD ∴=∠=∠ ,DEDE = ,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒ ()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒13.︒113tan 302|3-⎛⎫︒+ ⎪⎝⎭5-332-++5=-18. 解不等式组:.【答案】【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由,得:,由,得:此不等式解集为所有实数,不等式组的解集为.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 已知:如图,为锐角三角形,.求作:点P ,使得,且.作法:①以点A 为圆心,长为半径画圆;②以点B 为圆心,长为半径画弧,交于点D (异于点C );③连接并延长交于点P .所以点P 就是所求作的点.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹):(2)完成下面的证明.证明:连接∵,∴点C 在上.又∵,()312,1122x x x x ⎧-<⎪⎨+-<⎪⎩3x <()312x x -<3x <1122x x +-<∴3x <ABC AB AC =AP AB =APC BAC ∠=∠AB BC A DA A PCAB AC =A DC DC =∴(________________________)(填推理的依据),由作图可知,,∴(________________________)(填推理的依据)________.∴.【答案】(1)见解析(2)同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,同弧或等弧所对的圆心角相等,.【解析】【分析】(1)根据题意画出图形即可;(2)利用圆周角定理解决问题即可.【小问1详解】解:图形如图所示:【小问2详解】证明:连接.,点在上.,(同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半),由作图可知,,∴(同弧或等弧所对的圆心角相等)..故答案为:同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,同弧或等弧所对的圆心角相等,.12DPC DAC =∠∠BD BC =DAB CAB ∠=∠12=∠APC BAC ∠=∠DAC PC AB AC = ∴C A DC DC =12DPC DAC ∴∠=∠BD BC =DAB CAB ∠=∠12DAC =∠APC BAC ∴∠=∠DAC【点睛】本题考查作图复杂作图,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20. 已知关于x 的一元二次方程.(1)不解方程,判断此方程根的情况;(2)若是该方程的一个根,求代数式的值.【答案】(1)见解析(2)【解析】【分析】(1)利用根的判别式判断即可.(2)将代入一元二次方程,整理得,再将变形为,代入求值即可.【小问1详解】解:∵,∴此一元二次方程有两个不相等的实数根;【小问2详解】解:将代入一元二次方程,整理得,即,∴.【点睛】本题考查一元二次方程根的判别式、一元二次方程的解,求代数式的值,牢记:当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程无实数根.21. 已知:如图,菱形,分别延长,到点F ,E ,使得,,连接,,,.-()22210x k x k k +-+-=2x =2265k k ---1-24b ac ∆=-2x =22210x kx k -+-=232k k +=-2265k k ---()2235k k -+-24b ac∆=-()()22214k k k =---2244144k k k k=-+-+10=>2x =()22210x k x k k +-+-=2320k k ++=232k k +=-()()222652352251k k k k ---=-+-=-⨯--=-240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-ABCD AB CB BF BA =BE BC =AE EF FC CA(1)求证:四边形为矩形;(2)连接交于点O ,如果,,求的长.【答案】(1)证明见解析;(2)【解析】【分析】本题考查了矩形的性质与判定、菱形的性质、勾股定理等知识.根据菱形的判定和性质以及直角三角形的性质解答是关键.(1)根据菱形的性质以及矩形的判定证明即可;(2)连接,根据菱形的判定和性质以及直角三角形的性质解答即可.【小问1详解】证明:∵,,∴四边形为平行四边形,∵四边形为菱形,∴,∴,∴,即,∴四边形为矩形;【小问2详解】连接,,与交于点G ,由(1)可知,,且,∴四边形为平行四边形,AEFC DE AB DE AB ⊥4AB =DE ED =DB BF BA =BE BC =AEFC ABCD BA BC =BE BF =BA BF BC BE +=+AF EC =AEFC DB DE DE AB AD EB ∥AD EB =AEBD∵,∴四边形为菱形,∴,,,∵矩形中,,,∴,,∴在中,∴22. 在平面直角坐标系xOy 中,函数y=(x>0)的图象与直线y=x+1交于点A (2,m ).(1)求k 、m 的值;(2)已知点P (n ,0),过点P 作平行于 y 轴的直线,交直线y=x+1于点B ,交函数y=(x>0)的图象于点C .若y=(x>0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(不包括边界),记作图形G .横、纵坐标都是整数的点叫做整点.①当n=4时,直接写出图形G 的整点坐标;②若图形G 恰有2 个整点,直接写出n 的取值范围.【答案】(1)k =4,m =2;(2)①(3,2),②0<n <1或4<n ≤5.【解析】【分析】(1)将A 点代入直线解析式可求m ,再代入y =,可求k .(2)①根据题意先求B ,C 两点,可得图形G 的整点的横坐标的范围2<x <4,且x 为整数,所以x 取3.再代入可求整点的纵坐标的范围,即求出整点坐标.②根据图象可以直接判断2≤n <3.【详解】解:(1)∵点A (2,m )在y =x +1上,∴m =×2+1=2.∴A (2,2).∵点A (2,2)在函数y =的图象上,∴k =4.故答案为:k =4,m =2.(2)①当n =4时,B 、C 两点的坐标为B (4,3)、C (4,1).DE AB ⊥AEBD AE EB =2AB AG =2ED EG =AEFC EB AB =4AB =2AG =4AE =Rt AEG △EG =ED =k x 1212k x k xk x1212k x∵整点在图形G 的内部,∴2<x <4且x 为整数∴x =3∴将x =3代入y =x +1得y =2.5,将x =3代入y =得y =,∴<y <2.5,∵y 为整数,∴y =2,∴图形G 的整点坐标为(3,2).②当x =3时,<y <2.5,此时的整点有(3,2)共1个;当x =4时,1<y <3,此时的整点有(4,2)共1个;当x =5时,<y <3.5,此时的整点有(5,1),(5,2),(5,3)共3个;∵图形G 恰有2 个整点,∴4<n ≤5,当x =1时,1.5<y <4,此时的整点有(1,2),(1,3)共2个;∵图形G 恰有2 个整点,∴0<n <1,综上所述,n 的取值范围为:0<n <1或4<n ≤5.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.23. 为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,分为良好,分为及格,59分及以下为不及格.该学校七、八两个年级各有学生300人,现随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.a .抽取七年级20名学生的成绩如下:124x 434343458089~6079~65875796796789977710083698994589769788188b .抽取七年级20名学生成绩的频数分布直方图如图1所示(数据分成5组:,,,,)c .抽取八年级20名学生成绩的扇形统计图如图2所示.d .七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:年级平均数中位数方差七年级81八年级82请根据以上信息,回答下列问题:(1)补全七年级20名学生成绩的频数分布直方图,写出表中的值;(2)估计七、八两个年级此次竞赛成绩达到优秀的学生共有多少人;(3)若本次竞赛成绩达到81分及以上的同学可以获得参加挑战赛的机会,请根据样本数据估计,七、八两个年级中哪个年级获得参加挑战赛的机会的学生人数更多?并说明理由.【答案】(1)补全条形统计图见解析;(2)七、八两个年级此次竞赛成绩达到优秀的学生共有165人(3)七年级获得参加挑战赛的机会的学生人数更多;理由见解析【解析】【分析】(1)根据题意可得七年级成绩位于的有4人;七年级成绩位于第10位和第11位的是81和83,即可求解;(2)先求出八年级成绩优秀的所占的百分比,再分别用300乘以各自的百分比,即可求解;5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100)x ≤≤m 167.979.5108.3m 82m =6070x ≤<(3)分别求出七、八两个年级获得参加挑战赛的机会的学生人数,然后进行比较即可.【小问1详解】解:根据题意得:七年级成绩位于的有4人,补全图形如下:七年级成绩位于第10位和第11位的是81和83,∴七年级成绩的中位数;【小问2详解】解:根据题意得:八年级成绩良好的所占的百分比为∴八年级成绩优秀的所占的百分比为,∴八年级成绩达到优秀的学生有(人),七年级成绩达到优秀的学生有人,(人),答:七、八两个年级此次竞赛成绩达到优秀的学生共有165人.【小问3详解】解:八年级获得参加挑战赛的机会的学生人数约为:(人),七年级获得参加挑战赛机会的学生人数约为:(人),∵,∴七年级获得参加挑战赛的机会的学生人数更多.的6070x ≤<8183822m +==72100%20%360︒⨯=︒120%45%5%30%---=30030%90⨯=53007520⨯=9075165+=()30020%30%150⨯+=1130016520⨯=150165<【点睛】本题主要考查了条形统计图和扇形统计图,求中位数,用样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.24. 如图,在中,,,点是线段上的动点,将线段绕点 顺时针度转至,连接.已知,设为,为.小明根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1)请利用直尺和量角器,在草稿纸上根据题意画出准确的图形,并确定自变量的取值范围是________;(2)通过取点、画图、测量,得到了与的几组值,如下表:则表中的值为__________;(3)建立平面直角坐标系,通过描点、连线,画出该函数的完整图象.(4)结合画出的函数图象,解决问题:① 线段长度的最小值为__________;② 当,,三点共线时,线段的长为__________.【答案】(1)(2)(3)函数图象见解析(4);【解析】【分析】(1)利用直尺和量角器,根据,,画出准确的图形,从而得到的长度,即可得到自变量的取值范围;ABC 90ABC ∠=︒40C ∠=︒D BC AD A 50︒AD 'BD '2cm AB =BD cm x BD 'cm y y x x x y /cm x 00.50.7 1.0 1.5 2.0/cm y 1.7 1.3 1.1m0.70.9m BD 'cm D B D ¢BD cm 0 2.5x <<0.90.70.990ABC ∠=︒40C ∠=︒2cm AB =BC x(2)根据表格内的数据在时,的值逐渐减小,在时,的值逐渐增大,可得该函数是以为对称轴的抛物线,则和为对称点,故两点的值相等,即可得到的值;(3)根据(2)中的数据描点,连线即可得到该函数的完整图象;(4)①结合(2)(3)可知,该函数是一个二次函数图象的一部分,其对称轴为直线,结合表格中的数据可知,最小值为,即线段的最小值为.②当,,三点共线时,则在中,由于,可得到,即,由(3)中图象可得的值,即的长.【小问1详解】解:由题可得,利用直尺和量角器画出准确的图形如下:则用直尺量得,∵点是线段上的动点,为,∴自变量的取值范围为:,故答案为:.【小问2详解】解:由表格中的数据可得:在时,的值逐渐减小;在时,的值逐渐增大,∴该函数是以为对称轴的抛物线,∴和为对称点,∴当和时,值相等,∴当时,,即.【小问3详解】解:由(2)表格中的数据可得到该函数的完整图象如下:【小问4详解】解:①结合(3)可知,该函数是一个二次函数图象的一部分,其对称轴为直线,0 1.5x <≤y 1.52x ≤<y 1.5x = 1.0x = 2.0x =y m 1.5x =y 0.7BD '0.7cm D B D ¢ADD ' AD AD ='AB DD '⊥BD BD '=x y =x BD 2.5cm BC =D BC BD cm x x 0 2.5x <<0 2.5x <<0 1.5x <≤y 1.52x ≤<y 1.5x =1.0x = 2.0x =1.0x = 2.0x =y 1.0x =0.9y =0.9m = 1.5x =结合(2)中表格的数据可知,最小值为,∴线段的最小值为.②如图所示:当,,三点共线时,∵,∴为等腰三角形,∵,∴,即,由(2)得,∴.【点睛】本题考查函数图象实际应用问题,能根据数据画出函数图象是解题的关键.25. 某校为了更好地开展阳光体育二小时活动,对本校学生进行了“写出你最喜欢的体育活动项目”(只写一项)的随机抽样调查,如图是根据得到的相关数据绘制的统计图的一部分.请根据以上信息解答下列问题:(1)该校对 名学生进行了抽样调查;(2)通过计算请将图1和图2补充完整;(3)图2中跳绳所在的扇形对应的圆心角的度数是 ;(4)若该校共有2400名同学,请利用样本数据估计全校学生中最喜欢跳绳运动的人数约为多少?【答案】(1)200;(2)补全图形见解析;(3)144°;(4)估计全校学生中最喜欢跳绳运动的人数约为960人.【解析】的y 0.7BD '0.7cm D B D ¢AD AD ='ADD ' AB DD '⊥BD BD '=x y =0.9x y ==0.9BD =【分析】(1)由最喜欢跳绳运动的人数及其所占百分比可得总人数;(2)根据各组人数之和等于总人数求得最喜欢投篮运动的人数,再除以总人数可得其对应百分比,从而补全图1和图2;(3)用360°乘以最喜欢跳绳运动的人数所占百分比可得跳绳所在的扇形圆心角的度数;(4)总人数乘以样本中最喜欢跳绳运动的人数所占百分比即可得.【详解】(1)被调查的学生总人数为80÷40%=200(人),故答案为:200;(2)最喜欢投篮运动的人数为200﹣(40+80+20)=60(人),最喜欢投篮运动的人数所占百分比为×100%=30%, 补全图形如下:(3)图2中跳绳所在的扇形对应的圆心角的度数是为360°×40%=144°.故答案为144°;(4)2400×40%=960(人).答:估计全校学生中最喜欢跳绳运动的人数约为960人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.26. 二次函数(1)写出函数图象的开口方向、顶点坐标和对称轴.(2)判断点是否在该函数图象上,并说明理由.(3)求出以该抛物线与两坐标轴的交点为顶点的三角形的面积.【答案】(1)开口向下,对称轴为直线,顶点为;(2)不在函数图象上,理由详见解析;(3) 12.602002642y x x =--()3, 4-=1x -(1,8)-【解析】【分析】(1)先把抛物线解析式配成顶点式得到,然后根据二次函数的性质写出开口方向,对称轴方程,顶点坐标;(2)将代入函数解析式求出对应的y 即可判断;(3)确定抛物线与轴的交点坐标为,然后根据三角形面积公式求解.【详解】解:(1)解:(1),抛物线开口向下;,抛物线对称轴方程为,顶点坐标;开口向下,对称轴为直线,顶点为;(2)不在函数图象上.理由:当时,所以点不在函数图象上.(3)令,得,解得,,所以抛物线与轴的交点坐标为,,当x =0时,y =6.抛物线与轴交于点,.【点睛】本题考查了二次函数的性质:二次函数的图象为抛物线;对称轴为直线;抛物线与轴的交点坐标为.27. 在中,,,是边上一点,点与关于直线对称,过点作交于,交于.22(1)8y x =-++3x =y (0,6)226422(1)8y x x x =--=-++ 20a =-< ∴22(1)8y x =-++ ∴=1x -(1,8)-=1x -1,8-()3x =29436244y =-⨯-⨯+=-≠-4-(3,)0y =26420x x --=13x =-21x =x (3,0)-(1,0)y 0,6A ()()1136122ABC S ∆=⨯+⨯=2(0)y ax bx c a =++≠2b x a=-y (0,)c ABC 90BAC ∠=︒AB AC =D AB D E AC E EF CD ⊥CD G BC F(1)补全图形;(2)探究线段和的数量关系,并证明;(3)直接写出线段的的数量关系______.【答案】(1)见详解(2),证明见详解 (3)【解析】【分析】(1)先根据点对称的性质作出点E ,再根据垂直平分线的性质作,通过尺规作图过点E 作即可;(2)先通过直角三角形的性质证明,再根据等腰直角三角形的性质和三角形外角的性质证明,从而,最终证得;(3)过点F 作,垂足为P ,先证明得到,再根据是等腰直角三角形得到,从而得到答案.【小问1详解】延长,以点A 为圆心,以为半径画圆弧交延长线于点E ,以点E 为圆心作圆弧,和分别相交于点M 、点N ,再分别以点M 、点N为圆心,大于为半径画圆弧,相交于点Q ,连接,分别于、相交于点G 和点F ;图形补全如下: 【小问2详解】解:,证明如下,如下图所示,连接,交于点O ,CD EF BF DE CD EF =BF DE =EF CD ⊥AEO ACE ∠=∠EFC FCE ∠=∠EF EC =CD EF =FP BE ⊥()PEF ACD ASA ≌12PF DA DE ==BPF △BF =DA DA DA CD 2MN EQ CD BC CD EF =EC AC EF∵点与关于直线对称,∴是的垂直平分线,∴,,∴,∵,∴,∵,∴,∴,∵,,∴,∴,,∴,∴,∴;【小问3详解】解:如下图所示,过点F 作,垂足为P ,∵,D E AC AC DE DC EC ==90EAC ∠︒DCA ACE∠=∠90EOA AEO ∠+∠=︒EF CD ⊥90GOC GCO ∠+∠=︒GOC AOE ∠=∠OEA GCO ∠=∠AEO ACE ∠=∠90BAC ∠=︒AB AC =45B BCA ∠=∠=︒45EFC B BEF AEO ∠=∠+∠=︒+∠45FCE BCA ACE AEO ∠=∠+∠=︒+∠EFC FCE ∠=∠EF EC =CD EF =FP BE ⊥90EPF CAD CD EF PEF DAC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴,∴,∵,∴,∴,∵,∴,∵,∴.【点睛】本题考查垂直平分线的性质、等腰直角三角形的性质、等腰三角形的性质和全等三角形的性质,解题的关键是添加正确的辅助线构造出等腰三角形.28. 平面直角坐标系中,点和图形,若上存在点与点对应,则称是图形的“呼应点”.(1)点的“呼应点”的坐标为_______;(2)是否存在点是直线的“呼应点”,若存在,求的值;若不存在,说明理由;(3)直线上存在以为半径的的“呼应点”,直接写出的取值范围______.【答案】(1)(2)存在, (3)【解析】【分析】(1)根据“呼应点”的含义即可完成;(2)由题意可得P 的“呼应点”,把此点坐标代入直线中,即可求得t 的值;(3)设是上的“呼应点”,点N 是直线上点M 的对应点,则可得,从()PEF ACD ASA ≌12PF DA DE ==45B ∠=︒90BPF ∠=︒45B BFP ∠=∠=︒BP PF =222BF BP PF =+BF =12PF DE =BF =xoy (),M a b W W (),N b a --M M W )1Q -(),P t t 3y =+t 2y mx =-()0,4T T e m (1,t =117m -≤≤-3y =+(),M a b T e 2y mx =-(,)N b a --。
中考仿真模拟考试 数学试题 附答案解析
C. D.
10.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】
A. B. C. D.
二、填空题(本大题共 6 小题,共 24 分)
【详解】由题意,可得 .
故答案为:5.
【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.
15.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
【答案】(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
17.化简: ÷(a-4)- .
18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
20.已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】∵在矩形ABCD中,BD=8,
A.21×10-4B.2.1×10-6C.2.1×10-5D.2.1×10-4
中考数学模拟试题
中考数学模拟试题一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.2.下列各数中,属于无理数的是()A.B.1.414 C.D.3.华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟9905G 芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1011D.1.03×10104.下列四个算式中正确的是()A.a2+a3=a5B.(﹣a2)3=a6C.a2⋅a3=a6D.a3÷a2=a5.将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A.y=2(x﹣6)2 B.y=2(x﹣6)2+4C.y=2x2 D.y=2x2+4k(k≠0)的图象6. 在同一平面直角坐标系中,函数y kx+1(k≠0)和yx大致是A. B. C. D.7. 如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若CD=3,则BD的长是A.7B. 6C.5D. 48. 如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25C.7.5 D.99.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b:c=﹣1:2:3.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题7小题,每小题3分,共21分)11. 因式分解:x3y﹣xy3= .12. 一组数据由5个数组成,其中4个数分别为2,3,4,5且这组数据的平均数为4,则这组数据的中位数为.13.一个不透明的袋子中装8个小球,其中3个红球,3个白球,2个黑球,小球除颜色外形状、大小完全相同.现从中随机摸出一个小球,摸出的小球是红色的概率为____.15.若关于x的分式方程=2a无解,则a的值为.圆周的一个扇形,将留下的扇形围16.如图,如果从半径为9的圆形纸片剪去13成一个圆锥(接缝处不重叠),那么这个圆锥的高为17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点F在边AC上,并且CF=1,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,连接BP,则线段BP 长的最小值是.剪去(第16题图)(第17题图)三、解答题(本大题共9个小题,共69分)20.(6分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B 的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.21.(7分)央视“经典咏流传”开播以来受到社会广泛关注。
中考仿真模拟测试《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。
2024年浙江省嘉兴市海宁第一中学中考数学模拟试卷
浙江省嘉兴市海宁一中2024年初中学业水平模拟测试数学试题卷卷I一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,01中,是负数的是()A.1B.0C D.-12.如图所示的几何体,它的主视图是()A.B.C.D.3.2023年12月27日,第58颗北斗卫星成功定点于距地球36000公里的同步轨道上,数据36000用科学记数法表示为()A.0.36×105B.3.6×105C.3.6×104D.36×1034.一个不透明的布袋里装有5个只有颜色不同的球,其中3个白球,2个红球.从布袋里任意摸出1个球,是白球的概率()A.45B.35C.25D.155.如图,△ABC与△DEF是位似三角形,点O为位似中心.OA=AD,则△ABC与△DEF的位似比为()A.1∶1B.2∶3C.1∶2D.1∶36.化简(-2a)3∙a=()A.-8a4B.-8a3C.-6a4D.-6a37.如图所示的△ABC,进行以下操作:①以A,B为圆心,大于12AB为半径作圆弧,相交点D,E;②以A,C为圆心,大于12AC为半径作圆弧,相交于点F,G.两直线DE,FG相交于△ABC外一点P,且分别交BC点M,N.若∠MAN=50°,则∠MPN等于()A.60°B.65°C.70°D.75°8.已知y是关于x的一次函数,下表列出了部分对应值,则m的值为()A.-1B.12C.0D.129.如图1,在矩形ABCD中,点E在BC上,连结AE,过点D作DF⊥AE于点F.设AE=x,DF=y,已知x,y满足反比例函数y=kx(k>0,x>0),其图象如图2所示,则矩形ABCD的面积为()图1图2A.B.9C.10D.10.如图,量筒的液面A-C-B呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C(即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C时,记录量筒上点D的高度为37mm;仰视点C(点E,C,B在同一直线),记录量筒上点E的高度为23mm,若点D在液面圆弧所在圆上,量筒直径为10mm,则平视点C,点C的高度为()mm.A.30-B.37-C.23+D.23+卷Ⅱ二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:m 2-4= .12.某校九(1)班同学每周课外阅读时间的频数直方图如图所示(每组含前一个边界值,不含后一个边界值).由图可知,该班每周阅读时间不低于4小时的学生一共有 人.13.已知扇形的圆心角为120°,它的半径为2,则扇形的面积为 (计算结果保留π).14.不等式2(x -1)>x +3的解为 .15.已知二次函数y =x 2+bx +c (b ,c 为常数且b >0,c <0),当-5≤x ≤0时,-11≤y ≤5,则c 的值为 . 16.如图1是古塔建筑中的方圆设计,寓意天圆地方.据古塔示意图,以塔底座宽AB 为边作正方形ABCD (图2),塔高AF =AC ,分别以点A ,B 为圆心,AF 为半径作圆弧,交于点G .正方形ABCD 内部由四个全等的直角三角形和一个小正方形组成,若点G 落在AM 的延长线上,连接GP 交DQ 于点T ,则GT GP的值为 .图1 图2三、解答题(本题有8小题,共72分)17.(本题8分)(10(1)|5|---.(2)计算:223221a a a a a a --+--. 18.(本题8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的高线,点E ,F 分别在AC ,CD 上,且∠1=∠2(1)求证:AD∥EF.(2)当CE∶AE=3∶5,CF=6时,求BC的长.19.(本题8分)如图,是3个相同大小的6×6的方格,图1中放置一副七巧板组成的正方形图案,其顶点均在格点上,称之为格点图形.利用七巧板中的3种图形,按下列要求作出符合条件的格点图形.(1)在图2中,拼成一个轴对称但不是中心对称的图形.(2)在图3中,拼成一个中心对称但不是轴对称的图形.图1图2图320.(本题8分)某校组织的知识竞赛中,每班参加的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次为100分,90分,80分,70分,学校将九年级一班和九年级二班的成绩整理并绘制统计图,如图所示.(1)分别求出九年级一班成绩的平均数、中位数和众数;(2)规定成绩在90分以上为优秀(含90分),已知九年级二班成绩的平均数为87.6分,中位数为80分,众数为100分,优秀率为48%,请你选择两个统计量综合评价两个班的成绩.21.(本题8分)汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”.刹车距离y(m)与刹车时间的速度x(m/s)有以下关系式:y=ax2+bx(a,b为常数,且a≠0).某车辆测试结果如下:当车速为10m/s时,刹车距离y为3m;当车速为15m/s,刹车距离y为7.5m.(1)求出a,b的值;(2)行车记录仪记录了该车行驶一段路程的过程,汽车在刹车前匀速行驶了20s,然后刹车直至停下.测得刹车距离为5m,问:记录仪中汽车行驶路程为多少米?22.(本题10分)在Y ABCD中,E,F分别是AB,CD的中点,EG⊥BD于点G,FH⊥BD于点H,连接GF,EH.(1)求证:四边形EHFG是平行四边形.(2)当∠ABD=45°,tan∠EHG=14,EG=1时,求AD的长.23.(本题10分)综合与实践:测算校门所在斜坡的坡度.【背景】如图1,某学校校门在一道斜坡上,该校兴趣小组想要测量斜坡的坡度.图1图2【素材1】校门前的斜坡上铺着相同的长方形石砖,如图2,从测量杆AB到校门所在位置DE在斜坡上有15块地砖.【素材2】在点A处测得仰角tan∠1=19,俯角tan∠2=524;在点B处直立一面镜子,光线BD反射至斜坡CE的点N处,测得点B的仰角tan∠3=15;测量杆上AB∶BC=5∶8,斜坡CE上点N所在位置恰好是第9块地砖右边线.【讨论】只需要在∠1,∠2,∠3中选择两个角,再通过计算,可得CE的坡度.24.(本题12分)如图,在Rt△ABC中,∠ABC=90°,BC=6,AB=8,点D在AC上,过点B,D,C所作的弧为优弧BDC,交AB于点E,作DF//BC交BDC于点F,BF与CE,CD分别交于点G,H,连接DE.(1)求证:点H 是AC 的中点.(2)当»BE,»ED ,»DF 中的两段相等时,求DE 的长. (3)记△ADE 的面积为1S ,△CDF 的面积为2S ,若122596S S ,求¼BDC 所在圆的半径.。
湖南省长沙市2024年中考模拟数学试题
湖南省长沙市2024年中考模拟数学试题一、单选题1.3-的倒数为( ) A .3B .3-C .13D .13-2.苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m ,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站.将42000用科学记数法表示应为( ) A .0.42×105B .4.2×104C .44×103D .440×1023.下列等式成立的是( ) A .1232a a a+=B .11111a a a a a ++=--- C .1111x x x +=++ D .()()()222112222m m m m m ---=---4.下列图形中,不是轴对称图形的是( ) A .B .C .D .5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .5cm ,7cm ,10cm B .5cm ,7cm ,13cm C .7cm ,10cm ,13cmD .5cm ,10cm ,13cm6.某市教育体育局想要了解本市初二年级8万名学生的期中数学成绩,从中抽取了2000名学生的数学成绩进行统计分析,以下说法正确的是( ) A .2000名学生是总体的一个样本 B .每位学生的数学成绩是个体 C .8万名学生是总体D .2000名学生是样本的容量7.如图所示,已知正方形ABCD 的面积是8平方厘米,正方形EFGH 的面积是62平方厘米,BC 落在EH 上,ACG V 的面积是4.9平方厘米,则ABE V 的面积是( )A .0.5平方厘米B .2平方厘米CD .0.9平方厘米8.如图,在V ABC 中,∠B =30°,若AB ∥CD ,CB 平分∠ACD ,则∠ACD 的度数为( )A .30°B .40°C .60°D .90°9.一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.张浩有红牌和蓝牌各75张,已知张浩能在一个摊位上用2张红牌换1张银牌和1张蓝牌,还能在另一个摊位上用3张蓝牌换1张银牌和1张红牌,若他按照上述方法继续换下去,直到手中的牌无法交换为止,则张浩手中最后有银牌( )张A .62B .26C .102D .103二、填空题11.因式分解:21x -=.12.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2009()a b +=.13.在x 2+( )+4=0的括号中添加一个关于x 的一次项...,使方程有两个相等的实数根. 14.如图,双曲线ky (k 0)x=>与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为.15.如图,OA 是O e 的半径,BC 是O e 的弦,OA BC ⊥于点D ,AE 是O e 的切线,AE 交OC 的延长线于点E .若45AOC ∠=︒,2BC =,则线段AE 的长为.16.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为150°,AB 的长为32cm ,BD的长为14cm ,则»DE的长为cm .三、解答题17.(1)计算:())121--+﹣sin30°(2)化简:2a 11a a a++-. 18.(1)计算:()()21122x x x ⎛⎫--+- ⎪⎝⎭;(2)先化简,再求值:()()()23366a a a a +---+,其中1a =-.19.位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD 和头像AD 两部分组成.某数学兴趣小组在塑像前50米处的B 处测得山体D 处的仰角为45°,头像A 处的仰角为70.5°,求头像AD 的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)20.为了加强对青少年防溺水安全教育,5月底某校开展了“远离溺水,珍爱生命”的防溺水安全知识比赛.下面是从参赛学生中随机收集到的20名学生的成绩(单位:分): 87 99 86 89 91 91 95 96 87 97 91 97 96 86 96 89 100 91 99 97 整理数据:分析数据:解决问题:(1)直接写出上面表格中的a ,b ,c ,d 的值;(2)若成绩达到95分及以上为“优秀”等级,求“优秀”等级所占的百分率; (3)请估计该校1500名学生中成绩达到95分及以上的学生人数.21.如图,已知点B E C F ,,,在一条直线上,BE CF =,AC DE ∥,A D ∠=∠. 求证:ABC DFE △≌△.22.某游船先顺流而下,然后逆流返回.已知水流速度是每小时3千米,游船在静水中的速度是每小时18千米.为使游船在4小时内(含4小时)返回出发地,则游船顺流最远可行多少千米?23.如图,在ABC V 中,AB AC =,30B ∠=︒,线段AB 的垂直平分线MN 交BC 于D ,连接AD .(1)求DAC ∠的度数; (2)若2BD =,求BC 的长.24.在平面直角坐标系xOy 中,对于直线l 及点P 给出如下定义:过点P 作y 轴的垂线交直线l 于点Q ,若PQ ≤1,则称点P 为直线l 的关联点,当PQ =1时,称点P 为直线l 的最佳关联点,当点P 与点Q 重合时,记PQ =0.例如,点P (1,2)是直线y =x 的最佳关联点.根据阅读材料,解决下列问题.如图,在平面直角坐标系xOy 中,已知直线1l :y =﹣x +3,2l :y =2x +b .(1)已知点A (0,4),3(,1)2B ,C (2,3),上述各点是直线1l 的关联点是;(2)若点D (﹣1,m )是直线1l 的最佳关联点,则m 的值是;(3)点E 在x 轴的正半轴上,点A (0,4),以OA 、OE 为边作正方形AOEF .若直线l 2与正方形AOEF 相交,且交点中至少有一个是直线1l 的关联点,则b 的取值范围是.25.如图,⊙O为△ABC的外接圆,AC=BC,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.(1)求证:直线AE是⊙O的切线.(2)若D为AB的中点,CD=6,AB=16,求⊙O的半径;(3)在(2)的基础上,点F在⊙O上,且»»,△ACF的内心点G在AB边上,求BGBC BF的长.。
中考数学模拟测试题(附有答案)
中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。
中考模拟测试《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -172.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A 主视图不变B. 俯视图不变C 左视图不变D. 三种视图都不变3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B. 59C. 62D. 644.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 235.下列运算正确是() A. 428a a a ⋅= B. 221a a -= C. 2222a a a -+= D. ()325x x =6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 23C. 33D.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C. 60D. 709.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A. B. C. D. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11.5_.12.如图,在正六边形ABCDEF 中,CAD ∠的度数为____.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC 交于,E F 两点,且,A C 两点在轴上,点的坐标为()2,4,则点的坐标为_____.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()1082 3.146012cos π-⎛⎫+⎭- ⎪⎝︒. 16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.20.如图1所示的是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.2 1.414,31(.732≈≈,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -17【答案】A【解析】【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】|﹣7|=7.故选A.【点睛】本题考查了绝对值的性质①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A. 主视图不变B. 俯视图不变C. 左视图不变D. 三种视图都不变【答案】C【解析】【分析】分别得到将正方体A移动前后的三视图,依次即可作出判断.【详解】将正方体放到正方体的上面后,主视图改变,左视图不变,俯视图改变.故选:C .【点睛】此题主要考查立体组合体的三视图,熟练画立体图形的三视图是解题关键.3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B 59C. 62D. 64【答案】B【解析】【分析】先根据平行线的性质求出62,BOE ∠=︒再根据邻补角求得118,COE ∠=︒然后根据角平分线即可求解.【详解】解:∵DE AB∴62,BOE B ∠=∠=︒∴118,COE ∠=︒∵OF 是COE ∠的角平分线∴1∠=59︒故选:B【点睛】此题主要考查平行线的性质、邻补角的性质和角平分线的定义,熟练掌握性质定理是解题关键. 4.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 23【答案】C直接把()2,3-代入(0)y kx k =≠即可求解.【详解】解:把()2,3-代入(0)y kx k =≠ 解得:3k 2=-故选:C【点睛】此题主要考查待定系数法求正比例函数解析式中的参数k ,正确理解函数的图象和性质是解题关键. 5.下列运算正确的是()A. 428a a a ⋅=B. 221a a -=C. 2222a a a -+=D. ()325x x =【答案】C【解析】【分析】直接根据同底数幂的乘法法则、合并同类项法则和幂的乘方法则即可求解.【详解】解:A. 426a a a ⋅=,此选项错误B. 22a a -=-,此选项错误C. 2222a a a -+=,此选项正确D. ()326x x =,此选项错误 故选:C【点睛】此题主要考查同底数幂的乘法法则、合并同类项法则和幂的乘方法则,熟练掌握法则是解题关键. 6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 3C. 33D.【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键. 8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C 60D. 70【答案】C【解析】【分析】根据同弧所对的圆心角等于圆周角的2倍,可得出∠B=25︒,然后根据三角形的内角和为180︒即可求解.【详解】解:∵50AOC ∠=︒,∴∠B=25︒,∵35C ∠=︒,∠ADB=∠CDO ,∴A ∠+∠B=∠C+∠AOC ,即∠A=355025︒+︒-︒=60︒,故选:C .【点睛】此题主要考查同弧所对的圆心角与圆周角之间的关系及三角形的内角和,熟练掌握性质是解题关键.9.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF Sx =,求出x 即可解答. 【详解】解:∵AD ∥BC ,是矩形ABCD 中AD 边的中点,∴AEF ~CBF ,设AEF S x =△,那么4BCF Sx =, ∵2ABF S =, ∴()1x 2422x +=+, 解得:x 1=,∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键. 10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A.B. C. D. 【答案】B【解析】【分析】由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =,根据当3x ≥时,随的增大而增大,得到0,a >且1x ≤时,随的增大而减小,再根据当20x -≤≤时,的最大值为,得到当2x =-时,28110a a ++=,求出1a =,那么2(1)1y x =-+关于轴对称的抛物线为()211y x =++,即可求解. 【详解】解:由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =.当3x ≥时,随的增大而增大,0,a ∴>且1x ≤时,随的增大而减小.当20x -≤≤时,的最大值为10,当2x =-时,28110,a a ++= 1a 或9a =-(舍去),2222()11y x x x ∴=-+=-+关于轴对称的抛物线为()211,y x =++函数()211y x =++在23x -≤≤内的最大值在3x =处取得,最大值为17,y =故选.【点睛】此题主要考查二次函数的性质,熟练掌握二次函数的图象和性质是解题关键. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11._.【答案】2【解析】【分析】估算得出所求即可.【详解】解:∵459,∴23<<,2,故答案为:2.【点睛】此题主要考查无理数的估算,熟练掌握估算方法是解题关键.12.如图,在正六边形ABCDEF中,CAD∠的度数为____.【答案】30【解析】【分析】根据正六边形得到∠ABC=∠BCD=∠CDE=120︒,AB=BC=CD,进而得到∠ACB=30,∠ACD=90︒,∠ADC=60︒,即可求解.【详解】解:在正六边形ABCDEF中,∠ABC=∠BCD=∠CDE=120︒,AB=BC,∴∠ACB=30,∠ACD=90︒,∠ADC=60︒,∴∠CAD=30,故答案为:30.【点睛】此题主要考查正六边形的性质,灵活运用性质是解题关键.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于,E F两点,且,A C两点在轴上,点的坐标为()2,4,则点的坐标为_____.【答案】4 6,3⎛⎫ ⎪⎝⎭【解析】【分析】先根据待定系数法求得8y x =,再根据OA=6即可求解. 【详解】解:令y k x =,E (2,4), ∴k=8,即8y x=, ∵OA =OC+AC =2+4=6,∴F(6,43), 故答案为:46,3⎛⎫ ⎪⎝⎭.【点睛】此题主要考查待定系数法求反比例函数解析式,然后根据函数解析式确定点的坐标,熟练掌握待定系数法是解题关键.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.【答案】2212+【解析】【分析】BFA'的周长=FA'+BF+BA'=AF+BF+BA'=AB+BA'=10+BA',推出当BA'最小时,BFA'的周长最小,由此即可求解.【详解】解:如图,作BH AD ⊥于点,连接BP ,∵10,16,60AB AD A ==∠=︒,8,5PA AH ==,853PH ∴=-=, 5BH =PB ∴===由翻折可知'8,'PA PA FA FA ===,'BFA ∴的周长''''10'FA BF BA AF BF BA AB BA BA =++=++=+=+, 当'BA 的长度最小时,'BFA 的周长最小,''BA PB PA ∴≥-,'8BA ∴≥,'BA ∴的最小值为8,'BFA ∴的周长的最小值为1082+=.故答案为:2.【点睛】此题主要考查平行四边形的性质,翻折不变性,勾股定理,含30度直角三角形的性质等,灵活运用性质是解题关键.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒. 【答案】12-【解析】【分析】 根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++ 12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 【答案】a【解析】【分析】 根据分式的加减乘除混合运算法则即可求解.【详解】解:原式()()()()()22211122111111a a a a a a a a a a a a a -+--+-÷=⋅=-++--. 【点睛】此题主要考查分式的加减乘除运算,熟练掌握运算法则是解题关键.17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)【答案】见解析【解析】【分析】作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【详解】解:如图,作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【点睛】此题主要考查旋转的性质,尺规作图,正确理解作图依据是解题关键.18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .【答案】见解析【解析】【分析】根据//FD AC ,得到ACB DFE ∠=∠,再根据BF CE =,得到BC EF =,加上AC FD =,得到ACB DFE △≌△,进而得到B E ∠=∠,即可证明.【详解】证明://FD AC ,ACB DFE ∴∠=∠,BF CE =,BF FC CE FC ∴+=+BC EF ∴=.,AC FD =,ACB DFE ∴≌,B E ∴∠=∠//∴.AB DE【点睛】此题主要考查全等三角形的判定和性质、平行线的性质和判定,灵活运用判定定理和性质定理是解题关键.19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.【答案】(1)见解析;(2)5天,6天;(3)600人【解析】【分析】(1)根据9天和9天以上的3人,占5,可求得总人数为60人,求出8天的人数即可补全条形统计图;(2)根据众数和中位数的概念即可求解.(3)先求出7天、8天、9天和9天以上的人数的比例,再用样本估计总体即可求解.÷=(人),【详解】解:()135%60----=(人),6024121536补全统计图如图所示:()2参加”网络自习室”自主学习天的人数最多,所以众数是天;60人中,按照参加”网络自习室”自主学习的天数从少到多排列,第人和人都是天,所以中位数是天; ()15633150060060++⨯=(人) 答:估计全校初三可能有600名学生参加”网络的自习室”自主学习的天数不少于天.【点睛】此题主要考查条形统计图与扇形统计图的综合应用,众数、中位数和用样本估计总体,正确理解概念是解题关键.20.如图1所示是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.231.732≈≈,最后结果取整数)【答案】37米【解析】【分析】根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米,在'Rt PO B 中,'90,'60PO B PBO ∠=︒∠=︒,得到3''3O B P =,在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,得到''O D O P =,进而得到3''1'15BD O D O B O P ⎛=-== ⎝⎭米,'35.4931O P =≈-米,最后根据''OP OO O P =+即可求解.【详解】解:根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米.在'Rt PO B 中,'90,'60,PO B PBO ∠=︒∠=︒3''3O B P ∴= 在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,''O D O P ∴=, 3''1'153BD O D O B O P ⎛∴=-=-= ⎝⎭米,'35.49O P ∴=≈米,''37.09OP OO O P ∴=+=米37≈米,答:”天下第一灯”的高度约为37米.【点睛】此题主要考查解直角三角形的应用,正确地构造直角三角形和解直角三角形是解题关键. 21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【答案】(1) 4.65137.7y x =-;(2)3300m【解析】【分析】(1)根据实际问题列出函数表达式即可.(2)先判断用水量在哪一阶梯,再计算.详解】解:()()1 3.80162 4.65162y x =⨯+-,即 4.65137.7y x =-.()2由()1知,当162275x <≤时, 4.65137.7,y x =-当275x =时,1141.05y =.1141.051320.55y =<,该户居民2019年的年用水量在3275m 以上,终端水价为7.18元/3m .当275x >时,()1141.057.18275,y x =+-即7.18 833.45,y x =-7.18 833.451320.55,x∴-=解得300x=.答:该户居民2019年的年用水量为3300m.【点睛】此题主要考查根据实际问题列函数解析式,找出实际问题中的等量关系是解题关键.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【答案】(1)图表见解析,14;(2)不公平,理由见解析【解析】【分析】(1)先用列表法列出所有可能的结果,再求概率.(2)比较两种结果的概率即可求解.【详解】解:()1列表如下从表格可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有种,所以两人抽取相同数字的概率为1 4()2不公平.从()1中表格可以看出,两人抽取数字和为的倍数的结果有种,两人抽取数字和为的倍数的结果有种, 所以甲获胜的概率为38,乙获胜的概率为31633816> 甲获胜的概率大,游戏不公平.【点睛】此题主要考查列表法或画树状图法求概率,正确理解概率的概念是解题关键.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 【答案】(1)相切,理由见解析;(2)35【解析】【分析】(1)连接BD ,根据90BAD ∠=︒,得出点在BD 上,即BD 是直径,进而得到90BCD ∠=︒,90DEC CDE ∠+∠=︒,再根据DEC BAC ∠=∠,得出90BAC CDE ∠+∠=︒,由同弧所对的圆周角相等,得到90BDC CDE ∠+∠=︒,即可求证.(2)根据90BAF BDE ∠=∠=︒,得到90F ABC FDE ADB ∠+∠=∠+∠=,由AB AC =,得到A ABC CB =∠∠,再根据ADB ACB ∠=∠,得到,ABC ADB F EDF ∠=∠∠=∠,进而得到6DE EF ==,再根据4,90CE BCD =∠=︒,得到2290,25DCE CD DE CE ∠=︒=-=90,BDE CD BE ∠=︒⊥,得到CDECBD ,最后根据对应边成比例即可求解. 【详解】解:()1DE 与O 相切.理由:如图,连接BD .90,BAD ∠=︒点在BD 上,即BD 是直径,90BCD ∴∠=︒,90DEC CDE ∴∠+∠=︒.,DEC BAC ∠=∠90BAC CDE ∴∠+∠=︒.,BAC BDC ∠=∠90,BDC CDE ∴∠+∠=︒90,BDE ∴∠=︒即BD DE ⊥.点在O 上,DE ∴是O 的切线.()290BAF BDE ∠=∠=︒.90F ABC FDE ADB ∴∠+∠=∠+∠=.,AB AC =ABC ACB ∴∠=∠.,ADB ACB ∠=∠,,ABC ADB F EDF ∴∠=∠∠=∠6.DE EF ∴==4,90CE BCD =∠=︒,2290,2 5.DCE CD DE CE ∴∠=︒=-=90,BDE CD BE ∠=︒⊥,,CDE CBD ∴ CD BD CE DE ∴= O ∴的直径256354BD ⨯== 【点睛】此题主要考查圆周角定理,勾股定理,切线的判定和相似三角形的判定及性质,熟练掌握判定定理和性质定理是解题关键.24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.【答案】(1)2y x 2x 3=-++;(2)点M 的坐标为17,24⎛⎫-⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭【解析】【分析】(1)利用待定系数法即可解决问题; (2)根据223tan 3m m MG MBA BG m-++∠==-,1tan 2BE BDE DE ∠==,由∠MBA=∠BDE ,构建方程即可解决问题.【详解】解:()1把点()()3,0,0,3B C 代入2,y x bx c =-++ 得到930,3,b c c -++=⎧⎨=⎩解得2,3,b c =⎧⎨=⎩抛物线的解析式为2y x 2x 3=-++.()2如图,作MG x ⊥轴于点,G 连接,BM 则90MGB ∠=︒.()2,23,M m m m -++223,3,MG m m BG m ∴=-++=-2233m m MG tan MBA BG m-++∴∠==- ()222314y x x x =-++=--+,顶点的坐标为()1,4 DE x ⊥∵轴,90,4,1DEB DE OE ∴∠=︒==()3,0B ,2BE ∴=12BE tan BDE DE ∴∠== ,MBA BDE ∠=∠223132m m m -++∴=-当点M 在轴上方时223132m m m -++=- 解得112m =-,23m =(舍弃), 17,24M ⎛⎫∴- ⎪⎝⎭当点M 在轴下方时,223132m m m -++=-- 解得123,32m m ==-(舍弃),点39,24M ⎛⎫-- ⎪⎝⎭综上所述,满足条件的点M 的坐标为17,24⎛⎫- ⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭ 【点睛】此题主要考查待定系数法求二次函数解析式和利用三角函数解直角三角形,熟练掌握二次函数的性质是解题关键.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.【答案】[问题发现]25;[问题解决]①出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②总造价的最小值为160010元,出口距直线OB 的距离为36665-米 【解析】【分析】 [问题发现]PAB 的底边一定,面积最大也就是P 点到AB 的距离最大,故当OP AB ⊥时底边AB 上的高最大,再计算此时PAB 面积即可.[问题解决]①根据四边形CODE 面积=CDO CDE S S +,求出CDE S △最大时即可,然后作'E H OB ⊥,证明COD OHE ',利用相似三角形的性质求出E H '即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE ,求CE+QE 的最小值问题,然后利用相似三角形性质和勾股定理求解即可.【详解】解:[问题发现]:如图1,点运动至半圆中点时,底边AB 上的高最大,即' 5.P O r ==此时PAB △的面积最大,最大值为1105252⨯⨯=; [问题解决]①如图2,连接,CD 作OG CD ⊥,垂足为,G 延长OG 交AB 于点,则此时CDE △的面积最大.12,4,OA OB AC D ===为OB 的中点,8,6OC OD ∴==,在Rt COD 中,10, 4.8CD OG ==,'12 4.87.2GE ∴=-=,四边形CODE 面积的最大值为1168107.26022CDO CDE SS '+=⨯⨯+⨯⨯=, 作',E H OB ⊥垂足为, ''90,'90,E OH OE H E OH ODC ∠+∠=︒∠+∠='OE H ODC ∴∠=∠.又'90COD E HO ∠=∠=︒,CODOHE '∴, ''OD E H CD OE ∴= 6'1012E H ∴= '7.2E H ∴=,出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②铺设小路CE 和DE 的总造价为()2004002002.CE DE CE DE +=+如图3,连接,OE 延长OB 到点,Q 使12BQ OB ==,连接EQ在EOD △与QOE 中,EOD QOE =∠,且12OD OE OE OQ ==, ,EOD QOE ∴故2,QE DE =2CE DE CE QE ∴+=+,问题转化为求CE QE +的最小值,连接,CQ 交AB 于点,此时CE QE +取得最小值为CQ .在Rt COQ 中,8,24CO OQ ==,810CQ ∴= 故总造价的最小值为10作',E H OB ⊥垂足为,连接'OE .设',E H x =则3QH x =.在'Rt E OH 中,222'OH HE OE '+=,()22224312,x x ∴-+= 解得13666x -=,23666x +=舍去), 总造价的最小值为10OB 的距离为36665-米. 【点睛】此题考查圆的综合问题,涉及圆的基本性质,相似三角形的判定和性质,勾股定理等知识,综合程度较高,需要灵活运用知识,解题关键是:利用对称或相似灵活地将折线和转化为线段长,从而求折线段的最值.。
中考数学模拟考试卷(有答案解析)
中考数学模拟考试卷(有答案解析)一、选择题1.9的算术平方根是()A. ±3B. 3C. −3D. √32.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,数据499.5亿用科学记数法应表示为()A. 4.995×1010B. 49.95×1010C. 0.4995×1011D. 4.995×1011图象上,则y1,y2,y3的大小关系为()3.已知(−2,y1),(−3,y2),(2,y3)在反比例函数y=−0.8xA. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y24.某班篮球爱好小组10名队员进行定点投篮练习,每人投篮20次,将他们投中的次数进行统计,制成如表:投中次数121315161718人数123211则关于这10名队员投中次数组成的数据,下列说法错误的是()A. 平均数为15B. 中位数为15C. 众数为15D. 方差为55.利用配方法将二次函数y=x2+2x+3化为y=a(x−ℎ)2+k(a≠0)的形式为()A. y=(x−1)2−2B. y=(x−1)2+2C. y=(x+1)2+2D. y=(x+1)2−26.下列关于x的方程中一定没有实数根的是()A. x2−x−1=0B. 4x2−6x+9=0C. x2=−xD. x2−mx−2=07.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF//BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;∠A;②∠BOC=90°+12③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是()A. ①②③B. ①②④C. ②③④D. ①③④8.平行四边形、矩形、菱形、正方形都具有的是()A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线互相垂直且相等9.如图,已知⊙O的弦AB、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=2√5cm,则PE的长为()A. 4cmB. 3cmC. 5cmD. √2cm10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC的边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则y与x函数关系的图象大致是()A. B. C. D.二、填空题11.分解因式:x2﹣9y2=.12.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之积为偶数的概率为.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN 交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为.14.如图,A、B是函数y=(x>0)图象上两点,作PB∥y轴,PA∥x轴,PB与PA交于点P,若S△BOP=2,则S△ABP=.15.如图,△ABO中,以点O为圆心,OA为半径作⊙O,边AB与⊙O相切于点A,把△ABO绕点A逆时针旋转得到△AB'O',点O的对应点O'恰好落在⊙O上,则sin∠B'AB的值是.三、解答题16.解方程:x2+2x﹣3=0(公式法)17.某校760名学生参加植树活动,要求每人植树的范围是2≤x≤5棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:2棵;B:3棵;C:4棵;D:5棵,将各类的人数绘制成扇形统计图(如图2)和条形统计图(如图1).回答下列问题:(1)补全条形统计图;(2)被调查学生每人植树量的众数、中位数分别是多少?(3)估计该校全体学生在这次植树活动中共植树多少棵?18.在坐标系中作出函数y=x+2的图象,根据图象回答下列问题:(1)方程x+2=0的解是;(2)不等式x+2>1的解;(3)若﹣2≤y≤2,则x的取值范围是.19.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若CD=3cm,DE=cm,求⊙O直径的长.20.某中学计划购买A、B两种学习用品奖励学生,已知购买一个A比购买一个B多用20元,若用400元购买A的数量是用160元购买B数量的一半.(1)求A、B两种学习用品每件各需多少元?(2)经商谈,商店给该校购买一个A奖品赠送一个B奖品的优惠,如果该校需要B奖品的个数是A奖品个数的2倍还多8个,且该学校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A奖品?21.在平面直角坐标系xOy中,二次函数y=ax2+bx+4(a<0)的图象与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C,直线BC与对称轴于点D.(1)求二次函数的解析式.(2)若抛物线y=ax2+bx+4(a<0)的对称轴上有一点M,以O、C、D、M四点为顶点的四边形是平行四边形时,求点M的坐标.(3)将抛物线y=ax2+bx+4(a<0)向右平移2个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点,当以D、E、F、G四点为顶点的四边形是菱形时,求点F的坐标.22.如图1,在正方形ABCD中,E为边AD上的一点,连结CE,过D作DF⊥CE于点G,DF交边AB于点F.已知DG=4,CG=16.(1)EG的长度是.(2)如图2,以G为圆心,GD为半径的圆与线段DF、CE分别交于M、N两点.①连结CM、BM,若点P为BM的中点,连结CP,求证∠BCP=∠MCP.②连结CN、BN,若点Q为BN的中点,连结CQ,求线段CQ的长.参考答案与解析一、选择题1.B试题分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.∵32=9,∴9的算术平方根是3.故选:B.2.A解:499.5亿=49950000000=4.995×1010,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.3.A解:当x=−2时,y1=−0.8−2=615;当x=−3时,y2=−0.8−3=415;当x=2时,y3=−0.82=−0.4,所以y1>y2>y3.故选:A.分别把x=−2、−3、2代入反比例函数解析式计算出y1,y2,y3的值,从而得到它们的大小关系.4.D解:这组数据的平均数为12+13×2+15×3+16×2+17+1810=15,故A选项正确,不符合题意;将数据从小到大排列,第5第6个数都是15,中位数为15+152=15,故B选项正确,不符合题意;15出现的次数最多,众数为15,故C选项正确,不符合题意;方差为110×[(12−15)2+2×(13−15)2+3×(15−15)2+2×(16−15)2+(17−15)2+(18−15)2]= 3.2,故D选项错误,符合题意;故选:D.依次根据加权平均数、中位数、众数及方差的定义求解即可.5.C解:y=x2+2x+3=(x+1)2+3−1=(x+1)2+2.故选:C.化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).6.B解:A、△=5>0,方程有两个不相等的实数根;B、△=−108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.7.A【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC=90°+12∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=12mn,故④错误.【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°−12∠A,∴∠BOC=180°−(∠OBC+∠OCB)=90°+12∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF//BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE⋅OM+12AF⋅OD=12OD⋅(AE+AF)=12mn;故④错误;故选:A.8.A解:A、对角线相等是平行四边形、矩形、菱形、正方形都具有的性质;B、对角线互相垂直是菱形、正方形具有的性质;C、对角线相等是矩形和正方形具有的性质;D、对角线互相垂直且相等是正方形具有的性质.故选:A.9.A试题分析:首先根据相交弦定理得PA⋅PB=PC⋅PD,得PD=2.设DE=x,再根据切割线定理得AE2=ED⋅EC,即x(x+8)=20,x=2或x=−10(负值舍去),则PE=2+2=4.∵PA⋅PB=PC⋅PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED⋅EC,∴x(x+8)=20,∴x=2或x=−10(负值舍去),∴PE=2+2=4.故选A.10.D解:当点P在AB上时,△BDP是等腰直角三角形,故BD=x=DP,∴△BDP的面积y=12×BD×DP=12x2,(0≤x≤2)当点P在AC上时,△CDP是等腰直角三角形,BD=x,故CD=4−x=DP,∴△BDP的面积y=12×BD×DP=12x(4−x)=−12x2+2x,(2<x≤4)∴当0≤x≤2时,函数图象是开口向上的抛物线;当2<x≤4时,函数图象是开口向下的抛物线,故选:D.先根据点P在AB上时,得到△BDP的面积y=12×BD×DP=12x2,(0≤x≤2),再根据点P在AC上时,△BDP的面积y=12×BD×DP=−12x2+2x,(2<x≤4),进而得到y与x函数关系的图象.二、填空题11.解:x2﹣9y2=(x+3y)(x﹣3y).12.解:树状图如下所示,由上可得,一共有4种可能性,其中数字之积为偶数的可能性有3种,∴数字之积为偶数的概率为:,故答案为:.13.解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.故答案为:6.14.解:如图,延长BP交x轴于N,延长AP交y轴于M,设点M的纵坐标为m,点N的横坐标为n,∴AM⊥y轴,BN⊥x轴,又∠MON=90°,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO=S△BNO=3,∵S△BOP=2,∴S△PMO=S△PNO=1,∴S矩形OMPN=2,∴mn=2,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=||,∴S△ABP=×2|n|×||=4,故答案为:4.15.解:由旋转得OA=O′A,∠OAB=∠O′AB′,∴OA=O′A=OO′,∴△OO′A是等边三角形,∴∠O′AO=60°,∵边AB与⊙O相切于点A,∴∠OAB=∠O′AB′=90°,∴∠B'AB=60°,∴sin∠B'AB=.故答案为:.三、解答题16.解:△=22﹣4×(﹣3)=16>0,x=,所以x1=1,x2=﹣3.17.解:(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人),补全统计图如下:(2)∵植3棵的人数最多,∴众数是3棵,把这些数从小到大排列,中位数是第10、11个数的平均数,则中位数是=3(棵).(3)这组数据的平均数是:×(4×2+8×3+4×6+5×2)=3.3(棵),3.3×760=2508(棵).答:估计这760名学生共植树2508棵.18.解:y=x+2列表如下:图象如下图所示:(1)由图形可得,方程x+2=0的解是x=﹣2,故答案为x=﹣2;(2)由图象可得,不等式x+2>1的解是x>﹣1,故答案为x>﹣1;(3)若﹣2≤y≤2,则x的取值范围是﹣4≤x≤0,故答案为﹣4≤x≤0.19.(1)证明:如图1,连接OD,∵AC是⊙O的直径,∴∠ADC=∠BDC=90°,∵E是BC的中点,∴ED=EC,∴∠EDC=∠ECD,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠ECD=90°,∴∠EDC+∠ODC=90°,∵OD为半径,∴DE是⊙O的切线;(2)解:如图2,∵DE是Rt△BDC斜边上的中线,DE=cm,CD=3cm,∴BC=2DE=cm,∴BD===(cm),∵∠A+∠ACD=∠BCD+∠ACD=90°,∴∠BCD=∠A,∵∠BDC=∠CDA=90°,∴△BDC ∽△CDA ,∴,即,∴AC =(cm ), ∴⊙O 直径的长cm .20.解:(1)设A 种学习用品每件x 元钱,则B 种学习用品每件(x ﹣20)元钱,由题意得:=×, 解得:x =25,经检验,x =25是原方程的解,且符合题意,则x ﹣20=5,答:A 种学习用品每件25元钱,则B 种学习用品每件5元钱;(2)设该校可购买y 个A 奖品,则可购买(2y +8﹣y )个B 奖品,由题意得:25y +5(2y +8﹣y )≤670,解得:y ≤21,答:该校最多可购买21个A 奖品.21.解:(1)将点A (﹣2,0)和点B (4,0)代入抛物线解析式y =ax 2+bx +4(a <0),∴{4a −2b +4=016a +4b +4=0,解得{a =−12b =1, ∴抛物线解析式为y =−12x 2+x +4.(2)由(1)知抛物线解析式为y =−12x 2+x +4=−12(x ﹣1)2+92,∴抛物线的对称轴为:直线x =1,令x =0,则y =0,∴C (0,4),∴直线BC 的解析式为:y =﹣x +4,OC =4,∴D (1,3).∵点M 在对称轴上,∴DM ∥OC ,若以O 、C 、D 、M 四点为顶点的四边形是平行四边形,则OC =DM ,∴|3﹣y M |=4,解得y M =﹣1或7.∴点M 的坐标为(1,﹣1)或(1,7).(3)将抛物线y =−12(x ﹣1)2+92向右平移2个单位得到新抛物线y ′=−12(x ﹣3)2+92, 令−12(x ﹣1)2+92=−12(x ﹣3)2+92,解得x =2,∴E (2,4),∴DE =√2,若以D 、E 、F 、G 四点为顶点的四边形是菱形,则△DEF 是等腰三角形,需要分情况讨论,当DE =DF 时,如图1,以点D 为圆心,DE 长为半径作圆,圆与直线x =3无交点,不存在点F ; 当ED =EF 时,如图1,以点E 为圆心,DE 长为半径作圆,圆与直线x =3交于点F ;设点F (3,n ),∴(2﹣3)2+(4﹣n )2=2,解得n =3或n =5(此时D ,E ,F 三点共线,不符合题意),∴F (3,3).当FD =FE 时,作DE 的垂直平分线交直线x =3于点F ,则有(2﹣3)2+(4﹣n )2=(1﹣3)2+(3﹣n )2,解得n =2.此时F (3,2).综上,点F 的坐标为(3,3)或(3,2).22.(1)解:∵四边形ABCD 为正方形,∴∠ADC =90°,∴∠EDG +∠CDG =90°,∵DF ⊥CE ,∴∠DGE =∠CGD =90°,∠DCG +∠CDG =90°,∴∠EDG =∠DCG ,∴△DGE ∽△CGD ,∴EG DG =DG CG ,即EG 4=416,解得:EG =1,故答案为:1;(2)①证明:如图2,连接CM 、BM 、CP ,∵点G 为DM 的中点,CG ⊥DM ,∴CM =CD ,∵CD =CB ,∴CB =CM ,∵点P 为BM 的中点,∴∠BCP =∠MCP ;②解:如图3,连接BN 、CQ ,过点Q 作QH ⊥CD 于H ,连接NH 并延长交BC 的延长线于L ,过点N 作NK ⊥CD 于K ,在Rt △CGD 中,DG =4,CG =16,则CD =√CG 2+DG 2=4√17,∵CG =16,GN =4,∴CN =16﹣4=12,∵∠CGD =∠CKN =90°,∠NCK =∠DCG ,∴△CKN ∽△CGD ,∴CN CD =CK CG =NK DG ,即4√17=CK 16=NK 4, 解得:CK =48√1717,NK =12√1717, ∵QH ⊥CD ,∠DCB =90°,NK ⊥CD ,∴NK ∥QH ∥BC ,∵NQ =QB ,∴KH =HC =12KC =24√1717,QH =12×(KN +BC )=40√1717, ∴CQ =√CH 2+QH 2=8√2.。
中考模拟检测《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-12016的相反数是( ) A. 2016 B. ﹣2016 C. 12016 D. -120162.下列各式化简后的结果为32 的是( )A. 6B. 12C. 18D. 363.下列运算正确的是( )A. 22x y xy +=B. 2222x y xy ⋅=C. 222x x x ÷=D. 451x x -=- 4.不等式组-32-13x x <⎧⎨≤⎩,的解集在数轴上表示正确的是( ) A. B. C. D. 5.下列判断错误的是( )A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形6.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为( )A. 67、68B. 67、67C. 68、68D. 68、67 7.关于x 一元二次方程20ax bx c ++=()0a ≠的两根为11x =,21x =-那么下列结论一定成立的是( )A. 240b ac ->B. 240b ac -=C. 240b ac -<D. 240b ac -≤ 8.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A. 360°B. 540°C. 720°D. 900°9.关于抛物线y =x 2﹣2x +1,下列说法错误是( )A. 对称轴是直线x=1B. 与x轴有一个交点C. 开口向上D. 当x>1时,y随x的增大而减小10.如图,小明利用测角仪和旗杆拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为( )A.11sinα-m B.11sinα+m C.11cosα-m D.11cosα+m二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上.11.将正比例函数y=2x的图象向左平移3个单位,所得的直线不经过第____象限.12.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为____.13.如图,AB∥CD,CB平分∠ACD,若∠BCD = 28°,则∠A的度数为_________.14.某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=_____.x …﹣2﹣1.5 ﹣1﹣0.50 0.5 1 1.5 2 …y … 2 0.75 0﹣0.25 0﹣0.250 m 2 …15.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数3yx=-的图象上有一些整点,请写出其中一个整点的坐标______.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)17.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.18.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是___枚.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.计算:()031321223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭. 20.先化简,再求值:2211()111x x x x -÷+--,其中12x =-. 21.如图,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连接AF ,CE.求证:AF =CE.22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a = ,b = ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人? (3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生概率是多少?23.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生?24.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.25.如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD周长最小,求出P点的坐标.26.如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD 的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为,求cos 的值.答案与解析一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-12016的相反数是( ) A. 2016B. ﹣2016C. 12016D. -12016【答案】C【解析】【分析】 直接利用相反数的定义分析得出答案. 【详解】12016-的相反数是-(1)2016-=1 2016. 故答案是:C.【点睛】此题主要考查了相反数的定义,正确把握定义是解题关键.2.下列各式化简后的结果为 的是( )【答案】C【解析】A 不能化简;B ;C ,故正确;D ,故错误; 故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.3.下列运算正确的是( )A. 22x y xy +=B. 2222x y xy ⋅=C. 222x x x ÷=D. 451x x -=- 【答案】B【解析】分析:直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.详解:A 、2x+y 无法计算,故此选项错误;B 、x•2y 2=2xy 2,正确;C 、2x÷x 2=2x,故此选项错误;D、4x-5x=-x,故此选项错误;故选B.点睛:此题主要考查了合并同类项和整式的乘除运算等知识,正确掌握运算法则是解题关键.4.不等式组-32-13xx<⎧⎨≤⎩,的解集在数轴上表示正确的是( )A. B. C. D. 【答案】A【解析】【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【详解】解:3213xx-<⎧⎨-≤⎩①②,由①得,x>-3,由②得,x≤2,故不等式组解集为:-3<x≤2,在数轴上表示为:.故选A.点睛:本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5.下列判断错误的是()A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B 、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C 、四条边都相等的四边形是菱形,符合菱形的判定,,故本选项正确,不符合题意;D 、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D .【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.6.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为( )A. 67、68B. 67、67C. 68、68D. 68、67【答案】C【解析】【分析】根据次数出现最多的数是众数,根据中位数的定义即可解决问题.【详解】解:因为68出现了3次,出现次数最多,所以这组数据的众数是68.将这组数据从小到大排列得到:66,67,67,68,68,68,69,71,所以这组数据的中位数为68. 故选C .【点睛】本题考查众数、中位数定义,记住众数、中位数的定义是解决问题的关键,属于中考常考题型. 7.关于x 的一元二次方程20ax bx c ++=()0a ≠的两根为11x =,21x =-那么下列结论一定成立的是( )A. 240b ac ->B. 240b ac -=C. 240b ac -<D. 240b ac -≤ 【答案】A【解析】【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【详解】解:∵关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两根为x 1=1,x 2=-1,∴方程有两个不相等的实数根∴b 2-4ac >0,故选A .【点睛】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.8.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A. 360°B. 540°C. 720°D. 900°【答案】D【解析】根据题意列出可能情况,再分别根据多边形的内角和定理进行解答即可.解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:180°+540°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°,故选D.9.关于抛物线y=x2﹣2x+1,下列说法错误的是( )A. 对称轴是直线x=1B. 与x轴有一个交点C. 开口向上D. 当x>1时,y随x的增大而减小【答案】D【解析】【分析】利用二次函数的性质来解题即可.【详解】解:抛物线y=x2﹣2x+1,对称轴是直线21221bxa-=-=-=⨯,故A选项内容正确,不符合题意;△=b2﹣4ac=(﹣2)2﹣4×1×1=0,所以抛物线与x轴只有一个交点,故B选项内容正确,不符合题意; 抛物线a=1>0,所以开口向上,故C选项内容正确,不符合题意;因为抛物线开口向上,所以在对称轴右侧,即x>1时,y随x的增大而增大,所以D选项错误.符合题意,故选D.【点睛】此题考察二次函数的性质,熟记性质才能熟练运用.10.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为( )A. 11sin α-mB. 11sin α+mC. 11cos α- mD. 11cos α+ m 【答案】A【解析】【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sinα=PC PB ',列出方程即可解决问题. 【详解】设PA=PB=PB′=x ,在RT △PCB′中,sinα=PC PB ', ∴1x x-=sinα, ∴x-1=xsinα,∴(1-sinα)x=1,∴x=11sin α-. 故选A .【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上. 11.将正比例函数y =2x 的图象向左平移3个单位,所得的直线不经过第____象限.【答案】四【解析】【详解】根据上加下减自变量,得:2(+3)2+6y x x == ,过一、二、三象限. 即所得的直线不经过第四象限.故答案:四.12.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为____. 【答案】23 【解析】【分析】列举出所有情况,看甲没排在中间的情况占所有情况的多少即为所求的概率.【详解】解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,有4种甲没在中间, 所以甲没排在中间的概率是42=63. 故答案为:23. 【点睛】本题考查列举法求概率,正确理解题意列举出所有的情况是解题关键.13.如图,AB ∥CD ,CB 平分∠ACD ,若∠BCD = 28°,则∠A 的度数为_________.【答案】124°【解析】试题分析:根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ACB=∠BCD=28°,根据三角形的内角和即可得到∠A=180°﹣∠ABC ﹣∠ACB=124°,故答案为124°.考点:平行线的性质14.某学习小组为了探究函数y =x 2﹣|x |的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =_____. x … ﹣2 ﹣1.5 ﹣1﹣0.50 0.5 1 1.5 2 … y … 2 0.75 0 ﹣0.25﹣0.25 0 m 2 …【答案】0.75【解析】当x >0时,函数2y x x =-=2x x -,当x =1.5时,y =21.5 1.5-=0.75,则m =0.75.故答案为0.75.点睛:本题考查了二次函数图象上点的坐标特征以及绝对值,解题的关键是找出当x >0时,函数的关系式.本题属于基础题,难度不大,解决该题型题目时,根据绝对值的性质找出当x >0时y 关于x 的函数关系式是关键.15.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数3yx=-的图象上有一些整点,请写出其中一个整点的坐标______.【答案】(答案不唯一)如(1,-3)等【解析】【详解】解:根据整点的定义可得x、y均为整数,即x是3的约数,当x=3时,y=-13、-1均为整数,故3yx=-图象上的整点为(3,-1),故答案为:(答案不唯一)如(1,-3)等16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)【答案】24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.17.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P =40°,则∠ADC=____°.【答案】115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决. 【详解】解:连接OC ,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB ,∴∠OCB=∠OBC=65°,∵四边形ABCD 是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件. 18.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是___枚.【答案】13【解析】设第n 个图形有a n 个旗子,观察,发现规律:a 1=1,a 2=1+2=3,a 3=3+1=4,a 4=4+2=6,a 5=6+1=7,…,a 2n+1=3n+1,a 2n+2=3(n+1)(n 为自然数),当n=4时,a 9=3×4+1=13, 故答案13.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.计算:()031321223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭. 【答案】16【解析】分析:原式利用乘方的意义,绝对值的代数意义,零指数幂法则计算即可得到结果.详解:原式=121123⎛⎫-+-⨯- ⎪⎝⎭=1223-+=16. 点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:2211()111x x x x-÷+--,其中12x =-. 【答案】2x-,4. 【解析】【分析】 先括号内通分,然后计算除法,最后代入化简即可.【详解】原式=()2221112=-1x x x x x x--+-⨯- . 当12x =-时,原式=4. 【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.21.如图,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连接AF ,CE.求证:AF =CE.【答案】见解析【解析】试题分析:首先证明AE ∥CF ,△ABE ≌△CDF ,再根据全等三角形的性质可得AE =CF ,然后再根据一组对边平行且相等的四边形是平行四边形可得四边形AECF 是平行四边形,根据平行四边形的性质可得AF =CE .试题解析:证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF .又∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°,AE ∥CF .在△ABE 和△CDF 中,{ABE CDFAEB CFDAB CD∠∠∠∠===,∴△ABE ≌△CDF (AAS),∴AE =CF .∵AE ∥CF ,∴四边形AECF 是平行四边形,∴AF =CE . 22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a = ,b = ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【答案】(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-015-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生? 【答案】(1)女生15人,男生27人;(2)至少派22人【解析】【分析】(1)设该班男生有x人,女生有y人,根据男女生人数的关系以及全班共有42人,可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设派m名男学生,则派的女生为(30-m)名,根据”每天加工零件数=男生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【详解】(1)设该班男生有x人,女生有y人,依题意得:4223 x yx y⎨⎩+-⎧==,解得:2715xy⎧⎨⎩==.∴该班男生有27人,女生有15人.(2)设派m名男学生,则派的女生为(30-m)名,依题意得:50m+45(30-m)≥1460,即5m+1350≥1460,解得:m≥22,答:至少需要派22名男学生.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系列出二元一次方程组;(2)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.24.在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【答案】84.【解析】试题分析:根据题意利用勾股定理表示出AD 2的值,进而得出等式求出答案.试题解析:作AD ⊥BC 于D ,如图所示:设BD = x ,则14CD x =-.在Rt △ABD 中,由勾股定理得:2222215AD AB BD x =-=-,在Rt △ACD 中,由勾股定理得:()222221314AD AC CD x =-=--,∴2215x -= ()221314x --,解之得:9x =.∴12AD =. ∴1·2ABC S BC AD ∆= 11412842=⨯⨯=. 25.如图,顶点为A 31)的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ;(3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.【答案】(1)y=﹣13x2+33x;(2)证明见解析;(3)P(﹣35,0).【解析】【分析】(1)用待定系数法求出抛物线解析式;(2)先求出直线OA对应的一次函数的表达式为y 3.再求出直线BD的表达式为y3﹣2.最后求出交点坐标C,D即可;(3)先判断出C'D与x轴的交点即为点P,它使得△PCD的周长最小.作辅助线判断出△C'PO∽△C'DQ即可.【详解】解:(1)∵抛物线顶点为A31),设抛物线解析式为y=a(x32+1,将原点坐标(0,0)在抛物线上,∴0=a3)2+1∴a=﹣13,∴抛物线的表达式为:y=﹣13x223x.(2)令y=0,得0=﹣13x2+23x,∴x=0(舍),或x3∴B点坐标为:(3,0),设直线OA的表达式为y=kx.∵A31)在直线OA上,3=1,∴k3∴直线OA 对应的一次函数的表达式为y =33x . ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y =33x +b .∵B (23,0)在直线BD 上,∴0=33×23+b ,∴b =﹣2, ∴直线BD 的表达式为y =33x ﹣2. 由2321233y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩得交点D 的坐标为(33),令x =0得,y =﹣2,∴C 点的坐标为(0,﹣2),由勾股定理,得:OA =2=OC ,AB =2=CD ,OB 3OD .在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪=⎨⎪=⎩,∴△OAB ≌△OCD .(3)点C 关于x 轴的对称点C '的坐标为(0,2),∴C 'D 与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,∴PO ∥DQ ,∴△C 'PO ∽△C 'DQ ,∴''PO C O DQ C Q =253=,∴PO 23, ∴点P 的坐标为(23,0). 【点睛】本题是二次函数综合题,主要考查了待定系数法求函数解析式,全等三角形的性质和判定,相似三角形的性质和全等,解答本题的关键是确定函数解析式.26.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为,求cos α的值.【答案】3矩形移动距离为38时,矩形与△CBD 3313+ 【解析】 分析:(1)根据已知,由直角三角形的性质可知AB=2,从而求得AD ,CD ,利用中位线的性质可得EF ,DF ,利用三角函数可得GF ,由矩形的面积公式可得结果;(2)首先利用分类讨论的思想,分析当矩形与△CBD 重叠部分为三角形时(0<x ≤14),利用三角函数和三角形的面积公式可得结果;当矩形与△CBD 重叠部分为直角梯形时(14<x ≤12),列出方程解得x; (3)作H 2Q ⊥AB 于Q ,设DQ=m ,则H 2Q 3m ,又DG 1=14,H 2G 1=12,利用勾股定理可得m ,在Rt △QH 2G 1中,利用三角函数解得cosα.详解:(1)如图①,在ABC ∆中,∠ACB =90°,∠B =30°,AC =1,∴AB =2,又∵D 是AB 的中点,∴AD =1,112CD AB ==. 又∵EF 是ACD ∆的中位线,∴12EF DF ==, 在ACD ∆中,AD=CD, ∠A =60°, ∴∠ADC =60°.在FGD ∆中,sin GF DF =⋅60°34=, ∴矩形EFGH 的面积133248S EF GF =⋅=⨯=. (2)如图②,设矩形移动的距离为则102x <≤,当矩形与△CBD 重叠部分为三角形时,则104x <≤, 1332S x x ==, ∴214x =>.(舍去). 当矩形与△CBD 重叠部分为直角梯形时,则1142x <≤, 重叠部分的面积3113324x -⨯=, ∴38x =. 即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316. (3)如图③,作2H Q AB ⊥于Q .设DQ m =,则23H Q m =,又114DG =,2112H G =. 在Rt △H 2QG 1中,)22211342m m ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭ , 解之得113m -±=负的舍去). ∴1211131313164cos 12QG H G α-+++===. 点睛:本题主要考查了直角三角形的性质,中位线的性质和三角函数定义等,利用分类讨论的思想,构建直角三角形是解答此题的关键.。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
中考数学模拟测试题(附含答案)
中考数学模拟测试题(附含答案)(满分:120分;考试时间120分钟)一、单选题。
(每小题4分,共40分) 1.实数﹣2023的绝对值是( )A.2023B.﹣2023C.12023 D.﹣120232.如图是由6个相同的正方体搭成的几何体,这个几何体的主视图是( )A. B. C. D.3.山东省济南济阳区躯曲堤街道,号称中国黄瓜之乡,特产曲堤黄瓜,全国农产品地理标志,2022年,该街道黄瓜年产值超15 0000 0000元,将数字15 0000 0000用科学记数法表示为( ) A.15×108 B.1.5×109 C.0.15×1010 D.1.5×1084.如图,AB ∥CD ,点E 在AB 上,EC 平分∠AED ,若∠2=50°,则∠1的度数为( ) A.45° B.50° C.65° D.80°(第4题图) (第8题图) (第9题图)5.数学中的对称之美无处不在,下列是张强看到的他所在小区的垃圾桶上的四幅垃圾分类标志图案,如果不考虑图案下面的文字说明,那么这四幅图案既是轴对称图形,又是中心对称图形的是( )A.有害垃圾B.可回收物C.厨余垃圾D.其它垃圾 6.化简:x 2x 2-4÷xx -2=( )A.1B.xC.xx-2D.xx+27.现将正面分别标有“善”、“美”、“济”、“阳”图案的四张卡片(除卡片正面内容不同处,其余完全相同),背面朝上放在桌面上,混合洗匀后,王刚从中随机抽取两张,则这两张卡片的图案恰好可以组成济阳概率是()A.12B.13C.14D.168.反比例函数y=kx在第一象限的图案如图所示,则k的值可能是()A.9B.18C.25D.369.如图,点C是直线AB为4的半圆的中点,连接BC,分别以点B和点C为圆心,大于12BC的长为半径画弧,两弧相交于点D,作直线OD交BC于点E,连接AE,则阴影部分面积为()A.πB.2πC.3√3-πD.2√3-π10.把二次函数y=ax2+bx+c(a>0)的图象作关于y轴的对称变换,所的图象的解析式为y=a (x+1)2-a2,若(m-2)a+b+c≥0成立,则m的最小整数值为()A.2B.3C.4D.5二、填空题。
中考仿真模拟检测《数学试卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题共10个小题,每小题3分,共30分)1. 3-的倒数是( )A. B. 13C.13- D. 3-2. 在函数y=1x-中,x的取值范围是()A. x≥1B. x≤1C. x≠1D. x<03. 下列运算正确的是( )A. x3·x3=2x6B. (-2x2)2=-4x4C. (x3)2=x6D. x5÷x=x54. 下列图形中,既轴对称图形又是中心对称图形有()A. 1个B. 2个C. 3个D. 4个5. 下列各式中,计算正确的是( )A. -2-3=-1B. -2m²+m²=-m²C. 3÷5445⨯=3÷1=3 D. 3a+b=3a6. 一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )A. 3,3,0.4B. 2,3,2C. 3,2,0.4D. 3,3,27. 某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确是( )A. 100(1+2x%)2=120B. 100(1+x2)2=120C. 100(1-x%)2=120D. 100(1+x%)2=1208. 命题:①对顶角相等;②相等的角是对顶角;③在同一平面,垂直于同一条直线的两条直线平行;④平行于同一条直线的两条直线垂直.其中真命题有A. 1个B. 2个C. 3个D. 4个9. 如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )A. 5B. 6C. 2D. 310. 如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A. 2B. 54C.53D.75二、填空题(共8小题;共24分)11. 计算(2+1)(2-1)的结果为_____.12. 分解因式:2a2﹣8b2=________.13. 已知某水库容量约为112000立方米,将112000用科学记数法表示为.14. 如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15. 如图,在平面直角坐标系中,函数y=kx(x>0,常数k>0)的图象经过点A(1,2),B(m,n),(m>1),过点B作y轴的垂线,垂足为C.若△ABC的面积为2,则点B的坐标为____________.16. 已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是cm2.17. 如图,在矩形ABCD 中,AB=5,BC=103,一圆弧过点B 和点C ,且与AD 相切,则图中阴影部分面积________.18. 如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2.则 cos ∠MCN=________.三、解答题(共9小题;共72分)19. 计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a ﹣b)﹣a(a ﹣b)20. (1)解分式方程: 2216124x x x --=+- (2)先化简,再求值: 222111x x x x x ++---,其中x 满足不等式组 1030x x -≥⎧⎨-<⎩且x 整数. 21. 已知:如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:DC=CF .22. 萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:(1)这次调查中,一共调查了名学生,图1中C类所对应的圆心角度数为 ;(2)请补全条形统计图;(3)在非常喜欢外教的5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.23. 如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.24. 小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?25. (2011贵州安顺,23,10分)如图,已知反比例函数图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).⑴求直线y=ax+b的解析式;⑵设直线y=ax+b与x轴交于点M,求AM的长.26. 如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=22,BC=2,求⊙O的半径.27. 已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.(1)求证:四边形ABCD是矩形;(2)如果AE=EG,求证:AC2=BC•BG.答案与解析一、选择题:(本大题共10个小题,每小题3分,共30分)1. 3-的倒数是( )A. B. 13 C. 13- D. 3- 【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C2. 在函数中,x 的取值范围是( )A. x≥1B. x≤1C. x≠1D. x <0【答案】A【解析】分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数.详解:根据题意可得:x -1≥0, 解得:x≥1, 故选A .点睛:本题主要考查的是二次根式的性质,属于基础题型.明确二次根式的性质是解决这个问题的关键. 3. 下列运算正确的是( )A. x 3·x 3=2x 6B. (-2x 2)2=-4x 4C. (x 3)2=x 6D. x 5÷x =x 5 【答案】C【解析】试题分析:A.333+36x x =x =x ⋅,故A 错误;B.()()()222224-2x =-2x =4x ⋅,故B 错误;C.()23326x =x =x ⨯,故C 正确;D.55-14x x=x =x ÷,故D 错误.考点:幂的运算4. 下列图形中,既是轴对称图形又是中心对称图形有 ( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】 中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解: 只有图2和图3既是轴对称又是中心对称图形.故,选B【点睛】本题考查中心对称图形和轴对称图形,本题属于基础应用题,只需学生熟练掌握中心对称图形和轴对称图形的定义,即可完成.5. 下列各式中,计算正确的是( )A. -2-3=-1B. -2m²+m²=-m²C. 3÷5445⨯=3÷1=3 D. 3a+b=3a 【答案】B【解析】分析:根据有理数的计算法则以及合并同类项的法则即可得出正确答案.详解:A 、-2-3=-5,故错误;B 、原式=2m -,故正确;C 、原式=444835525⨯⨯=,故错误;D 、不是同类项,无法进行加法计算, 故本题选B .点睛:本题主要考查的是有理数的计算法则和合并同类项的法则,属于基础题型.明确计算法则是解决这个问题的关键.6. 一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )A. 3,3,0.4B. 2,3,2C. 3,2,0.4D. 3,3,2 【答案】A【解析】 试题分析:依题意得:1(2433)35x ++++=,解得:x =3,把原数据由小到大排列为:2,3,3,3,4,所以中位数为3,众数为3,方差为:15(1+0+1+0+0)=0.4,故答案选A.考点:中位数;众数;方差.7. 某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确是( )A. 100(1+2x%)2=120B. 100(1+x 2)2=120C. 100(1-x%)2=120D. 100(1+x%)2=120【答案】D【解析】分析:根据涨价前的价格×(1+涨价率)涨价次数=涨价后的数量得出方程.详解:根据题意可得:()21001x%120+=,故选D .点睛:本题主要考查的是一元二次方程的应用,属于基础题型.根据题意得出等量关系是解决这个问题的关键.8. 命题:①对顶角相等;②相等角是对顶角;③在同一平面,垂直于同一条直线的两条直线平行;④平行于同一条直线的两条直线垂直.其中真命题有A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】试题分析:①③正确;②相等的角不一定就是对顶角,也有可能是内错角、同位角等,④平行于同一条直线的两条直线互相平行考点:概念的掌握点评:本题难度不大,考查的是学生对于知识概念的一些掌握程度9. 如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )A. 5B. 6C. 2D. 3【答案】C【解析】 【详解】试题解析:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320,∴AB•DH=32O ,∴DH=16,在Rt △ADH 中,AH=22AD DH -=12, ∴HB=AB ﹣AH=8,在Rt △BDH 中,BD=2285+=DH BH ,设⊙O 与AB 相切于F ,连接AF .∵AD=AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH ,∴=OA OF BD BH, ∴100885=F , ∴OF=25.故选C .考点:1.切线的性质;2.菱形的性质.10. 如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A. 2B. 54C. 53D. 75【答案】D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,2222247555 BC BE⎛⎫-=-=⎪⎝⎭.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.二、填空题(共8小题;共24分)11. 计算22-1)的结果为_____.【答案】1【解析】利用平方差公式进行计算即可. 【详解】原式=(2)2﹣1 =2﹣1 =1, 故答案为1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式. 12. 分解因式:2a 2﹣8b 2=________. 【答案】2(2)(2)a b a b -+ 【解析】 【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解即可. 【详解】2a 2﹣8b 2=2(a 2﹣4b 2)=2(a +2b )(a ﹣2b ). 故答案为2(a +2b )(a ﹣2b ).【点睛】本题考查了提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.13. 已知某水库容量约为112000立方米,将112000用科学记数法表示为 . 【答案】1.12×105. 【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数且为这个数的整数位数减1,,由于112000亿有6位,所以可以确定n=6﹣1=5.即112000=1.12×105. 考点:科学记数法.14. 如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃. 考点:1.有理数大小比较;2.有理数的减法. 15. 如图,在平面直角坐标系中,函数y=kx(x >0,常数k >0)的图象经过点A (1,2),B (m ,n ),(m >1),过点B 作y 轴的垂线,垂足为C .若△ABC 的面积为2,则点B 的坐标为____________.【答案】1(4,)2B 【解析】考点:反比例函数综合题. 分析:由于函数ky x(x >0常数k >0)的图象经过点A(1,2),把(1,2)代入解析式即可确定k=2,依题意BC=m ,BC 边上的高是2-n="2-"2m,根据三角形的面积公式得到关于m 的方程,解方程即可求出m ,然后把m 的值代入y=2x,即可求得B 的纵坐标,最后就求出点B 的坐标. 解:∵函数y=kx(x >0常数k >0)的图象经过点A(1,2), ∴把(1,2)代入解析式得2=1k , ∴k=2,∵B(m ,n)(m >1), ∴BC=m ,当x=m 时,n=2m,∴BC边上的高是2-n=2-2m,而S△ABC=12m(2-2m)=2,∴m=3,∴把m=3代入y=2x,∴n=23,∴点B的坐标是(3,23).故填空答案:(3,23 ).16. 已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是cm2.【答案】24π.【解析】底面半径为3cm,则底面周长=6πcm,侧面面积=12×6π×8=24πcm2.17. 如图,在矩形ABCD中,AB=5,BC=103,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为________.【答案】753﹣100 3【解析】设圆弧圆心为O,与AD切于E,连接OE交BC于F,连接OB、OC,设圆的半径为x,则OF=x-5,由勾股定理得,OB2=OF2+BF2,即x 2=(x-5)2+(53 )2解得,x=10, 则∠BOF=60°,∠BOC=120°, 则阴影部分面积为:矩形ABCD 的面积-(扇形BOCE 的面积-△BOC 的面积)2120101103510353602π⨯⨯=⨯-+⨯⨯1007533π=-故答案是:1007533π-. 18. 如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2.则 cos ∠MCN=________.【答案】1314【解析】 【分析】连接AC ,通过三角形全等,求得∠BAC=30°,从而求得BC 的长,然后根据勾股定理求得CM 的长,连接MN ,过M 点作ME ⊥CN 于E ,则△MNA 是等边三角形求得MN=2,设NE=x ,表示出CE ,根据勾股定理即可求得ME ,然后求得tan ∠MCN .【详解】∵AB=AD=6,AM :MB=AN :ND=1:2, ∴AM=AN=2,BM=DN=4, 连接MN ,连接AC ,∵AB ⊥BC ,AD ⊥CD ,∠BAD=60° 在Rt △ABC 与Rt △ADC 中,AB ADAC AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ADC (HL ) ∴∠BAC=∠DAC=12∠BAD=30°,MC=NC , ∴BC=12AC , ∴AC 2=BC 2+AB 2,即(2BC )2=BC 2+AB 2, 3BC 2=AB 2, ∴BC=23,在Rt △BMC 中,CM=22224(23)27BM BC +=+=∵AN=AM ,∠MAN=60°, ∴△MAN 是等边三角形, ∴MN=AM=AN=2,过M 点作ME ⊥CN 于E ,设NE=x ,则CE=27-x ,∴MN 2-NE 2=MC 2-EC 2,即4-x 2=(7)2-(7-x )2, 解得:7, ∴7-7137 ∴223217MN NE -=,∴cos ∠MCN=1377131427CECM==.考点:1.全等三角形的判定与性质;2.三角形的面积;3.角平分线的性质;4.含30度角的直角三角形;勾股定理.三、解答题(共9小题;共72分)19. 计算:(1)|﹣6|+(﹣2)37)0; (2)(a+b)(a ﹣b)﹣a(a ﹣b) 【答案】(1)-1;(2)ab ﹣b 2.【解析】分析:(1)、根据绝对值、立方和零次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据平方差公式和多项式的乘法计算法则将括号去掉,然后进行合并同类项. 详解:(1)、原式=6﹣8+1=﹣1; (2)、原式=a 2﹣b 2﹣a 2+ab=ab ﹣b 2.点睛:本题主要考查的是实数的计算以及整式的乘法,属于基础题型.在去括号的时候,如果括号前面为负号,则去掉括号后括号里面的每一项都要变号. 20. (1)解分式方程:2216124x x x --=+- (2)先化简,再求值: 222111x x xx x ++---,其中x 满足不等式组 1030x x -≥⎧⎨-<⎩且x 为整数. 【答案】(1) 原方程无解;(2)11x -,1. 【解析】分析:(1)、首先进行去分母将分式方程转化为整式方程,从而求出整式方程的解,然后对解进行检验,看是否使分式的分母为零;(2)、将分式进行通分,然后根据减法的计算法则将分式进行化简;求出不等式组的解,然后选择出合适的x 的值代入化简后的分式进行计算得出答案. 详解:(1)、解:去分母得: , 解方程得:检验:当 时,∴是原方程增根, ∴ 原方程无解(2)、解:==解不等式组得: 1≤x <3 .∵x 为整数, ∴x =1或x =2. 当x =1时,原式无意义, ∴ 当x =2时,原式=1.点睛:本题主要考查的是分式的化简和解分式方程,属于基础题型.求出分式的公分母是解题的前提条件. 21. 已知:如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:DC=CF .【答案】见解析 【解析】分析:根据平行四边形的性质、中点的性质以及对顶角证明出△ABE和△FCE全等,从而得出AB=CF,根据平行四边形的性质得出AB=CD,从而得出答案.详解:证明:∵四边形ABCD是平行四边形,∴CD∥AB,AB=CD,∴∠DFA=∠FAB;∵E为BC中点,∴EC=EB,∴在△ABE与△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∴DC=CF.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于基础题型.证明出三角形全等是解题的关键.22. 萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:(1)这次调查中,一共调查了名学生,图1中C类所对应的圆心角度数为 ;(2)请补全条形统计图;(3)在非常喜欢外教5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.【答案】(1)40;54°;(2)补全条形统计图见解析;(3)树状图或列表见解析,P(一男一女)=3 5【解析】试题分析:(1)通过D类型有4人占比10%即可得到调查的人数;然后根据条形图得到C类的人数,通过占比求得相应圆心角的度数;(2)用调查的总人数减去A、B、D类的人数得到C类的人数,补全图形即可;(3)通过列表法即可求得概率.试题解析:(1)一共调查了4÷10%=40人,40-8-22-4=6,360°×640=54°,故填:40;54°;(2)补全条形统计图,如图所示:(3)列表:男1 男2 男3 女1 女2 男1 √√男2 √√男3 √√女1 √√√女2 √√√所有等可能的情况有20种情况,其中一男一女的情况有12种,则P(一男一女)=35.23.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.24. 小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?【答案】(1)每个篮球80元,每个足球50元;(2)最多可以买33个篮球.【解析】试题分析:(1)设每个篮球x元,每个足球y元,根据买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元,列出方程组,求解即可;(2)设买m个篮球,则购买(60-m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.试题解析:(1)设每个篮球x元,每个足球y元,由题意得,23310 {52500 x yx y+-+=,解得:80 {50xy==,答:每个篮球80元,每个足球50元; (2)设买m个篮球,则购买(60-m)个足球,由题意得,80,m+50(60-m)≤4000,解得:m≤3313,∵m为整数,∴m最大取33,答:最多可以买33个篮球.考点:1.一元一次不等式的应用;2.二元一次方程组的应用.25. (2011贵州安顺,23,10分)如图,已知反比例函数的图像经过第二象限内的点A(-1,m),AB⊥x 轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).⑴求直线y=ax+b的解析式;⑵设直线y=ax+b与x轴交于点M,求AM的长.【答案】(1)∵点A(-1,m)在第二象限内,∴AB = m,OB = 1,∴即:,解得,∴A (-1,4),∵点A (-1,4),在反比例函数的图像上,∴4 =,解得,∵反比例函数为,又∵反比例函数的图像经过C(n,)∴,解得,∴C (2,-2),∵直线过点A (-14),C (2,-2)∴解方程组得 ∴直线的解析式为; (2)当y = 0时,即解得,即点M (1,0) 在中,∵AB = 4,BM = BO +OM =" 1+1" = 2,由勾股定理得AM =. 【解析】试题分析:(1)根据点A 的横坐标与△AOB 的面积求出AB 的长度,从而得到点A 的坐标,然后利用待定系数法求出反比例函数解析式,再利用反比例函数解析式求出点C 的坐标,根据点A 与点C 的坐标利用待定系数法即可求出直线y=ax+b 的解析式;(2)根据直线y=ax+b 的解析式,取y=0,求出对应的x 的值,得到点M 的坐标,然后求出BM 的长度,在△ABM 中利用勾股定理即可求出AM 的长度.试题解析:(1)∵点A(-1,m )在第二象限内,∴AB=m ,OB=1,∴S △ABO =12AB•BO=2, 即:12×m×1=2, 解得m=4,∴A (-1,4),∵点A (-1,4),在反比例函数y =k x 的图象上, ∴4=1k , 解得k=-4,∴反比例函数为y=-4x又∵反比例函数y=-4x的图象经过C(n ,-2) ∴-2=4-n , 解得n=2,∴C (2,-2),∵直线y=ax+b 过点A (-1,4),C (2,-2)∴4{22a b a b-+-+==, 解方程组得2{2a b -==, ∴直线y=ax+b 的解析式为y=-2x+2;(2)当y=0时,即-2x+2=0,解得x=1,∴点M 的坐标是M(1,0),在Rt △ABM 中,∵AB=4,BM=BO+OM=1+1=2,由勾股定理得AM=2222=42=25AB BM ++.26. 如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分别交于点E 、F ,且∠ACB =∠DCE .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论;(2)若tan ∠ACB 2,BC =2,求⊙O 的半径. 【答案】(1)相切(2)64【解析】【分析】(1)连接OE .欲证直线CE 与⊙O 相切,只需证明∠CEO =90°,即OE ⊥CE 即可;(2)在直角三角形ABC 中,根据三角函数的定义可以求得AB 2,然后根据勾股定理求得AC 6同理知DE =1;在Rt △COE 中,利用勾股定理可以求得CO 2=OE 2+CE 2,即6-r) 2=r 2+3,从而易得r 的值;【详解】解:(1)直线CE与⊙O相切理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AEO+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.(2)∵tan∠ACB=22ABBC=,BC=2,∴AB=BC•tan∠ACB2,∴AC6;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB 2,∴DE=DC•tan∠DCE=1;在Rt△CDE中,CE223CD DE+=连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即6-r) 2=r2+3解得:r=6 427. 已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.(1)求证:四边形ABCD是矩形;(2)如果AE=EG,求证:AC2=BC•BG.【答案】(1)见解析;(2)见解析.【解析】【详解】分析:(1)、因为四边形ABCD是平行四边形,所以只要证明∠BAD=90°,即可得到四边形ABCD 是矩形;(2)、连接AG,由平行四边形的性质和矩形的性质以及结合已知条件可证明△BCG∽△ABC,再由相似三角形的性质:对应边的比值相等即可证明AC2=BC•BG.详解:(1)、解:证明:∵BE⊥AC,∴∠AFB=90°.∴∠ABE+∠BAF=90°.∵∠ABE=∠CAD.∴∠CAD+∠BAF=90°.即∠BAD=90°.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)、解:连接AG.∵AE=EG,∴∠EAG=∠EGA,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABG=∠BGC,∴∠CAD=∠BGC,∴∠AGC=∠GAC,∴CA=CG,∵AD∥BC,∴∠CAD=∠ACB,∴∠ACB=∠BGC,∵四边形ABCD是矩形,∴∠BCG=90°,∴∠BCG=∠ABC,∴△BCG∽△ABC,∴AC BCBG CG,∴AC2=BC•BG.点睛:本题考查了平行四边形的性质、矩形的判断和性质、等腰三角形的判断和性质以及相似三角形的判断和性质,题目的综合性较强,难度中等,熟记相似三角形的各种判断方法是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中考模拟试题
一、选择题(每小题4分,共40分)
1.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()
A.晴B.浮尘C.大雨D.大雪
2.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()
A.280×103B.28×104C.2.8×105D.0.28×106
3.下列各组数中,互为相反数的是()
A.|﹣|与﹣B.|﹣|与﹣C.|﹣|与D.|﹣|与
4.下列运算正确的是()
A.x2+x2=x4B.a2•a3=a5
C.(3x)2 =6x2D.(mn)5÷(mn)=mn4
5.下列计算正确的是()
A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2
C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y2
6.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()
A.40°B.50°C.60°D.140°
7.一次函数y=x﹣2的图象经过点()
A.(﹣2,0)B.(0,0)C.(0,2)D.(0,﹣2)8.在△ABC中,已知∠A、∠B都是锐角,|sin A﹣|+(1﹣tan B)2=0,那么∠C的度数为()
A.75°B.90°C.105°D.120°
9.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球
后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()
A.B.C.D.
11.若二次根式有意义,则x的取值范围是()
A.x>B.x≥C.x≤D.x≤5
二.填空题(每小题4分,共24分)
12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.
13.计算:()﹣2+(π﹣3)0﹣=.
14.计算2﹣=.
15.已知y关于x成正比例,且当x=2时,y=﹣6,则当x=1时,y的值为
16.分解因式:x3﹣2x2+x=
17.因式分解:3x3﹣6x2y+3xy2=.
18.若(y+3)(y﹣2)=y2+my+n,则m+n的值为
三.解答题(共9小题)
19.解方程组
(1)(2).
20.解不等式组:
21.解方程:4x(x+3)=x2﹣9
22.先化简,再求值:(2﹣)÷,其中x=2.
23.如图,等腰Rt△ABC的顶点B落在直线l2上,若∠1=75°,∠2=60°.求证:l1∥l2.
20.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了多少名名中学生家长;
(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;
(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.
18.“校园安全”受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为°;
(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为人;
(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.
19.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B (﹣4,n).
(1)求n和b的值;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.。