车牌识别的matlab程序详细注释并有使用注意点
基于MATLAB的车牌识别程序详解..精要
(2)图像增强与边缘检测 figure(2),subplot(1,2,2),imhist(I1;title('灰度图直方图');)%显 示图像直方图,图像增强处理,直方图均衡 I2=edge(I1,'robert',0.15,'both');%将灰度图像用Robert算子计算, 间距0.15,方向水平,垂直两个方向,图像边缘处理,利用Robert算 子运算 figure(3),imshow(I2)%显示边缘处理后的;title('robert算子边缘检 测') se=[1;1;1];%创造一个维度矩阵,用于腐蚀单位扫描 I3=imerode(I2,se);%将I3灰度腐蚀,se为腐蚀算子 figure(4),imshow(I3);title('腐蚀后图像');%对裁剪好的图像进行 图像增强处理,利用腐蚀处理 se=strel('rectangle',[25,25]);%构建一个25为边长的正方形结构体 图
(一)图像预处理 收集到的图片一般为彩色图片,由于彩色图片占用存储容
量大,处理时间长,因此需要对图像进行灰度转换,将彩色图像转 换为灰度图像,灰度图像只保留亮度信息,方便使用,也为后面的 对图像进行二值化处理提供方便。
程序:I1=rgb2gray(I); rgb2gray,MATLAB中灰度图像转换函数,原图及处理后的
PX1=PX1+1; end %从上至下截取一段区域,区域上限位PY1 PX2=x; while ((Blue_x(1,PX2)<3)&&(PX2>PX1))
如何使用Matlab技术进行车牌识别
如何使用Matlab技术进行车牌识别车牌识别技术是一种在现代交通管理、安保等领域应用广泛的技术。
通过使用Matlab软件,我们可以轻松实现车牌识别功能。
本文将介绍如何使用Matlab技术进行车牌识别。
一、图像预处理在进行车牌识别之前,首先需要对图像进行预处理。
图像预处理的目的是提取车牌信息并减小噪声干扰。
在Matlab中,我们可以使用一系列图像处理函数来实现图像预处理,包括图像二值化、边缘检测、形态学操作等。
这些函数可以帮助我们提取车牌轮廓,并去除背景和噪声。
二、车牌定位车牌定位是车牌识别的关键步骤之一。
通过车牌定位,我们可以找到图像中的车牌区域,并将其与其他区域进行区分。
在Matlab中,可以使用图像分割、形态学滤波等技术来实现车牌定位。
这些技术可以帮助我们提取车牌的形状、颜色和纹理等特征,并将其与其他区域进行区分。
三、字符分割一旦我们成功地定位了车牌区域,就需要将车牌中的字符进行分割。
字符分割是车牌识别中的一个重要环节。
通过将车牌中的字符进行分割,我们可以得到单个字符的图像,为后续的字符识别做准备。
在Matlab中,可以使用一系列图像处理函数来实现字符分割,包括边缘检测、连通性分析和投影分析等。
这些函数可以帮助我们将车牌中的字符与其他区域进行分离。
四、字符识别字符识别是车牌识别的核心任务。
通过对字符进行识别,我们可以得到车牌中的文本信息。
在Matlab中,可以使用模式识别、神经网络或者深度学习等技术来实现字符识别。
这些技术可以帮助我们训练一个分类器,将字符图像与对应的字符进行匹配。
通过匹配算法,我们可以得到车牌的文本信息。
五、车牌识别结果展示在进行车牌识别之后,我们可以将识别结果进行展示。
通过将识别结果与原始图像进行对比,我们可以验证车牌识别的准确性。
在Matlab中,可以使用图像绘制函数和文本显示函数来实现车牌识别结果的展示。
通过这些函数,我们可以在原始图像中标注出识别结果,并将结果显示在图像上。
车牌识别的matlab程序的难点与解决方法
车牌识别的matlab程序的难点与解决方法车牌识别是近年来越来越流行的人工智能技术之一,其应用包括智能停车、智能交通等领域。
在车牌识别的matlab程序中,存在许多难点和解决方法,下面我们将对其进行详细介绍和拓展。
一、车牌识别算法的难点1.图像质量要求高车牌识别算法对图像质量要求非常高,因为车牌图像的质量直接影响识别准确率。
图像噪声、光线变化、车牌的形状和大小等因素都会影响车牌识别的精度。
2.多牌识别困难在实际的车牌识别中,往往需要同时识别多张牌,如多个车牌、不同号码的车牌等。
这种情况下,多牌识别是一个难点,需要采用一些特殊的算法和技术来解决。
3.车牌号码提取困难车牌号码提取是车牌识别算法中非常重要的一个环节,但也是难点之一。
因为车牌号码提取需要对图像进行特征提取和字符识别,这对图像的清晰度、颜色深度等要求较高,同时也需要考虑到字符大小、字符形状等因素。
4.字符识别错误在车牌识别中,字符识别是一个重要的环节,但也是容易出现错误的。
因为车牌中的字符形状和大小不同,而且有些字符在图像中可能处于不同的位置,这些因素都可能导致字符识别错误。
二、车牌识别matlab程序的解决方法1.提高图像质量提高图像质量是解决车牌识别算法中图像质量要求高的问题的有效方法。
可以通过调整相机参数、使用高质量的图像编辑软件等方式来提高图像质量。
2.优化多牌识别算法针对多牌识别的难点,可以通过优化算法来实现多牌识别。
可以采用一些特殊的算法和技术,如图像分割、特征提取、字符相似度计算等,来提高车牌识别的准确率和稳定性。
3.优化字符识别算法针对字符识别的难点,可以通过优化字符识别算法来实现。
可以采用一些特殊的算法和技术,如图像分割、特征提取、字符相似度计算等,来提高字符识别的准确率和稳定性。
4.优化车牌号码提取算法针对车牌号码提取的难点,可以通过优化车牌号码提取算法来实现。
可以采用一些特殊的算法和技术,如图像分割、特征提取、字符相似度计算等,来提高车牌号码提取的准确率和稳定性。
车牌识别的matlab程序的难点与解决方法(一)
车牌识别的matlab程序的难点与解决方法(一)车牌识别的matlab程序的难点与解决引言车牌识别是图像处理领域的一个重要应用,它可以在不同场景下自动识别和提取车辆的车牌信息。
在实际应用中,针对车牌识别的matlab程序存在着一些难点,本文将详细介绍这些难点及相应的解决方法,以帮助资深的创作者更好地实现车牌识别程序。
难点一:车牌识别算法选择子标题一:基于颜色特征的车牌识别算法•难点:车牌颜色在不同光照条件下会发生变化,导致识别算法的准确性下降。
•解决方法:采用颜色空间的变换(例如RGB到HSV),通过调整阈值和颜色范围,去除非车牌区域的干扰。
子标题二:基于边缘检测的车牌识别算法•难点:车牌边缘与周围物体边缘相似,容易造成误判。
•解决方法:利用形态学操作(如膨胀和腐蚀)来实现边缘闭合,并通过设定合适的阈值对边缘进行提取,降低误判概率。
子标题三:基于字符分割的车牌识别算法•难点:字符之间存在粘连和重叠情况,增加了字符分割的难度。
•解决方法:基于连通区域分析的方法,通过计算字符之间的间距和像素个数,对重叠和粘连的字符进行分割。
难点二:噪声影响的处理子标题一:图像预处理•难点:采集到的车牌图像可能存在噪声和模糊问题。
•解决方法:使用图像增强算法(如直方图均衡化和高斯滤波)对车牌图像进行预处理,提高图像的质量。
子标题二:光照不均匀的情况•难点:车牌图像在不同光照条件下会出现明暗不均的问题。
•解决方法:使用自适应阈值化算法,根据图像局部区域的光照情况对图像进行二值化处理,提高车牌识别的准确性。
难点三:多样化的车牌样式和字体子标题一:车牌样式的差异•难点:不同地区和不同国家的车牌样式存在差异,增加了车牌识别的难度。
•解决方法:基于模板匹配的方法,通过建立车牌模板库,对不同样式的车牌进行匹配比对,提高识别的准确性。
子标题二:字体的多样性•难点:不同车牌使用的字体风格各不相同。
•解决方法:使用字符特征提取算法,通过对字符轮廓和特征点的统计分析,识别不同字体的字符。
基于MATLAB的车牌识别程序详解..精要
(1)车牌区域内字符的纹理特征。 (2)车牌的格式标准和字符标准信息。 (3)车牌区域水平或者垂直投影特征。 (4)车牌区域的位置特点。 (5)车牌的彩色信息。 (6)频谱特征。
处理方法主要分为两大块:行定位与列定位。具体方法如下: 获取特征图像 要想从一整幅包括车身,背景等其他相对于车牌来说属于干扰因素
相关的MATLAB 指令: h=fspecial(‘average’,3); ;%平均值的设定 d=im2bw(round(filter2(h,d)));%平均滤波
(四)、图像的边缘检测:
边缘是图像的最本特征,边缘检测在计算机视觉、图像分析等应 用中起着重要的作用,使图像识别与分析的重要环节。边缘存在于 目标与背景、目标与目标、区域与区域之间因此它是图像分割、形 状特征、纹理特征的基础。缘具有方向与幅度两个特征。沿边缘走 向,像素变化比较平缓。而垂直于边缘走向,则像素变化剧烈。这 种剧烈可能呈现阶跃状,也可能呈现斜坡状。边缘的上的像素的一 阶导数较大; 二阶导数在边缘检测处值为零,呈现零交叉。这种特 点使得边缘检测可以利用数学方法获得,经典的边缘检测算子有 Roberts、Sobel、Prewitt、LoG、Canny算子。
(一)图像预处理 收集到的图片一般为彩色图片,由于彩色图片占用存储容
量大,处理时间长,因此需要对图像进行灰度转换,将彩色图像转 换为灰度图像,灰度图像只保留亮度信息,方便使用,也为后面的 对图像进行二值化处理提供方便。
Matlab详细代码识别车牌
%%%% 选择车牌图片 %%%%[filename, pathname] = uigetfile({'*.jpg';'*.bmp';'*.gif'},'选择图片'); str = [pathname filename];I =imread(str);%将选择的图片读取,并赋于Ifigure(1),subplot(3,2,1),imshow(I);title('原始图像');I1=rgb2gray(I);%转化为灰度图像figure(1),subplot(3,2,2),imshow(I1),title('灰度图像');I2=edge(I1,'roberts',0.09,'both');%采用robert算子进行边缘检测figure(1),subplot(3,2,3),imshow(I2),title('边缘检测后图像');se=[1;1;1]; %线型结构元素I3=imerode(I2,se); %腐蚀图像figure(1),subplot(3,2,4),imshow(I3),title('腐蚀后边缘图像');se=strel('rectangle',[25,25]); % 矩形结构元素I4=imclose(I3,se);%图像聚类、填充图像figure(1),subplot(3,2,5),imshow(I4),title('填充后图像');I5=bwareaopen(I4,2000);%去除聚团灰度值小于2000的部分figure(1),subplot(3,2,6),imshow(I5),title('形态滤波后图像');%%%%车牌定位%%%%[y,x]=size(I5);%获取滤波后图像的尺寸,及长宽I6=double(I5);Y1=zeros(y,1);%创建一个y行1列的0矩阵for i=1:yfor j=1:xif(I6(i,j)==1)Y1(i,1)= Y1(i,1)+1;endendend[~,MaxY]=max(Y1);figure(2),subplot(2,2,1),plot(0:y-1,Y1);title('行方向像素点灰度值累计和'),xlabel('行值'),ylabel('像素'); %%%%%%%求的车牌的行起始位置和终止位置%%%%%%%%%PY1=MaxY;while ((Y1(PY1,1)>=50)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Y1(PY2,1)>=50)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);X1=zeros(1,x);for j=1:xfor i=PY1:PY2if(I6(i,j,1)==1)X1(1,j)= X1(1,j)+1;endendendfigure(2),subplot(2,2,2),plot(0:x-1,X1);title('列方向像素点灰度值累计和');xlabel('列值');ylabel('像数'); %%%%%%%求的车牌的列起始位置和终止位置%%%%%%%%%PX1=1;while ((X1(1,PX1)<5)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((X1(1,PX2)<5)&&(PX2>PX1))PX2=PX2-1;end%分割出车牌图像%dw=I(PY1:PY2,PX1:PX2,:);imwrite(dw,'dw.jpg','jpg');figure(2),subplot(2,2,3),imshow(dw);title('定位剪切后的彩色车牌图像'); %%%字符切割%%%figure(3),subplot(2,2,1),imshow(dw);title('定位后的车牌图像');I1 = rgb2gray(dw); %将RGB图像转化为灰度图像g_max=double(max(max(I1))); %获取I1中灰度最大值g_min=double(min(min(I1))); %获取I1中灰度最小值T=round(g_max-(g_max-g_min)/3); % 计算二值化的阈值后赋值于TI1=im2bw(I1,T/256);subplot(2,2,2);imshow(I1),title('二值化车牌图像');I2=bwareaopen(I1,20);%删除面积小于20的区域figure(3),subplot(2,2,3),imshow(I2);title('形态学滤波后的二值化图像'); [y1,x1]=size(I2);I3=double(I2);%%%%%%%去除图像顶端和底端的不感兴趣区域%%%%%Y1=zeros(y1,1);for i=1:y1for j=1:x1if(I3(i,j,1)==1)Y1(i,1)= Y1(i,1)+1 ;endendendPy0=1;while ((Y1(Py0,1)<20)&&(Py0<y1))Py0=Py0+1;endPy1=Py0;while((Y1(Py1,1)>=20)&&(Py1<y1))Py1=Py1+1;endI2=I2(Py0:Py1,:,:);figure(3),subplot(2,2,4),imshow(I2);title('目标车牌区域');%%%%%% 分割字符按行积累量%%%%%%%X1=zeros(1,x1);for j=1:x1for i=1:y1if(I3(i,j)==1)X1(1,j)= X1(1,j)+1;endendendfigure(4),plot(0:x1-1,X1);title('列方向像素点灰度值累计和'),xlabel('列值'),ylabel('累计像素量'); %%%%%%%%%%%%分割字符%%%%%%%%%%%%%%%%%%Px0=1;k=1; %记录存储图片的个数for i=1:7while ((X1(1,Px0)<5)&&(Px0<x1))Px0=Px0+1;endPx1=Px0;while (((X1(1,Px1)>=5)&&(Px1<x1)))Px1=Px1+1;endif((Px1-Px0)<15) %% 此处加一个if语句作用是除去识Px0=Px1+1; %% 别时区域X轴区域小于15的部分,为 while ((X1(1,Px0)<5)&&(Px0<x1)) %% 了去除不是字符的部分,例如:Px0=Px0+1; %% [ 豫 A * A 3 7 5 G ] 中两个A之间end %% 的那个点,由于滤波不能滤掉这个比较Px1=Px0; %% 大一点的点,所以在此去除。
车牌识别matlab实验报告
车牌识别matlab实验报告标题:基于Matlab的车牌识别实验报告摘要:车牌识别是计算机视觉领域的一个重要研究方向,具有广泛的应用前景。
本实验基于Matlab平台,设计并实现了一个简单的车牌识别系统。
实验采用了图像处理和模式识别的技术,通过对车牌图像的预处理、字符分割和字符识别等步骤,成功地实现了对车牌的自动识别。
实验结果表明,该系统在不同场景下的车牌识别效果良好。
一、引言随着交通问题的日益突出,车牌识别技术在交通管理、安防等领域得到广泛应用。
车牌识别系统的核心是对车牌图像进行处理和分析,从中提取出车牌的信息。
本实验旨在利用Matlab平台,实现一个简单的车牌识别系统,并对其性能进行评估。
二、实验方法1. 数据收集:收集包含不同角度、光照条件和车牌类型的车牌图像,并建立一个图像库。
2. 图像预处理:对采集到的车牌图像进行预处理,包括图像增强、灰度化、二值化等操作,以减小光照和噪声对后续处理的影响。
3. 车牌定位:利用边缘检测和形态学处理等方法,对预处理后的图像进行车牌定位,提取出车牌区域。
4. 字符分割:对提取到的车牌区域进行字符分割,将车牌中的字符单独切割出来,以便后续的字符识别。
5. 字符识别:利用模式识别算法,对字符进行识别。
本实验采用了支持向量机(SVM)算法进行训练和分类。
6. 性能评估:对实验结果进行评估,包括准确率、召回率和F1值等指标。
三、实验结果与讨论经过实验测试,我们的车牌识别系统在不同场景下表现出良好的性能。
在收集的测试集上,系统的准确率达到了90%,召回率为85%。
在实际应用中,我们注意到系统对于光照条件较好、车牌清晰的图像处理效果更佳,对于遮挡、模糊的车牌图像处理效果有待改进。
四、结论本实验基于Matlab平台,设计并实现了一个简单的车牌识别系统。
通过图像预处理、车牌定位、字符分割和字符识别等步骤,我们成功地实现了对车牌的自动识别。
实验结果表明,该系统在不同场景下的车牌识别效果良好,并能够较为准确地提取出车牌中的字符信息。
车牌识别的matlab程序-(详细注释,并有使用注意点)
附录车牌识别程序clear ;close all;%Step1 获取图像装入待处理彩色图像并显示原始图像Scolor = imread('3.jpg');%imread函数读取图像文件%将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图figure,imshow(Sgray),title('原始黑白图像');%Step2 图像预处理对Sgray 原始黑白图像进行开操作得到图像背景s=strel('disk',13);%strel函数Bgray=imopen(Sgray,s);%打开sgray s图像figure,imshow(Bgray);title('背景图像');%输出背景图像%用原始图像与背景图像作减法,增强图像Egray=imsubtract(Sgray,Bgray);%两幅图相减figure,imshow(Egray);title('增强黑白图像');%输出黑白图像%Step3 取得最佳阈值,将图像二值化fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值bw22=im2bw(Egray,level);%转换图像为二进制图像bw2=double(bw22);%Step4 对得到二值图像作开闭操作进行滤波figure,imshow(bw2);title('图像二值化');%得到二值图像grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界figure,imshow(grd);title('图像边缘提取');%输出图像边缘bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像%Step5 对二值图像进行区域提取,并计算区域特征参数。
车牌识别的matlab程序(程序-讲解-模板)
clcclearclose allI=imread('chepai.jpg');subplot(3,2,1);imshow(I), title('原始图像');I_gray=rgb2gray(I);subplot(3,2,2),imshow(I_gray),title('灰度图像');%====================== 形态学预处理======================I_edge=edge(I_gray,'sobel');subplot(3,2,3),imshow(I_edge),title('边缘检测后图像');se=[1;1;1];I_erode=imerode(I_edge,se);subplot(3,2,4),imshow(I_erode),title('腐蚀后边缘图像');se=strel('rectangle',[25,25]);I_close=imclose(I_erode,se); %图像闭合、填充图像subplot(3,2,5),imshow(I_close),title('填充后图像');I_final=bwareaopen(I_close,2000); %去除聚团灰度值小于2000的部分subplot(3,2,6),imshow(I_final),title('形态滤波后图像');%========================== 车牌分割============================= I_new=zeros(size(I_final,1),size(I_final,2));location_of_1=[];for i=1:size(I_final,1) %寻找二值图像中白的点的位置for j=1:size(I_final,2)if I_final(i,j)==1;newlocation=[i,j];location_of_1=[location_of_1;newlocation];endendendmini=inf;maxi=0;for i=1:size(location_of_1,1)%寻找所有白点中,x坐标与y坐标的和最大,最小的两个点的位置temp=location_of_1(i,1)+location_of_1(i,2);if temp<minimini=temp;a=i;endif temp>maximaxi=temp;b=i;endendfirst_point=location_of_1(a,:); %和最小的点为车牌的左上角last_point=location_of_1(b,:); %和最大的点为车牌的右下角x1=first_point(1)+4; %坐标值修正x2=last_point(1)-4;y1=first_point(2)+4;y2=last_point(2)-4;I_plate=I(x1:x2,y1:y2);I_plate=OTSU(I_plate); %以OTSU算法对分割出的车牌进行自适应二值化处理I_plate=bwareaopen(I_plate,50);figure,imshow(I_plate),title('车牌提取') %画出最终车牌%========================= 字符分割============================X=[]; %用来存放水平分割线的横坐标flag=0;for j=1:size(I_plate,2)sum_y=sum(I_plate(:,j));if logical(sum_y)~=flag %列和有变化时,记录下此列X=[X j];flag=logical(sum_y);endendfigurefor n=1:7char=I_plate(:,X(2*n-1):X(2*n)-1); %进行粗分割for i=1:size(char,1) %这两个for循环对分割字符的上下进行裁剪if sum(char(i,:))~=0top=i;breakendendfor i=1:size(char,1)if sum(char(size(char,1)-i,:))~=0bottom=size(char,1)-i;breakendendchar=char(top:bottom,:);subplot(2,4,n);imshow(char);char=imresize(char,[32,16],'nearest'); %归一化为32*16的大小,以便模板匹配eval(strcat('Char_',num2str(n),'=char;')); %将分割的字符放入Char_i中end%========================== 字符识别============================= char=[];store1=strcat('京','津','沪','渝','冀','晋','辽','吉','黑','苏','浙'... %汉字识别,'皖','闽','赣','鲁','豫','鄂','湘','粤','琼','川','贵','云','陕'...,'甘','青','藏','桂','皖','新','宁','港','鲁','蒙');for j=1:34Im=Char_1;Template=imread(strcat('chinese\',num2str(j),'.bmp')); %chinese文件附在最后Template=im2bw(Template);Differ=Im-Template;Compare(j)=sum(sum(abs(Differ)));endindex=find(Compare==(min(Compare)));char=[char store1(index)];store2=strcat('A','B','C','D','E','F','G','H','J','K','L','M','M','N','P','Q','R'...,'S','T','U','V','W','X','Y','Z','0','1','2','3','4','5','6','7','8','9');for i=2:7 %字母数字识别for j=1:35Im=eval(strcat('Char_',num2str(i)));Template=imread(strcat('cha&num\',num2str(j),'.bmp')); %cha&num文件附在最后Template=im2bw(Template);Differ=Im-Template;Compare(j)=sum(sum(abs(Differ)));endindex=find(Compare==(min(Compare)));char=[char store2(index)];endfigure,imshow(I),title(strcat('车牌为:',char))信研-11 XX 2011301XXXXXX模式识别作业—车牌识别1、作业要求:要求:任给一幅符合假定的图片,自动识别出车牌号。
车牌识别地matlab程序--详细注释,并有使用注意点
附录车牌识别程序clear ;close all;%Step1 获取图像装入待处理彩色图像并显示原始图像Scolor = imread('3.jpg');%imread函数读取图像文件%将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图figure,imshow(Sgray),title('原始黑白图像');%Step2 图像预处理对Sgray 原始黑白图像进行开操作得到图像背景s=strel('disk',13);%strel函数Bgray=imopen(Sgray,s);%打开sgray s图像figure,imshow(Bgray);title('背景图像');%输出背景图像%用原始图像与背景图像作减法,增强图像Egray=imsubtract(Sgray,Bgray);%两幅图相减figure,imshow(Egray);title('增强黑白图像');%输出黑白图像%Step3 取得最佳阈值,将图像二值化fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值bw22=im2bw(Egray,level);%转换图像为二进制图像bw2=double(bw22);%Step4 对得到二值图像作开闭操作进行滤波figure,imshow(bw2);title('图像二值化');%得到二值图像grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界figure,imshow(grd);title('图像边缘提取');%输出图像边缘bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像%Step5 对二值图像进行区域提取,并计算区域特征参数。
车牌识别的matlab程序(程序-讲解-模板)
clcclearclose allI=imread('chepai.jpg');subplot(3,2,1);imshow(I), title('原始图像');I_gray=rgb2gray(I);subplot(3,2,2),imshow(I_gray),title('灰度图像');%====================== 形态学预处理======================I_edge=edge(I_gray,'sobel');subplot(3,2,3),imshow(I_edge),title('边缘检测后图像');se=[1;1;1];I_erode=imerode(I_edge,se);subplot(3,2,4),imshow(I_erode),title('腐蚀后边缘图像');se=strel('rectangle',[25,25]);I_close=imclose(I_erode,se); %图像闭合、填充图像subplot(3,2,5),imshow(I_close),title('填充后图像');I_final=bwareaopen(I_close,2000); %去除聚团灰度值小于2000的部分subplot(3,2,6),imshow(I_final),title('形态滤波后图像');%========================== 车牌分割============================= I_new=zeros(size(I_final,1),size(I_final,2));location_of_1=[];for i=1:size(I_final,1) %寻找二值图像中白的点的位置for j=1:size(I_final,2)if I_final(i,j)==1;newlocation=[i,j];location_of_1=[location_of_1;newlocation];endendendmini=inf;maxi=0;for i=1:size(location_of_1,1)%寻找所有白点中,x坐标与y坐标的和最大,最小的两个点的位置temp=location_of_1(i,1)+location_of_1(i,2);if temp<minimini=temp;a=i;endif temp>maximaxi=temp;b=i;endendfirst_point=location_of_1(a,:); %和最小的点为车牌的左上角last_point=location_of_1(b,:); %和最大的点为车牌的右下角x1=first_point(1)+4; %坐标值修正x2=last_point(1)-4;y1=first_point(2)+4;y2=last_point(2)-4;I_plate=I(x1:x2,y1:y2);I_plate=OTSU(I_plate); %以OTSU算法对分割出的车牌进行自适应二值化处理I_plate=bwareaopen(I_plate,50);figure,imshow(I_plate),title('车牌提取') %画出最终车牌%========================= 字符分割============================X=[]; %用来存放水平分割线的横坐标flag=0;for j=1:size(I_plate,2)sum_y=sum(I_plate(:,j));if logical(sum_y)~=flag %列和有变化时,记录下此列X=[X j];flag=logical(sum_y);endendfigurefor n=1:7char=I_plate(:,X(2*n-1):X(2*n)-1); %进行粗分割for i=1:size(char,1) %这两个for循环对分割字符的上下进行裁剪if sum(char(i,:))~=0top=i;breakendendfor i=1:size(char,1)if sum(char(size(char,1)-i,:))~=0bottom=size(char,1)-i;breakendendchar=char(top:bottom,:);subplot(2,4,n);imshow(char);char=imresize(char,[32,16],'nearest'); %归一化为32*16的大小,以便模板匹配eval(strcat('Char_',num2str(n),'=char;')); %将分割的字符放入Char_i中end%========================== 字符识别============================= char=[];store1=strcat('京','津','沪','渝','冀','晋','辽','吉','黑','苏','浙'... %汉字识别,'皖','闽','赣','鲁','豫','鄂','湘','粤','琼','川','贵','云','陕'...,'甘','青','藏','桂','皖','新','宁','港','鲁','蒙');for j=1:34Im=Char_1;Template=imread(strcat('chinese\',num2str(j),'.bmp')); %chinese文件附在最后Template=im2bw(Template);Differ=Im-Template;Compare(j)=sum(sum(abs(Differ)));endindex=find(Compare==(min(Compare)));char=[char store1(index)];store2=strcat('A','B','C','D','E','F','G','H','J','K','L','M','M','N','P','Q','R'...,'S','T','U','V','W','X','Y','Z','0','1','2','3','4','5','6','7','8','9');for i=2:7 %字母数字识别for j=1:35Im=eval(strcat('Char_',num2str(i)));Template=imread(strcat('cha&num\',num2str(j),'.bmp')); %cha&num文件附在最后Template=im2bw(Template);Differ=Im-Template;Compare(j)=sum(sum(abs(Differ)));endindex=find(Compare==(min(Compare)));char=[char store2(index)];endfigure,imshow(I),title(strcat('车牌为:',char))信研-11 XX 2011301XXXXXX模式识别作业—车牌识别1、作业要求:要求:任给一幅符合假定的图片,自动识别出车牌号。
车牌识别的matlab程序精选.
附录车牌识别程序clear ;close all;%Step1 获取图像装入待处理彩色图像并显示原始图像Scolor = imread('3.jpg');%imread函数读取图像文件%将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图figure,imshow(Sgray),title('原始黑白图像');%Step2 图像预处理对Sgray 原始黑白图像进行开操作得到图像背景s=strel('disk',13);%strel函数Bgray=imopen(Sgray,s);%打开sgray s图像figure,imshow(Bgray);title('背景图像');%输出背景图像%用原始图像与背景图像作减法,增强图像Egray=imsubtract(Sgray,Bgray);%两幅图相减figure,imshow(Egray);title('增强黑白图像');%输出黑白图像%Step3 取得最佳阈值,将图像二值化fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值bw22=im2bw(Egray,level);%转换图像为二进制图像bw2=double(bw22);%Step4 对得到二值图像作开闭操作进行滤波figure,imshow(bw2);title('图像二值化');%得到二值图像grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界figure,imshow(grd);title('图像边缘提取');%输出图像边缘bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像%Step5 对二值图像进行区域提取,并计算区域特征参数。
使用Matlab进行车牌识别的技巧与实践
使用Matlab进行车牌识别的技巧与实践引言:车牌识别技术是计算机视觉领域中一个重要的研究方向。
随着交通流量的急剧增加,车牌识别已成为自动化交通监控系统中的一项核心任务。
本文将介绍如何使用Matlab进行车牌识别,并分享一些技巧与实践经验。
一、图像预处理车牌识别的第一步是图像预处理,目的是提取感兴趣的车牌区域。
在Matlab中,可以使用各种图像处理函数来进行预处理操作,如灰度化、二值化、滤波等。
其中,灰度化可以将彩色图像转换为灰度图像,简化后续处理过程。
二值化操作则能够将图像处理为黑白两色,方便车牌区域的提取。
此外,使用滤波函数可以对图像进行平滑处理,减少噪声的干扰。
二、车牌区域提取在预处理过程中,车牌区域的提取是非常关键的一步。
通常情况下,可以通过车牌的形状和颜色进行提取。
Matlab提供了多种寻找物体边界的方法,如边缘检测、连通区域分析等。
边缘检测可以识别图像中的边缘信息,然后根据车牌的形状特点,选择合适的方法提取车牌边缘。
连通区域分析则可以找到图像中具有相同灰度或颜色的连通区域,进一步筛选出车牌区域。
三、字符分割车牌识别的下一个步骤是字符分割。
通过将车牌图像分割为单个字符,可以便于后续的字符识别工作。
在Matlab中,字符分割可以通过一系列几何变换和图像处理操作来实现。
例如,可以使用形态学操作来去除车牌区域中的噪声和冗余信息,然后通过寻找字符之间的间隔来进行字符的分割。
另外,还可以考虑使用基于模板匹配的方法来实现字符分割。
四、字符识别字符识别是车牌识别的核心环节之一。
在Matlab中,有多种方法和工具可以实现字符识别。
一种常用的方法是基于模板匹配的字符识别算法。
该方法需要预先准备好字符的模板库,并通过计算输入字符与模板之间的匹配度来实现识别。
另一种常用的方法是基于机器学习的字符识别算法,如支持向量机(SVM)和深度学习算法。
这些算法可以通过训练样本来学习字符的特征,然后进行识别。
不同的方法有各自的优缺点,根据具体需求选择合适的算法进行字符识别。
车牌识别Matlab算法详解
生成界面时注意事项1、生成文件主菜单和打开、关闭子菜单不一样的地方,在于文件主菜单不对应实际执行代码,所以在Callback回调函数,这一项,可将其删除为空。
2、在关闭Menu Editor之前,先保存正在编辑的.fig文件,让其自动生成或者更新对应的.m 文件3、在.fig文件编辑器的空白处,双击,弹出Property Inspector,在其中更改Resize 属性为on,表示窗体大小可以更改;更改Units 的单位为pixels ;Tag的名称代表窗体的名称,默认为figure1,另取一个名称为mainFrm.注意在关闭Property Inspector之前总是先保存.fig文件4、假如程序运行出了问题,可先在Command window中查看错误说明,根据提示修改。
或者打开.m源代码文件,重新编译运行。
注意在运行之前使用命令窗口中的clc命令清空内存。
5、现在一行一行来解释源代码。
第一行:function varargout = LicenseRecognition(varargin)分别表示主函数的输出、函数名称、函数输入在% Begin initialization code - DO NOT EDIT% End initialization code - DO NOT EDIT这两行注释符之前的代码是编辑菜单时自动生成的,不需要修改function LicenseRecognition_OpeningFcn(hObject, eventdata, handles, varargin)%系统自动生成handles.output = hObject; %系统自动生成——————————————————————————————————%以下代码为手工添加,表示使用handles结构体来保存图形界面中各种对象的句柄,或者中间结果,这些句柄或者中间结果在创建图形对象或运算中产生,需要在以后的回调函数中多次用到,所以这里的作用类似于全局变量的作用,用来进行数据的传递。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
for l=1:num
width=Boundi
hight=BoundingBox((l-1)*4+4);%框架高度的计算
if(width>98 & width<160&hight>25& hight<50)%框架的宽度和高度的范围,这块儿不同的图片对应不同,可以用终端操作查看后更改!!!
%Step2图像预处理对Sgray原始黑白图像进行开操作得到图像背景
s=strel('disk',13);%strel函数
Bgray=imopen(Sgray,s);%打开sgrays图像
figure,imshow(Bgray);title('背景图像');%输出背景图像
%用原始图像与背景图像作减法,增强图像
Area=[Feastats.Area];%区域面积
BoundingBox=[Feastats.BoundingBox];%[x ywidthheight]车牌框架大小
RGB = label2rgb(L,'spring', 'k','shuffle');%标志图像向RGB图像转换
figure,imshow(RGB);title('图像彩色标记');%输出框架的彩色图像
level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值
bw22=im2bw(Egray,level);%转换图像为二进制图像
bw2=double(bw22);
%Step4对得到二值图像作开闭操作进行滤波
figure,imshow(bw2);title('图像二值化');%得到二值图像
grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界
figure,imshow(grd);title('图像边缘提取');%输出图像边缘
bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算
figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像
lx=lx+1;
Getok(lx)=l;
end
end
for k= 1:lx
l=Getok(k);
startcol=BoundingBox((l-1)*4+1)-2;%开始列
startrow=BoundingBox((l-1)*4+2)-2;%开始行
width=BoundingBox((l-1)*4+3)+8;%车牌宽
bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算
figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像
bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算
hight=BoundingBox((l-1)*4+4)+2;%车牌高
rato=width/hight;%计算车牌长宽比
if rato>2 & rato<4%这块儿也需要根据具体情况更改一下,如3-6啊什么的
break;
end
end
sbw1=bw2(startrow:startrow+hight,startcol:startcol+width-1);%获取车牌二值子图
%Step6计算车牌水平投影,并对水平投影进行峰谷分析
histcol1=sum(sbw1);%计算垂直投影
histrow=sum(sbw1');%计算水平投影
figure,subplot(2,1,1),bar(histcol1);title('垂直投影(含边框)');%输出垂直投影
subplot(2,1,2),bar(histrow);title('水平投影(含边框)');%输出水平投影
Scolor=imread('3.jpg');%imread函数读取图像文件
%将彩色图像转换为黑白并显示
Sgray=rgb2gray(Scolor);%rgb2gray转换成灰度图
figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图
figure,imshow(Sgray),title('原始黑白图像');
figure,subplot(2,1,1),bar(histrow);title('水平投影(含边框)');%输出水平投影
subplot(2,1,2),imshow(sbw1);title('车牌二值子图');%输出二值图
车牌识别的matlab程序--(详细注释-并有使用注意点)
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
附录
车牌识别程序
clear;
close all;
%Step1获取图像装入待处理彩色图像并显示原始图像
Egray=imsubtract(Sgray,Bgray);%两幅图相减
figure,imshow(Egray);title('增强黑白图像');%输出黑白图像
%Step3取得最佳阈值,将图像二值化
fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型
fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型
subcol1=Sgray(startrow:startrow+hight,startcol:startcol+width-1);%获取车牌灰度子图
figure,subplot(2,1,1),imshow(subcol1);title('车牌灰度子图');%输出灰度图
subplot(2,1,2),imshow(sbw1);title('车牌二值子图');%输出车牌的二值图
figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像
%Step5对二值图像进行区域提取,并计算区域特征参数。进行区域特征参数比较,提取车牌区域
[L,num] = bwlabel(bg2,8);%标注二进制图像中已连接的部分
Feastats =imfeature(L,'basic');%计算图像区域的特征尺寸