高中数学选修4-4坐标系与参数方程-高考真题演练
(完整版)选修4-4坐标系与参数方程-高考题及答案
x t 3,1、已知在直角坐标系xOy中,直线I的参数方程为_ (t为参数),在极坐标系(与y v3t直角坐标系xOy取相同的长度单位,且以原点0为极点,以x轴正半轴为极轴)中,曲线C 的极坐标方程为2 4 cos 3 0.①求直线I普通方程和曲线C的直角坐标方程;②设点P是曲线C上的一个动点,求它到直线I的距离的取值范围.x = 2cos 0 , 一2、已知曲线C的参数方程是(0为参数),以坐标原点为极点,x轴的正半轴y = 3sin 0 ,为极轴建立极坐标系,曲线C2的极坐标方程是p = 2,正方形ABCD勺顶点都在C2上,且AnB C、D依逆时针次序排列,点A的极坐标为(2 ,—).3(I )求点A B C、D的直角坐标;(n )设P为C上任意一点,求|PA2+ |PB2+ |PC2+ |PD2的取值范围.. . 2 2 . - 2 23、在直角坐标系xOy中,圆C :x + y = 4,圆C2:(x—2) + y = 4.(I )在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C i, C2的极坐标方程, 并求出圆C,C2的交点坐标(用极坐标表示);(n)求圆C与C2的公共弦的参数方程.4、在直角坐标系xOy中,直线I的方程为x —y + 4 = 0,曲线C的参数方程为x= :::]3cos a ,(a为参数).y= sin a(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以xn轴正半轴为极轴)中,点P的极坐标为(4 ,―),判断点P与直线I的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线I的距离的最小值.X = 2C0S a ,5、在直角坐标系xOy 中,曲线G 的参数方程为( a 为参数).M 是C i 上的y = 2+ 2sin a .动点,P 点满足0F= 20M P 点的轨迹为曲线 C 2.(1)求C 2的方程;(2)在以0为极点,x 轴的正半轴为极轴的极坐标系中,射线 交点为A ,与C 2的异于极点的交点为 B,求|AE |.x = cos e6、已知P 为半圆C:( e 为参数,o w e wn )上的点,点 A 的坐标为(1,0) , Oy = sin en 为坐标原点,点 M 在射线OP 上,线段OM 与C 的弧AP 的长度均为—.(1) 以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点 M 的极坐标;(2) 求直线AM 的参数方程.ne =g 与C 的异于极点的n n .* j 3 7、在极坐标系中,已知圆C经过点P .2,~4,圆心为直线P sin 9—3 =一与极轴的交点,求圆C的极坐标方程.8、在平面直角坐标系中,以坐标原点0为极点,x轴的正半轴为极轴建立极坐标系.已知直线I上两点M, N的极坐标分别为(2,0), 穿,-2,圆C的参数方程为x= 2+ 2cos 9 ,厂(9为参数).y=—3+ 2sin 9(1) 设P为线段MN的中点,求直线OP的平面直角坐标方程;(2) 判断直线l与圆C的位置关系.1、【答案】①直线I 的普通方程为:,3x y 3、、3 0. n n n n nn_nnA (2cos —, 2sin —), B (2cos(-3 + R , 2sin( — + —)) , q2cos( — +n ), 2sin( — +n 3 n n 3 nn )) , D (2cos( — + 〒),2sin( — + 亍)),即 A (1 , 3) , B ( — 3 , 1), Q — 1, — 3) , D ( 3 , — 1). (n )设 P (2cos 0 , 3sin 0 ),令 S =|PA 2+ |PB 2+ |PC 2+ |PD 2 ,则2 2S = 16cos 0 + 36sin 0 + 162=32 + 20sin 0 .因为0W sin 20W 1,所以S 的取值范围是[32 , 52].3、解:(I )圆C 的极坐标方程为p = 2 , 圆G 的极坐标方程p = 4cos 0 .2 解卩,得卩=2, 0=±石,p _ 4cos 03从而p_占.n(1)把极坐标系的点P (4 ,-)化为直角坐标,得 R0,4),满足直线l 的方程x — y + 4_ 0,所以点P 在直线l 上. 故可设点Q 的坐标为曲线C 的直角坐标方程为:x 2y 2②曲线C 的标准方程为(x 2)2 y 2•••圆心C(2,0)到直线I 的距离为:d所以点P 到直线I 的距离的取值范围是2、解:(I )由已知可得2 24x 3 0【或(x 2)2 y 21]1,圆心C(2,0),半径为1;|2、一 3 0 3.3| 5,32 2故圆C 与圆C 2交点的坐标为(2 ,,(2,—勺.注:极坐标系下点的表示不唯一.x _ p cos 0 ,得圆 y _ p sin 0 (n )法一:由故圆C 与G 的公共弦的参数方程为x_ t 1,-3w t w 3.x _ 1(或参数方程写成 , —..3 < y w 3)法二:将x = 1代入 cos 0得 p sin 0p cos 0 = 1,于是圆 C 与G 的公共弦的参数方程为x _ 1 y _ tan 0 '4、因为点P 的直角坐标(0,4)⑵因为点Q 在曲线C 上,(.3cos a , sin a ),C 与C 2交点的直角坐标分别为从而点Q 到直线I 的距离=;'2cos( a+ -Q )+ 2 2nl由此得,当cos( a + —) =— 1时,d 取得最小值,且最小值为:2.x y5、⑴设Rx , y ),则由条件知 M ^ 2 .由于M 点在C 上,x=2cos a , 2X = 4cos a ,所以即yy = 4+ 4sin a .2= 2+ 2sin a ,X = 4cos a ,从而C 2的参数方程为(a 为参数)y = 4 + 4sin a .(2)曲线C 的极坐标方程为 p = 4sin 0,曲线C 2的极坐标方程为 p = 8sin 0 .n n射线0 =三与C 的交点A 的极径为 p 1= 4sin —,3 3nn射线0 = y 与G 的交点B 的极径为p 2= 8sin —. 所以 | AB = | p 2— p 1| = 2 '3.nn6、 (1)由已知,M 点的极角为y ,且M 点的极径等于 J ,n n故点M 的极坐标为 ~~ .⑵M 点的直角坐标为n ,二空,A (1,0),故直线AM 的参数方程为6 6nx=1 + 6 — 1t ,(t 为参数).| 3cos a — sina + 4|2cos7t6所以圆C 的圆心坐标为(1,0) 因为圆C经过点P .'2, n,所以圆C的半径PC= 2+ 12—2X 1 x J2cos■—= 1,¥ 4于是圆C 过极点,所以圆 C 的极坐标方程为p = 2cos e .0, ¥8、解:(1)由题意知,M N 的平面直角坐标分别为所以直线l 的平面直角坐标方程为 3x + 3y — 2 3= 0.又圆C 的圆心坐标为(2 , — ,;3),半径r = 2, 圆心到直线I 的距离d =, : — ■' =-<r ,故直线l 与圆C 相交.yJ 3 + 9 2又P 为线段MN 勺中点,从而点 P 的平面直角坐标为1,,故直线OP 的平面直角坐标方程为 ⑵因为直线l 上两点M N 的平面直角坐标分别为 (2,0)(2,0)。
(压轴题)高中数学高中数学选修4-4第二章《参数方程》测试题(包含答案解析)(1)
一、选择题1.在直角坐标系xOy 中,曲线C :22x ty t⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l :230x y -+=的距离的最小值为( )A .23B .223C .233D .22.已知22451x y +=,则25x y +的最大值是( ) A .2 B .1C .3D .93.在参数方程cos sin x a t y b t θθ=+⎧⎨=+⎩,(0θπ<,t 为参数)所表示的曲线上有,B C 两点,它们对应的参数值分别为1t ,2t ,则线段BC 的中点M 对应的参数值是( ) A .122t t - B .122t t + C .122t t - D .122t t + 4.曲线的离心率是( )A .B .C .2D .5.已知点()1,2A -,()2,0B ,P 为曲线2334y x =-上任意一点,则AP AB ⋅的取值范围为( ) A .[]1,7B .[]1,7-C .1,33⎡+⎣D .1,323⎡-+⎣6.在直角坐标系xOy 中,直线l 的参数方程为()y 4t?x t t 为参数=⎧⎨=+⎩,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为=424πρθ⎛⎫+ ⎪⎝⎭,则直线l 和曲线C 的公共点有 A .0个B .1个C .2个D .无数个7.已知抛物线的参数方程为2x 4t y 4t ⎧=⎨=⎩,若斜率为1的直线经过抛物线的焦点,且与抛物线相交于A ,B 两点,则线段AB 的长为( )A .22B .42C .8D .48.若曲线2sin301sin30x t y t =-︒⎧⎨=-+︒⎩(t 为参数)与曲线22ρ=相交于B ,C 两点,则BC 的值为( )A .27B .60C .72D .309.已知点(),P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且[),2θππ∈)上,则点P 到直线21x t y t =+⎧⎨=--⎩(t 为参数)的距离的取值范围是( )A .3232,22⎡⎤-⎢⎥⎣⎦ B .0tan 60x = C .(2,22⎤⎦D .:::2x r r q q q e αα==10.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC .2ρ(sin θ+cos θ)=rD .2ρ(sin θ+cos θ)=-r 11.在极坐标系下,已知圆的方程为,则下列各点在圆上的是 ( )A .B .C .D .12.极坐标cos ρθ=和参数方程12x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线二、填空题13.在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(02)且倾斜角为α的直线l 与O 交于A ,B 两点.则α的取值范围为_________14.已知点B 在圆O :2216x y +=上,()2,2,A OM OA OB =+,若存在点N 使得MN 为定长,则点N 的坐标是______. 15.直线1413x ty t=+⎧⎨=--⎩(t 为参数)的斜率为______.16.点(),M x y 是椭圆222312x y +=上的一个动点,则2m x y =+的最大值为______17.设直线315:{45x tl y t=+=(t 为参数),曲线1cos :{sin x C y θθ==(θ为参数),直线l 与曲线1C 交于,A B 两点,则AB =__________.18.已知椭圆C 的方程为2212x y +=,若F 为C 的右焦点,B 为C 的上顶点,P 为C 上位于第一象限内的动点,则四边形OBPF 的面积的最大值为__________. 19.曲线1C 的极坐标方程2cos sin ρθθ=,曲线2C 的参数方程为31x ty t =-⎧⎨=-⎩,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线1C 上的点与曲线2C 上的点最近的距离为__________.20.设(,0)M p 是一定点,01p <<,点(,)A a b 是椭圆2214xy +=上距离M 最近的点,则()==a f p ________.三、解答题21.已知直线5:12x l y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的坐标方程为2cos ρθ=. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(,直线l 与曲线C 的交点为A 、B ,求AB 的值.22.已知直线l的参数方程为12{2x ty ==(t 为参数),曲线C 的参数方程为4cos {4sin x y θθ==(θ为参数). (1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长.23.在平面直角坐标系xOy 中,已知直线l的参数方程:1221x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以原点为极点,x 轴非负半轴为极轴(取相同单位长度)建立极坐标系,圆C 的极坐标方程为:2cos 0ρθ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)求圆C 上的点到直线l 的距离的最小值,并求出此时点的坐标. 24.已知曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点o 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程是:12cos sin 6θθρ+=(Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程:(Ⅱ)点P 是曲线C 上的动点,求点P 到直线l 距离的最大值与最小值.25.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值. 26.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=.(1)求l 的普通方程及C 的直角坐标方程; (2)求曲线C 上的点P 到l 距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设曲线C上点的坐标为()2t ,利用点到直线的距离公式表示出距离,即可求出最小值. 【详解】设曲线C上点的坐标为()2t , 则C 上的点到直线l的距离2233d===,即C 上的点到直线1. 故选:C. 【点睛】本题考查参数方程的应用,属于基础题.2.A解析:A 【分析】设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭,利用三角函数有界性得到最值.【详解】22451x y +=,则设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩ ,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭当4πα=,即4x y ⎧=⎪⎪⎨⎪=⎪⎩故选:A 【点睛】本题考查了求最大值,利用参数方程1cos 25x y αα⎧=⎪⎪⎨⎪=⎪⎩是解题的关键. 3.D解析:D 【解析】 【分析】根据参数的几何意义求解即可。
2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)
2020年高考数学选修4-4:坐标系与参数方程解答题专练1.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线,曲线(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,点M的极坐标为.(1)求直线l1和曲线C的极坐标方程;(2)在极坐标系中,已知射线与,C的公共点分别为A,B,且,求MOB的面积.2.【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是设点P(-1,2).(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;(2)设直线l与曲线C相交于M,N两点,求的值.3.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数),点P的坐标为(-2,0)(1)若点Q在曲线C上运动,点M在线段PQ上运动,且,求动点M的轨迹方程;(2)设直线l与曲线C交于A,B两点,求的值.4.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线(φ为参数)相交于不同的两点A,B.(1)若,若以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AB的极坐标方程;(2)若直线的斜率为,点,求的值.5.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线OM与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.6.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为,在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点P(-1,0),直线l和曲线C交于A,B两点,求的值.7.【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为,曲线C的参数方程是,(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)设直线l与曲线C交于A,B两点,求.8.【选修4-4:坐标系与参数方程】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程及弦AB的长;(2)动点P在圆C上(不与A,B重合),试求ABP的面积的最大值9.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,点P(0,﹣1),直线l的参数方程为(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ=8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=时,求sinα的值.10.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值。
新课标高考《坐标系与参数方程》(选修4-4)含答案
第二讲 坐标系与参数方程(选修4-4)1.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.2.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.3.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).2.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos θ;(3)当圆心位于M ⎝⎛⎭⎫a ,π2,半径为a :ρ=2a sin θ. 3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . 4.几种常见曲线的参数方程 (1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎨⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程为⎩⎨⎧x =r cos α,y =r sin α,其中α是参数.(2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎨⎧x =b cos φ,y =a sin φ,其中φ是参数.(3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.热点一极坐标方程及其应用[例1] (1)(2014·江西高考改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)(2014·东北三校联考)已知点P (1+cos α,sin α),参数α∈[0,π],点Q 在曲线C :ρ=92sin ⎝⎛⎭⎫θ+π4上.①求点P 的轨迹方程和曲线C 的直角坐标方程; ②求点P 与点Q 之间距离的最小值.1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22.(ρ≥0,0≤θ<2π) (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标.热点二 参数方程及其应用[例2] (2014·福建高考)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.2.倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧x =42cos θ,y =2sin θ(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程; (2)求|PM 1|·|PM 2|的取值范围.[例3] (2014·辽宁高考)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.3.极坐标系与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =t sin α(t 为参数).曲线C 的极坐标方程为ρsin 2 θ=8cos θ.热点三 极坐标方程与参数方程的综合应用(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值.1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.第二部分题1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.答案解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0. 由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.解:(1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.[师生共研] (1)因为x =ρcos θ,y =ρsin θ,且y =1-x ,所以ρsin θ=1-ρcos θ,所以ρ(sin θ+cos θ)=1,ρ=1sin θ+cos θ.又0≤x ≤1,所以0≤y ≤1,所以点(x ,y )都在第一象限及坐标轴的正半轴上,则0≤θ≤π2,即所求线段的极坐标方程为ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2. (2)①由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,消去α,得点P 的轨迹方程为(x -1)2+y 2=1(y ≥0),又由ρ=92sin ⎝⎛⎭⎫θ+π4,得ρ=9sin θ+cos θ,所以ρsin θ+ρcos θ=9.所以曲线C 的直角坐标方程为x +y =9.②因为半圆(x -1)2+y 2=1(y ≥0)的圆心(1,0)到直线x +y =9的距离为42, 所以|PQ |min =42-1.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为:x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2,即为所求.热点二 参数方程及其应用[师生共研] (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32,整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64.热点三 极坐标方程与参数方程的综合应用[师生共研] (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.解:(1)由ρsin 2θ=8cos θ得ρ2sin 2θ=8ρcos θ,,∴曲线C 的直角坐标方程为y 2=8x . (2)易得直线l 与x 轴的交点为F (2,0),将直线l 的方程代入y 2=8x ,得(t sin α)2=8(2+t cos α),整理得t 2sin 2 α-8t cos α-16=0.由已知sin α≠0,Δ=(-8cos α)2-4×(-16)sin 2 α=64>0,∴t 1+t 2=8cos αsin 2α,t 1t 2=-16sin 2α<0,故1|AF |+1|BF |=⎪⎪⎪⎪1t 1-1t 2=⎪⎪⎪⎪t 1-t 2t 1t 2=(t 1+t 2)2-4t 1t 2|t 1t 2|=⎝⎛⎭⎫8cos αsin 2α2+64sin 2α16sin 2α=12.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1.曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].第二部分题答案:1.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.3.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1.曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.4. 解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.5. 解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.6.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].。
高中数学选修4-4《坐标系与参数方程》练习题(含详解)
数学选修4-4 坐标系与参数方程[基础训练A 组]一、选择题1.若直线的参数方程为12()23x tt y t =+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23-C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A.1(,2B .31(,)42-C. D. 3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y = 5.点M的直角坐标是(1-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题 1.直线34()45x tt y t=+⎧⎨=-⎩为参数的斜率为______________________。
2.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。
3.已知直线113:()24x tl t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________。
4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。
5.直线cos sin 0x y αα+=的极坐标方程为____________________。
高中数学选修44坐标系与参数方程练习题含详解1
数学选修 4-4坐标系与参数方程[ 基础训练 A 组]一、选择题1.若直线的参数方程为x 1 2t (t 为参数 ) ,则直线的斜率为( )y 2 3t A .2B .2 3 D .333C .222.以下在曲线x sin 2( 为参数 ) 上的点是()ycossinA .(1,2)B . (3,1)C . (2, 3)D . (1,3)24 23.将参数方程x 2 sin 2为参数 ) 化为一般方程为(y sin2( )A . y x2B . y x 2C . y x 2(2 x 3)D . yx 2(0 y 1)4.化极坐标方程2cos0 为直角坐标方程为()A . x 2y 20或 y 1B . x 1C . x 2 y 20或 x 1D . y 15.点 M 的直角坐标是 (1, 3) ,则点 M 的极坐标为()A . (2,) B . (2,) C . (2,2)D . (2,2 k),( k Z )33336.极坐标方程cos 2sin 2 表示的曲线为()A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线x 3 4t (t 为参数 ) 的斜率为 ______________________。
y 4 5t2.参数方程x e te t) (t 为参数) 的一般方程为 __________________。
y2(e te t3.已知直线 l 1 :x 1 3ty 2 (t 为参数 ) 与直线 l 2 : 2x 4 y 5 订交于点 B ,又点 A(1,2) ,4t则 AB_______________。
x 2 1 t4.直线2(t 为参数 ) 被圆 x 2 y 2 4 截得的弦长为 ______________。
y1 1t25.直线 x cos y sin 0 的极坐标方程为 ____________________ 。
三、解答题1.已知点 P(x, y) 是圆 x 2y 2 2y 上的动点,( 1)求 2xy 的取值范围;( 2)若 xy a 0恒建立,务实数 a 的取值范围。
高二文科选修44坐标系与参数方程测试题及答案.doc
6•参数方程」x = 2 +si 『日(令为参数)化为普通方程是()。
y =-1 +cos28D 2x y -4 =0 x [2,3]高二级数学选修4-4《极坐标与参数方程》考试卷(文科)一、选择题(共10题,各4分,共32分) 1•曲线的极坐标方程 T =4 si nr 化为直角坐标为( )。
2 2 2 2A x (y 2)=4B x (y-2)=4C (x -2)2 y 2 =4 (x 2)2 y 2 =4 2•已知点P 的极坐标是(1,二),则过点P 且垂直极轴的直线方程是( ①1 _ 1 C COST :?= cos v 3•在同一坐标系中, 将曲线 y = 2sin 3x 变为曲线y = sin x 的伸缩变换是( x —3x x-3x ”x=3x ' (AH 1 ' (B” ' 1 (C)」 ”=尹 [v =-v y = 2y x= 3x(D)」’ J =2y 4•直线y =2x 1的参数方程是( ) A J (t 为参数) B 丿x =2t —1(t 为参数)y =2t 2 +1 y =4t +1C 丿x =t —1 (t 为参数) = 2t — 1D ‘ x=sinE ( t 为参数) y =2si n 日 +15•方程x =t • 1( t 为参数)表示的曲线是()。
I y=2 A 一条直线B 两条射线C 一条线段D 抛物线的一部分A 2x -y 4=0B 2x y -4=0C 2x — y 4=0x [2,3]7•设点P 对应的复数为-3+3i ,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为(A (3、一 2,3二) B (-32,5 ■:)445C (3,二二)D (-3,43丁)8•在符合互化条件的直角坐标系和极坐标系中,直线I: y kx 2=0与曲线 C = 2cos -二,则P 点坐标是4"x = -1 + 2 cos 日"x = 2t — 110.若圆的方程为丿 (日为参数),直线的方程为』(t 为参数),I y =3 +2sinBy = 6t -1则直线与圆的位置关系是( )。
(完整版)高中数学选修4-4习题(含答案)
统考作业题目——4-46.21.在平面直角坐标系中,直线的参数方程为为参数),以原点xOy l 12,(2x t t y t =+⎧⎨=-⎩为极点,以轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。
曲线O x 的极坐标方程为 .C 22cos 4sin 40ρρθρθ+++=(1)求的普通方程和的直角坐标方程;l C (2)已知点是曲线上任一点,求点到直线距离的最大值.M C M l 2.已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长O x 度单位相同。
直线的极坐标方程为:,点,参数l ρ=102sin (θ‒π4)P (2cosα,2sinα+2).α∈[0,2π](I )求点轨迹的直角坐标方程;P (Ⅱ)求点到直线距离的最大值.P l1、【详解】(1)12,2x t y t =+⎧⎨=-⎩10x y ∴+-=因为,222,cos ,sin x y x y ρρθρθ=+==所以,即222440x y x y ++++=22(1)(2)1x y +++=(2)因为圆心到直线,(1,2)--10x y +-==所以点到直线距离的最大值为M l 1.r +=+2、解:(Ⅰ)设,则,且参数,P (x ,y ){x =2cosαy =2sinα+2 α∈[0,2π]消参得:x 2+(y ‒2)2=4所以点的轨迹方程为P x 2+(y ‒2)2=4(Ⅱ)因为ρ=102sin (θ‒π4)所以ρ2sin (θ‒π4)=10所以,ρsinθ‒ρcosθ=10所以直线的直角坐标方程为l x ‒y +10=0法一:由(Ⅰ)点的轨迹方程为P x 2+(y ‒2)2=4圆心为(0,2),半径为2.,d =|1×0‒1×2+10|12+12=42点到直线距离的最大值等于圆心到直线距离与圆的半径之和,P l l 所以点到直线距离的最大值.P l 42+2法二:d =|2cosα‒2sinα‒2+10|12+12=2|cosα‒sinα+4|=2|2cos (α+π4)+4|当时,,即点到直线距离的最大值为.a =74πd max =42+2P l 42+26.33.在平面直角坐标系xOy 中,已知曲线的参数方程为(为参数),曲C 1{x =cosθy =3sinθθ线的参数方程为(,t 为参数).C 2{x =4‒22ty =4+22tt ∈R(1)求曲线的普通方程和曲线的极坐标方程;C 1C 2(2)设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.C 1C 24.在直角坐标系中曲线的参数方程为(为参数,以坐标原xOy 1C cos x y αα=⎧⎪⎨=⎪⎩α点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为x 2C .sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出的普通方程和的直角坐标方程;1C 2C (2)设点在上,点在上,求的最小值及此时的直角坐标.P 1C Q 2C ||PQ P3、【详解】(1)对曲线:,,C 1cos 2θ=x 2sin 2θ=y 23∴曲线的普通方程为.C 1x 2+y 23=1对曲线消去参数可得且C 2t t =(4‒x )×2,t =(y ‒4)×2,∴曲线的直角坐标方程为. C 2x +y ‒8=0又,∵x =ρcosθ,y =ρsinθ∴ρcosθ+ρsinθ‒8=2ρsin (θ+π4)‒8=0从而曲线的极坐标方程为。
高中数学选修4-4《坐标系与参数方程》练习题(含详解)
数学选修4-4 坐标系与参数方程一、选择题4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( ) A .201y y +==2x 或 B .1x = C .201y +==2x 或x D .1y =6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆5.点M 的直角坐标是(-,则点M 的极坐标为( ) A .(2,)3π B .(2,)3π- C .2(2,)3π D .(2,2),()3k k Z ππ+∈ 5.直线cos sin 0x y αα+=的极坐标方程为____________________。
4.圆5cos ρθθ=-的圆心坐标是( )A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 4.曲线的极坐标方程为1tan cos ρθθ=⋅,则曲线的直角坐标方程为________________。
1.若直线的参数方程为12()23x t t y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2B .31(,)42- C . D . 3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤5.极坐标方程cos 20ρθ=表示的曲线为( ) A .极点 B .极轴C .一条直线D .两条相交直线6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ= B .sin 2ρθ= C .4sin()3πρθ=+ D .4sin()3πρθ=- 4.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为_____________。
数学北师大版高中选修4-4选修4-4坐标系与参数方程测试题
坐标系与参数方程考试时间2014年5月13日 满分:74分一、选择题(每小题5分,共30分)1.在极坐标系中,以极点为坐标原点,极轴为x 轴正半轴,建立直角坐标系,点M (2,6π)的直角坐标是( )A .(2,1)B .(3,1)C .(1,3)D .(1,2)2.在极坐标系中,曲线2cos ρ=θ是( )(A )过极点的直线 (B )半径为2的圆(C )关于极点对称的图形 (D )关于极轴对称的图形3.在极坐标系中,点(2,)3π-到圆2cos ρθ=-的圆心的距离为( )A.2B.249π+ C.299π+D.74.在空间坐标系中的点M (x ,y ,z ),若它的柱坐标为,则它的球坐标为( )A.B. C.D.5.在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ) A .0θ=(R ρ∈)和cos ρθ=2B .θ=2π(R ρ∈)和cos ρθ=2 C .θ=2π(R ρ∈)和cos ρθ=1D .θ=0(R ρ∈)和cos ρθ=16.极坐标方程cos 20ρθ=表示的曲线为( )A .极点B .极轴C .一条直线D .两条相交直线二、填空题(每小题5分,共20分)7.柱坐标A (2,,5)化为直角坐标是 .直角坐标B (﹣3,,﹣)化为柱坐标是 .8.(坐标系与参数方程选做题)在极坐标系中,曲线2=ρ上到直线1)4cos(=-πθρ的距离为1的点的个数是 .9.(坐标系与参数方程选做题)在极坐标系中,曲线1C :2cos =θρ与曲线12cos :22=θρC 相交于A ,B 两点,则|AB |=10.在极坐标系中,已知两点B A ,的极坐标为⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛6,4,3,3ππB A ,则OBA ∆(其中O 为极点)的面积为 .班级姓名座号得分一、选择题题号 1 2 3 4 5 6答案二、填空题7 8 9 10三、解答题11.已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,若直线:30l kx y++=与圆C相切.求(1)圆C的直角坐标方程;(2)实数k的值..12.在极坐标系中,设直线π3θ=与曲线210cos40ρρθ-+=相交于A,B两点,求线段AB中点的极坐标.。
(必考题)高中数学高中数学选修4-4第二章《参数方程》测试卷(答案解析)
一、选择题1.在直角坐标系xOy 中,曲线C:2x ty ⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l:30x +=的距离的最小值为( )A .23BCD2.P 是直线:40l x y +-=上的动点,Q 是曲线C:sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)上的动点,则PQ 的最小值是( ) A.2B.2CD.23.在极坐标系中,曲线C 的方程为22312sin ρθ,以极点O 为直角坐标系的原点,极轴为x 轴的正半轴,建立直角坐标系xOy ,设(),P x y 为曲线C 上一动点,则1x y +-的取值范围为()A.1⎡⎤⎣⎦B .[]3,1-C .[]22-,D .[]2,1--4.已知点(,)P x y 的坐标满足条件1,1,350,x y x x y ≥⎧⎪≥-⎨⎪+-≤⎩点(43,31)Q m m +-,则||PQ 的最小值为( ) A .2B .115C .95D .15.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为212x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( )ABCD6.在直角坐标系xOy 中,过点()1,2P -的直线l的参数方程为1 2x y ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),直线l 与抛物线2y x 交于点,A B ,则PA PB ⋅的值是( )AB .2C.D .107.直线34x ty t =-⎧⎨=+⎩,(t 为参数)上与点()3,4P( )A .()4,3B .()4,5-或()0,1C .()2,5D .()4,3或()2,58.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC(sin θ+cos θ)=rD(sin θ+cos θ)=-r9.点M的直角坐标是()1-,则点M 的极坐标为( ) A .52,6π⎛⎫ ⎪⎝⎭B .72,6π⎛⎫ ⎪⎝⎭C .112,6π⎛⎫⎪⎝⎭D .2,6π⎛⎫⎪⎝⎭10.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) AB.CD.11.已知点A 是曲线2213x y +=上任意一点,则点A到直线sin()6πρθ+=的距离的最大值是( )A.2BCD.12.设椭圆C :2211612x y +=上的一点P 到两条直线4y =和8x =的距离分别是1d ,2d ,则122d d +的最小值( ) A .5B .6C .7D .8二、填空题13.已知点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩,(θ为参数)上,则yx 的取值范围为_____.14.已知直线参数方程为355435x t y t⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线与圆5ρ=交于B 、C 两点,则线段BC 中点直角坐标________.15.在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为4π⎛⎫ ⎪⎝⎭,曲线C的参数方程为1{x y αα=+=(α为参数),则点M 到曲线C 上的点的距离的最小值为 .16.已知(3,0)A -,(3,0)B ,点P 在圆22(3)(4)4x y -+-=上运动,则22PA PB +的最小值是________.17.在平面直角坐标系xOy 中,已知抛物线244x t y t ⎧=⎨=⎩(t 为参数)的焦点为F ,动点P 在抛物线上,动点Q 在圆3cos sin x y αα=+⎧⎨=⎩(α为参数)上,则PF PQ +的最小值为__________.18.在极坐标系中,圆1C的方程为4πρθ⎛⎫=- ⎪⎝⎭,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,圆2C 的参数方程为1cos (1x a y asin θθθ=-+⎧⎨=-+⎩为参数),若圆1C 与圆2C 外切,则正数a = _________.19.在直角坐标系xOy 中,直线l的参数方程是112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=-,则圆C 的圆心到直线l 的距离为______.20.在直角坐标系中,曲线1C 的参数方程为cos ,sin ,x y θθ=⎧⎨=⎩[]0,πθ∈,以x 轴的正半轴为极轴建立极坐标系,曲线2C 在极坐标系中的方程为sin cos bρθθ=-.若曲线1C 与2C 有两个不同的交点,则实数b 的取值范围是_______.三、解答题21.在直角坐标系xOy 中,直线l的参数方程cos 1sin x t y t αα⎧=⎪⎨=+⎪⎩(t 为参数,[0,)απ∈),曲线C的参数方程2sin x y ββ⎧=⎪⎨=⎪⎩(β为参数).(1)求曲线C 在直角坐标系中的普通方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,当曲线C 截直线l 所得线段的中点极坐标为2,6π⎛⎫⎪⎝⎭时,求α.22.在平面直角坐标系中,曲线1C的参数方程是1x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是4cos 3πρθ⎛⎫=- ⎪⎝⎭. (Ⅰ)求曲线2C 的直角坐标方程;(Ⅱ)若曲线1C 与曲线2C 交于,A B 两点,求||AB 的值. 23.[选修4-4:坐标系与参数方程](10分)在极坐标系中,圆C 的极坐标方程为()24cos sin 3ρρθθ=+-,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求圆C 的一个参数方程;(2)在平面直角坐标系中,(),P x y 是圆C 上的动点,试求2x y +的最大值,并求出此时点P 的直角坐标.24.在平面直角坐标系xOy 中,已知直线l的参数方程为1122x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数)(1)将直线l 的参数方程化为极坐标方程;(2)设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长. 25.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0απ≤<).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(1)写出曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A 、B 两点,且AB的长度为l 的普通方程. 26.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立坐标系,曲线C的方程,()222cos4sin4ρθθ+=,过点(2,1)的直线l的参数方程为221xy⎧=+⎪⎪⎨⎪=+⎪⎩(t为参数).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于A、B两点,求||AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设曲线C上点的坐标为()2t,利用点到直线的距离公式表示出距离,即可求出最小值.【详解】设曲线C上点的坐标为()2t,则C上的点到直线l的距离2233d===,即C上的点到直线1.故选:C.【点睛】本题考查参数方程的应用,属于基础题.2.C解析:C【分析】设点,sin)Qθθ,利用点到直线的距离公式,结合三角函数的性质,即可求解.【详解】由曲线C:sinxyθθ⎧=⎪⎨=⎪⎩(θ为参数)消去参数,设点,sin)Qθθ,则点Q 到直线:40l x y +-=的距离为d ==,当2,6k k Z πθπ=+∈时,min d ==故选:C. 【点睛】本题主要考查曲线的参数方程,点到直线的距离公式,以及三角函数的恒等变换和余弦函数的性质的应用,着重考查运算与求解能力,以及转换能力,属于基础题.3.B解析:B 【分析】 将曲线C 的方程22312sin ρθ化为直角坐标形式,可得2213xy +=,设x α=,sin y α=,由三角函数性质可得1x y +-的取值范围.【详解】解:将cos =x ρθ ,sin y ρθ=代入曲线C 的方程22312sin ρθ,可得:2222sin 3ρρθ+=,即2233x y +=,2213x y+=设x α=,sin yα=,可得1sin 1sin )12sin()1213x y πααααα+-=-=+++--=, 可得1x y +-的最大值为:1,最小值为:3-, 故选:B. 【点睛】本题主要考查极坐标和直角坐标的互换及椭圆的参数方程,属于中档题,注意运算准确.4.A解析:A 【分析】根据Q 点坐标得到点Q 满足的参数方程,从而得到Q 点所在的直线方程l ,因此将求PQ 最小值问题转化为求可行域上的点(,)P x y 到直线l 的最小距离,然后运用数形结合得到可行域内点B (1,0)到直线l 距离最小,从而求出PQ 的最小值. 【详解】因为(43,31)Q m m +-,则点Q 满足的参数方程为43{31x m y m =+=-(m 为参数),消去参数得到普通方程为l :34130x y --=,则问题转化为求可行域上的点(,)P x y 到直线l 的最小距离,如图:由图可知当P 点与B 点重合时到直线l 的距离最小,而B 点为(1,0),B 到l 的距离为d ,所以min 223013102534PQ d --====+, 答案为A. 【点睛】主要考查线性规划问题,同时也考查了参数方程与普通方程的互化.这类型题的关键在于寻找出目标函数的几何意义,然后利用数形结合的方法寻找出最优解,求出最值,属于中档题.5.C解析:C 【解析】分析:首先将取消C 的方程化为直角坐标方程,然后结合直线参数方程的几何意义整理计算即可求得最终结果.详解:曲线C 的参数方程2x cos y sin θθ=⎧⎨=⎩(θ为参数)化为直角坐标方程即:2214y x +=,与直线l 的参数方程312x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)联立可得:21613t =, 则124134131313t t ==-, 结合弦长公式可知:12813AB t t =-=. 本题选择C 选项.点睛:本题主要考查参数方程的应用,弦长公式等知识,意在考查学生的转化能力和计算求解能力.6.B解析:B 【解析】设,A B对应的参数分别为12,t t,把l的参数方程12xy⎧=-⎪⎪⎨⎪=+⎪⎩代入2y x=中得:221⎛+=--⎝⎭,整理得:220t-=,()242100∴∆=-⨯-=>,1212?2,?t t t t PA PB+==-∴1212··2t t t t===,故选B.7.D解析:D【详解】因为直线3(4x tty t=-⎧⎨=+⎩为参数),所以设直线上到点(3,4)P(3,4)t t--,=1t=±,代入直线的参数方程,得点的坐标为(4,3)或(2,5),故选D.8.D解析:D【解析】分别出圆ρ=r的直角坐标方程222x y r+=和圆ρ=-2r sin(θ+4π)(r>0)直角坐标方程22()x y x y+=+,从而求出两圆的公共弦所在直线的方程2())x y r x y r+=+=-.再化为极坐标方程为(sinθ+cosθ)=-r,选D. 9.B解析:B【解析】3π7π2,tan(π,)26ρθθθ===∈⇒=,故选:B.点睛:(1)直角坐标方程化为极坐标方程,只要运用公式cosxρθ=及sinyρθ=直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos,sin,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.10.D解析:D【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d=,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2)求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =. 11.C解析:C 【分析】先将直线sin()6πρθ+=A 的坐标,利用点到直线的距离求解. 【详解】由直线sin()6πρθ+=1cos 2ρθθ⎫+=⎪⎪⎝⎭0x +-=. 又点A 是曲线2213x y +=上任意一点,设),sin Aαα则点A0x +-=的距离为:d ==≤ 当sin 14πα⎛⎫+=- ⎪⎝⎭时取得等号. 故选:C 【点睛】本题考查极坐标方程与直角坐标方程的互化、椭圆的参数方程和点到直线的距离,属于中档题.12.D解析:D 【分析】设()4,P cos θθ,02θπ≤<,由题意可得:1222484d d cos θθ+=-+-,利用三角函数的单调性、和差公式即可得出结论. 【详解】解:设()4,P cos θθ,02θπ≤<, 由题意可得:122248416416816886d d cos cos sin πθθθθθ⎛⎫+=-+-=--=-+≥-= ⎪⎝⎭.当且仅当816sin πθ⎛⎫+= ⎪⎝⎭时取等号. 122d d ∴+的最小值为8.故选:D 【点睛】本题考查了椭圆的标准方程及其参数方程、三角函数的单调性、和差公式,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】根据曲线参数方程为(为参数)将曲线先化为普通方程再利用的几何意义即可求出其范围【详解】曲线的参数方程为(为参数)将两个方程平方相加它在直角坐标系中表示圆心在半径为的圆又的几何意义是表示原点与解析:⎡⎢⎣⎦【分析】根据曲线参数方程为2cos sin x y θθ=-+⎧⎨=⎩(θ为参数),将曲线先化为普通方程,再利用yx 的几何意义即可求出其范围. 【详解】曲线的参数方程为2cos sin x y θθ=-+⎧⎨=⎩(θ为参数),∴2cos x θ+=,sin y θ=,将两个方程平方相加,∴22(2)1x y ++=,它在直角坐标系中表示圆心在(2,0)-半径为1的圆.又yx的几何意义是表示原点与圆上一点(,)P x y 连线的斜率, 画出图象,如图:当过原点的直线与圆相切时,设切线的斜率为k ,切线方程l 为:y kx =联立l 与圆的方程:22(2)1x y y kx ⎧++=⎨=⎩,消掉y 可得()22(2)1x kx ++= 直线与圆相切,可得0∆=,解得33k =± ∴当过原点的直线与圆相切时,切线的斜率是3 ∴y x 的取值范围为33⎡⎢⎣⎦. 故答案为:3333⎡-⎢⎣⎦. 【点睛】此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,线性规划问题,关键是根据所给的约束条件准确地画出可行域和目标函数.在平面区域中,求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义,从而确定目标函数在何处取得最优解.14.【分析】将直线的参数方程化为普通方程圆的极坐标方程转化为普通方程再求解【详解】直线参数方程为(t 为参数)转化为普通方程:圆转化为普通方程为将直线方程代入圆的方程中整理得设交点为中点坐标则即则线段BC 解析:4433,2525⎛⎫ ⎪⎝⎭【分析】将直线的参数方程化为普通方程,圆的极坐标方程,转化为普通方程,再求解.【详解】直线参数方程为355435x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),转化为普通方程:11433y x =-, 圆5ρ=转化为普通方程为2225x y += ,将直线方程代入圆的方程中,整理得225881040x x --= ,设交点为()()1122,,,x y x y ,中点坐标()00,x y , 则1208844252225x x x +=== , ()1212012114114112333333223325x x y y y x x -+-+===-+= , 即则线段BC 中点直角坐标为4433,2525⎛⎫⎪⎝⎭ . 【点睛】本题考查了参数方程、极坐标方程和直角坐标方程之间的转换,中点坐标公式的应用,以及一元二次方程根和系数关系的应用. 参数方程转化为直坐标方程,常用方法有代入法、加减(或乘除)消元法、三角代换法等,极坐标方程转化为直角坐标方程,常通过转化公式直接代入,或先将已知式子变形,如两边同时平方或同时乘以ρ,再代入公式. 15.【解析】试题分析:依题意点M 的直角坐标为曲线C 的普通方程为圆心(10)半径则点M 到曲线C 上的点的距离的最小值为考点:参数方程与极坐标解析:5【解析】试题分析:依题意点M 的直角坐标为()4,4,曲线C 的普通方程为22(1)2x y -+=,圆心(1,0M 到曲线C上的点的距离的最小值为5考点:参数方程与极坐标16.【分析】由题意设利用两点之间的距离公式表示出进而可得结论【详解】由题意得圆的参数方程为(为参数)设则∴其中当时有最小值为故答案为:【点睛】本题主要考查两点之间的距离公式圆的参数方程的应用属于基础题 解析:36【分析】由题意设()32cos ,42sin P θθ++,利用两点之间的距离公式表示出22PA PB +,进而可得结论.【详解】由题意得圆的参数方程为32cos 42sin x y θθ=+⎧⎨=+⎩(θ为参数),设()32cos ,42sin P θθ++, 则()()22262cos 42sin 5624cos 16sin PA θθθθ=+++=++, ()()2222cos 42sin 2016sin PB θθθ=++=+,∴()227624cos 32sin 7640sin PA PB θθθϕ+=++=++,其中3tan 4ϕ=, 当()sin 1θϕ+=-时, 22PA PB +有最小值为36. 故答案为:36.【点睛】本题主要考查两点之间的距离公式,圆的参数方程的应用,属于基础题.17.3【解析】根据题意抛物线参数方程为其普通方程为y2=4x 其焦点坐标为(10)准线方程为x=﹣1动点P 在抛物线上设P 到准线的距离为d 则d=|PF|圆的参数方程为(α为参数)其普通方程为(x ﹣3)2+y解析:3【解析】根据题意,抛物线参数方程为244x t y t⎧=⎨=⎩,其普通方程为y 2=4x , 其焦点坐标为(1,0),准线方程为x=﹣1,动点P 在抛物线上,设P 到准线的距离为d ,则d=|PF|,圆的参数方程为3x cos y sin αα=+⎧⎨=⎩(α为参数),其普通方程为(x ﹣3)2+y 2=1, 动点Q 在圆上,则|PF|+|PQ|=d+|PQ|,分析可得:当P 为抛物线的顶点时,|PF|+|PQ|取得最小值,且其最小值为3, 故答案为:3.18.【解析】圆C1的方程为的直角坐标方程为:(x−2)2+(y−2)2=8圆心C1(22)半径圆C2的参数方程为参数)的普通方程为:(x+1)2+(y+1)2=a2圆心距两圆外切时∴正数【解析】圆C 1的方程为)4πρθ=-的直角坐标方程为:(x −2)2+(y −2)2=8, 圆心C 1(2,2),半径1r = 圆C 2的参数方程1(1x acos y asin θθθ=-+⎧⎨=-+⎩为参数)的普通方程为:(x +1)2+(y +1)2=a 2.圆心距12C C =两圆外切时,1212C C r r a =+==,∴正数a =19.【解析】直线l 的参数方程为(t 为参数)普通方程为x ﹣y+1=0圆ρ=﹣4cosθ即ρ2=﹣4ρcosθ即x2+y2+4x=0即(x+2)2+y2=4表示以(﹣20)为圆心半径等于2的圆∴圆C 的圆心到 解析:12. 【解析】直线l的参数方程为1{12x y t =-+=(t 为参数),普通方程为x,圆ρ=﹣4cosθ 即ρ2=﹣4ρcosθ,即 x 2+y 2+4x=0,即 (x+2)2+y 2=4,表示以(﹣2,0)为圆心,半径等于2的圆.∴圆C 的圆心到直线l=12, 故答案为:12. 20.【分析】先消去参数得到曲线的普通方程再利用直角坐标与极坐标的互化公式得到直线的直角坐标方程利用点到直线的距离公式结合图象即可求解【详解】将曲线的参数方程为化为直角坐标方程可得曲线表示圆心在原点半径为解析:1b ≤<【分析】先消去参数θ得到曲线的普通方程,再利用直角坐标与极坐标的互化公式,得到直线的直角坐标方程,利用点到直线的距离公式,结合图象,即可求解.【详解】将曲线1C 的参数方程为cos sin x y θθ=⎧⎨=⎩,[]0,πθ∈, 化为直角坐标方程,可得221x y +=,曲线1C 表示圆心在原点,半径为1的上半圆,(如图所示)曲线2C 在极坐标系中的方程为sin cos b ρθθ=-,即sin cos b ρθρθ-=, 可得曲线2C 的直角坐标方程为0x y b -+=, 由圆心到直线的距离得:12bd ==,解得2b =±,结合图象,可得实数b 的取值范围是12b ≤<. 故答案为:12b ≤<.【点睛】本题主要考查了极坐标和直角坐标的互化,参数方程与普通方程的互化,以及直线与圆的位置关系的应用,着重考查数形结合思想,以及推理与运算能力.三、解答题21.(1)221124x y +=(2)56πα= 【分析】(1)消去参数β,即可得曲线的普通方程;(2)利用点差法求出直线的斜率k 的值,从而求得直线的倾斜角.【详解】(1)由32sin x y ββ⎧=⎪⎨=⎪⎩得cos 23sin 2yββ⎧=⎪⎪⎨⎪=⎪⎩β得221124x y +=,所以曲线C 的普通方程为221124x y +=; (2)直线l 所得线段的中点极坐标为2,6π⎛⎫ ⎪⎝⎭化成直角坐标为. 设直线l 与曲线C 相交于()11,A x y ,()22,B x y 两点,则122x x +=1212y y +=,2211222211241124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②, 由-②①得222221210124x x y y --+=, 所以()211221123y y x x x x y y -+=-==-+,即tan 3l k α=-=, 又∵[0,)απ∈,∴直线l 的倾斜角为56π. 【点睛】本题考查参数方程化为普通方程、极坐标与直角坐标的互化、点差法的应用,考查转化与化归思想,考查逻辑推理能力、运算求解能力.22.(Ⅰ)2220x y x +--=;(Ⅱ.【分析】(Ⅰ)曲线2C 的极坐标方程l转化为22cos sin ρρθθ=+,由此能求出曲线2C 的直角坐标方程.(Ⅱ)将曲线1C 的参数方程代入曲线2C的直角坐标方程,可得210t -=,设,A B对应的t 值分别为12t t 、,利用韦达定理可得12121t t t t ⎧+=⎪⎨⋅=-⎪⎩ 【详解】解:(Ⅰ)21:4cos 4cos 32C πρθθθ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭22cos sin ρρθθ=+即2220x y x +--=(Ⅱ)由题意,联立2221202230x y x y x x ⎧=+⎪⎪⎪⎪=+⎨⎪⎪+--=⎪⎪⎩得2610t t -=设,A B 对应的t 值分别为12t t 、,则121261t t t t ⎧+=⎪∴⎨⋅=-⎪⎩ 1212||AB t t t t ∴=+=- ()()221212124t t t t t t =-=+-⋅()26410=+=【点睛】本题考查极坐标方程与直角坐标方程的转化,直线的参数方程参数的几何意义的应用,属于中档题.23.(1)25(25x y ααα⎧=⎪⎨=⎪⎩是参数). (2)11,(3,4).【解析】试题分析:(1)根据222x y ρ=+,cos x ρθ=,sin y ρθ=,得到圆C 的直角坐标方程,从而可得圆C 的一个参数方程;(2)由(1)可设点(25,25)P ϕϕ,借助辅助角公式即可得2x y +,从而可得2x y +的最大值及点P 的直角坐标. 试题(1)因为24(cos sin )3ρρθθ=+-,所以22+4430x y x y --+=,即22(2)(2)5x y -+-=为圆C 的直角坐标方程,所以圆C的一个参数方程为2(2x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数). (2)由(1)可知点P的坐标可设为(2,2)ϕϕ,则224x y ϕϕ+=+++65sin()6ϕϕϕα=++=++其中cos 55αα==,当2x y +取最大值时,sin()1ϕα+=,2,2k k Z πϕαπ+=+∈,此时cos cos()sin 25πϕαα=-==,sin sin()cos 2πϕαα=-==2x y +的最大值为11,此时点P 的直角坐标为()3,4.24.(1cos sin 0θρθ-=(2)167AB =【详解】(1)直线l0y -=,代入互化公式cos {sin x y ρθρθ==可得直线lcos sin 0θρθ-=(2)椭圆C 的普通方程为2214y x +=,将直线l的参数方程112x t y ⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得22)12(1)124t ++=,即27160t t +=,解得10t =,2167t =-, 所以12167AB t t =-=. 考点:极坐标方程,利用直线参数方程中参数的几何意义可求线段的长 25.(1)()()22219x y -++=;(2)34y x =和0x =. 【分析】 (1)将cos sin x y ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程,化简后可求得对应的直角坐标方程; (2)将直线的参数方程代入曲线方程,利用弦长公式列方程,解方程求得直线的倾斜角或斜率,由此求得直线l 的普通方程.【详解】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程得曲线C 的直角坐标方程为22442x y x y +-=-,即()()22219x y -++=;(2)将直线的参数方程代入曲线方程:()()22cos 2sin 19t t αα-++=,整理得24cos 2sin 40t t t αα-+-=设点A 、B 对应的参数为1t 、2t ,解得124cos 2sin t t αα+=-,124t t ⋅=-, 则12||AB t t =-===得23cos 4sin cos 0ααα-=,因为0απ≤<,得2πα=或3tan 4α=,直线l 的普通方程为34y x =和0x =. 【点睛】本题主要考查极坐标方程和直角坐标方程互化,考查利用直线的参数方程来求弦长有关的问题,属于中档题. 26.(1)10x y --=;2214x y +=(2【分析】(1)利用公式,即可实现极坐标方程和直角方程之间的转化;消去参数,则可得直线的普通方程;(2)将直线的参数方程代入曲线C 的直角方程,根据韦达定理,结合参数几何意义,即可容易求得.【详解】(1)因为曲线C 的方程,()222cos 4sin 4ρθθ+=, 故可得2244x y +=,即2214x y +=; 因为直线l的参数方程为2212x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数t ,则其直角方程为10x y --=.(2)将直线参数方程代入曲线C的直角方程,可得2580t ++=,设点,A B 对应的参数12,t t t t ==,则121285t t t t +==,故可得12AB t t =-====故弦长AB = 【点睛】本题考查极坐标方程、参数方程和直角坐标方程之间的相互转化,以及利用参数的几何意义求弦长,属综合基础题.。
选修4-4坐标系与参数方程高考真题汇总
坐标系与参数方程姓名: 班级:(2020全国Ⅰ)22.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标。
(2020全国Ⅱ)22.[选修4-4:坐标系与参数方程] (10分)已知曲线12,C C 的参数方程分别为2124cos ,(4sin x C y θθθ⎧=⎪⎨=⎪⎩:为参数),21,(1x t t C t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩:为参数), (1) 将12,C C 的参数方程化为普通方程:(2) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.(2020全国Ⅲ)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.(2019全国Ⅱ)22.[选修4—4:坐标系与参数方程](10分)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.(2019全国Ⅲ)22.[选修4−4:坐标系与参数方程](10分)如图,在极坐标系Ox 中,(2,0)A ,(2,)4B π,(2,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||3OP =P 的极坐标.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos 3sin 110ρθρθ+=在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.(2018全国Ⅱ)22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.(2018全国Ⅲ)22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ(0,αl O ⊙A B ,αAB P(2017全国Ⅰ)22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.(2017全国Ⅱ)22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.(2017全国Ⅲ)22.[选修44:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修4-4坐标系与参数方程------高考真题演练
1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨
=⎩
,
(θ为参数),
过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围;
(2)求AB 中点P 的轨迹的参数方程.
1(2)(2018全国卷II )在直角坐标系中,曲线的参数方程为(为参
数),直线的参数方程为(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为,求的斜率.
1(3)(2018全国卷I )在直角坐标系
中,曲线的方程为,以坐标原点为
极点,轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(1)求的直角坐标方程 (2)若
与有且仅有三个公共点,求
的方程
1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ
=⎧⎨
=⎩,
(θ为参数),
过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围;
(2)求AB 中点P 的轨迹的参数方程.
xOy C 2cos 4sin x θy θ=⎧⎨
=⎩
,
θl 1cos 2sin x t αy t α=+⎧⎨=+⎩
,
t C l C l (1,2)
l
解:(1)O e 的参数方程为cos sin x y θθ
=⎧⎨
=⎩,∴O e 的普通方程为22
1x y +=,当90α=︒时,
直线::0l x =与O e 有两个交点,当90α≠︒时,设直线l
的方程为tan y x α=-直线l 与O e
1<,得2tan 1α>,∴tan 1α>或tan 1α<-,∴
4590α︒<<︒或90135α︒<<︒,综上(45,135)α∈︒︒.
(2)点P 坐标为(,)x y ,当90α=︒时,点P 坐标为(0,0),当90α≠︒时,设直线
l
的方程为y kx =-1122(,),(,)A x y B x y ,
∴221x y y kx ⎧+=⎪⎨=⎪⎩①②
有22(1x kx +-=,
整理得22
(1)10k x +-+=
,∴122
1x x k
+=
+
,1221y y k -+=+,∴
2
211x k y k ⎧=⎪⎪+⎨
⎪=⎪+⎩
③④
得x k y =-
代入④得22
0x y ++=.当点(0,0)P
时满足方程220x y ++=,∴AB 中点的P
的轨迹方程是220x y ++=,即
221()22x y ++
=
,由图可知,22
A -
,(22B --
,则02y -<<,故点P
的参数方程为cos 2
22
x y ββ⎧=⎪⎪⎨⎪=-+⎪⎩(β为参数,0βπ<<).
1(2)(2018全国卷II )在直角坐标系中,曲线的参数方程为(为参数),
直线的参数方程为(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为,求的斜率.
解:(1)曲线的直角坐标方程为.
当时,的直角坐标方程为,
当时,的直角坐标方程为.
(2)将的参数方程代入的直角坐标方程,整理得关于的方程
.①
因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则
.又由①得,故,于是直线
的斜率.
1(3)(2018全国卷I )在直角坐标系
中,曲线的方程为,以坐标原点为极
点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为
(1)求
的直角坐标方程
xOy C 2cos 4sin x θy θ=⎧⎨
=⎩
,
θl 1cos 2sin x t αy t α
=+⎧⎨=+⎩,
t C l C l (1,2)l C 22
1416
x y +=cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=1224(2cos sin )
13cos t t ααα
++=-
+2cos sin 0αα+=l tan 2k α==-
(2)若与有且仅有三个公共点,求的方程
1.
则,即
所以
的直角坐标方程为
2.由题可知圆心坐标为,半径
又曲线方程
,关于轴对称,且曲线过圆外定点
∴当曲线与圆有且仅有个交点时,设曲线在轴的右半部分与圆相切于点,
此时,
则,
,即直线的方程为
1(3)(2017全国卷3) [选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,直线l 1的参数方程为,
,x t y kt =2+⎧⎨=⎩
(t 为参数),直线l 2的参数方程
为,,x m m
y k =-2+⎧⎪⎨=⎪⎩
(m 为参数),设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,
设:(cos sin )l ρθθ3+-=0,M 为l 3与C 的交点,求M 的极径. 【解析】⑴将参数方程转化为一般方程
()1:2l y k x =- ……①
()21
:2l y x k
=
+ ……② ①⨯②消k 可得:224x y -= 即P 的轨迹方程为22
4x y -=;
⑵将参数方程转化为一般方程
3:0l x y +-= ……③
联立曲线C 和3
l 2
2
4x y x y ⎧+=⎪⎨-=⎪⎩
解得x y ⎧=⎪⎪⎨
⎪
=⎪⎩ 由cos sin x y ρθρθ=⎧⎨=⎩
解得ρ=
即M
.。