北邮电磁场与微波实验天线部分实验报告二

合集下载

北邮-电磁场与电磁波实验报告-无线信号场强特征的研究_实验报告

北邮-电磁场与电磁波实验报告-无线信号场强特征的研究_实验报告

北京邮电大学电子工程学院实验中心<电磁场与微波测量实验>实验报告实验名称:无线信号场强特征的研究班级: xxx 学院: xxx组内成员:姓名: xxx 班内序号: 7 学号: xxx 姓名: xxx 班内序号: 8 学号: xxx姓名: xxx 班内序号: 9 学号: xxx 报告撰写人: xxx目录一、实验目的 (2)二、实验原理 (2)1.电波传播方式 (2)2.无线信道中信号衰减 (2)(1)衰落 (2)(2)路径损耗 (2)(3)建筑物的穿透损耗 (4)三、实验内容 (4)四、初步分析与推测 (4)五、数据测量 (5)六、数据处理 (6)1.第一组数据 (6)2.第二组数据 (7)3.第三组数据 (8)4.第四组数据 (9)5.数据处理代码 (9)(1)前四组数据 (9)(2)第五组数据 (12)七、误差分析 (14)八、实验总结 (15)一、 实验目的1. 通过实地测量校园内室内外的无线电信号场强,掌握室内外电磁波传播的规律。

2. 熟悉并掌握无线电中的传输损耗,路径损耗,穿透损耗,衰落等概念。

3. 熟练使用无线电场强仪测试空间电场强的方法。

4. 学会对大量数据进行统计分析,并得到相关传播模型。

二、 实验原理1. 电波传播方式电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。

当电磁波传播遇到比波长大很多的物体时,发生反射。

当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。

当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。

散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。

2. 无线信道中信号衰减无线信道中的信号衰减分为衰落,路径损耗,建筑物穿透损耗。

此外还有多径传播的影响。

(1) 衰落移动环境下电波的衰落包括快衰落和慢衰落(又叫阴影衰落),快衰落的典型分布为 Rayleigh 分布或Rician 分布;阴影衰落的典型分布为正态分布,即高斯分布。

北邮微波技术实验报告

北邮微波技术实验报告

一、实验目的1. 理解微波技术的基本原理,掌握微波的基本特性。

2. 学习微波元件和器件的基本功能及使用方法。

3. 通过实验操作,验证微波技术在实际应用中的效果。

二、实验原理微波技术是利用频率在300MHz至300GHz之间的电磁波进行信息传输、处理和接收的技术。

本实验主要涉及微波的基本特性、微波元件和器件的应用以及微波电路的搭建。

三、实验仪器与设备1. 微波暗室2. 微波信号源3. 微波功率计4. 微波定向耦合器5. 微波移相器6. 微波衰减器7. 微波测量线8. 信号分析仪9. 示波器四、实验内容1. 微波基本特性实验(1)测量微波传播速度:通过测量微波信号在实验装置中的传播时间,计算微波在空气中的传播速度。

(2)测量微波衰减:利用微波信号源和功率计,测量微波在传输过程中不同位置的衰减值。

(3)测量微波反射系数:通过测量微波信号在实验装置中的反射强度,计算微波的反射系数。

2. 微波元件和器件应用实验(1)微波移相器:通过调整移相器的相位,观察微波信号在输出端的变化。

(2)微波衰减器:通过调整衰减器的衰减量,观察微波信号在输出端的变化。

(3)微波定向耦合器:通过观察微波信号在定向耦合器两端的输出,验证其功能。

3. 微波电路搭建实验(1)搭建微波滤波器:利用微波元件和器件,搭建一个微波滤波器,并测试其性能。

(2)搭建微波天线:利用微波元件和器件,搭建一个微波天线,并测试其增益。

五、实验步骤1. 微波基本特性实验(1)连接实验装置,确保连接正确。

(2)开启微波信号源,设置合适的频率和功率。

(3)测量微波传播速度、衰减和反射系数。

2. 微波元件和器件应用实验(1)连接微波移相器、衰减器和定向耦合器。

(2)调整移相器、衰减器和定向耦合器的参数,观察微波信号在输出端的变化。

3. 微波电路搭建实验(1)根据设计要求,搭建微波滤波器和天线。

(2)测试微波滤波器和天线的性能。

六、实验结果与分析1. 微波基本特性实验(1)微波传播速度:根据实验数据,计算微波在空气中的传播速度,并与理论值进行比较。

北邮电磁场实验报告

北邮电磁场实验报告

北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是物理学中非常重要的一个概念,它涉及到电荷、电流和磁性物质之间的相互作用。

为了更好地理解电磁场的特性和行为,我们进行了一系列的实验。

本报告将详细介绍我们在北邮进行的电磁场实验及其结果。

实验一:静电场与电势分布在这个实验中,我们使用了一对带电的金属板,通过改变金属板的电荷量和距离,观察了电势分布的变化。

实验结果显示,电势随距离的增加而逐渐降低,符合电势随距离平方反比的规律。

此外,我们还观察到电势在金属板附近的区域呈现出均匀分布的特点。

实验二:磁场与磁力线在这个实验中,我们使用了一根通电导线和一块磁铁,通过改变电流的方向和大小,观察了磁场的行为。

实验结果显示,磁铁产生的磁场呈现出环形磁力线的分布。

当通电导线与磁铁相互作用时,导线会受到磁力的作用,其受力方向与电流方向、磁场方向之间存在一定的关系。

实验三:电磁感应与法拉第电磁感应定律在这个实验中,我们使用了一根通电导线和一个线圈,通过改变导线中的电流和线圈的位置,观察了电磁感应现象。

实验结果显示,当导线中的电流改变时,线圈中会产生感应电流。

根据法拉第电磁感应定律,感应电流的大小与导线中电流变化的速率成正比。

此外,我们还观察到线圈中感应电流的方向与导线中电流变化的方向存在一定的关系。

实验四:电磁波的传播在这个实验中,我们使用了一个发射器和一个接收器,通过改变发射器的频率和接收器的位置,观察了电磁波的传播行为。

实验结果显示,电磁波以波动的形式传播,其传播速度与真空中的光速相同。

此外,我们还观察到电磁波的频率与波长之间存在一定的关系,即频率越高,波长越短。

结论:通过以上实验,我们对电磁场的特性和行为有了更深入的了解。

我们发现电磁场的行为符合一系列的规律和定律,如电势随距离平方反比、磁力线的环形分布、法拉第电磁感应定律等。

这些规律和定律为我们理解电磁场的本质和应用提供了重要的指导。

同时,我们也意识到电磁场在日常生活中的广泛应用,如电磁感应用于发电机、电磁波用于通信等。

北邮天线实验报告

北邮天线实验报告

北邮天线实验报告篇一:北京邮电大学电磁场与电磁波实验报告《天线部分》《电磁场与微波实验》——天线部分实验报告姓名:班级:序号:学号:实验一网络分析仪测量振子天线输入阻抗一、实验目的1. 掌握网络分析仪校正方法;2. 学习网络分析仪测量振子天线输入阻抗的方法;3. 研究振子天线输入阻抗随振子电径变化的情况。

二、实验原理当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。

实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。

这时可以采用镜像法来分析。

天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。

当h ?2。

由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为?2h??60?ln()?1?。

a??三、实验步骤1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪;2. 设置参数并加载被测天线,开始测量输入阻抗;3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据;4. 更换不同电径(φ1,φ3,φ9)的天线,分析两个谐振点的阻抗变化情况;设置参数:BF=600,?F=25,EF=2600,n=81。

校正图:测量图1mm天线的smith圆图:3mm天线的smith圆图:9mm天线的smith圆图:篇二:北邮电磁场与微波实验天线部分实验报告一信息与通信工程学院电磁场与微波实验报告实验一网络分析仪测量阵子天线输入阻抗一、实验目的:1. 掌握网络分析仪校正方法2. 学习网络分析仪测量振子天线输入阻抗的方法3. 研究振子天线输入阻抗随阵子电径变化的情况(重点观察谐振点与天线电径的关系)二、实验步骤:(1)设置仪表为频域模式的回损连接模式后,校正网络分析仪;(2)设置参数并加载被测天线,开始测量输入阻抗;(3)调整测试频率寻找天线的两个谐振点并记录相应阻抗数据;(4)更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗变化情况;(5)设置参数如下:BF=600MHz,△F=25MHz,EF=2600MHz,n=81(6)记录数据在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。

微波技术与天线 实验报告

微波技术与天线 实验报告

微波技术与天线实验报告微波技术与天线实验报告引言:微波技术和天线是现代通信领域中不可或缺的重要组成部分。

微波技术的应用范围广泛,包括无线通信、雷达、卫星通信等领域。

而天线作为微波信号的收发器,起到了关键的作用。

本实验旨在通过实际操作和测量,探索微波技术与天线的基本原理和应用。

实验一:微波信号的传输特性测量在本实验中,我们使用了一对微波发射器和接收器,通过测量微波信号的传输特性,来了解微波信号在传输过程中的衰减和干扰情况。

首先,我们将发射器和接收器分别连接到示波器上,并设置合适的频率和功率。

然后,将发射器放置在一个固定位置,接收器在不同距离上进行测量。

通过记录示波器上的信号强度,并计算出衰减值,我们可以得到微波信号在传输过程中的衰减情况。

实验结果表明,在传输距离增加的情况下,微波信号的强度逐渐减弱,呈指数衰减的趋势。

同时,我们还观察到在某些距离上,微波信号受到了干扰,出现了明显的波动和噪声。

这些干扰可能来自于周围的电磁辐射或其他无线设备的干扰。

实验二:天线的性能测量在本实验中,我们选择了不同类型的天线,并通过测量其增益、方向性和波束宽度等参数,来评估天线的性能。

首先,我们使用一个定位器来确定天线的指向性。

通过调整定位器的方向,观察信号强度的变化,我们可以确定天线的主瓣方向。

然后,我们通过改变接收器的位置和角度,测量不同方向上的信号强度,从而计算出天线的增益。

实验结果表明,不同类型的天线具有不同的性能特点。

某些天线具有较高的增益和较窄的波束宽度,适用于需要远距离传输和精确定位的应用。

而其他天线则具有较宽的波束宽度,适用于覆盖范围广泛的通信需求。

实验三:微波技术在通信领域的应用微波技术在通信领域有着广泛的应用。

其中,微波通信是最为常见和重要的应用之一。

通过使用微波信号进行通信,可以实现高速、稳定的数据传输。

微波通信广泛应用于无线网络、卫星通信和移动通信等领域。

此外,微波雷达也是微波技术的重要应用之一。

北邮微波测量实验+实验总结-(天线与电波传播)

北邮微波测量实验+实验总结-(天线与电波传播)

电磁场与微波测量实验实验报告实验名称:班级:姓名:学号:学院:北京邮电大学实验七.天线与电波传播一、 实验目的(1)掌握微波信号发生器及测量放大器的使用方法。

(2)了解水平面接收天线方向性的测量方法。

二、 实验仪器标准信号发生器、选频放大器、喇叭天线、波导调配器、可变衰减器、波导元件。

三、 实验原理及步骤对于辐射波传输方式,最重要的是测试其辐射场幅值分布的方向性,其表征量是天线方向函数及方向图。

1.系统组成图1-1 系统组成原理框图2.喇叭天线工程上常用的喇叭天线是角锥喇叭,原因是其匹配较好而效率接近100%(G ≈D )。

但是由于其口径场的幅值、相位不是均匀分布,虽然其辐射主向仍是口径面法线方向(波导轴线方向),但是主瓣宽度、方向系数的计算很复杂。

可用以下公式进行估算:E 面(yoz 面)主瓣宽度bE λθ5325.0= (1-1)H 面(xoz 面)主瓣宽度15.0802a H λθ= (1-2)方向系数(最佳尺寸的角锥喇叭)211451.0λπb a D = (1-3)图1-2是角锥喇叭的三维标高方向图。

具体参数喇叭口径1a =5.5λ,1b =2.75λ;波导口径a=0.5λ,b=0.25λ;虚顶点至口径面距离ρ=2ρ=6λ。

1 Array图1-2 角锥喇叭的三维标高方向图图1-3为本实验所用喇叭天线示意图:图1-3 实验所用喇叭天线3.测水平面接收天线方向性图1-1为测量喇叭天线方向性的系统组成情况。

测量时改变接收喇叭天线的方位角,可测出喇叭天线水平面的方向性(按接收到信号的强弱)。

严格的测量应在微波暗室中进行,这样可以消除反射波影响。

但在微波段,因其传播方向性较强,而且房屋墙壁吸收较强,地面影响也可略去,因而这样在普通实验室内测量偏差也不很大。

测天线方向图应有专用天线转台,它有精确的角度(水平面方位角,垂直面俯仰角)刻度指示。

本实验主要测水平面即方位方向性。

四、实验内容及数据处理(1)微波天线方向图测试报告旁瓣宽度-3.0db : 26.33 -6.0db : 39.82 -10.0db : 54.30 -15.0db : 225.13五、心得体会本实验即天线与电波传播实验由老师演示,我们只需了解其原理并会分析其数据即可。

北邮电磁场与电磁波测量实验报告2双缝衍射

北邮电磁场与电磁波测量实验报告2双缝衍射

北京邮电大学电磁场与电磁波测量实验实验报告实验内容:双缝衍射实验迈克尔逊双缝实验学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年4月18日实验三双缝衍射实验一、实验目的掌握来自双缝的两束中央衍射波相互干涉的影响。

二、预习内容电磁波双缝干涉现象三、实验仪器和设备DH926B型微波分光仪一台四、实验原理当一平面波垂直入射到一金属板的两条狭缝上时,每一条狭缝就是次级波波源,由两缝发出的次级波是相干波,在金属板的背后空间将产生干涉现象。

由于入射波通过每个狭缝也有衍射现象,实验将是干涉和衍射两者结合的结果,我们为了只研究主要是来自双缝的两束中央衍射波相互干涉的结果,令双缝的宽度a接近λ,例如,入射波波长λ=32mm,取缝宽a=40mm,由单缝衍射的一级极小公式,得,我们在一级极小范围内研究两束中央衍射波相互干涉现象。

当衍射角Φ 适合条件:(1)时,两狭缝射出的光波的光程差是波长的整数倍,因而相互加强,形成明纹。

当衍射角Φ 适合条件(2)时,两狭缝射出的子波的光程差是半波长的奇数倍时,干涉减弱应形成暗纹。

所以干涉加强的角度为(3)干涉减弱的角度(4)五、实验内容及步骤1.仪器连接时,预先接需要调整双缝衍射板的缝宽。

2.当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的90刻度的一对线一致。

3.转动小平台使固定臂的指针在小平台的180处,此时小平台的0就是狭缝平面的法线方向。

4.这时调整信号电平使表头指示接近满度。

然后从衍射角0开始,在双缝的两侧使衍射角每改变1 读取一次表头读数,并记录下来。

5.这时就可画出双缝衍射强度与衍射角的关系曲线,并根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。

此实验曲线的中央较平,甚至还有稍许的凹陷,这可能是由于衍射板还不够大之故。

由于衍射板横向尺寸小,所以当b取得较大时,为了避免接收喇叭直接收到发射喇叭的发射波或通过板的边缘过来的波,活动臂的转动角度应小些。

北邮微波实验报告

北邮微波实验报告

北邮微波实验报告北邮微波实验报告引言:微波技术是现代通信领域的重要组成部分,其在无线通信、雷达探测、卫星通信等方面发挥着重要作用。

本次实验旨在通过对微波的实际操作,深入了解微波的特性和应用。

一、实验目的本次实验的主要目的是:1. 了解微波的基本特性和传输原理;2. 掌握微波实验仪器的使用方法;3. 学习微波的传输线特性及其在微波系统中的应用。

二、实验原理微波是指频率在300MHz至300GHz之间的电磁波,具有较高的频率和较短的波长。

微波的传输线主要包括同轴电缆和微带线两种,其特性阻抗和传输损耗与频率、材料和结构参数有关。

三、实验步骤1. 实验仪器准备:将微波发生器、功率计、频谱分析仪等仪器连接好,确保仪器间的连接正确可靠。

2. 测量微波信号的功率:使用功率计对微波信号的功率进行测量,记录下测量结果。

3. 测量微波信号的频谱:使用频谱分析仪对微波信号的频谱进行测量,观察并记录下频谱特性。

4. 测量微波传输线的特性阻抗:将微波传输线连接好,通过测量反射系数和传输系数等参数,计算出传输线的特性阻抗。

5. 测量微波传输线的传输损耗:通过测量微波信号在传输线中的衰减量,计算出传输线的传输损耗。

6. 分析实验结果:根据实验数据,分析微波信号的功率、频谱特性以及传输线的特性阻抗和传输损耗等。

四、实验结果与分析通过实验测量,我们得到了微波信号的功率、频谱特性以及传输线的特性阻抗和传输损耗等数据。

根据实验结果可以得出以下结论:1. 微波信号的功率与输入功率之间存在一定的关系,可以通过功率计进行测量和调整。

2. 微波信号的频谱特性与信号的频率和幅度有关,可以通过频谱分析仪进行测量和分析。

3. 微波传输线的特性阻抗与线路结构和材料参数有关,可以通过测量反射系数和传输系数等参数进行计算。

4. 微波传输线的传输损耗与线路长度和材料损耗有关,可以通过测量微波信号在传输线中的衰减量进行计算。

五、实验总结通过本次实验,我们深入了解了微波的特性和应用,并掌握了微波实验仪器的使用方法。

北邮微波 天线的特性特性和研究 实验报告

北邮微波 天线的特性特性和研究 实验报告

北京邮电大学电磁场与微波测量实验学院:电子工程学院班级:2013211203组员:组号:第九组实验六 用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。

微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。

一、 实验目的1. 了解谐振腔的基本知识。

2. 学习用谐振腔法测量介质特性的原理和方法二、 实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。

反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。

谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。

谐振腔的有载品质因数QL 由下式确定:210f f f Q L -=式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。

谐振腔的Q 值越高,谐振曲线越窄,因此Q 值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。

如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。

图1 反射式谐振腔谐振曲线 图2 微找法TE10n 模式矩形腔示意图电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tan δ可由下列关系式表示:εεε''-'=j , εεδ'''=tan ,其中:ε,和ε,,分别表示ε的实部和虚部。

选择TE10n ,(n 为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x =α/2,z =l /2处,且样品棒的轴向与y 轴平行,如图2所示。

假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d /h<1/10),y 方向的退磁场可以忽略。

微波实验报告波导波长测量

微波实验报告波导波长测量

微波实验报告波导波长测量电磁场与微波测量实验报告实验二波导波长的测量一、实验内容波导波长的测量按上图连接测量系统,可变电抗可以采用短路片当矩形波导终端短路时,将形成驻波状态波导内部电场强度表达式为:E =EY =E0 sin sin?ZYZ?I?C?sin2?d?g??n、作出测量线探针在不同位置下的读数分布曲线北京邮电大学电磁场与微波测量实验报告实验二波导波长的测量一、实验内容波导波长的测量按上图连接测量系统,可变电抗可以采用短路片,在测量线中入射波与反射波的叠加为接近纯驻波图形,只要测得驻波相邻节点得位置L1、L2,由公式即可求得波导波长两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置,就可求得波导波长为:’?g = 2 Tmin- Tmin响后面的测量校准晶体二极管检波器的检波特性将探针沿测量线由左向右移动,按测量放大器指示每改变最大值刻度的10%,记录一次探针位置,给出u沿线的分布图形设计表格,用驻波测量线校准晶体的检波特性作出晶体检波器校准曲线图令d作为测量点与波节点的距离;do是波节点的实际位置,d0+d 就是测量点的实际位置:再移动探针到驻波的波腹点,记录数据,分别找到波腹点相邻两边指示电表读数为波腹点50%对应的值,记录此刻探针位置d1和d2,根据公式n=()g求得晶体检波率n,和所得的数值进行比较三、实验结果分析数据分析:由于此时波导中存在的是驻波,并且测量的位置是从波腹到相邻的波节,所以画出来的波形应该是正弦曲线的四分之一,由上图可以看出,实验结果基本符合,误差在允许上图为对数坐标,横轴表示logE,纵轴表示logU分析:根据理论分析,上图应该是一条斜率为n的直线,而实际描出的点连成的线不是一条很直的直线,笔者决定采用理论拟合法拟合出一条直线拟合后直线的斜率为,所以晶体检波率为第二种定标法??=(λg==a.两点法测量波导波长+= 22+136T’min =? T1 ? T2 ?==22Tmin =? T1 ? T2 ?=‘?g = 2 Tmin- Tmin=b.间接法测量波导波长北京邮电大学电磁场与电磁波测量实验实验报告实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术; (3) 学习用微波作为观测手段来研究物理现象二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能在教学方式下,可实时显示体效应管的工作电压和电流的关系仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小衰减器起调节系统中微波功率从以及去耦合的作用 4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率图1 实验原理框图表1 信号源波长测量表按上图连接测量系统,可变电抗可以采用短路片当矩形波导终端短路时,将形成驻波状态波导内部电场强度表达式为:E = EY = E0 sin sin?Z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态微波测量线应用实验报告一、实验目的1、了解一般微波测试线的组成及其主要元、器件的作用,初步掌握它们的调整方法2、掌握波导中波导波长和驻波比的测量方法3、掌握调配器调配的方法及其对传输线驻波比的影响二、实验内容1、测量波导传输线中的横向场分布; 2、测量波导传输线中的波导波长;3、测量波导传输线中的驻波比;4、应用三螺调配器降低波导传输线中的驻波比三、微波测量线组成及测量原理常用的一般微波测试线组成如图1所示信号源能较稳定地工作可变衰减器也是由一小段波导构成的,其中放有一表面涂有损耗性材料,并与波导窄壁平行放置的薄介质片介质片越靠近波导中心处,衰减越大,反之,衰减越小利用可变衰减器可以连续地改变信号源传向负载方向功率的大小;另外,如同隔离器一样,可变衰减器也具有一定的隔离作用纵向场分布测量线是一段在其宽壁中心线开有一窄缝隙的矩形波导,电场探针从缝隙插入波导中,耦合出一定功率的微波信号,通过微波范围内用的晶体二极管检波器后变成为1kHz的低频信号,该信号测量放大器放大后,其幅度通过表头显示当电场探针沿着波导纵向移动时,测量放大器表头显示的数值变化就对应着波导中纵向电场幅度的分布横向场分布测量线是一段在其宽壁横向开有一窄缝隙的矩形波导,电场探针从缝隙插入波导中,耦合出一定功率的微波信号,通过微波范围内用的晶体二极管检波器后变成为1kHz的低频信号,该信号测量放大器放大后,其幅度通过表头显示当电场探针沿着波导横向移动时,测量放大器表头显示的数值变化就对应着波导中横向电场幅度的分布三螺调配器为波导传输线的终端负载,他由三根细圆柱金属棒分别在波导宽边中心线的不同纵向位置插入波导中,通过每一根金属棒伸进波导内部长度的变化改变反射波的幅度和相位,可以将传输线从终端短路状态调整到终端匹配状态四、实验方法与实验步骤1、首先按图1所示将测量系统安装好,然后接通电源和测量仪器的有关开关,观察微波信号源有无输出指示若有指示,当改变衰减量或移动测量线探针的位置时,测量放大器的表头指示会有起伏的变化,这说明系统已在工作了但这并不一定是最佳工作状态例如,若是反射式速调管信号源的话还应把它调到输出功率最大的振荡模式,并结合调节信号源处的短路活塞,以使能量更有效地传向负载若有必要,还可以调节测量线探头座内的短路活塞,以获得较高地灵敏度,或者调节测量线探针伸入波导的程度,以便较好地拾取信号的能量对于其它微波信号源也应根据说明书调到最佳状态有时信号源无输出,但测量放大器也有一定指示这可能是热噪声或其它杂散场的影响;若信号源有输出,但测量放大器的指示不稳定或者当测量线探针移动时,其指示不变,均属不正常情况,应检查原因,使之正常工作系统正常工作时,可调节测量放大器的有关旋钮或可变衰减器的衰减量,使测量放大器图3 终端短路状态下波导中纵向场幅度分布图3、测量波导传输线中的驻波比在上述条件下移动纵向场分布测量线中电场探针读取测量放大器读数的最大值和最小值,并记录五、实验报告内容1、画出一般微波测试线系统的装置简图,并说明各部分功能功能:微波源:提供信号隔离器:防止后级负载对信号源造成影响可变衰减器:防止信号太大使测量放大器超过量程纵向和横向场分布测量线:用于测量腔内的横向和纵向电场分布情况三螺调配器:用于接各种负载探针、检波器、测量放大器:用于测量和显示数据2、总结各实验项目的主要步骤,测试数据和计算结果 1)将负载短路片接上;找到峰值点,然后在峰值点两侧各找一点,使其幅度值相等,读取坐标位置;这两点中心点即为峰值点,测量两个峰值点的坐标,他们的差值即为半波长;半波长:波长为: 2)将负载接到终端找到波峰和波谷对应的幅度,作比值即可 Umax = 62 Umin = 30微波工作波长和波导波长测量一、实验原理:工作波长λ是微波源发射的电磁波在波导中传播的波长,它是连续的等幅波在自由空间或波导中传播工作波长是相同的这种波的发射机构是反射式速调管中的电子束经受速度调制后所发射的电磁波波导波长λg 则是工作电磁波在波导中两侧壁来回反射,形成电磁场场强沿波导传播方向的周期性分布,这种周期就对应于波导波长λg λ与λg可用下面公式计算:1 c?微波在波导两侧全反射沿Z方向传播 ?2?g?微波在波导中全反射使电磁场沿Z方向出现周期性分布,对应的长度称为波导波长λg二实验方法可用吸收谐振的方法测量微波发射频率,然后再计算工作波长λ圆柱形腔体经耦合孔与波导相通,改变腔体的固有频率,当与微波的频率相同时腔体就共振吸收微波能量,传播的微波能量就会减小,从而测到微波频率用驻波的方法测量波导波长在波导中形成驻波,用测量线测量驻波中的电场,可求得λg。

北邮电磁场与微波实验报告

北邮电磁场与微波实验报告

信息与通信工程学院电磁场与微波实验报告实验题目:微波器件设计与仿真班级:姓名:学号:日期:2016.5.18实验二分支线匹配器一、实验目的1.掌握支节匹配器的工作原理2.掌握微带线的基本概念和元件模型3.掌握微带分支线匹配器的设计与仿真二、实验原理1.支节匹配器随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。

因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。

常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。

支节匹配器分单支节、双支节和三支节匹配。

这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

此电纳或电抗元件常用一终端短路或开路段构成。

2. 微带线从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。

微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。

三、实验内容已知:输入阻抗Zin=75Ω负载阻抗Zl=(64+j75)Ω特性阻抗Z0=75Ω介质基片面性εr=2.55 ,H=1mm假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=λ/4,两分支线之间的距离为d2=λ/8。

画出几种可能的电路图并且比较输入端反射系数幅值从1.8GHz至2.2GHz的变化。

四、实验步骤1.建立新项目,确定项目频率,步骤同实验1的1-3步。

2.将归一化输入阻抗和负载阻抗所在位置分别标在Y-Smith导纳图上,步骤类似实验1的4-6步。

3.设计单支节匹配网络,在圆图上确定分支z与负载的距离d以及分支线的长度1,根据给定的介质基片、特性阻抗和频率用TXLINE计算微带线物理长度和宽度。

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告实验二网络分析仪测试八木天线方向图一、实验目的1.掌握网络分析仪辅助测试方法;2.学习测量八木天线方向图方法;3.研究在不同频率下的八木天线方向图特性。

注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等;二、实验步骤:(1) 调整分析仪到轨迹(方向图)模式;(2) 调整云台起点位置270°;(3) 寻找归一化点(最大值点);(4) 旋转云台一周并读取图形参数;(5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性;三、实验测量图不同频率下的测量图如下:600MHz:900MHz:1200MHz:四、结果分析在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。

当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。

从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。

由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。

八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。

五、实验总结八木定向天线,具有增益较高、结构轻巧、架设方便、价格便宜等优点。

因此,它特别适用于点对点的通信,例如它是室内分布系统的室外接收天线的首选天线类型。

北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量

北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量

电磁场与微波测量实验班级:xxx成员:xxxxxxxxx撰写人:xxx实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。

微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。

一、实验目的1.了解谐振腔的基本知识。

2.学习用谐振腔法测量介质特性的原理和方法二、实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。

反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。

谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。

谐振腔的有载品质因数QL由下式确定:式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。

谐振腔的Q值越高,谐振曲线越窄,因此Q值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。

如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。

电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tanδ可由下列关系式表示:其中:ε’和ε’’分别表示ε的实部和虚部。

选择TE10n,(n为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x=α/2,z=l/2处,且样品棒的轴向与y轴平行,如图2所示。

假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d/h<1/10),y方向的退磁场可以忽略。

2.介质棒样品体积Vs远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。

这样根据谐振腔的微扰理论可得下列关系式:式中:f0,fs分别为谐振腔放人样品前后的谐振频率,Δ(1/QL)为样品放人前后谐振腔的有载品质因数的倒数的变化,即QL0,QLS分别为放人样品前后的谐振腔有载品质因数。

北邮微波实验报告

北邮微波实验报告

信息与通信工程学院电磁场与微波技术实验报告实验二微带分支线匹配器实验目的1.熟悉支节匹配器的匹配原理2.了解微带线的工作原理和实际应用3.掌握Smith图解法设计微带线匹配网络实验原理1.支节匹配器支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

单支节匹配器:调谐时,主要有两个可调参量:距离d和分支线的长度l。

匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是0+B形式,即=0+B,其中0=1/0 。

并联开路或短路分支线的作用是抵消Y的电纳部分,使总电纳为0 ,实现匹配,因此,并联开路或短路分支线提供的电纳为−B,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。

双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。

2.微带线微带线是有介质(>1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质,可以近似等效为均匀介质填充的传输线,等效介质电常数为,介于1和之间,依赖于基片厚度H和导体宽度W。

而微带线的特性阻抗与其等效介质电常数为、基片厚度H和导体宽度W有关。

实验内容已知:输入阻抗 Zin=75Ω负载阻抗 Zl=(64+j35)Ω特性阻抗 Z0=75Ω介质基片εr=2.55,H=1mm假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=1/4λ,两分支线之间的距离为d2=1/8λ。

画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化。

实验步骤1.根据已知计算出各参量,确定项目频率。

3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE计算微带线物理长度和宽度。

电磁场与微波实验报告波导波长的测量

电磁场与微波实验报告波导波长的测量

电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二 波导波长的测量一、 实验内容波导波长的测量【方法一】两点法 实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。

当矩形波导(单模传输TE10模)终端(Z =0)短路时,将形成驻波状态。

波导内部电场强度(参见图三之坐标系)表达式为:Z aXE E E Y βπsinsin 0)(==在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。

将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。

两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。

调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值1T 和2T ),就可求得波导波长为:T 2 min 'min g -=T λ由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。

记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:() 2121min T T T +=最后可得 T 2min 'min g -=T λ(参见图四)YZ【方法二】 间接法矩形波导中的 波,自由波长 和波导波长g λ满足公式:2 12⎪⎭⎫ ⎝⎛-a g λλλ=其中:f g /1038⨯=λ,cm a 286.2=通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式确定出 ,再计算出波导波长g λ。

电磁场与微波测量实验报告天线特性测试实验报告

电磁场与微波测量实验报告天线特性测试实验报告

电磁场与微波测量实验报告天线特性测试实验报告北京邮电大学电磁场与微波测量实验报告1天线特性测试及分析本实验主要是学习天线理论、掌握天线方向图的概念以及学习天线方向图的测量方法。

以下是天线的概念及有关名词的解释。

一、天线的概念无线电发射机输出的射频信号功率,通过馈线输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等。

二、天线的方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。

天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。

衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的2天线称为全向天线,有一个或多个最大方向的天线称为定向天线。

全向天线由于其无方向性,所以多用在点对多点通信的中心台。

定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。

三、天线的增益增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。

增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远。

增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。

它定量地描述一个天线把输入功率集中辐射的程度。

北邮电磁场与微波试验报告

北邮电磁场与微波试验报告

信息与通信工程学院电磁场与微波实验报告实验题目:微波器件设计与仿真班级:___________________________ 姓名:___________________________ 学号:___________________________日期:______________ 2016.5.18 ________实验二分支线匹配器一、实验目的1.掌握支节匹配器的工作原理2.掌握微带线的基本概念和元件模型3.掌握微带分支线匹配器的设计与仿真二、实验原理1.支节匹配器随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。

因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。

常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。

支节匹配器分单支节、双支节和三支节匹配。

这类匹配器是在主传输线并联适当的电纳 (或串联适当的电抗) ,用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

此电纳或电抗元件常用一终端短路或开路段构成。

2.微带线从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。

微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。

三、实验内容已知:输入阻抗Zin=75 Q负载阻抗Zl= (64+j75 )Q特性阻抗Z0=75 Q介质基片面性 c r=2.55 ,H=1mm假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=入/4,两分支线之间的距离为d2=X /8。

画出几种可能的电路图并且比较输入端反射系数幅值从 1.8GHz至2.2GHz的变化。

北邮电磁场实验-波导波长的测量

北邮电磁场实验-波导波长的测量

北邮电磁场实验-波导波长的测量北京邮电大学电磁场与微波测量实验实验二波导波长的测量学院:电子工程学院班级: 2011211207 组员:邹夫、马睿、李贝贝执笔:邹夫目录1.实验内容 (1)1.1实验目的 (1)1.2实验设备 (1)1.3实验系统框图 (2)1.3实验步骤 (2)2.实验原理 (4)2.1两点法 (4)2.2间接法 (5)3实验数据与分析 (6)3.1测量波导波长 (6)3.1.1两点法 (6)3.1.2直接法 (6)3.2晶体检波特性 (7)3.2.1晶体校准曲线图 (7)3.2.2晶体检波率公式计算 (10)3.3误差分析 (10)4.思考题 (10)5.实验心得与体会 (12)1.实验内容1.1实验目的通过博导波长测量系统测出波导波长。

1.2实验设备1.DH1121C型微波信号源2.DH364A00型3cm测量线1.3实验系统框图1.3实验步骤测量波导波长1.观察衰减器、空腔波长计、主播测量线的结构形式、读数方法;2.按照系统框图检查系统的连接装置以及连接电缆和电缆头;3.开启信号源,预热仪器,并按照操作规则调整信号工作频率以及幅度,并调整调制频率;4.利用两点发进行测量,将波导测量线终端短路,调测放大器的衰减量和可变衰减器使当探针位于波腹时,放大器只是电表接近满格,用两点法测量波导波长;5.将驻波测量线探针插入适当深度,将探针移到两个波节点的重点位置,然后调节其调谐贿赂,使测量放大器指示最大;6.利用间接法来测量波导波长λ。

首先用波g长计测量信号波长λ,测三次去平均值。

再计算λ。

测量完成后要将波长计从谐振点调开,g以免信号衰减影响后面的测量;校准晶体二极管检波器的检波特性7.将探针沿线测量线移动,按测量放大器指示改变最大值刻度的10%,记录一次探针位置,给出U沿线的分布图形;8.设计表格,用驻波测量线校准晶体的检波特性;9.做出晶体检波器校准曲线图;10.再移动探针到驻波的波腹点,记录数据,分别找到波腹点两相邻边指示电表读数为波腹点50%对应的值,记录此刻探针的位置d1,d2,根据公式求得晶体检波率n,和8所得的数值进行比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北邮电磁场与微波实验天线部分实验报告二
信息与通信工程学院电磁场与微波实验报告
实验二网络分析仪测试八木天线方向图
一、实验目的
1.掌握网络分析仪辅助测试方法;
2.学习测量八木天线方向图方法;
3.研究在不同频率下的八木天线方向图特性。

注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等;
二、实验步骤:
(1) 调整分析仪到轨迹(方向图)模式;
(2) 调整云台起点位置270°;
(3) 寻找归一化点(最大值点);
(4) 旋转云台一周并读取图形参数;
(5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性;
三、实验测量图
不同频率下的测量图如下:
600MHz:
900MHz:
1200MHz:
四、结果分析
在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。

当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。

从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。

由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。

八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。

五、实验总结
八木定向天线,具有增益较高、结构轻巧、架设方便、价格便宜等优点。

因此,它特别适用于点对点的通信,例如它是室内分布系统的室外接收天线的首选天线类型。

八木定向天线的单元数越多,其增益越高,通常采用 6 - 12 单元的八木定向天线,其增益可达 10-15dBi。

天线除了要完成行导波和自由空间电磁波的基本功能之外,还应该有很好的方向性,这样才能提高接收和发射效率。

八木天线就是为了提高天线方向性而研制的一个典型天线。

它是由一个有源振子(一般用折合振子)、一个无源反射器和若干个无源引向器平行排列而成的端射式天线。

八木天线的确好用,它有很好的方向性,较偶极天线有高的增益。

用它来测向、远距离通信效果特别好,如果再配上仰角和方位旋转控制装置,更可以随心所欲与包括空间飞行器在内的各个方向上的电台联络,这种感受从直立天线上是得不到的。

六、心得体会
以前经常会看到房顶上有很多天线,进入实验室才知道那些都是八木天线,在老师的解说下,我对于八木天线的来历有了进一步的了解。

八木天线在传播电磁波的时候,会有主瓣和旁瓣后瓣之分。

实验中通过旋转云台,读取数据,可以得到最佳接收状态。

旋转一周后,可以从图上看到不同频率下的方向图。

通过这次实验我掌握了网络分析仪辅助测试方法,学会了测量八木天线方向图方法,并且通过对测量结果的分析,了解了在不同频率下的八木天线方向图特性。

这次实验让我对天线有了进一步的认识,发现天线的发射和接收特性是可以通过改变其外在构造而改善的,但是怎样改变外在构造将是个很值得研究的问题,现在的天线各式各样的应有尽有,线型的、环型的、面型的都能在生活中找到。

在这方面的研究需要发挥想象力和扎实的理论功底,但最终还是要落到实践上去。

由于实验中,人为操作的问题,加上两组同时做实验会有相互干扰,导致受到干扰大,所得到图形偏差较大。

由此可知,在天线的实际应用中,抗干扰技术非常重要。

相关文档
最新文档