APT模型与CAP模型综合应用
关于CAPM理论和APT理论
公司金融学过程考核关于CAPM理论和APT理论姓名:系别:经济系学号:班级:老师:目录一、CAPM理论 3(一)、关于CAPM理论的含义 3 (二)、关于CAPM理论的假设条件 3 (三)、关于CAPM理论的公式 4 (四)、两种风险 4(五)、关于CAPM理论的优缺点 5二、关于APT理论 5(一)、关于APT理论的定义及基本机制 5 (二)、关于APT理论的假设条件 6 (三)、关于APT理论的公式 6三、CAPM理论和APT理论的比较分析 7(一)、CAPM理论和APT理论的区别 7 (二)、CAPM理论和APT理论的联系 7四、参考文献 8关于CAPM理论和APT理论摘要:CAPM理论与APT理论是标准金融理论的两大基本模型,都是要解决期望收益与风险之间的关系,使期望收益与风险相匹配。
但APT与CAPM的本质区别在于CAPM是一种均衡资产定价模型,而APT不是均衡定价模型。
两者虽然模型的线性形式相同,但建模思想不同CAPM是APT的特例,而APT是CAPM的推广与发展。
关键字:CAPM理论 APT理论期望收益与风险资产定价模式一、CAPM理论(一)、CAPM理论的含义。
CAPM是英文Capital Asset Pricing Model的缩写,中文意思:资本资产定价模型。
是由美国学者夏普(William Sharpe)、林特尔(John Lintner)、特里诺(Jack Treynor)和莫辛(Jan Mossin)等人在资产组合理论的基础上发展起来的,是现代金融市场价格理论的支柱,广泛应用于投资决策和公司理财领域。
(二)、关于CAPM理论的假设。
CAPM是建立在马科威茨模型基础上的,马科威茨模型的假设自然包含在其中:1、投资者希望财富越多愈好,效用是财富的函数,财富又是投资收益率的函数,因此可以认为效用为收益率的函数。
2、投资者能事先知道投资收益率的概率分布为正态分布。
3、投资风险用投资收益率的方差或标准差标识。
资本资产定价模型CAPM与套利定价模型APT在股票市场投资中的应用
(2)市场中的所有资产,其收益率分布都是独立分布的,且为正态分布。
(3)用资产收益率的标准差代替资产风险水平。
(4)投资者在考虑投资决策的时候,只考虑资产的收益率和风险两个要素。
(5)市场上所有的投资者都是理性,他们的投资策略是在风险水平相同的条件下优先选择收益率高的资产组合,同时在收益率相同的情况下优先选择风险小的资产组合。
1.3
CAPM由夏普于1964年创建,是马科维茨于1959年建立的现代证券理论(MPT)的扩展。约翰·林特纳和简·莫森在1965和1966年对CAPM理论的贡献完善了该模型。夏普,林特纳和莫森被视为CAPM的创始人,其模型版本称为标准CAPM。自1970年以来,资本资产定价模型(CAPM)已被企业广泛采用。时至今日,该模型仍在美国学术界使用。许多研究人员在经济世界中使用了资本资产定价模型来研究金融或经济学方面的特定问题。
1.2
CAPM定价模型多用于理论分析和实证研究。理论分析方面,斯微惟(2019)重新探讨了CAPM模型中的贝塔系数和市场定价之间的关系问题[1]。史永东(2019)利用CAPM模型研究了投资者情绪导致的市场定价异象的问题[2]。实证研究方面,肖恒(2018)探讨了不同市场环境下,CAPM模型的适用性问题[3]。陈梦媛(2019)在CAPM模型的基础之上研究了中国房地产上市企业股票的价格行为问题[4]。张虎(2016)专门针对上海股票市场做了CAPM模型的有效性检验[5]。周子耀(2015)在中国A股市场针对CAPM做了完整的实证研究,证明CAPM模型在中国市场具有一定的有效性[6]。
在资产定价理论研究的历史中,产生了许多具有重要学术价值和应用价值的研究成果,在20世纪60-70年代,学者夏普,林特纳,莫辛和布莱克一起提出了资本资产定价模型,也就是众所周知的CAPM模型。凭借着这一经典模型夏普等人也获得了1990年的诺贝尔经济学奖。在他们提出CAPM模型之后,沿着该思路的研究如井喷一样发展起来,越来越多的改进模型被提了出来,如ICAPM即跨期资本定价模型等CAPM的衍生模型。随着讨论的加深,人们逐渐发现了CAPM模型的一些缺点,如风险因素过于单一,前提假设过于严格等问题。因此70年代后期,学者罗斯提出了APT模型即套利定价模型,该模型仅从无套利这一假设出发,弥补了CAPM模型的诸多不足,也可以使定价过程涵盖更多的风险因素,因此APT模型与CAPM模型成为资本资产定价理论两大经典模型。
金融市场的资产定价模型
金融市场的资产定价模型金融市场中的资产定价模型是一种用来评估和确定金融资产价格的理论框架。
它们帮助投资者和分析师理解金融市场中资产的价值以及价格的形成机制。
本文将介绍几种常见的资产定价模型:CAPM模型、APT模型以及期权定价模型。
CAPM模型(Capital Asset Pricing Model)CAPM模型是一种广泛应用于金融领域的资产定价模型,它基于市场风险和个别资产的系统风险来评估资产的期望回报。
CAPM模型的基本假设是市场是有效的,投资者是理性的,并且存在无风险回报的资产。
根据CAPM模型,一个资产的预期回报可以被表示为无风险利率加上资产β值与市场风险溢价的乘积。
其中,β值衡量了一个资产相对于市场整体波动的程度。
APT模型(Arbitrage Pricing Theory)APT模型是由斯蒂芬·罗斯(Stephen Ross)于1976年提出的资产定价模型。
与CAPM模型相比,APT模型更加灵活,允许考虑多个因素对资产价格的影响。
APT模型认为资产的预期回报可以由多个因素解释,包括宏观经济因素、行业因素以及公司特定因素等。
通过考虑这些因素,APT模型可以更准确地估算资产的定价。
期权定价模型(Option Pricing Model)期权定价模型是一种用于估计期权合约价格的模型,其中最为著名的是布莱克-斯科尔斯模型(Black-Scholes Model)。
这个模型基于期权的风险中立定价原理,考虑了标的资产价格、执行价格、剩余到期时间、无风险利率和标的资产价格的波动率等因素。
通过布莱克-斯科尔斯模型,投资者和交易员可以计算出合理的期权价格。
在实际应用中,资产定价模型可以作为参考工具来指导投资决策。
投资者可以根据特定的情况选择合适的模型,并结合自身的风险偏好和投资目标进行资产定价。
此外,随着金融市场的发展和信息技术的进步,新的资产定价模型也在不断涌现,为投资者提供更多的选择和工具。
投资学中的资产定价模型CAPMAPT等解析
投资学中的资产定价模型CAPMAPT等解析现代投资学理论中,资产定价模型(Asset Pricing Model,简称APM)是研究资本资产定价问题的重要方法之一。
CAPM(Capital Asset Pricing Model)和APT(Arbitrage Pricing Theory)是两种常见的资产定价模型,它们分别从不同的角度解析了资本资产的定价问题。
一、CAPM(Capital Asset Pricing Model)CAPM是由美国经济学家莫顿·米勒、威廉·肖普顿和哈里·马金哲等人在上世纪50年代末60年代初提出的。
CAPM的核心思想是通过分析资产的风险与预期收益之间的关系,进而确定资产的定价。
CAPM假设市场是完全竞争的,投资者的行为是理性的,不存在任何的税收与交易费用;投资者共同面对相同的风险和信息;市场上的资产都是可以自由买卖的。
基于以上假设,CAPM建立了资本资产的定价公式:E[Ri] = Rf + βi(E[Rm] - Rf)其中,E[Ri]表示资产i的预期收益率,Rf表示无风险资产的收益率,βi表示资产i的系统性风险,E[Rm]表示市场组合的预期收益率。
通过这一公式,我们可以计算出资产i的预期收益率。
当βi=1时,资产的预期收益率等于市场组合的预期收益率;当βi>1时,资产的预期收益率高于市场组合的预期收益率;当βi<1时,资产的预期收益率低于市场组合的预期收益率。
虽然CAPM在实际应用中存在一定的局限性,但它为投资者提供了一个相对简单的方法来评估资产的风险与收益,并可以作为投资组合的基准。
二、APT(Arbitrage Pricing Theory)与CAPM相比,APT的理论基础更为宽泛。
APT认为,资产的定价不仅仅取决于市场风险因素,还受到其他一些因素的影响。
APT通过分析多个因素对资产收益率的影响,构建出一个多因素的模型,用于解释资本资产的定价。
投资学第十三章
期望收益和风险之间的数量关系
• CAPM反映了期望收益和风险之间的数量关系:
E(ri ) rf i [E(rM ) rf ]
• 由于CAPM的假设过于苛刻,所以此后的研究中 不断放宽其假设条件以求更贴近市场实际,如零 贝塔定价模型(不允许投资于无风险资产),人 力资源定价模型(考虑非市场交易),多期和多 因素模型(考虑多期),流动性溢价模型(考虑 成本费用)。
John Lintner检验
• John Lintner检验的结论: 1、检验结果与CAPM不一致 2、估计得证券市场线斜率太小,太过平缓 估计值远小于应有值 3、证券市场线的截距项不为0,相差较大
对检验结果不理想原因的解释:股票收益波动率较大,影 响到对平均收益率检验的准确性;资产波动大导致一阶回 归的误差较大,作为二阶回归输入变量有问题;投资者不 能以无风险利率融资,与原模型假定不一致
• 为了检验传统形式的可靠性,加入一个截 距项 ,从而得到证券特征线(SCL): ri rf i i [rM rf ] i
• 如果CAPM成立,则alpha应为零且beta显 著不为零。所以实证结果的关键是alpha和 beta的显著性检验。
第一阶段:时间序列回归
• 第一步,处理交易数据,计算出每日的收 益率数据,以此为基础再算出平均月度收 益率与年度收益率数据
CAPM模型的实证检验
• CAPM之所以被称为资产定价模型发展过程中的 一块里程碑,是因为它不仅是一个完整的理论模 型,同时也是一个可以用于检验的实证模型。
• 研究者在不断修正模型的同时,也尝试了用不同 方法与数据检验其对实际数据的拟合效果,即实 证研究。
• 经典的实证研究是Black,Fama,Scholes所做的时 间序列回归检验以及法码和Macbeth所做的横截 面回归检验。
CAPM与APT理论
ßI= im / m²
所以E(ri)= rf+ ßI {E(rm)- rf }
协方差与证券预期回报率之间的关系就是证券 市场线。 证券市场线的含义:任何一个单个证券或组合 都具有这种预期收益-ß关系。 公平定价的证券位于证券市场线的上 价格高估的证券位于该线的下方 价格低估的证券位于该线的上方. 资本市场线上的收益为公平收益,或正常收益,或 均衡收益,实际的收益与公平收益之间的差额用 阿法a来衡量.
8.1股票的需求和均衡价格(参见 教材P266)
例子:只有两只股票,BU与TD 1、基本数据假定与计算(见表8.2) 2、最优组合计算
西玛基金的最优组合与有效边界
CAL 预 期 收 益 ● 最优组合
有效边界
标准差
西玛基金的股票需求
假定:TD的股价和预期收益率不变 1、数据假定与计算(表8-3) 2、什么决定了西玛对BU股票的需求数 量:投资预算;BU的价格;BU的投资 比率 3、BU需求曲线图(图8-2) 提问:1)为什么需求曲线向下倾斜? 2)图中负的股票需求什么含义?
8.5 套利定价理论
套利机会和利润: 套利就是指利用两种或以上证券之间相对价格 上的偏差, 来获取无风险利润. 当投资者可以建立一个零投资组合时, 无风险套 利机会就来了.零投资组合意味着投资者无须 运用个人资金进行投资. 套利机会的案例之一:违反一价定律时的套利 套利机会随市场技术手段改进而逐步减少,但 是始终存在。
消极策略是有效的
消极投资策略:按照市场指数策略进行投资 积极的投资策略:进行证券分析 在资本市场线上任何一点投资的积极型投资者 都不如该点消极投资策略,这个结论也称为共 同基金定理 不同的投资者导出的风险组合可能与市场指数 组合不同,其原因在于它们在风险和预期收益 预测上存在误差。
CAPM与APT的内涵、联系、区别、优点和缺点知识分享
C A P M与A P T的内涵、联系、区别、优点和缺点CAPM ﹠ APT摘要:CAPM和 APT,资本市场上两个最重要的定价模型,尽管有许多严格的假设,但仍然支撑着整个资本市场上证券的定价,令无数的投资者为之着迷,它们究竟有什么样的魔力,它们之间的联系与区别是什么,它们的优点与缺点又是什么,就让本文揭开它们神秘的面纱吧!关键词:资本资产定价模型套利定价模型均衡分散化一价法则读完这三篇文章以及结合自己所学的知识,首先谈谈我对CAPM和APT的理解,无论是CAPM还是APT都是在市场均衡的基础上,为资本市场上的资产定价提供一个基准,这个基准衡量了该资产的内在价值,当该资产的实际价值不等于它的内在价值时,无论是CAPM中的阿尔法不等于零还是APT中的资产违背一价法则(或者由于贝塔值相等的充分分散化的投资组合而期望收益不同出现套利),资本市场上的投资者都会通过低买高卖,使得最终的资产价格都会达到均衡,从而消除套利,由此说明两模型都可以衡量单个证券或者证券组合的内在价值。
首先我来介绍一下两模型的内涵:CAPM是诺贝尔经济学奖获得者威廉·夏普(William Sharpe) 于1970年在他的著作《投资组合理论与资本市场》中提出的。
从本质上看,CAPM 模型是在风险资产期望收益均衡基础上的预测模型。
该模型的中心思想如下:①风险资产的收益等于无风险资产的收益与市场投资组合的风险溢价之和,高风险资产伴随着高收益。
②由于系统风险不能由分散化而消除,必然伴随着相应的风险溢价来吸引投资者;非系统性风险可以分散掉,则在定价中不起作用。
③系统风险的大小可以用贝塔系数来衡量,一种股票的收益是与其贝塔系数成正比例关系的,其中贝塔系数是某种证券与市场组合的收益的协方差与市场组合收益的方差的比率,可看作是股票收益变动对市场组合收益变动的敏感度。
【1】套利定价模型(APT),在1976年,美国学者斯蒂芬·罗斯在《经济理论杂志》上发表了经典论文“资本资产定价的套利理论”,提出了一种新的资产定价模型,此即套利定价理论(APT理论)。
CAPM与APT的内涵、联系、区别、优点和缺点知识分享
C A P M与A P T的内涵、联系、区别、优点和缺点CAPM ﹠ APT摘要:CAPM和 APT,资本市场上两个最重要的定价模型,尽管有许多严格的假设,但仍然支撑着整个资本市场上证券的定价,令无数的投资者为之着迷,它们究竟有什么样的魔力,它们之间的联系与区别是什么,它们的优点与缺点又是什么,就让本文揭开它们神秘的面纱吧!关键词:资本资产定价模型套利定价模型均衡分散化一价法则读完这三篇文章以及结合自己所学的知识,首先谈谈我对CAPM和APT的理解,无论是CAPM还是APT都是在市场均衡的基础上,为资本市场上的资产定价提供一个基准,这个基准衡量了该资产的内在价值,当该资产的实际价值不等于它的内在价值时,无论是CAPM中的阿尔法不等于零还是APT中的资产违背一价法则(或者由于贝塔值相等的充分分散化的投资组合而期望收益不同出现套利),资本市场上的投资者都会通过低买高卖,使得最终的资产价格都会达到均衡,从而消除套利,由此说明两模型都可以衡量单个证券或者证券组合的内在价值。
首先我来介绍一下两模型的内涵:CAPM是诺贝尔经济学奖获得者威廉·夏普(William Sharpe) 于1970年在他的著作《投资组合理论与资本市场》中提出的。
从本质上看,CAPM 模型是在风险资产期望收益均衡基础上的预测模型。
该模型的中心思想如下:①风险资产的收益等于无风险资产的收益与市场投资组合的风险溢价之和,高风险资产伴随着高收益。
②由于系统风险不能由分散化而消除,必然伴随着相应的风险溢价来吸引投资者;非系统性风险可以分散掉,则在定价中不起作用。
③系统风险的大小可以用贝塔系数来衡量,一种股票的收益是与其贝塔系数成正比例关系的,其中贝塔系数是某种证券与市场组合的收益的协方差与市场组合收益的方差的比率,可看作是股票收益变动对市场组合收益变动的敏感度。
【1】套利定价模型(APT),在1976年,美国学者斯蒂芬·罗斯在《经济理论杂志》上发表了经典论文“资本资产定价的套利理论”,提出了一种新的资产定价模型,此即套利定价理论(APT理论)。
capm apt模型联系与区别
当单因子APT的因子正好是市场组合时,这两个模型完全等价。 当因子不是市场组合,假设因子是F,则 i biiM
其中 i 为证券i对市场组合的敏感程度,bi 为证券i对因子F的敏 感程度,iM 为因子F对市场组合的敏感程度。
2020/8/1
(二)APT与CAPM的区别
(1)APT模型比CAPM模型的假设条件宽松
APT模型和CAPM模型都是描述均衡市场状态 下,资产或资产组合的预期收益率与风险之间的 关系,为确定资产的均衡价格提供定价依据。
(一)APT与CAPM的联系
CAPM模型是一种特殊的单因子APT模型
CAPM模型
E(ri ) rf i (E(rM ) rf )
APT模型
E(ri ) rf (EI rf )bi
2、APT强调的是无套利原则
它的出发点是排除无风险套利机会,少 数投资者会构筑大额的套利头寸产生巨大的 市场压力来重建均衡,它的成立只需要有充 分分散化的投资组合,不பைடு நூலகம்单指数模型一定 要有对有风险市场组合有替代作用的市场指 数;
apt模型只要选择的因子是可观测的则模型就是可以检验1capm和单指数模型在本质上是一样的但capm要求有一个有风险市场组合而单指数模型是利用一个在实际中与理论的有风险市场组合完全正相关的综合指数来代替实际不存在的有风险市场组合故在实际的投资策略的制定中单指数模型是有真正的实用价值
五、APT与CAPM的联系和区别
➢ APT模型的投资期限更灵活宽松,不要求投资者单一投资期限 内计划并实施投资策略。
➢ APT不要求证券的收益率呈正态分布的假设
➢ APT不要求每位投资者对每只证券的收益率和方差有相同的预 期,从而选择相同的风险资产市场组合
(2)APT与CAPM最本质的区别在于:
金融机构风险定价与管理模型研究
金融机构风险定价与管理模型研究金融市场中的风险是无处不在的,金融机构需要建立风险模型来识别并管理这些风险。
风险定价和管理模型可以帮助金融机构确定合理的风险溢价以及适当的风险管理策略。
本文将探讨金融机构风险定价和管理模型的研究。
一、风险定价模型风险定价模型是金融机构进行风险管理的基础,它主要用于确定资产的风险溢价,即具有高风险的资产需要获得更高的回报。
通常情况下,金融机构使用的风险溢价计算模型包括 CAPM 模型和 APT 模型。
1、CAPM 模型CAPM 模型通过使用 beta 系数来计算资产回报和市场风险溢价之间的关系。
具有大 beta 系数的资产风险水平较高,其期望回报率相应地高于市场平均水平。
因此,通过 CAPM 模型计算的风险溢价可以帮助金融机构确定风险相对于市场的价值。
2、APT 模型APT 模型是一种多因子模型,可以通过多变量线性回归对资产回报进行建模。
该模型假设市场因素和其他因素(如通货膨胀、利率等)对资产风险溢价的影响是不同的。
因此,APT 模型可以更准确地反映资产风险的本质。
二、风险管理模型风险管理模型是金融机构进行风险管理的重要工具,它可以帮助金融机构评估和管理风险,制定适当的风险管理策略。
常用的风险管理模型包括 VaR 模型和CVaR 模型。
1、VaR 模型VaR 模型是常用的风险管理模型之一。
它通过计算在一定置信水平下资产组合的最大可能亏损,来评估风险级别。
VaR 模型的优点是易于计算和理解,因此常被用于评估和监控市场风险、信用风险和操作风险等。
2、CVaR 模型CVaR 模型是对 VaR 模型的一种改进,它不仅考虑最大可能亏损,还考虑亏损的概率分布。
CVaR 模型对极端风险更加敏感,因此对于具有高度非线性风险的金融工具,CVaR 模型比 VaR 模型更加准确。
三、风险建模技术在金融机构的风险建模中,常用的技术包括 Monte Carlo 模拟、Extreme Value Theory 和 Copula 等。
APT与CAPM模型
六、CAPM與APT的啟示本章前言投资人该如何做,才能建构所谓的效率投资组合?事实上,将一个投资组合中所有的非系统风险透过多角化予以分散殆尽,而只剩下无法再分散的系统风险。
但这些个别资产也只受到系统风险的影响而已吗?故本节将要介绍的CAPM—资本资产订价模式(Capital Asset Pricing Model,简称CAPM),是由美国学者夏普(Sharpe)、崔纳(Treynor)与莫辛(Mossin)等人在1960年代所发展出来的财务理论,分成「 的概念」、「CAPM的内涵」、「证券市场线」及「套利定价理论」等4个单元将逐歩介绍之。
学习路径(一). β的概念:介绍β的意义与估算方式。
(二). CAPM的内涵:介绍CAPM的理论架构与优缺点。
(三). 证券市场线:从图型来介绍其中所代表的意义。
(四). 套利订价理论:介绍套利订价理论的架构与优缺点。
(一)、 β的概念 资产的预期报酬率由于受到风险因子的影响,导致实现的报酬不稳定,而这些因子主要可分成系统风险与非系统风险。
不过如前所分析,非系统风险是可以利用多角化来分散殆尽以达到投资效率的,因此对一个持有多角化之「效率投资组合」的投资人来说,他可以只观察对于整个市场具有威胁性的风险来源,如物价指数、货币供给额成长率等等,对于市场中的系统风险进行控制即可,至于个别资产本身特有的风险因子则可忽略不理。
事实上,系统风险是表现在整个证券市场(Security Market)的报酬上的。
所谓「整个市场」,即指市场投资组合(Market Portfolio)的观念。
在意义上,市场投资组合包含了证券市场所有资产的投资组合,有如整个市场的「缩影」,同时以每个资产总市价占市场总值的比例为组成权数(因为唯有如此,才能产生与整个市场规模不同、但内容上「相当」的投资组合)。
若以数学形式表示,市场投资组合有如下式:N 221i 12211X X X V V ⋅++⋅+⋅=⋅++⋅+⋅=∑∑∑i iN i i i NN V V V V X W X W X W M (6-1)上式中,i V 表各类资产的市价。
CAPM及APT在我国的应用
存在着内在联系。一个国家引进外资金额与对外投资金额比例 一般为 1:1.1, 在发达国家, 这一比例为 1:1.4, 在发展中国家为 1: 0.13。因此, 我国应积极实施走出去的战略, 加强对外直接投资尤 其是对美的直接投资, 缓解外国直接投资对我国形成的对美贸 易顺差的巨大压力。
2007·3 经济论坛 77
市场经纬·M A R K E T
多因素做解释变量的线性模型: ri=E (ri)+βi1F1+βi2F2+…+βinFn+εi 研究均衡状态下定价规则的基础是
经济学 中 的“ 一 价 定 律 ”, 即 均 衡 状 态 下 完全替代品都是以相同的价格进行交 易 , 否 则 市 场 上 将 出 现 套 利 行 为 。C A PM 认为惟一影响证券收益的是全市场投资 组合, A PT 则从更一般的 角 度 研 究 了 资 产的均衡定价问题。但 A PT 模型并没有 明确指出有哪些因素需纳入模型中, 甚 至没有确定因素的数目, 因此无法确定 影响证券收益的一系列因素。这看上去 和莫顿的 IC A PM 有些相似, 不 过 A PT 反 映的是一种套利关系, 而不是均衡条件。 如果套利定价理论成立并且不存在个体 风险, 那么一价定律意味着任何资产的 期望收益仅仅是其它资产期望收益的线 性函数。当所有资产都没有特定风险时 候, 套利定价理论意味着所有资产价格 的运动存在紧密联系。但是当所有资产 都有个体风险时候, 为了使特定风险完
2.积极调整 产 业 结 构 , 推 动 产 业 升 级 。外 资 的 流 入 使 发 达 国 家及新兴工业国家将成本高昂的产业转移到我国。因此, 低附加 值的低级产业充斥我国的市场, 这也是我国造成对美大量顺差 的主要因素。现在我国的外汇储备已经高达 1 万亿美元, 因此我 国在利用外资结构和规模上应当适当调整, 对那些能够推动我 国产业结构升级的外资应一如既往地加以利用, 而对那些对资 源环境造成巨大破坏的外资应当加以限制。通过产业结构的调 整和升级提升我国产品的出口质量, 尤其是出口资本密集型的 高技术含量产品, 也是缓解我国对美贸易顺差的重要因素。
金融投资中的资产定价模型研究
金融投资中的资产定价模型研究在金融投资领域,资产定价模型被广泛应用于评估和预测不同类型的资产价格。
通过理解和应用这些模型,投资者可以更好地理解资产的价值,从而做出明智的投资决策。
本文将对金融投资中的资产定价模型进行研究,包括资本资产定价模型(CAPM)、套利定价理论(APT)和动态资产定价模型(DDM)。
一、资本资产定价模型(CAPM)CAPM是一种常用的用于确定资产预期收益的模型。
该模型建立在投资组合理论的基础上,通过考虑市场系统性风险和无风险利率来评估资产预期回报。
CAPM的数学方程为:E(Ri) = Rf + βi * (E(Rm) - Rf)。
其中,E(Ri)代表资产i的预期收益率,Rf是无风险利率,βi是资产i与市场组合的相关性,E(Rm)是市场组合的预期收益率。
CAPM模型的优点在于简单易用,但也存在其局限性,比如忽略了非系统性风险的影响。
二、套利定价理论(APT)与CAPM类似,APT也是用于确定资产收益的模型,但不同于CAPM只考虑市场风险,APT更加综合全面,考虑了多个因素对资产收益的影响。
APT基于风险套利的概念,假定投资组合中存在无风险套利机会的话,证券的预期收益应与该证券的影响因子相关。
APT模型可以表示为:E(Ri) = Rf + β1 * X1 + β2 * X2 + … + βn * Xn。
其中,E(Ri)是资产i的预期收益率,Rf是无风险利率,β1到βn代表了与资产预期收益相关的各个因子,X1到Xn是这些因子的值。
APT相对于CAPM的优势在于可以考虑更多的因子,但也需要更多的数据和计算。
三、动态资产定价模型(DDM)DDM是一种基于现金流量的资产定价模型,相比于CAPM和APT更加关注资产的现金流量和收益,更贴近真实的投资情况。
DDM的核心思想是将资产的价值归结为未来现金流量的现值之和。
DDM模型的数学方程为:V0 = Σ(FCFt / (1 + r)t) + (Pn / (1 + r)n)。
CAPM与APT的内涵、联系、区别、优点和缺点
CAPM ﹠ APT摘要:CAPM和 APT,资本市场上两个最重要的定价模型,尽管有许多严格的假设,但仍然支撑着整个资本市场上证券的定价,令无数的投资者为之着迷,它们究竟有什么样的魔力,它们之间的联系与区别是什么,它们的优点与缺点又是什么,就让本文揭开它们神秘的面纱吧!关键词:资本资产定价模型套利定价模型均衡分散化一价法则读完这三篇文章以及结合自己所学的知识,首先谈谈我对CAPM 和APT的理解,无论是CAPM还是APT都是在市场均衡的基础上,为资本市场上的资产定价提供一个基准,这个基准衡量了该资产的内在价值,当该资产的实际价值不等于它的内在价值时,无论是CAPM中的阿尔法不等于零还是APT中的资产违背一价法则(或者由于贝塔值相等的充分分散化的投资组合而期望收益不同出现套利),资本市场上的投资者都会通过低买高卖,使得最终的资产价格都会达到均衡,从而消除套利,由此说明两模型都可以衡量单个证券或者证券组合的内在价值。
首先我来介绍一下两模型的内涵:CAPM是诺贝尔经济学奖获得者威廉·夏普(William Sharpe) 于1970年在他的著作《投资组合理论与资本市场》中提出的。
从本质上看,CAPM 模型是在风险资产期望收益均衡基础上的预测模型。
该模型的中心思想如下:①风险资产的收益等于无风险资产的收益与市场投资组合的风险溢价之和,高风险资产伴随着高收益。
②由于系统风险不能由分散化而消除,必然伴随着相应的风险溢价来吸引投资者;非系统性风险可以分散掉,则在定价中不起作用。
③系统风险的大小可以用贝塔系数来衡量,一种股票的收益是与其贝塔系数成正比例关系的,其中贝塔系数是某种证券与市场组合的收益的协方差与市场组合收益的方差的比率,可看作是股票收益变动对市场组合收益变动的敏感度。
【1】套利定价模型(APT),在1976年,美国学者斯蒂芬·罗斯在《经济理论杂志》上发表了经典论文“资本资产定价的套利理论”,提出了一种新的资产定价模型,此即套利定价理论(APT理论)。
第六章 CAPM和APT
• Mean and Variance of a portfolio with π in A and 1 - π in B (i.e. two assets):
• Mean and Variance of a portfolio with πi in Xi, (i.e. N assets)
APT
CAPM的主要假设
• The CAPM is a theory that has only one hypothesis and only one implication.
– CAPM Hypothesis: The CAPM hypothesis is that each and every investor chooses an MVE portfolio. – CAPM Implication: If the CAPM hypothesis is correct, then the mathematical implication is that the aggregate value-weighted market portfolio is also MVE.
– There are no managerial agency problems (i.e., managers enriching themselves) that can be changed if a large investor holds more of the particular stock with agency,一部分是无风险资产的收 益,另一部分是市场风险补偿。 • 并非风险资产承担的风险都需要补偿,需要补偿的只是系 统风险。由于系统风险不能由分散化而消除,必须伴随有 相应的收益来吸引投资者投资。 • 资本资产定价模型还指出最佳的组合是市场组合,市场组 合的非系统风险最小,所有的风险投资者都会持有市场组 合。 • 作为资本市场上的一般均衡模型,资本资产定价模型对证 券的价格行为、风险——收益关系和证券风险的合适度量 提供了一个简明的描述。它是第一个可以进行计量检验的 金融资产定价模型。由于CAPM的简单性和可操作性,它 在实际的金融资产定价、股票收益预测以及证券投资组合 的建立中都发挥着重要的作用。
CAPM和APT模型的比较研究
CAPM和APT模型的比较研究CAPM模型和APT模型是金融学中常用的两种资产定价模型。
它们都通过对资产的预期收益率建立数学模型,帮助投资者了解风险与收益之间的关系,从而做出投资决策。
本文将比较CAPM模型和APT模型的特点和适用性,并从理论和实证研究的角度介绍它们的异同。
CAPM模型(Capital Asset Pricing Model,资本资产定价模型)是由Sharpe、Lintner和Mossin等学者在20世纪60年代初提出的。
根据CAPM模型,资产的预期收益率等于无风险利率与市场风险溢酬之和的线性组合。
CAPM模型的基本假设是有风险的资产收益率服从正态分布,投资者无限期地持有资产,并且可以充分分散化投资。
CAPM模型计算简单,易于理解和解释,常用于资本市场的定价和投资组合构建。
与CAPM模型相比,APT模型(Arbitrage Pricing Theory,套利定价理论)是由Ross在20世纪70年代提出的。
APT模型认为资产的预期收益率可以通过多个影响因子的线性组合来解释,而不仅仅是市场因子。
APT模型假设投资者通过套利的机会来避免不当的定价,从而实现收益的最大化。
APT模型的假设较为松散,可以容纳更多的市场因素,因此在一些复杂的情况下更加适用。
CAPM模型和APT模型在理论和实证研究中存在一些异同。
从理论上看,两个模型都基于风险资产的预期收益率与市场风险溢酬之间的关系,但假设不同。
CAPM模型假设投资者风险厌恶,市场因子能够完全解释资产回报的波动,而APT模型允许非完全风险厌恶和其他影响因素。
另外,CAPM模型是建立在静态均衡的基础上,而APT模型则考虑了动态均衡。
从实证研究上看,CAPM模型和APT模型的效果存在差异。
有研究表明,CAPM模型无法解释多个市场因子对资产回报的影响,而APT模型可以更好地解释这些影响。
另外,少数研究认为CAPM模型对市场利率变动和个体股票的灵敏度较高,而APT模型则对宏观经济因素和行业指标的变动更敏感。
资产定价模型及其在期货市场中的应用
资产定价模型及其在期货市场中的应用资产定价模型是金融学中的基石。
它尝试用某些市场因素的组合来解释资产价格。
在证券市场中,常用的资产定价模型有CAPM模型和APT模型。
这两种模型都基于不同的市场因素,分别对股票的预期收益进行客观分析。
而在期货市场中,资产定价模型也是非常重要的。
本文将深入探讨资产定价模型及其在期货市场中的应用。
一、资产定价模型的基本原理资产定价模型是一种用于估计资产价格的理论模型。
它假设市场上一切资产的价格都受到某些共同因素的影响。
这些共同因素可分为市场风险因素和公司特有因素。
市场风险因素是指影响整个市场的因素,如通货膨胀、利率、政治局势等。
公司特有因素是指影响某一家公司的因素,如公司所在的行业、公司的财务状况等。
在资产定价模型中,我们可以利用一些统计分析工具,如回归分析等,找出不同市场因素对股票价格的影响程度。
通过这种方法,我们可以确定每种因素在资产价格中的相对权重,从而计算出该资产的合理价格。
常用的资产定价模型有CAPM模型和APT模型。
二、CAPM模型在期货市场中的应用CAPM模型是一种风险收益模型,可以用来估算一只股票的预期收益率。
CAPM模型认为,市场风险是不可避免的,因此在估算股票预期收益率时,应考虑市场风险的影响。
CAPM模型的基本形式为:E(Ri) = Rf + βi(E(Rm) - Rf)其中,E(Ri)表示股票i的预期收益率;Rf表示无风险利率;βi表示股票i的β值;E(Rm)表示市场指数的预期收益率。
在期货市场中,CAPM模型同样适用。
我们可以用该模型来预测某一期货合约的预期收益率。
以大豆期货为例,我们可以利用历史价格数据和市场风险因素来计算大豆期货的β值。
然后,将该β值代入CAPM模型中,即可计算出大豆期货的预期收益率。
这个预期收益率可以用来评估大豆期货的投资风险和回报率。
如果大豆期货的实际收益率高于预期收益率,那么投资者就可以获得超额收益。
三、APT模型在期货市场中的应用APT模型是另一种资产定价模型。
关于CAPM与APT两大模型探讨
关于CAPM与APT两大模型探讨作者:程静来源:《合作经济与科技》2019年第05期[提要] 本文从以下三个部分进行阐述:首先,对CAPM进行简要的介绍;其次,分析CAPM的三个主要缺点,CAPM不是一个精确的模型,存在不现实假设以及无法检验;最后,研究套利定价理论及其与资本资产定价模型的关系。
在某些条件下,APT一些概念、假设甚至模型等同于CAPM,但是CAPM并不包含APT的一些假设,它们有不同的影响因子,并建立在不同的理论基础之上。
关键词:CAPM;APT中图分类号:F83 文献标识码:A收录日期:2018年12月21日(二)CAPM和APT之间的关系1、相同之处:首先,CAPM和APT的概念相似。
这两种方法都用于资本资产定价,而APT可以被看作是资本市场的替代CAPM的模型。
二者均认为投资者获得补偿回报的唯一途径是必须承担不可分散的风险,系统性风险越高,投资者预期回报越高。
此外,个人证券的预期收益率由无风险收益率加上风险溢价决定;其次,在一定条件下,CAPM可以看作是APT的一种特殊情况,APT也可以看作是CAPM的一种扩展模型。
只有单一因素的APT,投资组合只受一个因素的影响。
Danthine and Donaldson(2005)将单因子适模函数写成Rj=Rf+bj(Rj-Rf)。
从功能上看,它似乎与SML预期的投资组合相同。
一旦我们假设j与市场投资组合具有相同的收益率和方差,那么j就可以被看作是市场投资组合。
此时,单因素APT与CAPM 相同;最后,CAPM和APT都同时建立在一些假设之上,它们有三个假设是相同的。
所有的投资者都有同样的期望,都不愿承担风险,追求财富的最大预期效用。
2、不同之处:在下面的术语中,CAPM和APT是不同的。
首先,从Sharpe(1964年)对CAPM和Ross(1976年)对APT假设中可以看出,与CAPM相比,APT的假设限制较少。
可以发现,有一些关于CAPM的假设,而APT不包含。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
APT 模型与CAPM 模型综合应用
在(16)式中,证券i 的预期收益率可以表达为纯要素组合的预期收益率的多元线性函数,j i r E λ与)(存在线性相关关系,但是j λ的大小如何计算却是待定的。
CAPM 模型强调的是市场证券组合M ,无论是CML 还是SML 都和M 的预期收益率)(M r E 有直接的关系。
SML 的表达式为:
2),(])([)(M
M i i i
F M F i r r Cov r r E r r E σββ=
⋅-+= 由要素模型:m im i i i i F b F b F b a r ++++= 2211,可得:),()
,(),(),(2211M m im M i M i M i r F Cov b r F Cov b r F Cov b r r Cov +++=
()()[]22211)
,(),(),(M M m im M i M i F M F i r F Cov b r F Cov b r F Cov b r r E r r E σ
+++⨯
-+= 记:2
)
,(M M j Fj r F Cov σβ=表示要素F j 的β系数,j=1,2,……m,
根据上式,则有:
Fm im F i F i i b b b ββββ+++= 2211 (11-17)
把(11-17)再次代入证券市场线SML ,有
∑=-+=+++-+=-+=m j ij
Fj F M F Fm im F i F i F M F i
F M F i b r r E r b b b r r E r r r E r r E 12
211])([)
]()([])([)(βββββ (11-18)
对照APT 模型
m im i i F i b b b r r E λλλ++++= 2211)(,有:
11])([F F M r r E βλ⋅-=
22])([F F M r r E βλ⋅-=
(11-19)
Fm F M m r r E βλ⋅-=])([
由此可见,APT 模型并没有给出j λ具体的大小,而CAPM 却给了较具体的帮助。
[例11-3]假设F1、F2为影响因素,且对市场证券组合M 的β系数分别为7.0,2.121==F F ββ。
当市场证券组合M 的预期收益率为18%、无风险收益率为6%时,可以算出两个因素的风险溢价为:
[]%4.142.1%)6%18()(11=⨯-=⋅-=F F M r r E βλ
[]%4.87.0%)6%18()(22=⨯-=⋅-=F F M r r E βλ
在已知某证券或组合的因素敏感系数的前提下,我们可以根据计算出来的1λ和2λ
的值,来计算该证券或组合的预期收益率。