电离层反射
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种简单的方法—透射法。 pe 无微波信号 pe 接收到信号
一定频率的微波射向等离子体,以是否穿过 等离子体,被接受器所接收,进行判断。
5.5 垂直于磁场的高频电磁波
电磁波的传播方向 k 与外磁场垂直
对于高频电磁波,仍假定离子不响应,只需考虑
电子的运动。为简化起见,设Ti=Te=0,pe 0 ,
(i)截止条件: 由色散关系
N2
c2k 2
2
1
2 pe
( 2
2 pe
2 (2
2 HH
) )
0
2源自文库(2
2 HH
)
2 pe
(2
2 pe
)
ω方程应该有4个根,求解后其中只有两个根是合理 的( ω >0)
R
ce
2
1
1
4
2 pe
/
2 ce
pe
L
ce
2
1
1
4
2 pe
/
2 ce
pe
ωR 称右旋截止频率,它是右旋椭圆偏振的非寻常 波截止频率;
因电离层厚度、电子密度等是随太阳辐射的昼夜、 季节、地理位置等而改变,而且太阳的黑子、磁 爆等对电离层也有影响。
电磁波在等离子体中的截止现象、色散关系在等 离子体诊断中也有重要的应用,现在常用它来测 量电子平均密度。
电子密度测量原理:测量电磁波通过等离子体后 的相移 kz N() z c
播,这就是高混杂静电波,色散关系:
2 HH
2 pe
2 ce
B0 0
2 pe
高混杂静电波的相速度与群速度:
vp / k
2 HH
/
k2
vt2e
1/ 2
高混杂静电波是三种恢复力:静电力,洛仑兹力
和热压力共同作用。如果B0=0,HH pe
与电子静电波的相同。现在出现的差别仅是:
一维绝热过程、等温过程,即 e 3 e 1
) )
k2
2
c2
1
2 pe
( 2
2 pe
2 ( 2
2 HH
) )
称非寻常波或x波的色散关系。
因为电子受到E1和 ue1 B0 洛仑兹力作用,在xy平 面上存在两个垂直的分量E1x和E1y,因此非常波就 是垂直k 方向的横波E1y和平行k方向的纵波E1x组成 的混合波。
在空间固定点观察, E1x与E1y合成的矢量E1端点轨 迹是椭圆,所以非寻常波是椭圆偏振波。
由电磁场方程组得
E1
( E1) 2 E1
1 c2
2 E1 t 2
0
j1 t
2 E1
( E1)
1 c2
2 E1 t 2
0
j1 t
电磁波是横波 E1 0
得电磁波的波动方程
2E1
1 c2
2 E1 t 2
2 pe c2
E1
0
E1取平面波形式 E1 = E1,0 exp[i(k × r - wt)]
非寻常波的截止与共振
N 2 = 0 情况称截止。因为 N 2 0 时,k N2 / c
为纯虚数,波传播因子就变为振幅衰减因子,意 味着波在介质中传播时很快衰减,最终被截止。
N 2 ® ¥ k ,ω与k无关,这样相速度,
群速度都为0,波不能传播,出现共振。
N2 = 0 为截止条件;N2→∞为共振条件。
j1 = -en0ue1
men0
¶ue1 ¶t
=
-en0 E1
w pe = n0e2 / mee0
c2
=
1/
me 00
代入波动方程得
(2
k 2c2
2 pe
)E1
0
色散关系
2
k 2c2
2 pe
由此得等离子体的折射率和波数
N c / vp ck /
1
2 pe
/
2
k N
cc
1
2 pe
/
2
E1, ue1
消去ux,uy 后得
( 2
2 pe
)
E1x
i(ce
/ )(2
k 2c2 )E1y
0
ice E1x
(2
2 pe
k 2c2 )E1y
0
由非零解的条件,
2 ce
(2
k 2c2 )
(2
2 pe
)(2
2 pe
k2c2 )
0
色散关系
N2
c2k 2
2
1
2 pe
( 2
2 pe
2 (2
2 HH
2v
2 s
这就是5.2节的离子声波。
5.4 电磁波在等离子体中的传 播
研究电磁波在等离子体中传播,对核聚变、无线电 空间通信、空间等离子体物理都有重要意义。
2001年4月1日上午9点,海南岛东 南,一只矫健的战鹰折翼。军民千 艘舰船、30万平方公里、10万之 众14天的南海大搜救,终未能觅得 我壮士还。南天暮云碧海落日,写 下我“海空卫士”王伟的英勇与壮 烈。(摘自百度)
me
ue1 t
eE1
eue1 B0
E1 0
2 E1
( E1)
1 c2
2 E1 t 2
en0 0
ue1 t
类似的做法,可得线性化方程组
imeux eE1x euy B0 imeuy eE1y euxB0
(2 / c2 )E1x in0e0ux
2
/
c2
k2
E1y in0e0uy
E1 ∥B0 和 E1⊥ B0 ,要分别讨论。 1. 寻常波( E1 ∥B0 )
如图所示,扰动电场
E1 = E1,0ez exp[i(kx - wt)]
电子受E1驱动,ue1沿z轴方向振荡,
ue1 B0 0
E1 0
线性化方程与场方程变为
imeue1 eE1
k
2
E1
2E1
/ c2
in0e0ue1
k∥ B0 , 设k、B0都沿z 轴方向,电场E1应在xy平面
内,因为有磁场B0 ,E1和电子运速度ue1都有x、y
两分量,类似方法得线性化方程组
注意 E1 0
E1 0(E1x , E1y , 0) ue1 (ux , uy , 0)
imeux eE1x euy B0 imeuy eE1y eux B0 (2 k 2c2 )E1x ien0 ux 0 (2 k 2c2 )E1y ien0uy / 0
消去E1或ue1 ,就可得到色散关系
2
2 pe
k2c2
结果与5.4节无外磁场时完全相同。
表明:电磁波的传播不受磁场影响,所以称它为 寻常波或O波。
2. 非寻常波( E1⊥ B0 )
当E1⊥ B0 时, ue1 B0 0 ,由于洛仑兹力的作用,
电子运动不能沿一固定方向,因此、在x、y方向
都有分量:E1 (E1x , E1y , 0), ue1 (ux , uy , 0)
2、E1、B1是电磁波的场,电子运动的扰动项ue1都 是一级小量,洛仑兹力作用ue1×B1是高阶小量, 在电子运动方程中可以忽略。(如果外磁场 B0≠0 ?)
3、对于稀薄等离子体,碰撞项的贡献也可忽略
4、电磁波是横波,电子只有横向运动,在波动传 播方向其密度没有受扰动,所以电子的连续性方 程也不需要列出。
5.4 电磁波在等离子体中的传 播
本节研究不存在外磁场情况。对于高频电磁波,离 子运动可以忽略,只作为均匀正电荷背景。
无外磁场情况下,线性化后
电子运动方程
电磁场方程组
men0
ue1 t
en0 E1
ui1 0
E1
B1 t
B1
1 c2
E1 t
0
j1
j1 en0ue1
需要说明:
1、电子运动方程中忽略 pe 项,因为它只对运动 的纵向分量有影响,而对横向运动不起作用;
第1、2方程为电子运动方程,第3、4方程为场方
程。利用第3、4方程的ux,uy,代入第1、2方程
中,则得的E1x,E1y方程组
( 2
k2c2
2 pe
)
E1x
i ce
( 2
k 2c2 )E1y
地球与卫星间通信,要求穿透电离层到达外层空 间. 其频率 pe , 约高于30MHz. 电视频段满 足这个要求, 电视信号能够穿透电离层而到达外层 空间被通信卫星接收,然后再向地球转发。原先 在地面只能直线传播几十千米的超高频信号,现 在可依靠通信卫星转播,达到很远距离。
实际短波通信都受到电离层些因素的影响:
电磁波在等离子体中传播的相速度和群速度
p /k c/
1
2 pe
/
2
c
结果表明:
vg
d
dk
c2 vp
c
1、等离子体是一种色散介质:因为电磁波在等离子 体中传播特性与频率有关(如波数、相速度、群 速度和折射率),电磁波在等离子体中传播时, 相速度>c,群速度<c,等离子体的折射率N< 1,即折射率比真空的还要小。
△z为波通过等离子体
的距离。 N ( )与电子密
度相关
N()
1
2 pe
/2
2 pe
n0e2
/ me0
测得相移 ,则可定出电子密度 n0
相移的测量一般采用微波干涉仪的方法,如图
两路相移不同,振幅衰减也有差别,合成后 产生干涉条纹。可以通过调节标准路程上的 衰减器和移相器,使干涉条纹发生变化,最 后定出通过等离子体这一路的相移,从而确 定电子密度。
量被等离子体强烈吸收。这里色散关系与5.3节高
混杂波色散关系相同,因此N 2 时,
非寻常波变为垂直磁场方向的高混杂静电振荡
共振情况的振荡特性如何理解?
因为非寻常波本来就是电磁横波和静电纵波的混 合波,在共振点电磁横波消失了,静电纵波退化 为(高混杂)静电振荡。
共振对波加热等离子体有利,也是波加热等离子 体必需满足的条件。
电子运动线性化方程与场方程
me
ue1 t
eE1
eue1 B0
2 E1
( E1)
1 c2
2 E1 t 2
en0 0
ue1 t
有外磁场B0,1式右边增了洛仑兹力项,E1可能有 纵向分量, E1 可能不为0,所以2式中 ( E1)
项要保留。同时,为简化起见,假定 pe 0
电磁波传播方向k沿E1×B1方向,因此电场可能有 两种基本方向:
非寻常波和寻常波的色散关系图
对非寻常波(x波): 0 L
HH R
波不能传播,因此非寻常波有两个传播带,而中间相
隔一个截止带( HH R ),频率很低w << wce 这时要考虑离子运动,上面计算不适用。
对于寻常波(O波),传播带为 pe(截止频率)
5.6 平行于磁场的高频电磁波
ωL称左旋截止频率,它是左旋椭圆偏振的非寻常 波截止频率。
对于高密度等离子体 pe ce
则有 w R > w pe,w L < w pe
(ii)共振: N 2 , 色散关系变为
2
2 HH
2 pe
2 ce
ω与k无关,相速度、群速度都为0,表明波不能传
播,出现共振情况, HH 振荡频率,波的能
层对无线电波的反射作用来实现的。
一束频率为ω的电磁波,
pe n0e2 / me0
射向密度分布不均匀的
等离子体(如电离层):
截止频率 pe n0 电离层最大截止频率
f p pe / 2 10MHz
地面短波通信频率(电离层反射) f f p
如考虑到其他因素,最高可用的地面通信频率是 30MHz以下。
仅当ω→∞时,vp=vg=c,N=1。 2、电磁波在等离子体中传播时存在截止现象.
pe 时,k为实数,波可传播;
pe 时,k为纯虚数,波不能继续向前传播。
pe为截止频率
2
k 2c2
2 pe
N=
1-
w
2 pe
/
w
2
传播特性的重要应用
截止现象的重要应用:
地面上远距离的短波通信,就是利用地球高空电离
(2)低混杂静电波
当Te≠0,(Ti=0或Ti ≠ 0 ),这里至少存在电子热 压强的恢复力,这个恢复力可使局部的低混杂振 荡在等离子体中传播,这就是低混杂静电波,也 称低混杂波。
色散关系:
2
k 2vs2
2 LH
vs Ti Te / mi
当B0=0 , LH ceci 0
色散关系
2
k
小结:
电子静电振荡(高频) 电子静电波
2
2 pe
(动力压强)
2
2 pe
3vt2ek 2
离子声波:低频长波、准电中性 klDe 1
2 vs2k 2
离子静电波:低频短波 klDe 1
2
k2
iTi
eTe
mi
mi
1
e
k
2 2 De
静电波是纵波!
5.3 垂直于磁场的静电波
有外磁场时静电波,分为两种情况: ① k ,B0波传播方向与外磁场平行情况。
静电波是纵波,振动的方向沿波矢量的方向:
u1 k B,0 运动方程中外磁场的作用力 u1 B0 0
与上一节无外磁场情况相同,不需重新讨论。 ② k B0 ,即波传播方向与外磁场垂直情况。
在运动方程中增加了洛仑兹力项,外磁场对静电波 的传播有影响。
(2)高混杂静电波
当Te≠0,这时电子运动方程中增加了热压强恢复 力项,因此高混杂静电振荡可以在等离子体中传
第5章 等离子体波
集体效应运动形式:等离子体是由大量带电粒子组 成的一种连续介质。它的行为主要是带电粒子间 长程相互作用引起的集体效应确定的。等离子体 波就是集体效应的一种运动形式。
三种作用力:热压力、静电力和磁力 对等离子体的扰动都能起弹性恢复力的作用 弹性恢复力能使扰动在介质中传播形成波。
波的模式极为丰富: 波的传播特征是由介质性质决定的, 由于等离子体 自身的特殊性质(三种作用力)及其与电磁场之间 的耦合,使等离子体波的模式极为丰富。
一定频率的微波射向等离子体,以是否穿过 等离子体,被接受器所接收,进行判断。
5.5 垂直于磁场的高频电磁波
电磁波的传播方向 k 与外磁场垂直
对于高频电磁波,仍假定离子不响应,只需考虑
电子的运动。为简化起见,设Ti=Te=0,pe 0 ,
(i)截止条件: 由色散关系
N2
c2k 2
2
1
2 pe
( 2
2 pe
2 (2
2 HH
) )
0
2源自文库(2
2 HH
)
2 pe
(2
2 pe
)
ω方程应该有4个根,求解后其中只有两个根是合理 的( ω >0)
R
ce
2
1
1
4
2 pe
/
2 ce
pe
L
ce
2
1
1
4
2 pe
/
2 ce
pe
ωR 称右旋截止频率,它是右旋椭圆偏振的非寻常 波截止频率;
因电离层厚度、电子密度等是随太阳辐射的昼夜、 季节、地理位置等而改变,而且太阳的黑子、磁 爆等对电离层也有影响。
电磁波在等离子体中的截止现象、色散关系在等 离子体诊断中也有重要的应用,现在常用它来测 量电子平均密度。
电子密度测量原理:测量电磁波通过等离子体后 的相移 kz N() z c
播,这就是高混杂静电波,色散关系:
2 HH
2 pe
2 ce
B0 0
2 pe
高混杂静电波的相速度与群速度:
vp / k
2 HH
/
k2
vt2e
1/ 2
高混杂静电波是三种恢复力:静电力,洛仑兹力
和热压力共同作用。如果B0=0,HH pe
与电子静电波的相同。现在出现的差别仅是:
一维绝热过程、等温过程,即 e 3 e 1
) )
k2
2
c2
1
2 pe
( 2
2 pe
2 ( 2
2 HH
) )
称非寻常波或x波的色散关系。
因为电子受到E1和 ue1 B0 洛仑兹力作用,在xy平 面上存在两个垂直的分量E1x和E1y,因此非常波就 是垂直k 方向的横波E1y和平行k方向的纵波E1x组成 的混合波。
在空间固定点观察, E1x与E1y合成的矢量E1端点轨 迹是椭圆,所以非寻常波是椭圆偏振波。
由电磁场方程组得
E1
( E1) 2 E1
1 c2
2 E1 t 2
0
j1 t
2 E1
( E1)
1 c2
2 E1 t 2
0
j1 t
电磁波是横波 E1 0
得电磁波的波动方程
2E1
1 c2
2 E1 t 2
2 pe c2
E1
0
E1取平面波形式 E1 = E1,0 exp[i(k × r - wt)]
非寻常波的截止与共振
N 2 = 0 情况称截止。因为 N 2 0 时,k N2 / c
为纯虚数,波传播因子就变为振幅衰减因子,意 味着波在介质中传播时很快衰减,最终被截止。
N 2 ® ¥ k ,ω与k无关,这样相速度,
群速度都为0,波不能传播,出现共振。
N2 = 0 为截止条件;N2→∞为共振条件。
j1 = -en0ue1
men0
¶ue1 ¶t
=
-en0 E1
w pe = n0e2 / mee0
c2
=
1/
me 00
代入波动方程得
(2
k 2c2
2 pe
)E1
0
色散关系
2
k 2c2
2 pe
由此得等离子体的折射率和波数
N c / vp ck /
1
2 pe
/
2
k N
cc
1
2 pe
/
2
E1, ue1
消去ux,uy 后得
( 2
2 pe
)
E1x
i(ce
/ )(2
k 2c2 )E1y
0
ice E1x
(2
2 pe
k 2c2 )E1y
0
由非零解的条件,
2 ce
(2
k 2c2 )
(2
2 pe
)(2
2 pe
k2c2 )
0
色散关系
N2
c2k 2
2
1
2 pe
( 2
2 pe
2 (2
2 HH
2v
2 s
这就是5.2节的离子声波。
5.4 电磁波在等离子体中的传 播
研究电磁波在等离子体中传播,对核聚变、无线电 空间通信、空间等离子体物理都有重要意义。
2001年4月1日上午9点,海南岛东 南,一只矫健的战鹰折翼。军民千 艘舰船、30万平方公里、10万之 众14天的南海大搜救,终未能觅得 我壮士还。南天暮云碧海落日,写 下我“海空卫士”王伟的英勇与壮 烈。(摘自百度)
me
ue1 t
eE1
eue1 B0
E1 0
2 E1
( E1)
1 c2
2 E1 t 2
en0 0
ue1 t
类似的做法,可得线性化方程组
imeux eE1x euy B0 imeuy eE1y euxB0
(2 / c2 )E1x in0e0ux
2
/
c2
k2
E1y in0e0uy
E1 ∥B0 和 E1⊥ B0 ,要分别讨论。 1. 寻常波( E1 ∥B0 )
如图所示,扰动电场
E1 = E1,0ez exp[i(kx - wt)]
电子受E1驱动,ue1沿z轴方向振荡,
ue1 B0 0
E1 0
线性化方程与场方程变为
imeue1 eE1
k
2
E1
2E1
/ c2
in0e0ue1
k∥ B0 , 设k、B0都沿z 轴方向,电场E1应在xy平面
内,因为有磁场B0 ,E1和电子运速度ue1都有x、y
两分量,类似方法得线性化方程组
注意 E1 0
E1 0(E1x , E1y , 0) ue1 (ux , uy , 0)
imeux eE1x euy B0 imeuy eE1y eux B0 (2 k 2c2 )E1x ien0 ux 0 (2 k 2c2 )E1y ien0uy / 0
消去E1或ue1 ,就可得到色散关系
2
2 pe
k2c2
结果与5.4节无外磁场时完全相同。
表明:电磁波的传播不受磁场影响,所以称它为 寻常波或O波。
2. 非寻常波( E1⊥ B0 )
当E1⊥ B0 时, ue1 B0 0 ,由于洛仑兹力的作用,
电子运动不能沿一固定方向,因此、在x、y方向
都有分量:E1 (E1x , E1y , 0), ue1 (ux , uy , 0)
2、E1、B1是电磁波的场,电子运动的扰动项ue1都 是一级小量,洛仑兹力作用ue1×B1是高阶小量, 在电子运动方程中可以忽略。(如果外磁场 B0≠0 ?)
3、对于稀薄等离子体,碰撞项的贡献也可忽略
4、电磁波是横波,电子只有横向运动,在波动传 播方向其密度没有受扰动,所以电子的连续性方 程也不需要列出。
5.4 电磁波在等离子体中的传 播
本节研究不存在外磁场情况。对于高频电磁波,离 子运动可以忽略,只作为均匀正电荷背景。
无外磁场情况下,线性化后
电子运动方程
电磁场方程组
men0
ue1 t
en0 E1
ui1 0
E1
B1 t
B1
1 c2
E1 t
0
j1
j1 en0ue1
需要说明:
1、电子运动方程中忽略 pe 项,因为它只对运动 的纵向分量有影响,而对横向运动不起作用;
第1、2方程为电子运动方程,第3、4方程为场方
程。利用第3、4方程的ux,uy,代入第1、2方程
中,则得的E1x,E1y方程组
( 2
k2c2
2 pe
)
E1x
i ce
( 2
k 2c2 )E1y
地球与卫星间通信,要求穿透电离层到达外层空 间. 其频率 pe , 约高于30MHz. 电视频段满 足这个要求, 电视信号能够穿透电离层而到达外层 空间被通信卫星接收,然后再向地球转发。原先 在地面只能直线传播几十千米的超高频信号,现 在可依靠通信卫星转播,达到很远距离。
实际短波通信都受到电离层些因素的影响:
电磁波在等离子体中传播的相速度和群速度
p /k c/
1
2 pe
/
2
c
结果表明:
vg
d
dk
c2 vp
c
1、等离子体是一种色散介质:因为电磁波在等离子 体中传播特性与频率有关(如波数、相速度、群 速度和折射率),电磁波在等离子体中传播时, 相速度>c,群速度<c,等离子体的折射率N< 1,即折射率比真空的还要小。
△z为波通过等离子体
的距离。 N ( )与电子密
度相关
N()
1
2 pe
/2
2 pe
n0e2
/ me0
测得相移 ,则可定出电子密度 n0
相移的测量一般采用微波干涉仪的方法,如图
两路相移不同,振幅衰减也有差别,合成后 产生干涉条纹。可以通过调节标准路程上的 衰减器和移相器,使干涉条纹发生变化,最 后定出通过等离子体这一路的相移,从而确 定电子密度。
量被等离子体强烈吸收。这里色散关系与5.3节高
混杂波色散关系相同,因此N 2 时,
非寻常波变为垂直磁场方向的高混杂静电振荡
共振情况的振荡特性如何理解?
因为非寻常波本来就是电磁横波和静电纵波的混 合波,在共振点电磁横波消失了,静电纵波退化 为(高混杂)静电振荡。
共振对波加热等离子体有利,也是波加热等离子 体必需满足的条件。
电子运动线性化方程与场方程
me
ue1 t
eE1
eue1 B0
2 E1
( E1)
1 c2
2 E1 t 2
en0 0
ue1 t
有外磁场B0,1式右边增了洛仑兹力项,E1可能有 纵向分量, E1 可能不为0,所以2式中 ( E1)
项要保留。同时,为简化起见,假定 pe 0
电磁波传播方向k沿E1×B1方向,因此电场可能有 两种基本方向:
非寻常波和寻常波的色散关系图
对非寻常波(x波): 0 L
HH R
波不能传播,因此非寻常波有两个传播带,而中间相
隔一个截止带( HH R ),频率很低w << wce 这时要考虑离子运动,上面计算不适用。
对于寻常波(O波),传播带为 pe(截止频率)
5.6 平行于磁场的高频电磁波
ωL称左旋截止频率,它是左旋椭圆偏振的非寻常 波截止频率。
对于高密度等离子体 pe ce
则有 w R > w pe,w L < w pe
(ii)共振: N 2 , 色散关系变为
2
2 HH
2 pe
2 ce
ω与k无关,相速度、群速度都为0,表明波不能传
播,出现共振情况, HH 振荡频率,波的能
层对无线电波的反射作用来实现的。
一束频率为ω的电磁波,
pe n0e2 / me0
射向密度分布不均匀的
等离子体(如电离层):
截止频率 pe n0 电离层最大截止频率
f p pe / 2 10MHz
地面短波通信频率(电离层反射) f f p
如考虑到其他因素,最高可用的地面通信频率是 30MHz以下。
仅当ω→∞时,vp=vg=c,N=1。 2、电磁波在等离子体中传播时存在截止现象.
pe 时,k为实数,波可传播;
pe 时,k为纯虚数,波不能继续向前传播。
pe为截止频率
2
k 2c2
2 pe
N=
1-
w
2 pe
/
w
2
传播特性的重要应用
截止现象的重要应用:
地面上远距离的短波通信,就是利用地球高空电离
(2)低混杂静电波
当Te≠0,(Ti=0或Ti ≠ 0 ),这里至少存在电子热 压强的恢复力,这个恢复力可使局部的低混杂振 荡在等离子体中传播,这就是低混杂静电波,也 称低混杂波。
色散关系:
2
k 2vs2
2 LH
vs Ti Te / mi
当B0=0 , LH ceci 0
色散关系
2
k
小结:
电子静电振荡(高频) 电子静电波
2
2 pe
(动力压强)
2
2 pe
3vt2ek 2
离子声波:低频长波、准电中性 klDe 1
2 vs2k 2
离子静电波:低频短波 klDe 1
2
k2
iTi
eTe
mi
mi
1
e
k
2 2 De
静电波是纵波!
5.3 垂直于磁场的静电波
有外磁场时静电波,分为两种情况: ① k ,B0波传播方向与外磁场平行情况。
静电波是纵波,振动的方向沿波矢量的方向:
u1 k B,0 运动方程中外磁场的作用力 u1 B0 0
与上一节无外磁场情况相同,不需重新讨论。 ② k B0 ,即波传播方向与外磁场垂直情况。
在运动方程中增加了洛仑兹力项,外磁场对静电波 的传播有影响。
(2)高混杂静电波
当Te≠0,这时电子运动方程中增加了热压强恢复 力项,因此高混杂静电振荡可以在等离子体中传
第5章 等离子体波
集体效应运动形式:等离子体是由大量带电粒子组 成的一种连续介质。它的行为主要是带电粒子间 长程相互作用引起的集体效应确定的。等离子体 波就是集体效应的一种运动形式。
三种作用力:热压力、静电力和磁力 对等离子体的扰动都能起弹性恢复力的作用 弹性恢复力能使扰动在介质中传播形成波。
波的模式极为丰富: 波的传播特征是由介质性质决定的, 由于等离子体 自身的特殊性质(三种作用力)及其与电磁场之间 的耦合,使等离子体波的模式极为丰富。