09核苷酸代谢 ppt课件
核苷酸代谢—核苷酸的合成代谢(生物化学课件)
项目一 、二 核苷酸的合成与分解代谢 3、从头合成过程
( 1 ) IMP的合成 ( 2 ) AMP和GMP的生成 ( 3 ) ATP和GTP的生成
项目一 、二 核苷酸的合成与分解代谢
PP-1-R-5-P
尿苷酸激酶
UDP
ATP ADP
二磷酸核苷激酶
ATP
ADP
UTP
CTP合成酶
谷氨酰胺 ATP
谷氨酸 ADP+Pi
项目一 核苷酸的合成代谢 ( 3)dTMP或TMP的生成
脱氧核苷酸还原酶
UDP
dUDP
CTP CDP dCDP dCMP
TMP合酶
N5, N10-甲烯FH4
FH2
dUMP
FH2还原酶 FH4 NADP+ NADPH+H+
项目一 、二 核苷酸的合成与分解代谢 ( 2 )胞嘧啶核苷酸的合成
尿苷酸激酶
UDP
ATP ADP
二磷酸核苷激酶
ATP
ADP
UTP
CTP合成酶
谷氨酰胺 ATP
谷氨酸 ADP+Pi
项目一 、二 核苷酸的合成与分解代谢 ( 3)dTMP或TMP的生成
脱氧核苷酸还原酶
UDP
dUDP
CTP CDP dCDP dCMP
腺苷激酶
激酶
AMP
ADP
ATP ADP
ATP ADP鸟苷激酶来自激酶GMPGDP
ATP ADP
ATP ADP
ATP GTP
项目一 、二 核苷酸的合成与分解代谢
头顶二氧碳; 2、
核苷酸的代谢医学课件
对于嘌呤核苷酸代谢紊乱的患者, 应采用低嘌呤饮食,限制高嘌呤食 物的摄入,如动物内脏、海鲜等。
药物治疗
对于高尿酸血症和痛风患者,可以 使用抑制尿酸合成的药物,如别嘌 呤醇、丙磺舒等。
酶抑制治疗
对于嘌呤核苷酸分解代谢紊乱的患 者,可以使用酶抑制药物,如环孢 素、他克莫司等。
细胞移植治疗
对于嘌呤核苷酸合成途径受阻的患 者,可以考虑进行造血干细胞移植 治疗。
核苷酸代谢在医学中有重要的应用价值,如治疗疾病 和进行生物医学研究。
核苷酸代谢是生物体内一个重要的生化过程,包括合 成和降解两个主要途径。
核苷酸代谢物和相关酶在代谢调控中具有重要作用, 可以影响细胞生长、分化、凋亡等生物学过程。
下一步研究方向
深入研究核苷酸代谢及相关酶的分子机制和调节 作用,探讨其在医学中的应用价值。
背景
核苷酸是核酸的基本组成单位,而核酸是生命活动中至关重 要的物质之一。核苷酸代谢是生物体内维持生命活动所必需 的基本过程之一,涉及到许多医学领域,如遗传学、分子生 物学、肿瘤学、药物学等。
核苷酸代谢在医学中的重要性
遗传性疾病
许多遗传性疾病是由于核苷酸代谢中的基因突变 或缺陷所引起的,如嘌呤、嘧啶代谢障碍等。
THANKS
嘌呤核苷酸合成是细胞生存和增殖的基本条件,如果合成减少,会导致细胞生长和代谢异常。
嘌呤核苷酸分解代谢紊乱
由于嘌呤核苷酸分解代谢紊乱,会产生过多的尿酸,引起高尿酸血症和痛风等疾病。
嘌呤核苷酸合成途径受阻
由于嘌呤核苷酸合成途径受阻,会导致细胞内DNA和RNA合成受阻,影响细胞的正常分裂和增殖。
核苷酸代谢紊乱的医学治疗
03
核苷酸代谢与医学
核苷酸代谢与能量代谢
生物化学之核苷酸代谢
生尿酸,同时补救途径不通会引起嘌呤核苷
酸从头合成速度增加,更加大量累积尿酸, 从而导致肾结石和痛风
3、脱氧核苷酸的生成
O P -P O N 核糖核苷酸还原酶 OH
硫 化 原 白 氧 还 蛋
CH2
O P -P CH2 O
N
OH NDP
SH
硫 化 原 白 氧 还 蛋
OH S S
H dNDP
SH 硫氧化还原蛋白还原酶 NADP NADP H
次黄嘌呤核苷酸 IMP
ATP和GTP的生成
HOOCCH CHCOOH 2 O C C N O OH OH C N N CH GTP Asp H N P O CH2 HC NH C C N O OH OH OH 腺苷酸代琥珀酸 OH C N N CH 延胡索酸 HC P O CH2 N O C N CH
Glu
P O CH2 OH
OH
OH
XMP
GMP
(Xanthosine monophosphate)
嘌呤核苷酸从头合成的调节
原则之一:满足需求,防止供过于求。
(-) (+) R-5-P
PRPP合 成 酶
(-) (+) PRPP (-) PAR (-) IMP XMP (-) GMP GDP GTP
次黄嘌呤
6-巯 基 嘌 呤 6MP (6-mercaptopurine)
SH
OH H N HC P O CH2 OH C C N O OH C N N CH H N HC P O CH2 OH
C C N O OH C N N CH
次 黄 嘌 呤 核 苷 酸 (IMP)
6-巯 基 嘌 呤 核 苷 酸
嘌呤核苷酸的抗代谢物-2
生物化学-核苷酸代谢(共41张PPT)
尿嘧啶磷酸核糖转移酶
尿嘧啶+PRPP
UMP+PPi
1-磷酸核糖
Pi
尿嘧啶核苷
尿苷激酶 Mg2+
UMP
ATP
ADP
胸苷激酶 脱氧胸苷
Mg2+
dTMP
ATP
ADP
x-染色体连锁隐性遗传 缺乏的酶:次黄嘌呤鸟嘌呤磷酸核糖基转移酶(HGPRT) 免疫缺陷症,
(ribonucleotide) ADA缺乏症患者体内腺苷酸分解代谢严重障碍,T、B淋巴细胞受损,引起反复感染等症状。
痛 风(GOUT)
痛风原因:高嘌呤饮食、体内核 酸分解增强、肾脏疾病
表现:尿酸盐沉积造成损害
别嘌呤醇治疗痛风:机制是别嘌 呤醇在结构上与次黄嘌呤相似 ,抑制黄嘌呤氧化酶
腺苷脱氨酶(ADA)基因位于20q13-qter,编码一条含363个氨 基酸残基的多肽链。
腺苷脱氨酶(ADA)缺乏引起重症免疫缺陷症,即ADA缺乏症。ADA缺乏 症患者体内腺苷酸分解代谢严重障碍,T、B淋巴细胞受损,引起反 复感染等症状。
硫氧还蛋白
S S
谷氧还蛋白还原酶
硫氧还蛋白还原酶
G SSG
2G SH
谷胱甘肽还原酶
NADPH +H +
N A D P+
FAD
FA D H 2
硫氧还蛋白还原酶
NADPH +H +
NADP+
脱氧胸苷酸(dTMP)的生成
尿苷一磷酸激酶
尿苷二磷酸激酶
UMP
UDP
UTP
ATP合酶
CTP
ATP
ADP
ATP
ADP 谷氨酰胺
鸟苷一磷酸 (GMP) 鸟苷二磷酸 (GDP) 鸟苷三磷酸 (GTP)
生物化学_09 核酸降解和核苷酸的代谢
IMP转变为GMP和 转变为GMP (3)IMP转变为GMP和AMP
2、 补救途径
(利用已有的碱基和核苷合成核苷酸) (1) 磷酸核糖转移酶途径(重要途径)
核苷磷酸化酶
嘌呤核苷 + 磷酸 腺嘌呤 + 5-PRPP
次黄嘌呤(鸟嘌呤) 磷酸核糖转移酶
嘌呤碱 + 戊糖-1-磷酸 AMP + PPi
腺嘌呤磷酸核糖转移酶
基因组DNA 基因组 不被切割
限制—修饰的酶学假说 限制 修饰的酶学假说 1968年,Meselson 和Yuan发现了 型限制性核酸内切酶 年 发现了I型限制性核酸内切酶 发现了 1970年,Smith和Wilcox从流感嗜血杆菌中分离纯化了 年 和 从流感嗜血杆菌中分离纯化了 第一个II型限制性核酸内切酶 第一个 型限制性核酸内切酶Hind II 型限制性核酸内切酶
(2)尿嘧啶核苷酸的合成 )
天冬氨酸转氨甲酰酶 二氢乳清酸酶
乳清苷酸焦磷酸化酶/Mg2+ 二氢乳清酸脱氢酶
乳清苷酸脱羧酶
(3) 胞嘧啶核苷酸的合成
尿嘧啶核苷三磷酸可直接与NH3(细菌)或Gln(动物) 细菌) 尿嘧啶核苷三磷酸可直接与 (动物) 反应,生成胞嘧啶核苷三磷酸。 反应,生成胞嘧啶核苷三磷酸。
二、脱氧核糖核酸酶
只能水解DNA磷酸二酯键的酶。 只能水解DNA磷酸二酯键的酶。 DNA磷酸二酯键的酶 牛胰脱氧核糖核酸酶(DNaseⅠ) 牛胰脱氧核糖核酸酶(DNaseⅠ): 可切割双链和单链DNA 降解产物为3 DNA, 可切割双链和单链 DNA, 降解产物为 3’ - 磷酸 为末端的寡核苷酸。 为末端的寡核苷酸。 限制性核酸内切酶: 限制性核酸内切酶: 细菌产生的、能识别并特异切割外源DNA DNA特定 细菌产生的 、 能识别并特异切割外源 DNA 特定 中的磷酸二脂键( 序列中的磷酸二脂键 对碱基序列专一) 序列中的磷酸二脂键(对碱基序列专一)的核酸内 切酶。 切酶。
高中生物核苷酸代谢精品PPT课件
从头合成
ATP
(CO2/NH3/AA/戊糖)
核苷酸Βιβλιοθήκη 半合成(补救合成)分解的现成嘌呤、嘧啶
dNDP
二. 嘌呤核苷酸的合成
(一). 嘌呤环各原子的来源
CO2 甘氨酸
Asp 一碳单位
6
N
15
7
8C
24
3
9
N
一碳单位
N5,N10-次甲基四氢叶酸 Gln
(二).嘌呤核苷酸的合成
1.从头合成 (脑,骨髓缺乏有关的酶)
起始物:5‘-磷酸核糖-1-焦磷酸(pRpp) 在起始物上合成嘌呤环(10步)
终产物:次黄嘌呤核苷酸(IMP)
2.补救途径
HGPRT
次黄嘌呤 + PRPP
IMP + PPi
腺嘌呤/鸟嘌呤 + PRPP
AMP/GMP + PPi
腺嘌呤/鸟嘌呤 + 1-P-核糖
A/G
AMP/GMP
Pi
基因缺陷导致HGPRT缺失而表现为Lesch-Nyhan综合症(自毁容貌综合症)
Lesch-Nyhan综合症
三. 嘧啶核苷酸的合成
(一). 嘧啶环各原子的来源 Gln
CO2
Asp
(二). 嘧啶核苷酸的合成
1.从头合成 起始物:以CO2,Glu等为原料直接合成嘧啶环(4步) 终产物:乳清酸
乳清酸 + PRPP 乳清酸核苷酸(OMP)
2.补救途径
尿嘧啶 + PRPP
UMP + PPi
核苷酸代谢
•核苷酸的分解代谢 •核苷酸的生物合成
第一节、核苷酸的分解代谢
不同动物嘌呤碱的分解的终产物
动物类型
《核苷酸代谢 》课件
要点二
脱氧核糖一磷酸与脱氧核糖一磷 酸一腺苷的相互转化
在细胞内,脱氧核糖一磷酸可被转化为脱氧核糖一磷酸一 腺苷,反之亦然。这种转化对于DNA的合成和修复同样具 有重要意义。
04 嘌呤核苷酸代谢
嘌呤核苷酸的合成
总结词
描述嘌呤核苷酸合成的起始物质、关键酶、合成途径 和调节机制。
详细描述
嘌呤核苷酸的合成是从磷酸戊糖开始,经过一系列酶 促反应,最终生成腺嘌呤核苷酸和鸟嘌呤核苷酸。合 成过程中需要磷酸戊糖、谷氨酰胺等物质作为起始物 质,同时需要多种酶的参与,如氨基甲酰磷酸合成酶 、天冬氨酸氨基转移酶等。合成途径分为两条,一是 从头合成,二是补救合成。合成过程受到多种因素的 调节,如磷酸戊糖的浓度、谷氨酰胺的供应等。
核糖核苷酸的分解是核苷酸代谢的重要环节,涉及到多种酶的参与和能量的释放。
详细描述
核糖核苷酸的分解首先从特定的核糖核苷酸开始,经过水解、氧化、磷酸化等反应,最终形成磷酸、 糖类、氨基酸等物质。这个过程中需要特定的酶来催化每一步反应,同时伴随着能量的释放。分解产 生的物质可以用于合成其他重要的生物分子。
详细描述
核苷酸的合成主要通过磷酸戊糖途径、糖酵解途径和三羧酸循环等途径,从简单的原料合成核苷一磷酸,再合成 核苷二磷酸和核苷三磷酸。核苷酸的降解主要通过核苷酶和核苷酸酶的作用,将核苷一磷酸、核苷二磷酸和核苷 三磷酸分别降解为相应的单磷酸、二磷酸和三磷酸核苷。
02 核糖核苷酸代谢
核糖核苷酸的合成
总结词
核苷酸代谢的重要性
总结词
核苷酸代谢对于维持生物体的正常生理功能至关重要。
详细描述
核苷酸是细胞内重要的生物分子,参与DNA和RNA的合成与修复,影响基因的 表达和遗传信息的传递。核苷酸代谢的异常会导致一系列疾病,如代谢性疾病 、癌症等。
核苷酸的代谢ppt医学课件
HGPRT
HGPRT
腺嘌呤核苷 AMP
腺苷激酶
ATP ADP
次黄嘌呤鸟嘌呤 磷酸核糖转移酶
腺嘌呤磷酸 核糖转移酶
碱基水平起点
主要
核苷水平起点
(4)嘌呤核苷酸的补救合成意义
补救合成节省能量和一些氨基酸的消耗。 自毁容貌综合症(Lesch-Nyhan)是由于缺乏HGPRT而产生的嘌呤核苷酸代谢病。HGPRT广泛存在于人类各组织的胞浆中,以脑组织中含量最多 缺乏补救途径会引起嘌呤 核苷酸合成速度降低,结果大 量积累尿酸,并导致肾结石和 痛风。
排出很少利用
二、核酸的解聚作用
核酸的解聚作用
核酸酶:水解连接核苷酸之间的磷酸二酯键。磷酸二酯酶 只作用于RNA:核糖核酸酶 只作用于DNA:脱氧核糖核酸酶 碱基分解的特点
人体内嘌呤分解代谢特点 1、氧化降解,环不打破; 2、最终产物:尿酸; 3、嘌呤代谢障碍: 痛风症
(二)嘧啶核苷酸合成途径
1、嘧啶核苷酸从头合成途径
(1)定义 嘧啶核苷酸的从头合成是指利用磷酸核糖、氨基酸、二氧化碳及一碳单位等简单物质为原料,经过一系列酶促反应,合成嘧啶核苷酸的途径。 (2)合成部位 主要是肝细胞胞液 (3)从头合成原料: 天冬氨酸、谷氨酰胺、 CO2
尿酸
黄嘌呤氧化酶
别嘌呤醇
痛风症的治疗机制
腺嘌呤
别嘌呤醇 核苷酸
嘌呤核苷酸 从头合成减少
减少
抑制
抑制
抑制
黄嘌呤溶解度更低 ?
外排
痛 风 症
痛风是尿酸过量产生或尿酸排泄不充分引起的尿酸堆积造成的,尿酸结晶堆积在软骨,软组织,肾脏以及关节处.在关节处的沉积会造成剧烈的疼痛.饮食以肉食为主的人,与饮食以米饭为主的人相比,哪种人发生痛风的可能性大 为什么 解析: 以肉食为主的人发生痛风的可能性大.由于痛风是尿酸产生过多引起的,而尿酸是人体内嘌呤分解代谢的终产物,由于氨基酸是嘌呤和嘧啶合成的前体物质,因此以富含蛋白质的肉食为主的人更易患痛风,同时也易患尿结石.
《生物化学》教学课件:核苷酸代谢
核苷酸代谢Metabolism of Nucleotides1核苷酸是核酸的基本结构单位。
人体内的核苷酸主要由机体细胞自身合成。
因此,与氨基酸不同,核苷酸不属于营养必需物质。
2核酸的消化与吸收食物核蛋白胃酸蛋白质核酸(RNA及DNA)胰核酸酶核苷酸胰、肠核苷酸酶核苷磷酸核苷酶碱基戊糖3•核苷酸的生物功用●作为核酸合成的原料: NTP、dNTP●体内能量的利用形式: ATP●参与代谢和生理调节: cAMP、cGMP●组成辅酶: NAD+、FAD等●活化中间代谢物: UDPG、CDP-胆碱等4尼克酰胺腺嘌呤二核苷酸(NAD+)AMP5第一节嘌呤核苷酸的合成与分解代谢Metabolism of Purine Nucleotides67嘌呤核苷酸的结构GMPAMP一、嘌呤核苷酸的合成存在从头合成和补救合成两种途径⏹从头合成途径(de novo synthesis)利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸。
⏹补救合成途径(salvage pathway)利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸。
8(一)嘌呤核苷酸的从头合成1、从头合成途径除某些细菌外,几乎所有生物体都能合成嘌呤碱。
哺乳动物合成部位肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠和胸腺,而脑、骨髓则无法进行此合成途径。
9•嘌呤碱合成的元素来源CO2天冬氨酸甲酰基(一碳单位)甘氨酸甲酰基(一碳单位)谷氨酰胺(酰胺基)101112-N10-CH=FH41314R-5-P(5-磷酸核糖)ATPAMP PRPP 合成酶PP-1-R-5-P (磷酸核糖焦磷酸)在谷氨酰胺、甘氨酸、一碳单位、二氧化碳及天冬氨酸的逐步参与下IMPAMPGMP H 2N-1-R-5´-P(5´-磷酸核糖胺)谷氨酰胺谷氨酸酰胺转移酶1. IMP的合成过程①磷酸核糖酰胺转移酶②GAR合成酶③转甲酰基酶④FGAM合成酶⑤AIR合成酶1516IMP生成总反应过程18①腺苷酸代琥珀酸合成酶③IMP 脱氢酶②腺苷酸代琥珀酸裂解酶④GMP 合成酶2、AMP 和GMP 的生成目录19AMPADP ATP ADP ATP 激酶ADP ATP 激酶GMP GDP GTPADP ATP 激酶ADP ATP 激酶嘌呤核苷酸从头合成特点•嘌呤核苷酸是在磷酸核糖分子上逐步合成的。
第十二章-核苷酸代谢PPT课件
.
39
(二) 脱氧胸苷酸(dTMP)的合成
.
40
脱氧核苷酸合成(小结 )
1) NDP
脱氧还原
dNDP
2) DP
N5, N10 - CH2 - FH4
dUMP
dTMP
3) dNDP / dTMP
ATP
磷酸化
dNTP / dTTP
作为DNA合成原料
.
41
(三) 嘧啶核苷酸的抗代谢物
1. 嘧啶类似物 5-氟尿嘧啶(5-FU)
乳清酸
(嘧啶环)
PRPP
PPi
UMP
ATP
ATP
Gln
2) UMP → UDP → UTP → CTP
3) UTP、CTP
作为RNA合成原料
.
36
(二) 嘧啶核苷酸的补救合成
嘧啶磷酸核糖转移酶
嘧啶 + PRPP
嘧啶核苷酸 + PPi
嘧啶核苷 + ATP
嘧啶核苷激酶
嘧啶核苷酸 + ADP
脱氧胸苷 + ATP
2. 叶酸类似物 氨基喋呤、氨甲喋呤(MTX)
3. 阿糖胞苷(Ara-C)
.
42
胸腺嘧啶(T)
5-氟尿嘧啶(5-FU)
5-FU
FdUMP, 其结构与dUMP类似
FdUMP与dUMP相互竞争,抑制胸苷酸合酶活
性,进而阻断dTMP乃至DNA的合成。
.
43
OH N
N
H2N
N
N
CH2
N H
O COOH C-NH-CH-CH2-CH2-COOH
R-5-P
aa、“-C”、CO2等
核苷酸
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
痛风
正常情况下,血尿酸水平低于2- 6 mg/dl 如果血尿酸水平大于8 mg/dl ,尿酸盐结晶
将沉积于软组织和关节处,产生无菌性炎 症反应. 病因: 1) 嘌呤代谢的酶活性异常
甲酰甘氨 脒核苷酸 (FGAM)
= =
= =
6-MP
PRPP PPi
次黄嘌呤
=
IMP
(H)
5-甲酰胺基咪唑4-甲酰胺核苷酸
(FAICAR)
5-氨基异咪唑4-甲酰胺核苷酸
(AICAR)
6-MP AMP
6-MP PPi
6-MP
=
PRPP
腺嘌呤(A)
氮杂丝氨酸
PPi PRPP
GMP
鸟嘌呤(G)
6-MP
第二节 嘧啶核苷酸的合成 一、嘧啶核苷酸的从头合成途径
从头合成途径与补救合成途径之间相互 抑制
PRPP 是两条途径的共同原料
嘌呤核苷酸合成的反馈调节
R-5-P ATP
+- -
+-
-
PRPP
PRA
--
AMPS AMP
-
IMP +
-
+
XMP GMP
ADP GDP
ATP GTP
嘌呤核苷酸的抗代谢物
抗代谢物: 是一些结构与嘌呤核苷酸合成过 程中的原料、中间代谢产物相似的物质.
5-磷 酸 核 糖 1-焦 磷 酸 ( PRPP)
PPi
P O CH 2 O NH 2
H H
HH
OH OH
5-磷 酸 核 糖 胺
G ln 酰胺转移酶
G lu
NH2 Gly H2C
NH2 H2C
P O CH2 O
OC
OH
NH2
GAR合成酶
P
O
O CH2
C N10-CHO FH4 HN
O
FH4
H N
H2C
➢依据切割部位不同 • 核酸内切酶:限制性核酸内切酶 非限制性核酸内切酶 • 核酸外切酶:5´→3´或3´→5´核酸外切酶
降解核酸酶的分类 按分解底物有核糖核酸酶和脱氧核糖核酸酶 按专一性有非特异性和特异性两种。 按水解方式有:内切和外切两种方式。
外切:3 -外切、5 -外切
外切酶
内切酶
3′ HO
R-5'-P
IMP
H2O 环水解酶
O
转甲酰基酶
C
H2N
C
N
H
CH
OC
C N
N
FH4
H
R-5'-P
5-甲 酰 胺 基 咪 唑 -4-甲 酰 胺 核 苷 酸 ( FAICAR)
N10-CHO FH4
第一个阶段: IMP的合成
谷氨酰胺
谷氨酸
ATP AMP
Mg2+
H2O
PPi
R-5-P PRPP 合成酶 PRPP 磷酸核糖酰胺转 PRA
-
PRPP酰胺转移酶
-
IMP
6-MP核苷酸
-
-
HGPRT
AMP 和 GMP
-
补救合成途径
叶酸类似物:
氨蝶呤 (AP)和甲氨蝶呤 (MTX)
NH2 N
N
H2N N N
R CH2 N
R=H:AP
O
COOH
C
NH
C H
CH2
CH2
COOH
R=CH3:TXT
OH N
N
H2N N N
H CH2 N
O
COOH
腺嘌呤核苷
腺苷激酶
AMP
ATP ADP
4.补救合成的生理意义
补救合成途径可以节省从头合成途径时 所需的能量和一些氨基酸的消耗。
体内某些组织器官,如脑、骨髓等只能 进行补救合成。
三、嘌呤核苷酸合成的调节
能量: ATP,GTP 是激活剂,
ADP,GDP 是抑制剂
ATP,GTP
PRPP
合成
反馈调节: 主要调节方式
细菌 嘌呤核苷酸
PRPP ATP + R -5-P
UMP
嘧啶核苷酸
UTP
CTP
嘧啶核苷酸的合成与嘌呤核苷酸的合成相互 协调: PRPP 对两条合成途径都是重要的中 间代谢产物
嘧啶核苷酸的抗代谢物
5-氟尿嘧啶(5-FU) 是胸腺嘧啶的类似物。
O F
HN
O HN
CH3
O
N
H
5-FU
5-氟尿嘧啶
O
N
H
IMP
延胡索酸
腺苷酸代琥珀酸 AMP
裂解酶
IMP 脱氢酶
XMP GMP合成酶 GMP
H2O
谷氨酰胺 ATP谷氨酸
NAD+ NADH+H+
ATP和GTP的生成
腺苷激酶
激酶
AMP
ADP
ATP ADP
ATP ADP
鸟苷激酶
激酶
GMP
GDP
ATP ADP
ATP ADP
ATP GTP
嘌呤核苷酸的从头合成要点
核酸的消化与吸收
食物核蛋白
胃酸
蛋白质
核酸 (RNA及DNA)
胰核酸酶
核苷酸
胰、肠核苷酸酶
磷酸
核苷
核苷酶
碱基
戊糖
核 酸 酶(Nuclease)
核酸酶的定义及分类
指所有可以水解核酸的酶。 ➢依据底物不同分类
• DNA酶(deoxyribonuclease, DNase): 专一降解DNA的酶。
• RNA酶 (ribonuclease, RNase): 专一降解RNA的酶。
H2N-1-R-5´-P
(5´-磷酸核糖胺)
IMP
在谷氨酰胺、甘氨酸、一 碳单位、二氧化碳及天冬 氨酸的逐步参与下
AMP
ATP
GMP
GTP
P O CH 2
P O CH 2
OH
ATP
AMP
Mg 2+
OH
H H
H OH
PRPP合 成 酶
HH
H
OPO P
OH OH
OH OH
5-磷 酸 核 糖 (R -5-P)
2A D P+Pi
H 2N COP 3H 2 O +Glu
氨 甲 酰 磷 酸 合 成 酶 Ⅱ O
(CPS-Ⅱ )氨 甲 酰 磷 酸
第一阶段
氨基甲酰磷酸的合成
谷氨酰胺 2ATP
谷氨酸 2ADP+Pi
天冬氨酸
Pi
CO2氨基甲酰磷酸合成酶
CAP
II
天冬氨酸氨基甲酰转
CAA
移酶
CAP:氨基甲酰磷酸 CAA:氨基甲酰天冬氨酸
1.定义
指利用磷酸核糖、氨基酸、一碳单位及二 氧化碳等物质为原料,经过一系列酶促反应, 不经过碱基和核苷的阶段,直接合成嘧啶核苷 酸的途径。
2.合成部位
主要是肝细胞胞液
嘧啶核苷酸的结构
3.嘧啶环上各原子的来源
氨甲酰 磷酸
天冬氨酸
4.合成过程
(1)尿嘧啶核苷酸的合成
2A TP Gl+n HC 3- O
移酶
IMP
甘氨酸 谷氨酰胺 N5,N10-甲炔 FH4 ATP CO2 天冬氨酸 N5 –甲酰 FH4
AMP和GMP的生成
①腺苷酸代琥珀酸合成酶 ③IMP脱氢酶 ②腺苷酸代琥珀酸裂解酶 ④GMP合成酶
第二个阶段
AMP 和 GMP的合成
天冬氨酸
H2O
GTP Mg2+
腺苷酸代琥珀酸 AMPS
合成酶
thymine
胸腺嘧啶
5-FU FdUMP
TMP 合成酶
FUTP 参入到 RNA
破坏RNA的结构 影响RNA的功能
UMP UDP
氮杂丝氨酸
阿糖胞苷
UTP
CTP
CDP
dCDP
氨甲碟呤
dUDP dUMP
dTMP
氮杂丝氨酸
第三节 核苷酸的分解代谢
一、嘌呤的分解代谢
Pi R-1-P
AMP
腺嘌呤
Pi R-1-P
第二阶段
UMP的合成
H2O+2H PRPP
PPi
CAA
OA
OMP
乳清酸磷酸核糖
转移酶
CO2
UMP
CAA:氨基甲酰天冬氨酸 OA:乳清酸 OMP:乳清酸核苷酸
第三个阶段
UTP,CTP, TMP , TTP的合成
谷氨酰胺
谷氨酸
ATP
ATP
ATP
UMP UDP UTP CTP 合成酶
CTP
2H
N5,N10-甲炔 FH4
嘌呤环是以磷酸核糖为基础合成的 PRPP 合成酶 和磷酸核糖酰胺转移酶 是
关键酶. 主要受反馈调节 IMP 是所有嘌呤核苷酸的共同中间前体 IMP的合成需5个高能磷酸键; AMP或GMP的合成又各需1个ATP。
嘌呤核苷酸的相互转变
AMP
腺苷酸代 琥珀酸
NH3
IMP
GMP XMP
二、嘌呤核苷酸的补救合成途径
A
T
G
A
C
T
外切酶
5′
G
C
核苷酸生物合成的基本途径
从头合成途径 肝 主要途径 (de novo synthesis pathway)
补救合成途径 脑 、骨髓等,也很重要。 (salvage synthesis pathway)
第二节 嘌呤核苷酸的生物合成
一、嘌呤核苷酸的从头合成 1.定义
指利用磷酸核糖、氨基酸、一碳单位及二 氧化碳等物质为原料,经过一系列酶促反应, 合成嘌呤核苷酸的途径, 不经过碱基和核苷的 阶段。