历年中考数学试卷89 四川乐山

合集下载

2024年四川省乐山市中考数学试题(含解析)

2024年四川省乐山市中考数学试题(含解析)

乐山市2024年初中学业水平考试数学本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第Ⅰ卷(选择题共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共10个小题,每小题3分,共30分.1.不等式20x -<的解集是()A.2x < B.2x > C.<2x - D.2x >-2.下列文物中,俯视图是四边形的是()A.带盖玉柱形器B.白衣彩陶钵C.镂空人面覆盆陶器 D.青铜大方鼎3.2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为()A.8410⨯ B.9410⨯ C.10410⨯ D.11410⨯4.下列多边形中,内角和最小的是()A.B.C.D.5.为了解学生上学的交通方式,刘老师在九年级800名学生中随机抽取了60名进行问卷调查,并将调查结果制作成如下统计表,估计该年级学生乘坐公交车上学的人数为()交通方式公交车自行车步行私家车其它人数(人)3051582A.100B.200C.300D.4006.下列条件中,不能判定四边形ABCD 是平行四边形的是()A.,AB CD AD BC ∥∥B.,AB CD AD BC ==C.,OA OC OB OD ==D.,AB CD AD BC=∥7.已知12x <<2x +-的结果为()A.1- B.1C.23x - D.32x-8.若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为()A.23-B.23C.6-D.69.已知二次函数()2211y x x x t =--≤≤-,当=1x -时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是()A.02t <≤ B.04t <≤ C.24t ≤≤ D.2t ≥10.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为()A.36B.3C.2D.第Ⅱ卷(非选择题共120分)注意事项:1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.4.本部分共16个小题,共120分.二、填空题:本大题共6个小题,每小题3分,共18分.11.计算:2a a +=______.12.一名交警在路口随机监测了5辆过往车辆的速度,分别是:66,57,71,69,58(单位:千米/时).那么这5辆车的速度的中位数是______.13.如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠=______.14.已知3a b -=,10ab =,则22a b +=______.15.如图,在梯形ABCD 中,AD BC ∥,对角线AC 和BD 交于点O ,若13ABD BCD S S =△△,则AODBOCS S =△△______.16.定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是______(填序号);①3y x =-+;②2y x=;③221y x x =-+-.(2)若一次函数3y mx m =-图象上存在“近轴点”,则m 的取值范围为______.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.计算:()03π2024-+-.18.解方程组:4{25x y x y +=-=19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.20.先化简,再求值:22142x x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.21.乐山作为闻名世界的文化旅游胜地,吸引了大量游客.为更好地提升服务质量,某旅行社随机调查了部分游客对四种美食的喜好情况(每人限选一种),并将调查结果绘制成统计图,如图所示.根据以上信息,回答下列问题:(1)本次抽取的游客总人数为______人,扇形统计图中m 的值为______;(2)请补全条形统计图;(3)旅行社推出每人可免费品尝两种美食的活动,某游客从上述4种美食中随机选择两种,请用画树状图或列表的方法求选到“钵钵鸡和跷脚牛肉”的概率.22.如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式;(2)连结AB ,求点C 到线段AB 的距离.23.我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA 的长度;(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h的式子表示;如果不能,请说明理由.24.如图,O 是ABC 的外接圆,AB 为直径,过点C 作O 的切线CD 交BA 延长线于点D ,点E 为 CB 上一点,且 AC CE=.(1)求证:DC AE ∥;(2)若EF 垂直平分OB ,3DA =,求阴影部分的面积.25.在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A .(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.26.在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:【问题情境】如图1,在ABC 中,90BAC ∠=︒,AB AC =,点D 、E 在边BC 上,且45DAE =︒∠,3BD =,4CE =,求DE 的长.解:如图2,将ABD △绕点A 逆时针旋转90︒得到ACD '△,连结ED '.由旋转的特征得BAD CAD '∠=∠,B ACD ∠=∠',AD AD =',BD CD '=.∵90BAC ∠=︒,45DAE =︒∠,∴45BAD EAC ∠+∠=︒.∵BAD CAD '∠=∠,∴45CAD EAC '∠+∠=︒,即45EAD '∠=︒.∴DAE D AE '∠=∠.在DAE 和D AE ' 中,AD AD =',DAE D AE '∠=∠,AE AE =,∴___①___.∴DE D E '=.又∵90ECD ECA ACD ECA B ''︒,∴在Rt ECD '△中,___②___.∵3CD BD '==,4CE =,∴DE D E '==___③___.【问题解决】上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.【知识迁移】如图3,在正方形ABCD 中,点E 、F 分别在边BC CD 、上,满足CEF △的周长等于正方形ABCD 的周长的一半,连结AE AF 、,分别与对角线BD 交于M 、N 两点.探究BM MN DN 、、的数量关系并证明.【拓展应用】如图4,在矩形ABCD 中,点E 、F 分别在边BC CD 、上,且45EAF CEF ∠=∠=︒.探究BE EF DF 、、的数量关系:______(直接写出结论,不必证明).【问题再探】如图5,在ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 、E 在边AC 上,且45DBE ∠=︒.设AD x =,CE y =,求y 与x 的函数关系式.参考答案一、选择题:本大题共10个小题,每小题3分,共30分.1.【答案】A【解析】解:20x -<,解得,2x <,故选:A .2.【答案】D【解析】解:A .俯视图是圆形,故选项A 不符合题意;B .俯视图不是四边形,故选项B 不符合题意;C .俯视图不是四边形,故选项C 不符合题意;D .俯视图是正方形,故选项D 符合题意;故选:D .3.【答案】C【解析】解:40000000000大于1,用科学记数法表示为10n a ⨯,其中4a =,10n =,∴40000000000用科学记数法表示为10410⨯,故选:C .4.【答案】A【解析】解:三角形的内角和等于180︒四边形的内角和等于360︒五边形的内角和等于()52180540-⨯︒=︒六边形的内角和等于()62180720-⨯︒=︒所以三角形的内角和最小故选:A .5.【答案】D【解析】解:估计该年级学生乘坐公交车上学的人数为:3080040060⨯=(人),故选:D .6.【答案】D【解析】解:A 、∵,AB CD AD BC ∥∥,∴四边形ABCD 是平行四边形,故此选项不合题意;B 、∵,AB CD AD BC ==,∴四边形ABCD 是平行四边形,故此选项不合题意;C 、∵,OA OC OB OD ==,∴四边形ABCD 是平行四边形,故此选项不合题意;D 、∵,AB CD AD BC =∥,不能得出四边形ABCD 是平行四边形,故此选项符合题意;故选:D .7.【答案】B212x x x +-=-+-,∵12x <<,∴10,20x x ->-<,∴12121x x x x ----==++,21x -=,故选:B .8.【答案】A【解析】解:121222,1x x x x p +=-=-⋅=Q ,121212112x x x x x x p+-∴+==,而12113x x +=,23p-∴=,23p ∴=-,故选:A .9.【答案】C【解析】解:∵()22211y x x x =-=--,∴图象开口向上,对称轴为直线1x =,顶点坐标为()11-,,当=1x -时,3y =,∴()13-,关于对称轴对称的点坐标为()33,,∵当=1x -时,函数取得最大值;当1x =时,函数取得最小值,∴113t ≤-≤,解得,24t ≤≤,故选:C .10.【答案】B【解析】解:过点C 作CH AD ⊥交AD 于点H ,∵60ABC ∠=︒,四边形ABCD 是菱形,1AB =,∴60ADC ∠=︒,1CD BC AB ===,∴30DCH ∠=︒,∴112DH CD ==,∴1AH AD DH =-=,∴AH DH =,∴CH 垂直平分AD ,∵点P 和点Q 关于点C 对称,∴PC QC =,∵90,PCM QCM CM CM ∠=∠=︒=,∴()PCM QCM SAS ≌,∴PM MQ =,∴CM 垂直平分PQ ,∴点M 在CH 上运动,当点P 与点B 重合时,点M 位于点M ',此时,∵60ABC ∠=︒,四边形ABCD 是菱形,1AB =,∴1302M BC ABC '∠=∠=︒,1BC =∴tan 303CM BC '=⋅︒=.故点M 的运动路径长为3CM '=.故选:B .二、填空题:本大题共6个小题,每小题3分,共18分.11.【答案】3a【解析】23a a a +=.故答案为:3a .12.【答案】66【解析】解:将这组数据重新排列为57,58,66,69,71,所以这组数据的中位数为66.故答案为:66.13.【答案】120︒##120度【解析】解:如图,a b ∥ ,1360∴∠=∠=︒,而23180∠+∠=︒,218060120∴∠=︒-︒=︒,故答案为:120︒.14.【答案】29【解析】解:由题意知,()22222321029a b a b ab +=-+=+⨯=,故答案为:29.15.【答案】19【解析】解:设AD BC ,的距离为d ,∴112132ABD BCD AD d S S BC d ⋅==⋅△△,即13AD BC =,∵AD BC ∥,∴ADO CBO ∠=∠,DAO BCO ∠=∠,∴AOD COB ∽,∴221139AOD BOC S S AD BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭V V ,故答案为:19.16.【答案】①.③②.102m -≤<或102m <≤【解析】(1)①3y x =-+中,1.5x =时, 1.5y =,不存在“近轴点”;②2y x=,由对称性,当x y =时,2x y ==,不存在“近轴点”;③()22211y x x x =-+-=--,1x =时,0y =,∴()1,0是221y x x =-+-的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)()33y mx m m x =-=-中,3x =时,0y =,∴图象恒过点()3,0,当直线过()1,1-时,()113m -=-,∴12m =,∴102m <≤;当直线过()1,1时,()113m =-,∴12m =-,∴102m -≤<;∴m 的取值范围为102m -≤<或102m <≤.故答案为:102m -≤<或102m <≤.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.【答案】1【解析】解:()03π20249-+--313=+-1=.18.【答案】详见解析【解析】解:①+②,得39x =.解得3x =.把3x =代入②,得1y =.∴原方程组的解是31x y =⎧⎨=⎩,.19.【答案】见解析【解析】解:AB 平分CAD ∠,CAB DAB ∴∠=∠,在CAB ∆和DAB ∆中,AC AD CAB DAB AB AB =⎧⎪∠=∠⎨⎪=⎩,()SAS CAB DAB ∴∆∆≌,C D ∴∠=∠.20.【答案】(1)③(2)12x +,15【解析】【小问1详解】解:∵第③步分子相减时,去括号变号不彻底,应为:()()()()()()2222222222x x x x x x x x x x -----=+++-+;【小问2详解】解:()()2212142222x x x x x x x -=---+--()()()()222222x x x x x x +=-+-+-()()2222x x x x --=+-()()222x x x -=+-12x =+当3x =时,原式15=21.【答案】(1)240,35(2)见详解(3)16【解析】【小问1详解】解:本次抽取的游客总人数为7230%240÷=(人),84100%35%240m =⨯=,故答案为:240,35;【小问2详解】“甜皮鸭”对应的人数为240(487284)36-++=(人),补全图形如下:【小问3详解】假设“麻辣烫”“跷脚牛肉”“钵钵鸡”“甜皮鸭”对应为“A 、B 、C 、D ”,画树状图如图所示,共有12种等可能的结果数,其中抽到“钵钵鸡和跷脚牛肉”题目的结果数为2,∴抽到“钵钵鸡和跷脚牛肉”的概率是21126=.22.【答案】(1)3m =,3n =,21y x =+(2)点C 到线段AB 的距离为322【解析】【小问1详解】点()1,A m 、(),1B n 在反比例函数3y x=图象上∴3m =,3n =又 一次函数y kx b =+过点()1,3A ,()0,1C ∴31k b b +=⎧⎨=⎩解得:21k b =⎧⎨=⎩∴一次函数表达式为:21y x =+;【小问2详解】如图,连结BC ,过点A 作AD BC ⊥,垂足为点D ,过点C 作CE AB ⊥,垂足为点E()0,1C ,()3,1B ∴BC x ∥轴,3BC = 点()1,3A,()3,1B ,AD BC ⊥∴点()1,1D ,2AD =,2DB =在Rt ADB 中,222AB AD DB =+=又 1122ABC S BC AD AB CE =⋅=⋅ 即11322222CE ⨯⨯=⨯∴322CE =,即点C 到线段AB 的距离为322.23.【答案】(1)秋千绳索的长度为14.5尺(2)能,cos cos h OA βα=-【解析】【小问1详解】解:如图,过点A '作A B OA '⊥,垂足为点B .设秋千绳索的长度为x 尺.由题可知,OA OA x '==,4AB =,10A B '=,∴4OB OA AB x =-=-.在Rt OA B '△中,由勾股定理得:222A B OB OA ''+=∴()222104x x +-=.解得14.5x =.答:秋千绳索的长度为14.5尺.【小问2详解】能.由题可知,90OPA OQA '''∠=∠=︒,OA OA OA '''==.在Rt OA P '△中,cos cos OP OA OA αα'=⋅=⋅,同理,cos cos OQ OA OA ββ''=⋅=⋅.∵OQ OP h -=,∴cos cos OA OA h βα⋅-⋅=.∴cos cos h OA βα=-.24.【答案】(1)见解析(2)3π4-【解析】【小问1详解】证明:如图1,连结OC .图1∵CD 为O 的切线,∴90OCD ∠=︒,即90DCA OCA ∠+∠=︒.又∵AB 为直径,∴90ACB ∠=︒,即190OCA ∠+∠=︒.∴1DCA ∠=∠.∵OC OB =,∴12∠=∠.∵ AC CE=,∴23∠∠=.∴3DCA ∠=∠.∴DC AE ∥.【小问2详解】解:如图2,连结OE BE 、.图2∵EF 垂直平分OB ,∴OE BE =.又∵OE OB =,∴OEB 为等边三角形.∴60BOE ∠=︒,120AOE ∠=︒.∵OA OE =,∴30OAE OEA ∠=∠=︒.∵DC AE ∥,∴30D OAE ∠=∠=︒.又∵90OCD ∠=︒,∴60DOC ∠=︒.∵OA OC =,∴AOC 为等边三角形.∴60OCA ∠=︒,OA OC AC ==.∴30DCA ∠=︒.∴D DCA ∠=∠.∴3DA AC OA OC OE =====.∴sin 602EF OE =⋅︒=.∴19324OAE S AO EF =⋅=△.又∵2120π33π360OAE S ⨯==扇形,∴933π4OAE OAE S S S =-=-阴影扇形△,∴阴影部分的面积为3π4-.25.【答案】(1)()1,1(2)3522a ≤<(3)2152a <≤【解析】【小问1详解】解:当1a =时,抛物线()222211y x x x =-+=-+.∴顶点坐标()1,1.【小问2详解】令0x =,则2y a =,∴()0,2A a ,∵线段OA 上的“完美点”的个数大于3个且小于6个,∴“完美点”的个数为4个或5个.∵0a >,∴当“完美点”个数为4个时,分别为()0,0,()0,1,()0,2,()0,3;当“完美点”个数为5个时,分别为()0,0,()0,1,()0,2,()0,3,()0,4.∴325a ≤<.∴a 的取值范围是3522a ≤<.【小问3详解】根据()22221y ax ax a a x a =-+=-+,得抛物线的顶点坐标为()1,a ,过点()2,2P a ,()3,5Q a ,()4,10R a .∵抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,显然,“完美点”()1,1,()2,2,()3,3符合题意.下面讨论抛物线经过()2,1,()3,2的两种情况:①当抛物线经过()2,1时,解得12a =此时,()2,1P ,53,2Q ⎛⎫ ⎪⎝⎭,()4,5R .如图所示,满足题意的“完美点”有()1,1,()2,1,()2,2,()3,3,共4个.②当抛物线经过()3,2时,解得25a =此时,42,5P ⎛⎫ ⎪⎝⎭,()3,2Q ,()4,4R .如图所示,满足题意的“完美点”有()1,1,()2,1,()2,2,()3,2,()3,3,()4,4,共6个.∴a 的取值范围是2152a <≤.26.【答案】【问题解决】①ADE AD E '≌△△;②222EC CD ED '='+;③5;【知识迁移】222DN BM MN +=,见解析;【拓展应用】22222BE DF EF +=;【问题再探】2160528x y x -=-【解析】解:(1)【问题解决】解:如图2,将ABD △绕点A 逆时针旋转90︒得到ACD '△,连结ED '.由旋转的特征得BAD CAD '∠=∠,B ACD ∠=∠',AD AD =',BD CD '=.∵90BAC ∠=︒,45DAE =︒∠,∴45BAD EAC ∠+∠=︒.∵BAD CAD '∠=∠,∴45CAD EAC '∠+∠=︒,即45EAD '∠=︒.∴DAE D AE '∠=∠.在DAE 和D AE ' 中,AD AD =',DAE D AE '∠=∠,AE AE =,∴①ADE AD E '≌△△.∴DE D E '=.又∵90ECD ECA ACD ECA B ''︒,∴在Rt ECD '△中,②222EC CD ED '='+.∵3CD BD '==,4CE =,∴5DE D E '===③.(2)【知识迁移】222DN BM MN +=.证明:如图,将ABE 绕点A 逆时针旋转90︒,得到ADF ' .过点D 作DH BD ⊥交边AF '于点H ,连结NH .由旋转的特征得,,AE AF BE DF BAE DAF ==∠=∠'''.由题意得EF EC FC DC BC DF FC EC BE ++=+=+++,∴EF DF BE DF DF F F ''=+=+=.在AEF △和' AF F 中,,,AE AF EF F F AF AF ''===,∴()AEF AF F SSS ' ≌.∴EAF F AF '∠=∠.又∵BD 为正方形ABCD 的对角线,∴45ABD ADB ∠=∠=︒.∵DH BD ⊥,∴45ADH HDB ADB ∠=∠-∠=︒.在ABM 和ADH 中,,,BAM DAH AB AD ABM ADH ∠=∠=∠=∠,∴()ABM ADH ASA ≌,∴,AM AH BM DH ==.在AMN 和AHN 中,,,AM AH MAN HAN AN AN =∠=∠=,∴()AMN AHN SAS ≌.∴MN HN =.在Rt HND 中,222DN DH HN +=,∴222DN BM MN +=.(3)【拓展应用】22222BE DF EF +=.证明:如图所示,延长EF 交AB 延长线于M 点,交AD 延长线于N 点,将ADF △绕着点A 顺时针旋转90︒,得到AGH ,连接,HM HE .则ADF AGH V V ≌.则,,DF GH AG AD AF AH ===,DAF HAG ∠=∠,45EAF ∠=︒ ,45HAE HAG GAE DAF GAE ∴∠=∠+∠=∠+∠=︒,在AEH △和AFE △中45AH AF HAE FAE AE AE =⎧⎪∠=∠=︒⎨⎪=⎩,()AEH AEF SAS ∴ ≌,∴EF HE =,过点H 作HO CB ⊥交CB 于点O ,过点H 作HG BM ⊥交BM 于点M ,则四边形OHGB 为矩形.∴,OH BG OB HG ==,45CEF ∠=︒ ,45CEF CFE DFN DNF BME BEM ∴∠=∠=∠=∠=∠=∠=︒,,,,BME DNF CEF AMN ∴V V V V 是等腰直角三角形,,,,CE CF BE BM DN DF AN AM ∴====,AM AG AN AD ∴-=-,GM DN DF HG ∴===,45HMG ∴∠=︒,454590HME ∴∠=︒+︒=︒,在Rt OHE 中,222OE OH HE +=,222()OB BE BG EH ++=,∴222()GH BE BG EH ++=,即222()()GH BE BM GM EH ++-=,又∴,,EF HE DF GH GM BE BM ====,∴222()()GH BE BE GH EF ++-=,即()2222DF BE EF +=,(4)【问题再探】如图,将BEC 绕点B 逆时针旋转90︒,得到BE C ''△,连结E D '.过点E 作EG BC ⊥,垂足为点G ,过点E '作EG BC ''⊥,垂足为G '.过点E '作E F BA '∥,过点D 作DF BC ∥交AB 于点,H E F '、DF 交于点F .由旋转的特征得,,,BE BE CBE C BE EG E G BG BG ''''''=∠=∠==.90,45ABC DBE ∠=︒∠=︒Q ,45CBE DBA ∴∠+∠=︒,45C BE DBA ''∴∠+∠=︒,即45DBE '∠=︒,在EBD △和E BD '△中,,,BE BE DBE DBE BD BD ''=∠=∠=,()EBD E BD SAS '∴ ≌,DE DE '∴=,90,4,3ABC AB BC ∠=︒==Q ,5AC ∴==,又,AD x CE y ==Q ,5DE DE x y '∴==--,D F B C ∥ ,,90ADH C AHD ABC ∴∠=∠∠=∠=︒,AHD ABC ∴ ∽,5AH HD AD x AB BC AC ∴===,即43,55AH x HD x ==,445HB AB AH x ∴=-=-,同理可得43,55EG y GC y ==.43,355E G y BG BG y '''∴===-,,90E G AB ABC ''⊥∠=︒Q ,E G BC FD ''∴∥∥,又∵,90E F AB FHG AHD ''∠=∠=︒∥,∴四边形FE G H ''为矩形.43490,,555F FH EG y DF DH FH x y ''∴∠=︒===+=+,43434315555FE HG HB BG x y x y ⎛⎫==-=---=-+ ⎪'⎭'⎝',在Rt E FD ' 中,222E F DF E D ''+=.22243341(5)5555x y x y x y ⎛⎫⎛⎫∴-+++=-- ⎪ ⎪⎝⎭⎝⎭,解得2160528x y x -=-.。

四川省乐山市中考数学试卷

四川省乐山市中考数学试卷

四川省乐山市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七上·柯桥期中) 当x=-1时,代数式x2-x+k的值为0,则k的值是()A . -2B . -1C . 0D . 22. (2分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A . AB=2BFB . ∠ACE= ∠ACBC . AE=BED . CD⊥BE3. (2分)某几何体由一些大小相同的小正方体组成,如图分别是它的主视图和俯视图,那么要组成该几何体,至少需要多少个这样的小正方体()A . 3B . 4C . 5D . 64. (2分) (2017七下·乌海期末) 下列调查中,适宜采用全面调查方式的是()A . 对乌达区中学生心理健康现状的调查B . 对冷饮市场上冰淇淋质量情况的调查C . 审核书稿中的错别字D . 调查乌达区中学生社会主义核心价值观的背诵情况5. (2分) (2018九上·平顶山期末) 菱形的两条对角线长分别为6与8,则此菱形的面积为()A . 48B . 20C . 14D . 246. (2分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A . -1B . 1C . -2D . 27. (2分)tan60°的值等于()A .B .C .D .8. (2分)(2018·拱墅模拟) 四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A .B .C .D .9. (2分) (2016九下·邵阳开学考) 已知一次函数y=kx+b的图象如左图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()A .B .C .D .10. (2分) (2017九上·杭州月考) 如图,抛物线y1=-x2+4x和直线y2=2x.当y1<y2 时,x 的取值范围是()A . 0<x<2B . x<0 或 x>2C . x<0 或 x>4D . 0<x<4二、填空题 (共5题;共5分)11. (1分)一个样本有50个数据,分成三个组.已知第一、二组数据频率和为a,第二、三组数据频率和为b,则第二组的频率为________ .12. (1分)(2018·拱墅模拟) 如图,点A是双曲线在第二象限分支上的一个动点,连接AO并延长交另一分支与点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值为________.13. (1分) (2017八上·鄞州月考) 如图,B,C,D在同一直线上,∠B=∠D=90°,AB=CD,BC=DE,则△ACE的形状为________.14. (1分)不等式组的解集是________ .15. (1分)设x,y为实数,代数式5x2+4y2﹣8xy+2x+4的最小值为________.三、解答题 (共10题;共109分)16. (8分) (2020九上·港南期末) 为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1) m=________%,这次共抽取了________名学生进行调查;并补全条形图;(2)请你估计该校约有 ________名学生喜爱打篮球;(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?17. (15分) (2017七上·上城期中) 某人去水果批发市场采购苹果,他看中了,两家苹果,这两家苹果品质一样,零售价都为元/千克,批发价各不相同.家规定:批发数量不超过千克,按零售价的优惠;批发数量不超过千克,按零售价的优惠;超过千克的按零售价的优惠。

(历年中考)四川省乐山市中考数学试题 含答案

(历年中考)四川省乐山市中考数学试题 含答案

ABDE图235°60°主视方向图1乐山市2016年高中阶段教育学校招生统一考试数 学本试题卷分第一部分(选择题)和第二部分(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上. 2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.下列四个数中,最大的数是()A 0()B 2()C 3-()D 42.图1是由四个大小完全相同的正方体组成的几何体,那么它的俯视图是3.如图2,CE 是ABC ∆的外角ACD ∠的平分线,若35B ∠=,60ACE ∠=,则A ∠=()A 35 ()B 95()C 85()D 754.下列等式一定成立的是()A 235m n mn += ()B 326()=m m ()C 236m m m ⋅=()D 222()m n m n -=-5.如图3,在Rt ABC ∆中,90BAC ∠=,AD BC ⊥于点D ,则下列结论不正确...的是图4()A sin ADB AB =()B sin ACB BC =()C sin ADB AC=()D sin CDB AC= 6. 不等式组20210x x +>⎧⎨-≤⎩的所有整数解是()A 1-、0 ()B 2-、1- ()C 0、1 ()D 2-、1-、07. 如图4,C 、D 是以线段AB 为直径的⊙O上两点,若CA CD =,且ACD ∠=则CAB ∠=()A 10 ()B 20()C 30()D 408.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A 13 ()B 16 ()C 19()D 1129. 若t 为实数,关于x 的方程2420x x t -+-=的两个非负实数根为a 、b ,则代数式22(1)(1)a b --的最小值是()A 15- ()B 16- ()C 15 ()D 1610.如图5,在反比例函数2y x=-于点B ,在第一象限内有一点C ,满足AC =ky x=的图象上运动,若tan 2CAB ∠=,则k ()A 2 ()C 6第二部分(非选择题图8DAE 图6DCBA二、填空题:本大题共6小题,每小题3分,共18分.11.计算:5-=__▲__.12.因式分解:32a ab -=__▲__.13.如图6,在ABC ∆中,D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,若ADE ∆与ABC ∆的周长之比为2:3,4AD =,则DB =___▲__.14.在数轴上表示实数a 的点如图72a -的结果为___▲__.15. 如图8,在Rt ABC ∆中,90ACB ∠=,AC =以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转0180后点B 与点A 恰好重合,则图中阴影部分的面积为___▲__.16.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数.例如:[]2.32=,[]1.52-=-. 则下列结论: ①[][]2.112-+=-; ②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<; ④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有___▲__(写出所有正确结论的序号).三、本大题共3小题,每小题9分,共27分.17. 计算:012016sin 453︒-+--. 18. 解方程:11322x x x--=--. 19. 如图9,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连结CE 、DF .求证:CE DF =.四、本大题共3小题,每小题10分,共30分.20. 先化简再求值:232()121x x x x x x --÷+++,其中x 满足220x x +-=. 21. 甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图10所示.根据图中信息,回答下列问题:(1)甲的平均数是_____▲______,乙的中位数是______▲________;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?22.如图11,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A 处接到指挥部通知,在他们东北方向距离12海里的B 处有一艘捕鱼船,正在沿南偏东75︒方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C 处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.五、本大题共2小题,每小题10分,共20分.23.如图12,反比例函数k y x =与一次函数y ax b =+的图象交于点(2,2)A 、1(,)2B n . (1)求这两个函数解析式;(2)将一次函数y ax b =+的图象沿y 轴向下平移m 个单位,使平移后的图象与反比24.如图DE AB ⊥于点E ,ED 、AC 的延长线交于点F .(1)求证:EF 是⊙O 的切线; (2)若32EB =,且3sin 5CFD ∠=,求⊙O 的半径与线段AE 的长.六、本大题共2小题,第25题12分,第26题13分,共25分.25.如图14,在直角坐标系xoy 中,矩形OABC 的顶点A 、C 分别在x 轴和y 轴正半轴上,点B 的坐标是(52),,点P 是CB 边上一动点(不与点C 、点B 重合),连结OP 、AP ,过点O 作射线OE 交AP 的延长线于点E ,交CB 边于点M ,且AOP COM ∠=∠,令CP x =,MP y =. (1)当x 为何值时,OP AP ⊥?(2)求y 与x 的函数关系式,并写出x 的取值范围;(3)在点P 的运动过程中,是否存在x ,使O C M ∆的面积与ABP ∆的面积之和等于EMP∆的面积.若存在,请求x 的值;若不存在,请说明理由.26.在直角坐标系xoy 中,(0,2)A 、(B -15.1所示的BCD ∆.(1)求经过A 、B 、C 三点的抛物线的解析式;(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,若直线PC 将ABC ∆的面积分成1:3两部分,求此时点P 的坐标;(3)现将ABO ∆、BCD ∆分别向下、向左以1:2的速度同时平移,求出在此运动过程中ABO ∆与BCD ∆重叠部分面积的最大值.乐山市2016年高中阶段教育学校招生统一考试数 学 参考答案与试题解析ABDE图235°60°图1第一部分(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.下列四个数中,最大的数是()A 0()B 2()C 3-()D 4答案:D考点:考查实数大小的比较,难度较小。

2023年乐山市中考数学真题试卷附答案

2023年乐山市中考数学真题试卷附答案

2023年四川省乐山市中考数学真题试卷一、选择题:本大题共10个小题,每小题3分,共30分.1. 计算:2a a -=( )A. aB. a -C. 3aD. 12. 下面几何体中,是圆柱的是( )A. B. C. D. 3. 下列各点在函数21y x =-图象上的是( )A. ()13-,B. ()01,C. ()11-,D. ()23,4. 从水利部长江水利委员会获悉,截止2023年3月30日17时,南水北调中线一期工程自2014年12月全面通水以来,已累计向受水区实施生态补水约90亿立方米.其中9000000000用科学记数法表示为( )A. 8910⨯B. 9910⨯C. 10910⨯D. 11910⨯ 5. 乐山是一座著名的旅游城市,有着丰富的文旅资源.某校准备组织初一年级500名学生进行研学旅行活动,政教处周老师随机抽取了其中50名同学进行研学目的地意向调查,并将调查结果制成如下统计图,如图所示估计初一年级愿意去“沫若故居”的学生人数为( )A. 100B. 150C. 200D. 4006. 如图,菱形ABCD 的对角线AC 与BD 相交于点O ,E 为边BC 的中点,连结OE .若68AC BD ==,,则OE =( )A. 2B. 52C. 3D. 47. 若关于x 的一元二次方程280x x m -+=两根为12x x 、,且123x x =,则m 的值为( )A. 4B. 8C. 12D. 168. 我国汉代数学家赵爽在注解《周髀算经》时给出“赵爽弦图”,如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形面积为25,小正方形面积为1,则sin θ=( )A. 45B. 35C. 25D. 159. 如图,抛物线2y ax bx c =++经过点(1,0)(,0)A B m -、,且12m <<,有下列结论:①0b <;①0a b +>;①0a c <<-;①若点1225,,,33C y D y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭在抛物线上,则12y y >.其中,正确的结论有( )A. 4个B. 3个C. 2个D. 1个10. 如图,在平面直角坐标系xOy 中,直线2y x =--与x 轴,y 轴分别交于A ,B 两点,C ,D 是半径为1的O 上两动点,且CD =,P 为弦CD 的中点.当C ,D 两点在圆上运动时,PAB 面积的最大值是( )A. 8B. 6C. 4D. 3二、填空题:本大题共6个小题,每小题3分,共18分.11. 不等式10x ->的解集是__________.12. 小张在“阳光大课间”活动中进行了5次一分钟跳绳练习,所跳个数分别为:160,163,160,157,160.这组数据的众数为__________.13. 如图,点O 在直线AB 上,OD 是BOC ∠的平分线,若140AOC ∠=︒,则BOD ∠的度数为__________.14. 若m ,n 满足340m n --=,则82m n ÷=__________.15. 如图,在平行四边形ABCD 中,E 是线段AB 上一点,连结AC DE 、交于点F .若23AE EB =,则ADF AEF S S =△△__________.16. 定义:若x ,y 满足224,4x y t y x t =+=+且x y ≠(t 为常数),则称点(,)M x y 为“和谐点”. (1)若(3,)P m 是“和谐点”,则m =__________.(2)若双曲线(31)k y x x=-<<-存在“和谐点”,则k 的取值范围为__________. 三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤. 17.计算:0|2|2023-+18. 解二元一次方程组:1328x y x y -=⎧⎨+=⎩19. 如图,AB ,CD 相交于点O,AO=BO,AC①DB .求证:AC=BD .20. 如图,在Rt ABC △中,90C ∠=︒,点D 为AB 边上任意一点(不与点A ,B 重合),过点D 作DE BC ∥,DF AC ∥,分别交AC ,BC 于点E ,F ,连接EF .(1)求证:四边形ECFD 是矩形;(2)若24CF CE ==,,求点C 到EF 的距离.21. 为了践行习近平总书记提出的“绿水青山就是金山银山”的发展理念,某地计划在规定时间内种植梨树6000棵.开始种植时,由于志愿者的加入,实际每天种植梨树的数量比原计划增加了20%,结果提前2天完成任务.问原计划每天种植梨树多少棵?22. 为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”.班主任将以上信息绘制成了统计图表,如图所示.根据上面图表信息,回答下列问题:(1)m =__________;(2)在扇形统计图中,“拖地”所占的圆心角度数为__________;(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.23. 如图,一次函数y kx b =+的图象与反比例函数4y x=的图象交于点(),4A m ,与x 轴交于点B , 与y 轴交于点()0,3C .(1)求m 的值和一次函数的表达式;(2)已知P 为反比例函数4y x =图象上的一点,2OBP OAC S S =△△,求点P 的坐标. 24. 如图,已知O 是Rt ABC △的外接圆,90ACB ∠=︒,D 是圆上一点,E 是DC 延长线上一点,连结AD AE ,,且AD AE CA CE ==,.(1)求证:直线AE 是O 的切线; (2)若2sin 3E =,O 的半径为3,求AD 的长. 25. 在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板ABC 绕点A 逆时针旋转θ到达AB C ''△的位置,那么可以得到:AB AB '=,AC AC '=,BC B C ''=;BAC B AC ''∠=∠,ABC AB C ''∠=∠,ACB AC B ''∠=∠( )刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“( )”处应填理由:____________________;(2)如图,小王将一个半径为4cm ,圆心角为60︒的扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置.①请在图中作出点O ;①如果=6cm BB ',则在旋转过程中,点B 经过的路径长为__________;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.26. 已知()()1122,,,x y x y 是抛物211:4C y x bx =-+(b 为常数)上的两点,当120x x +=时,总有12y y =(1)求b 的值;(2)将抛物线1C 平移后得到抛物线221:()1(0)4C y x m m =--+>. 探究下列问题:①若抛物线1C 与抛物线2C 有一个交点,求m 的取值范围;①设抛物线2C 与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线2C 的顶点为点E ,ABC 外接圆的圆心为点F ,如果对抛物线1C 上的任意一点P ,在抛物线2C 上总存在一点Q ,使得点P ,Q 的纵坐标相等.求EF 长的取值范围.2023年四川省乐山市中考数学真题试卷答案一、选择题.1. A2. B3. D4. B5. C6. B7. C8. A9. B解 :①抛物线2y ax bx c =++的图象开口向上.①0a >.①抛物线2y ax bx c =++经过点(1,0)(,0)A B m -、,且12m <<. ①1022b a <-<. ①0b <,故①正确; ①1022b a <-<,0a >. ①b a -<①0a b +>,故①正确;由图象可知,当1x =时,0y <,即0a b c ++<.①a b c +<-①0a >,0b <.①0a c <<-,故①正确; ①12512332⎛⎫--=- ⎪⎝⎭. 又①1022b a <-<. ①252332b b a a ⎛⎫⎛⎫---<-- ⎪ ⎪⎝⎭⎝⎭.①抛物线2y ax bx c =++的图象开口向上.①12y y <,故①错误.①正确的有①①①共3个.故选:B .10. D解:①直线2y x =--与x 轴,y 轴分别交于A ,B 两点.①当0x =时,=2y -,当0y =时,2x =-.①()()2,0,0,2A B --.①2OA OB ==. ①2222AB OA OB =+=.①PAB 的底边22AB =为定值.①使得PAB 底边上的高最大时,面积最大.点P 为CD 的中点,当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO .①CD =,O 的半径为1.①2DP =①2OP ==. ①OE AB ⊥.①12OE AB ==①PE OE OP =+=.①1322PAB S =⨯=. 故选:D .二、填空题.11. 1x >12. 16013. 20︒14. 1615. 5216. ①. 7- ①. 34k << 解:(1)若(3,)P m 是“和谐点”,则224,433m t m t =+=⨯+. 则22,3412m t m t -==-. ①223124m m --=.即24210m m +-=,解得2137,m m =-=(不合题意,舍去). ①7m =-.故答案为:7- (2)设点(),a b 为双曲线(31)k y x x=-<<-上的“和谐点”. ①224,4b t b a t a =+=+,(31)k b a a =-<<-. ①224,4b t b a t a =+=+. 即2244a a b b --=.①()()()40a b a b a b +-+-=. 则()()40a b a b -++=. ①40a b ++=.即4b a =--. ①(31)k b a a =-<<-.①()()224424k ab a a a a a ==--=--=-++,且31a -<<-. 对抛物线()224k a =-++来说.①10-<.①开口向下.当1a =-时,()21243k =--++=.当3a =-时,()23243k =--++=.①对称轴为2a =-,31a -<<-.①当2a =-时,k 取最大值为4.①k 的取值范围为34k <<.故答案为:34k <<三、解答题.17. 118. 21x y =⎧⎨=⎩19. 证明:①AC//DB.①①A=①B,①C=①D .在①AOC 与①BOD 中①①A=①B,①C=①D,AO=BO.①①AOC①①BOD .①AC=BD .20. (1)见解析 (2【小问1详解】证明:①DE BC ∥,DF AC ∥.①四边形ECFD 为平行四边形.①90C ∠=︒.①四边形ECFD 是矩形.【小问2详解】解:①90C ∠=︒,24CF CE ==,.①EF =设点C 到EF 的距离为h . ①1122CEF S CE CF EF h =⋅=⋅ ①24⨯=①h =答:点C 到EF . 21. 原计划每天种植梨树500棵解:设原计划每天种植梨树x 棵 由题可知:600060002(120%)x x-=+ 解得:500x =经检验:500x =是原方程的根,且符合题意.答:原计划每天种植梨树500棵.22. (1)8 (2)108︒(3)56【小问1详解】解:1025%1012108m =÷---=.故荅案为:8;【小问2详解】解:()360121025%108︒⨯÷÷=︒.故荅案为:108°;【小问3详解】解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果 有10种,所以所选同学中有男生的概率为105126=.23. (1)3y x(2)()2,2P 或()2,2--【小问1详解】 解:点(),4A m 在反比例函数4y x=的图象上. 44m∴=. 1m ∴=.()1,4A ∴, 又点()1,4A ,()0,3C 都在一次函数y kx b =+的图象上.43k b b=+⎧∴⎨=⎩. 解得13k b =⎧⎨=⎩∴一次函数的解析式为3y x .【小问2详解】解:对于3y x ,当0y =时,3x =-.①()30B -,. 3OB ∴=.①()0,3C .3OC ∴=过点A 作AH y ⊥轴于点H ,过点P 作PD x ⊥轴于点D ,如图所示.2OBP AOC S S =△△.11222OB PD OC AH ∴⋅=⨯⋅. 11323122PD ∴⨯⨯=⨯⨯⨯. 解得2PD =.∴点P 的纵坐标为2或2-.将2y =代入4y x =得2x =.将=2y -代入4y x =得2x =-.①点()2,2P 或()2,2--.24. (1)见解析 (2【小问1详解】证明:①90ACB ∠=︒.①AB 是O 的直径.①AC AC =.①ABC ADC ∠=∠.①AD AE =,CA CE =.①E ADC ∠=∠,CAE E ∠=∠.①CAE ADC ABC ∠=∠=∠.①90ABC CAB ∠+∠=︒.①90CAE CAB ∠+∠=︒.①90OAE ∠=︒.又①OA 是半径.①直线AE 是O 是的切线;【小问2详解】解:作CF AE ⊥,垂足为E ,如图所示.①CA CE =.①ACE △是等腰三角形.①CF AE ⊥. ①12EF AE =. 由题意知,6AB =,sin sin ABC E ∠=∠. ①2sin 643AC AB B =⋅=⨯=. ①4CE =. ①28sin 433CF CE E =⋅=⨯=.由勾股定理得3EF ==.①23AD AE EF ===.①AD25. 问题解决(1)旋转前后的图形对应线段相等,对应角相等;(2)①见解析①πcm 2;问题拓展:28πcm 3⎛- ⎝ 解:【问题解决】(1)旋转前后的图形对应线段相等,对应角相等(2)①下图中,点O 为所求①连接OB ,OB '.扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置. 90BOB '∴∠=︒,OB OB '=6cm BB '=.设cm OB OB x '==.2226x x ∴+=.OB OB '∴==.在旋转过程中,点B 经过的路径长为以点O 为圆心,圆心角为90︒,OB 为半径的所对应的弧长.∴点B 经过的路径长90cm 1802π⨯⨯==;【问题拓展】解:连接PA ',交AC 于M ,连接PA ,PD ,AA '如图所示1302PAC BAC ∴∠=∠=︒. 由旋转得30PA B ''∠=︒,4PA PA '==.在Rt PAM 中.sin 4sin302A M PM PA PAM '==⋅∠=⨯︒=. 在Rt A DM '中.1302DA M B A C ''''∠=∠=︒. 2cos cos30A M A D DA M ''∴==='∠︒ 1122DM A D '===. 11422A DP S DM A P ''∴=⋅==△ 230π44π3603B A P S ''⨯⨯==扇形. 4π3A DP B DP B A P S S S ''''∴=-=△阴影部分扇形 在ADP △和A DP '△中.AD AM DM A D '=-===. 又30PAD PA D '∠=∠=︒,PA PA '=.ADP A DP '∴≌.又PAC B A P S S ''=扇形扇形.B DP CDP S S '∴=阴影部分阴影部分.248=22ππcm 33B DP S S '⎛⎛∴=⨯-= ⎝⎝阴影部分阴影部分.26. (1)0 (2)①22m ≤≤+7922EF ≤≤ 【小问1详解】 解:由题可知:2211122211,44y x bx y x bx =-+=-+ 120x x +=时,总有12y y =.2211221144x bx x bx ∴-+=-+. 则()()()212121104x x x x b x x -+--=. ①()()2121104x x x x b ⎡⎤-+⎢-=⎥⎣⎦. ①()210b x x --=总成立,且210x x -≠.0b ∴=;【小问2详解】①注意到抛物线2C 最大值和开口大小不变,m 只影响图象左右平移下面考虑满足题意的两种临界情形: (i )当抛物线2C 过点(0,0)时,如图所示.此时,210,104x y m ==-+=,解得2m =或2-(舍). (ii )当抛物线2C 过点(2,1)-时,如图所示.此时,212,(2)114x y m ==--+=-.解得2m =+2-综上,22m ≤≤+①同①考虑满足题意的两种临界情形:(i )当抛物线2C 过点(0,1)-时,如图所示.此时,210,114x y m ==-+=-,解得m =或-(舍). (ii )当抛物线2C 过点(2,0)时,如图所示.此时,212,(2)104x y m ==--+=,解得4m =或0(舍).综上4m ≤≤如图,由圆的性质可知,点E ,F 在线段AB 的垂直平分线上.令21()104y x m =--+=,解得2,2A B x m x m =-=+. 22HB m m ∴=+-=. FB FC =.2222FH HB FG GC ∴+=+. 设FH t =.22222214m t t m ⎛⎫∴+=--+ ⎪⎝⎭.22221214044m m t m ⎛⎫⎛⎫∴---+-= ⎪ ⎪⎝⎭⎝⎭.22123044m m t ⎛⎫⎛⎫∴--+= ⎪⎪⎝⎭⎝⎭. 22,m ≥2104m ∴-≠.22304m t ∴-+=,即2382m t =+ 224m ≤≤.5722t ∴≤≤,即5722FH ≤≤.1EF FH =+.7922EF ∴≤≤.。

2023年四川省乐山市中考数学真题+答案解析

2023年四川省乐山市中考数学真题+答案解析

2023年四川省乐山市中考数学真题+答案解析(真题部分)一、选择题:本大题共10个小题,每小题3分,共30分.1.(3分)计算:2a﹣a=()A.a B.﹣a C.3a D.12.(3分)下面几何体中,是圆柱的为()A.B.C.D.3.(3分)下列各点在函数y=2x﹣1图象上的是()A.(﹣1,3)B.(0,1)C.(1,﹣1)D.(2,3)4.(3分)从水利部长江水利委员会获悉,截止2023年3月30日17时,南水北调中线一期工程自2014年12月全面通水以来,已累计向受水区实施生态补水约90亿立方米.其中9000000000用科学记数法表示为()A.9×108B.9×109C.9×1010D.9×10115.(3分)乐山是一座著名的旅游城市,有着丰富的文旅资源.某校准备组织初一年级500名学生进行研学旅行活动,政教处周老师随机抽取了其中50名同学进行研学目的地意向调查,并将调查结果制成如图统计图,如图所示.估计初一年级愿意去“沫若故居”的学生人数为()A.100 B.150 C.200 D.4006.(3分)如图,菱形ABCD的对角线AC与BD相交于点O,E为边BC的中点,连结OE.若AC=6,BD=8,则OE=()A.2 B.C.3 D.47.(3分)若关于x的一元二次方程x2﹣8x+m=0两根为x1、x2,且x1=3x2,则m的值为()A.4 B.8 C.12 D.168.(3分)我国汉代数学家赵爽在注解《周髀算经》时给出“赵爽弦图”,如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形面积为25,小正方形面积为1,则sinθ=()A.B.C.4 D.9.(3分)如图4,抛物线y=ax2+bx+c经过点A(﹣1,0)、B(m,0),且1<m<2,有下列结论:①b<0;②a+b>0;③0<a<﹣c;④若点C(﹣,y1),D(,y2)在抛物线上,则y1>y2.其中,正确的结论有()A.4个B.3个C.2个D.1个10.(3分)如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴、y轴分别交于A、B两点,C、D是半径为1的⊙O上两动点,且CD=,P为弦CD的中点.当C、D两点在圆上运动时,△P AB面积的最大值是()A.8 B.6 C.4 D.3二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)不等式x﹣1>0的解集是.12.(3分)小张在“阳光大课间”活动中进行了5次一分钟跳绳练习,所跳个数分别为:160,163,160,157,160.这组数据的众数为.13.(3分)如图,点O在直线AB上,OD是∠BOC的平分线,若∠AOC=140°,则∠BOD的度数为.14.(3分)若m、n满足3m﹣n﹣4=0,则8m÷2n=.15.(3分)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE交于点F.若,则=.16.(3分)定义:若x,y满足x2=4y+t,y2=4x+t且x≠y(t为常数),则称点M(x,y)为“和谐点”.(1)若P(3,m)是“和谐点”,则m=;(2)若双曲线y=(﹣3<x<﹣1)存在“和谐点”,则k的取值范围.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.(9分)计算:|﹣2|+20230﹣.18.(9分)解二元一次方程组:.19.(9分)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.20.(10分)如图,在Rt△ABC中,∠C=90°,点D为AB边上任意一点(不与点A、B重合),过点D作DE∥BC,DF∥AC,分别交AC、BC于点E、F,连结EF.(1)求证:四边形ECFD是矩形;(2)若CF=2,CE=4,求点C到EF的距离.21.(10分)为了践行习近平总书记提出的“绿水青山就是金山银山”的发展理念,某地计划在规定时间内种植梨树6000棵.开始种植时,由于志愿者的加入,实际每天种植梨树的数量比原计划增加了20%,结果提前2天完成任务.问原计划每天种植梨树多少棵?22.(10分)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与.经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”,班主任将以上信息绘制成了统计图表,如图所示.家务类型洗衣拖地煮饭刷碗人数(人)10 12 10 m根据上面图表信息,回答下列问题:(1)m=;(2)在扇形统计图中,“拖地”所占的圆心角度数为;(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.23.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(m,4),与x轴交于点B,与y轴交于点C(0,3).(1)求m的值和一次函数的表达式;(2)已知P为反比例函数y=图象上的一点,S△OBP =2S△OAC,求点P的坐标.24.(10分)如图,已知⊙O是Rt△ABC的外接圆,∠ACB=90°,D是圆上一点,E是DC延长线上一点,连结AD,AE,且AD=AE,CA=CE.(1)求证:直线AE是⊙O是的切线;(2)若sin E=,⊙O的半径为3,求AD的长.25.(12分)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△A′B′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由:;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.26.(13分)已知(x1,y1),(x2,y2)是抛物线C1:y=﹣x2+bx(b为常数)上的两点,当x1+x2=0时,总有y1=y2.(1)求b的值;(2)将抛物线C1平移后得到抛物线C2:y=﹣(x﹣m)2+1(m>0).当0≤x≤2时,探究下列问题:①若抛物线C1与抛物线C2有一个交点,求m的取值范围;②设抛物线C2与x轴交于A,B两点,与y轴交于点C,抛物线C2的顶点为点E,△ABC外接圆的圆心为点F.如果对抛物线C1上的任意一点P,在抛物线C2上总存在一点Q,使得点P、Q的纵坐标相等.求EF长的取值范围.2023年四川省乐山市中考数学真题+答案解析(答案部分)一、选择题:本大题共10个小题,每小题3分,共30分.1.(3分)计算:2a﹣a=()A.a B.﹣a C.3a D.1【分析】直接合并同类项得出答案.【解析】解:2a﹣a=a.故选:A.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.2.(3分)下面几何体中,是圆柱的为()A.B.C.D.【分析】根据各个选项中的几何体的形体特征进行判断即可.【解析】解:A.选项中的几何体是圆锥体,因此选项A不符合题意;B.选项中的几何体是球体,因此选项B不符合题意;C.选项中的几何体是圆柱体,因此选项C符合题意;D.选项中的几何体是四棱柱,因此选项D不符合题意;故选:C.【点评】本题考查认识立体图形,掌握圆柱体,圆锥体,棱柱,球的形体特征是正确判断的前提.3.(3分)下列各点在函数y=2x﹣1图象上的是()A.(﹣1,3)B.(0,1)C.(1,﹣1)D.(2,3)【分析】利用一次函数图象上点的坐标特征,逐一对四个选项进行验证即可求解.【解析】解:A.当x=﹣1时,y=2×(﹣1)﹣1=﹣3,∴点(﹣1,3)不在函数y=2x﹣1图象上;B.当x=0时,y=2×0﹣1=﹣1,∴点(0,1)不在函数y=2x﹣1图象上;C.当x=1时,y=2×1﹣1=1,∴点(1,﹣1)不在函数y=2x﹣1图象上;D.当x=2时,y=2×2﹣1=3,∴点(2,3)在函数y=2x﹣1图象上;故选:D.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是直线上任意一个点的坐标都满足函数解析式y=kx+b.4.(3分)从水利部长江水利委员会获悉,截止2023年3月30日17时,南水北调中线一期工程自2014年12月全面通水以来,已累计向受水区实施生态补水约90亿立方米.其中9000000000用科学记数法表示为()A.9×108B.9×109C.9×1010D.9×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:9000000000=9×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)乐山是一座著名的旅游城市,有着丰富的文旅资源.某校准备组织初一年级500名学生进行研学旅行活动,政教处周老师随机抽取了其中50名同学进行研学目的地意向调查,并将调查结果制成如图统计图,如图所示.估计初一年级愿意去“沫若故居”的学生人数为()A.100 B.150 C.200 D.400【分析】用总人数乘以样本中去“沫若故居”的学生人数所占比例即可.【解析】解:估计初一年级愿意去“沫若故居”的学生人数为500×=200(人),故选:C.【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.6.(3分)如图,菱形ABCD的对角线AC与BD相交于点O,E为边BC的中点,连结OE.若AC =6,BD=8,则OE=()A.2 B.C.3 D.4【分析】由菱形的性质得到OC=AC=3,OB=BD=4,AC⊥BD,由勾股定理求出BC的长,由直角三角形斜边中线的性质,即可求出OE的长.【解析】解:∵四边形ABCD是菱形,∴OC=AC,OB=BD,AC⊥BD,∵AC=6,BD=8,∴OC=3,OB=4,∴CB==5,∵E为边BC的中点,∴OE=BC=.故选:B.【点评】本题考查菱形的性质,直角三角形斜边的中线,勾股定理,关键是由菱形的性质求出OC,OB的长,由勾股定理求出BC的长,由直角三角形斜边的中线的性质即可求出OE的长.7.(3分)若关于x的一元二次方程x2﹣8x+m=0两根为x1、x2,且x1=3x2,则m的值为()A.4 B.8 C.12 D.16【分析】首先根据根与系数的关系得出x1+x2=8,再根据x1=3x2,求得x1,x2,进一步得出x1x2=m求得答案即可.【解析】解:∵一元二次方程x2﹣8x+m=0的两根为x1,x2,∴x1+x2=8,∵x1=3x2,解得x1=6,x2=2,∴m=x1x2=6×2=12.故选:C.【点评】本题考查了根与系数的关系.二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.8.(3分)我国汉代数学家赵爽在注解《周髀算经》时给出“赵爽弦图”,如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形面积为25,小正方形面积为1,则sinθ=()A.B.C.4 D.【分析】根据题意和题目中的数据,可以求出斜边各边的长,然后即可计算出sinθ的值.【解析】解:设大正方形的边长为c,直角三角形的短直角边为a,长直角边为b,由题意可得:c2=25,b﹣a==1,a2+b2=c2,解得a=3,b=4,c=5,∴sinθ==,故选:A.【点评】本题考查勾股定理的证明、解直角三角形,解答本题的关键是明确题意,求出各边的长.9.(3分)如图4,抛物线y=ax2+bx+c经过点A(﹣1,0)、B(m,0),且1<m<2,有下列结论:①b<0;②a+b>0;③0<a<﹣c;④若点C(﹣,y1),D(,y2)在抛物线上,则y1>y2.其中,正确的结论有()A.4个B.3个C.2个D.1个【分析】根据题意画出抛物线的大致图象,利用函数图象,由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,再根据二次函数的性质和图象分别判断即可得出答案.【解析】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,故①正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∵抛物线经过点A(﹣1,0),∴a﹣b+c=0,∴c=b﹣a,∵当x=2时,y>0,∴4a+2b+c>0,∴4a+2b+b﹣a>0,∴3a+3b>0,∴a+b>0,故②正确;∵a﹣b+c=0,∴a+c=b,∵b<0,∴a+c<0,∴0<a<﹣c,故③正确;∵点C(﹣,y1)到对称轴的距离比点D(,y2)到对称轴的距离近,∴y1<y2,故④的结论错误.故选:B.【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质.10.(3分)如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴、y轴分别交于A、B两点,C、D是半径为1的⊙O上两动点,且CD=,P为弦CD的中点.当C、D两点在圆上运动时,△P AB面积的最大值是()A.8 B.6 C.4 D.3【分析】判断三角形PCD和三角形OAB都是等腰直角三角形,由题得,当P、O、Q共线时,S △ABP最大,求出AB、PQ,根据面积公式计算即可.【解析】解:作OQ⊥AB,连接OP、OD、OC,∵CD=,OC=OD=1,∴OC2+OD2=CD2,∴△OCD为等腰直角三角形,由y=﹣x﹣2得,点A(﹣2,0)、B(0,﹣2),∴OA=OB=2,∴△OAB为等腰直角三角形,∴AB=2,OQ=,由题得,当P、O、Q共线时,S最大,△ABP∵P为中点,∴OP=,∴PQ=OP+OQ=,=AB•PQ=3.∴S△ABP故选:D.【点评】本题考查了圆的相关知识点的应用,点圆最值的计算是解题关键.二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)不等式x﹣1>0的解集是x>1.【分析】根据不等式的基本性质,左右两边同时加上1,就可求出x的取值范围.【解析】解:解不等式x﹣1>0得,x>1.【点评】解答此题的关键是要熟知不等式两边同时加上一个数,不等号的方向不变.12.(3分)小张在“阳光大课间”活动中进行了5次一分钟跳绳练习,所跳个数分别为:160,163,160,157,160.这组数据的众数为160.【分析】根据众数的定义求解即可.【解析】解:由题意知,这组数据中160出现3次,次数最多,所以这组数据的众数为160,故答案为:160.【点评】本题主要考查众数,一组数据中出现次数最多的数据叫做众数.13.(3分)如图,点O在直线AB上,OD是∠BOC的平分线,若∠AOC=140°,则∠BOD的度数为20°.【分析】根据邻补角定义求得∠BOC的度数,再根据角平分线定义即可求得答案.【解析】解:∵∠AOC=140°,∴∠BOC=180°﹣140°=40°,∵OD是∠BOC的平分线,∴∠BOD=∠BOC=20°,故答案为:20°.【点评】本题主要考查角平分线的定义,此为几何中基础且重要知识点,必须熟练掌握.14.(3分)若m、n满足3m﹣n﹣4=0,则8m÷2n=16.【分析】直接利用幂的乘方运算法则将原式变形,进而计算得出答案.【解析】解:∵3m﹣n﹣4=0,∴3m﹣n=4,∴8m÷2n=23m÷2n=23m﹣n=24=16.故答案为:16.【点评】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.15.(3分)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE交于点F.若,则=.【分析】通过证明△AEF∽△CDF,可得=,即可求解.【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵,∴设AE=2a,则BE=3a,∴AB=CD=5a,∵AB∥CD,∴△AEF∽△CDF,∴=,∴=,故答案为:.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,证明三角形相似是解题的关键.16.(3分)定义:若x,y满足x2=4y+t,y2=4x+t且x≠y(t为常数),则称点M(x,y)为“和谐点”.(1)若P(3,m)是“和谐点”,则m=﹣7;(2)若双曲线y=(﹣3<x<﹣1)存在“和谐点”,则k的取值范围3<k<4.【分析】(1)根据题意得出,消去t得到m2+4m﹣21=0,解方程即可求得m=﹣7;(2)根据题意得出,①﹣②得(x+)(x﹣)=﹣4(x﹣),整理得(x﹣)(x++4)=0,由x≠y,得出x++4=0,理得k=﹣x2﹣4x=﹣(x+2)2+4,由﹣3<x<﹣1,得出3<k<4.【解析】解:(1)∵P(3,m)是“和谐点”,∴,消去t得到m2+4m﹣21=0,解得m=﹣7或3,∵x≠y,∴m=﹣7;故答案为:﹣7;(2)∵双曲线y=(﹣3<x<﹣1)存在“和谐点”,∴,①﹣②得(x+)(x﹣)=﹣4(x﹣),∴(x﹣)(x++4)=0,∵x≠y,∴x++4=0,整理得k=﹣x2﹣4x=﹣(x+2)2+4,∵﹣3<x<﹣1,∴3<k<4.故答案为:3<k<4.【点评】本题考查了新定义,反比例函数图象上点的坐标特征,二次函数的最值等知识,本题综合性强,有一定难度.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.(9分)计算:|﹣2|+20230﹣.【分析】直接利用绝对值的性质以及零指数幂的性质、二次根式的性质分别化简,进而得出答案.【解析】解:原式=2+1﹣2=1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.18.(9分)解二元一次方程组:.【分析】利用加减消元法进行计算,即可解答.【解析】解:,①×2得:2x﹣2y=2③,②+③得:5x=10,解得:x=2,把x=2代入①中得:2﹣y=1,解得:y=1,∴原方程组的解为:.【点评】本题考查了解二元一次方程组,熟练掌握加减消元法是解题的关键.19.(9分)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.【分析】由平行线的性质可得∠A=∠B,∠C=∠D,利用AAS即可判定△AOC≌△BOD,从而得AC=BD.【解析】证明:∵AC∥BD,∴∠A=∠B,∠C=∠D,在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.【点评】本题主要考查全等三角形的判定与性质,解答的关键是熟记全等三角形的判定定理与性质并灵活运用.20.(10分)如图,在Rt△ABC中,∠C=90°,点D为AB边上任意一点(不与点A、B重合),过点D作DE∥BC,DF∥AC,分别交AC、BC于点E、F,连结EF.(1)求证:四边形ECFD是矩形;(2)若CF=2,CE=4,求点C到EF的距离.【分析】(1)先证四边形ECFD为平行四边形,即可求解;(2)由勾股定理可求EF的长,由面积法可求解.【解析】(1)证明:∵FD∥CA,BC∥DE,∴四边形ECFD为平行四边形,又∵∠C=90°,∴四边形ECFD为矩形;(2)解:过点C作CH⊥EF于H,在Rt△ECF中,CF=2,CE=4,∴EF===2,∵S=×CF•CE=×EF•CH,△ECF∴CH==,∴点C到EF的距离为.【点评】本题考查了矩形的判定和性质,勾股定理,面积法等知识,灵活运用这些性质解决问题是解题的关键.21.(10分)为了践行习近平总书记提出的“绿水青山就是金山银山”的发展理念,某地计划在规定时间内种植梨树6000棵.开始种植时,由于志愿者的加入,实际每天种植梨树的数量比原计划增加了20%,结果提前2天完成任务.问原计划每天种植梨树多少棵?【分析】设原计划每天种植梨树x棵,则实际每天种植梨树(1+20%)x棵,利用工作时间=工作总量÷工作效率,结合实际比原计划提前2天完成任务,可得出关于x的分式方程,解之经检验后,即可得出结论.【解析】解:设原计划每天种植梨树x棵,则实际每天种植梨树(1+20%)x棵,根据题意得:﹣=2,解得:x=500,经检验,x=500是所列方程的解,且符合题意.答:原计划每天种植梨树500棵.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(10分)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与.经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”,班主任将以上信息绘制成了统计图表,如图所示.家务类型洗衣拖地煮饭刷碗人数(人)10 12 10 m根据上面图表信息,回答下列问题:(1)m=8;(2)在扇形统计图中,“拖地”所占的圆心角度数为108°;(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.【分析】(1)先根据煮饭人数及其所占百分比求出总人数,继而可得m的值;(2)用360°乘以“拖地”所占比例即可;(3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解析】解:(1)因为被调查的总人数为10÷25%=40(人),所以m=40﹣(10+12+10)=8,故答案为:8;(2)在扇形统计图中,“拖地”所占的圆心角度数为360°×=108°,故答案为:108°;(3)列表如下:男1 男2 女1 女2男1 (男1,男2)(男1,女1)(男1,女2)男2 (男2,男1)(男2,女1)(男2,女2)女1 (女1,男1)(女1,男2)(女1,女2)女2 (女2,男1)(女2,男2)(女2,女1)由表知,共有12种等可能结果,其中所选同学中有男生的有10种结果,所以所选同学中有男生的概率为=.【点评】本题考查的是条形统计图和扇形统计图以及求随机事件的概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(m,4),与x轴交于点B,与y轴交于点C(0,3).(1)求m的值和一次函数的表达式;(2)已知P为反比例函数y=图象上的一点,S△OBP =2S△OAC,求点P的坐标.【分析】(1)把A(m,4)代入反比例函数解析式求得m的值,然后利用待定系数法即可求得一次函数的解析式;(2)过点A作AH⊥y轴于点H,过点P作PD⊥x轴于点D,由S△OBP =2S△OAC得到,即,解得PD=2,即可求得点P的纵坐标为2或﹣2,进一步求得点P的坐标.【解析】解:(1)∵点A(m,4)在反比例函数的图象上,∴,∴m=1,∴A(1,4),又∵点A(1,4)、C(0,3)都在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+3;(2)对于y=x+3,当y=0时,x=﹣3,∴OB=3,∵C(0,3),∴OC=3,过点A作AH⊥y轴于点H,过点P作PD⊥x轴于点D,∵S△OBP =2S△OAC,∴,即,解得PD=2,∴点P的纵坐标为2或﹣2,将y=2或﹣2代入得x=2或﹣2,∴点P(2,2)或(﹣2,﹣2).【点评】本题是反比例函数与一次函数的交点问题,考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,三角形的面积,数形结合是解题的关键.24.(10分)如图,已知⊙O是Rt△ABC的外接圆,∠ACB=90°,D是圆上一点,E是DC延长线上一点,连结AD,AE,且AD=AE,CA=CE.(1)求证:直线AE是⊙O是的切线;(2)若sin E=,⊙O的半径为3,求AD的长.【分析】(1)先由∠ACB=90°,证明AB是⊙O的直径,再证明∠CAE=∠B,则∠OAE=∠CAE+∠CAB=∠B+∠CAB=90°,即可证明直线AE是⊙O是的切线;(2)由∠E=∠CAE=∠B,得=sin B=sin E==,则CE=CA=AB=×6=4,CF=CE =×4=,所以AF=BF==,则AD=AE=2AF=.【解析】(1)证明:∵∠ACB=90°,∴AB是⊙O的直径,∵AD=AE,∴∠E=∠D,∵∠B=∠D,∴∠E=∠B,∵CA=CE,∴∠E=∠CAE,∴∠CAE=∠B,∴∠OAE=∠CAE+∠CAB=∠B+∠CAB=90°,∵OA是⊙O的半径,且AE⊥OA,∴直线AE是⊙O是的切线.(2)解:作CF⊥AE于点F,则∠CFE=90°,∵∠E=∠CAE=∠B,∴=sin B=sin E==,∵OA=OB=3,∴AB=6,∴CE=CA=AB=×6=4,∴CF=CE=×4=,∴AF=BF===,∴AD=AE=2AF=2×=,∴AD的长是.【点评】此题重点考查切线的判定、圆周角定理、等腰三角形的性质、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.25.(12分)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△A′B′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由:旋转前后的图形对应线段相等,对应角相等;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为cm;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.【分析】【问题解决】(1)由旋转的性质即可知答案为旋转前后的图形对应线段相等,对应角相等;(2)①作线段BB',AA'的垂直平分线,两垂直平分线交于O,点O为所求;②由∠BOB'=90°,OB=OB',可得OB==3,再用弧长公式可得答案;【问题拓展】连接P A',交AC于M,连接P A,PD,AA',PB',PC,求出A'D===,DM=A'D=,可得S△A'DP=××4=;S扇形P A'B'==,证明△PB′D≌△PCD(SSS)可知阴影部分关于PD对称,故重叠部分面积为2(﹣)=(cm2).【解析】解:【问题解决】(1)根据题意,AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′的理由是:旋转前后的图形对应线段相等,对应角相等,故答案为:旋转前后的图形对应线段相等,对应角相等;(2)①如图:作线段BB',AA'的垂直平分线,两垂直平分线交于O,点O为所求;②∵∠BOB'=90°,OB=OB',∴△BOB'是等腰直角三角形,∵BB'=6,∴OB==3,∵=(cm),∴点B经过的路径长为cm,故答案为:cm;【问题拓展】连接P A',交AC于M,连接P A,PD,AA',PB',PC,如图:∵点P为中点,∴∠P AB=,由旋转得∠P A'B'=30°,P A=P A′=4,在Rt△P AM中,PM=P A•sin∠P AM=4×sin30°=2,∴A'M=P A'﹣PM=4﹣2=2,在Rt△A′DM中,A'D===,DM=A'D=,∴S△A'DP=××4=;S扇形P A'B'==,下面证明阴影部分关于PD对称:∵∠P AC=∠P A'B'=30°,∠ADN=∠A'DM,∴∠AND=∠A'MD=90°,∴∠PNA'=90°,∴PN=P A'=2,∴AN=P A﹣PN=2,∴AN=A′M,∴△AND≌△A'MD(AAS),∴AD=A′D,∴CD=B'D,∵PD=PD,PB'=PC,∴△PB′D≌△PCD(SSS),∴阴影部分面积被PD等分,∴S阴影=2(S△A'DP﹣S扇形P A'B')=2(﹣)=(cm2).∴两个纸板重叠部分的面积是cm2.【点评】本题考查圆的综合应用,涉及扇形的旋转问题,三角形全等的判定与旋转,三角形,扇形的面积等,证明阴影部分关于AD对称是解题的关键.26.(13分)已知(x1,y1),(x2,y2)是抛物线C1:y=﹣x2+bx(b为常数)上的两点,当x1+x2=0时,总有y1=y2.(1)求b的值;(2)将抛物线C1平移后得到抛物线C2:y=﹣(x﹣m)2+1(m>0).当0≤x≤2时,探究下列问题:①若抛物线C1与抛物线C2有一个交点,求m的取值范围;②设抛物线C2与x轴交于A,B两点,与y轴交于点C,抛物线C2的顶点为点E,△ABC外接圆的圆心为点F.如果对抛物线C1上的任意一点P,在抛物线C2上总存在一点Q,使得点P、Q的纵坐标相等.求EF长的取值范围.【分析】(1)根据当x1+x2=0时,总有y1=y2,构建方程,求解即可;(2)①求出抛物线经过(0,0)或(2,﹣1)时的m的值,可得结论;②判断出抛物线经过(1,0)或(2,0)时m的值,求出m的取值范围,再根据FH2+HB2=FG2+GC2,设FH=t,构建关系式,求出即,可得结论.【解析】解:(1)由题可知:y1=﹣+bx1,y2=﹣+bx2,∵当x1+x2=0 时,总有y1=y2,∴﹣+bx1=﹣+bx2,整理得:(x1﹣x2)(x1+x2﹣4b)=0,∵x1≠x2,∴x1﹣x2≠0,∴x1+x2﹣4b=0,∴b=0;(2)①注意到抛物线C2最大值和开口大小不变,m只影响图象左右平移.下面考虑满足题意的两种临界情形:(i)当抛物线C2过点(0,0)时,如图1所示,此时,x=0,,解得m=2或﹣2(舍).(i)当抛物线C2过点(2,﹣1)时,如图2所示,此时,x=2,解得或(舍).综上所述,2≤m≤2+2;②同①考虑满足题意的两种临界情形:(i)当抛物线C2过点(0,﹣1)时,如图3所示,此时,x=0,,解得或(舍).(ii)当抛物线C2过点(2,0)时,如图4所示,此时,x=2,,解得m=4 或0(舍).综上所述,.如图5,由圆的性质可知,点E、F在线段AB的垂直平分线上,,解得x A=m﹣2,x B=m+2,∴HB=m+2﹣m=2,∵FB=FC.∴FH2+HB2=FG2+GC2,设FH=t,∴t2+22=(﹣1﹣t)2+m2,∴(﹣1)2﹣2(﹣1)t+m2﹣4=0,∴(﹣1)(﹣2t+3)=0,∵m≥2,∴﹣1≠0,∴,即,∵∴,即<FH≤,∵EF=FH+1,∴.【点评】本题属于二次函数综合题,考查了二次函数的性质,一元二次方程等知识,解题的关键是理解题意,学会寻找特殊点解决问题,属于中考压轴题.。

四川省乐山市历年数学中考真题解答题

四川省乐山市历年数学中考真题解答题

四川省乐山市历年数学中考真题一、解答题:
如图13,已知直线y=4-x与反比例函数y= m
x
(m>0,x>0)的图象交于A、B两点,
与x轴、y轴分别相交于C、D两点.
(1)如果点A的横坐标为1,利用函数图象求关于x的不等式4-x<m
x
的解集;
(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,
请说明理由。

如图15.1,已知抛物线C经过原点,对称轴x=-3与抛物线相交于第三象限的点M,与x轴相交于点N,且tan∠MON = 3.
(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转180º得到抛物线C’,抛物线C’与x轴的另一交点为A,B为抛物线C’上横向坐标为2的点.
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E、F分别作x轴的垂线,交折线O –B -A于点E1、F1,再分别以线段EE1、FF1为边作如图15.2所
示的等边△EE1E2、等边△FF1F2,点E以每秒
1个单位长度的速度从点O向点A运动,点
F以每秒1个单位长度的速度从点A向点O
运动,当△EE1E2有一边与△FF1F2的某一边
在同一直线上时,求时间t的值。

乐山市中考数学题(附答案)

乐山市中考数学题(附答案)
小正方体,得到一个如图5所示的零件,则这个零件的户I
表面积是.图5
13.据报道,乐山市2011年GDP总量约为91 800 000 000元,用科学记数法表示这一
数据应为 元.
如图6,③。是四边形ABCD的内切圆,E、F、G、H是 切点,点P是优弧EfH上异于E、H的点.若Z A = 50 ,则/EPH =.
15.一个盒中装着大小、 外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出-
一,_ - 一1 ,…,、一,,,
颗弹珠,取得白色弹珠的概率是 -.如果再往盒中放进12颗同样的白色弹珠,取得白
3
2咛
色弹珠的概率是 一,则原来盒中有白色弹珠 颗.
3
16.如图7, / ACD是^ABC的外角,ABC的平分线与ACD的平分线交于点A ,
乐山市
本试题卷分第一部分(选择题)和第二部分(非选择题),共6页.考生作答时,须将答
案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结
束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器
第一部分(选择题 共
注意事项:
1.选择题必须使用2B铅笔将答案标号填涂在答题卡上对应题目标号的位置上
ABC的平分线与ACD的平分线交于点A2 ,…,An 1BC的平分线与An 1CD
的平分线交于点An.设Z A=.
则(1)A =;
(2)Ai =
三、本大题共3小题,每小题9分,共27分.
222_ 2.
化简:3(2x y ) 2(3y 2x ).
2x 3>3x,
解不等式组x3X11并求出它的整列问题:
关系是
(A)内含(B)内切(C)相交(D)外切

四川省乐山市中考数学试卷

四川省乐山市中考数学试卷

四川省乐山市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·成都模拟) 下列各数中,比﹣2小的数是()A . 3B . 1C . ﹣1D . ﹣32. (2分)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A .B .C .D .3. (2分) (2020七下·余姚月考) 手机上使用14nm芯片,1nm=0.0000001cm,则14nm用科学记数法表示为()A . 1.4×10﹣6cmB . 1.4×10﹣7cmC . 14×10﹣6cmD . 14×10﹣7cm4. (2分)(2012·盐城) 如图是一个由3个相同的正方体组成的立体图形,则它的主视图为()A .B .C .D .5. (2分)(2017·柘城模拟) 已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A . a<13,b=13B . a<13,b<13C . a>13,b<13D . a>13,b=136. (2分) (2019七下·东海期末) 下列计算结果正确的是()A . · =B . ÷ =C . (a-b)2= -D . 3 +2 =57. (2分) (2020七下·顺义期中) 已知是方程组的解,则 a , b 间的关系是()A .B .C .D .8. (2分)已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为().A . 9C .D .9. (2分)一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于()A . 21B . 20C . 19D . 1810. (2分) (2019八下·尚志期中) 如图,在中,是的中点,作于点,连接,下列结论:① ;② ;③ ;④ ;其中正确的个数是()A . 1B . 2C . 3D . 411. (2分)(2017·宿迁) 如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A . 20cmB . 18cmC . 2 cmD . 3 cm12. (2分)已知,则分式的值为()B . 9C . 1D . 不能确定二、填空题 (共6题;共7分)13. (1分) (2019八上·大连期末) 分解因式: ________.14. (1分) (2015七下·农安期中) 如图所示的花朵图案,至少要旋转________度后,才能与原来的图形重合.15. (1分) (2017九上·东丽期末) 已知一元二次方程的两根为、,则________16. (2分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数的图象上,从左向右第3个正方形中的一个顶点A的坐标为(6,2),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、Sn ,则第4个正方形的边长是________,S3的值为________.17. (1分)一张三角形纸片ABC,其中∠C=90?,AC=6,BC=8.小静同学将纸片做两次折叠:第一次使点A落在C处,折痕记为m;然后将纸片展平做第二次折叠,使点A落在B处,折痕记为n.则m,n的大小关系是________.18. (1分) (2019九上·台安月考) 关于x的反比例函数的图像位于第二、四象限,则m的取值范围是________.三、解答题: (共8题;共76分)19. (10分) (2020七下·蚌埠月考) 计算:(1);(2).20. (5分) (2019八上·西岗期末) 解方程:古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400—前347)曾提出:能否将一条线段分成不相等的两部分.使较短线段与较长线段的比等于较长线段与原线段的比,这个相等的比就是,黄金分割在我们生活中有广泛运用.黄金分割点也可以用折纸的方式得到.第一步:裁一张正方形的纸片,先折出的中点E,然后展平,再折出线段,再展平;第二步:将纸片沿折叠,使落到线段上,B的对应点为B',展平;第三步:沿折叠,使落在上,B'的对应点为Bn ,展平,这时Bn就是的黄金分割点.任务:(1)试根据以上操作步骤证明Bn就是的黄金分割点;【答案】解:证明:设正方形的边长为2a,∵E为的中点,∴ ,∴ .又∵由折叠可得,∴ ,又∵ ,∴ ,∴点Bn是线段的黄金分割点.(1)请写出一个生活中应用黄金分割的实际例子.22. (5分)(2017·胶州模拟) 如图,斜坡AB的坡度为1:2.4,长度为26m,在坡顶B所在的平台上有一座电视塔CD,已知在A处测得塔顶D的仰角为45°,在B处测得塔顶D的仰角为73°,求电视塔CD的高度.(参考数值:sin73°≈ ,cos73°≈0. ,tan73°≈ )困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数________.(2)图1中,求∠α的度数,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.24. (10分) (2017九上·河东期末) 如图,某建筑工程队利用一面墙(墙的长度不限),用40米长的篱笆围成一个长方形的仓库.(1)求长方形的面积是150平方米,求出长方形两邻边的长;(2)能否围成面积220平方米的长方形?请说明理由.25. (10分) (2017八下·丰台期末) 已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.(1)如图1,连接AF , CF ,直接写出AF与CF的数量关系;(2)如图2,点E为AD边的中点,当点F运动到线段EC上时,连接AF , BE相交于点O.①请你根据题意在图2中补全图形;②猜想AF与BE的位置关系,并写出证明此猜想的思路;③如果正方形的26. (15分)(2020·北辰模拟) 在平面直角坐标系中,抛物线()与轴交于A、B两点(点B在A的右侧),与轴交于点C,D是抛物线的顶点.(1)当时,求顶点D的坐标(2)若OD=OB,求的值;(3)设E为A,B两点间抛物线上的一个动点(含端点A,B),过点E作EH⊥ 轴,垂足为H,交直线BC 于点F. 记线段EF的长为t,若t的最大值为,求的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共8题;共76分)19-1、19-2、20-1、21-1、22-1、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

(中考精品卷)四川省乐山市中考数学真题(原卷版)

(中考精品卷)四川省乐山市中考数学真题(原卷版)

乐山市2022年初中学业水平考试数学第Ⅰ卷(选择题)一、选择题:本大题共10个小题1. 下面四个数中,比0小的数是( )A. -2B. 1C. D. π 2. 以下字体的四个汉字中,是轴对称图形的是( )A. B. C. D.3. 点(1,2)P -所在象限( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是( ) A. 14 B. 13 C. 23 D. 345. 关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,则这两根之积为( ) A. 13 B. 23 C. 1 D. 13- 6. 李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为( )A. 88B. 90C. 91D. 92是7. 如图,在平行四边形ABCD 中,过点D 作DE ⊥AB ,垂足为E ,过点B 作BF ⊥AC ,垂足为F .若AB =6,AC =8,DE =4,则BF 的长为( )A. 4B. 3C. 52D. 2 8. 甲、乙两位同学放学后走路回家,他们走过的路程s (千米)与所用的时间t (分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A. 前10分钟,甲比乙的速度慢B. 经过20分钟,甲、乙都走了1.6千米C. 甲的平均速度为0.08千米/分钟D. 经过30分钟,甲比乙走过的路程少9. 如图,在Rt ABC 中,90C ∠=︒,BC =,点D 是AC 上一点,连接BD .若1tan 2A ∠=,1tan 3ABD ∠=,则CD 的长为( )AB. 3D. 2 10. 如图,等腰△ABC 的面积为AB =AC ,BC =2.作AE ∥BC 且AE =12BC .点P 是线段AB 上一动点,连接PE ,过点E 作PE 的垂线交BC 的延长线于点F ,M 是线段EF的.中点.那么,当点P 从A 点运动到B 点时,点M 的运动路径长为( )A. B. 3C. D. 4第Ⅱ卷(非选择题)二、填空题:本大题共6个小题11 |-6|=______. 12. 如图6,已知直线a ∥b ,∠BAC =90°,∠1=50°,则∠2=______.13. 已知菱形ABCD O ,8AC cm =,6BD cm =,则菱形的面积为__________2cm .14. 已知221062m n m n ++=-,则m n -=______.15. 如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______.16. 如图,平行四边形ABCD 的顶点A 在x 轴上,点D 在y =k x(k >0)上,且AD ⊥x 轴,CA.的延长线交y 轴于点E .若S △ABE =32,则k =______.三、解答题17. 1sin 302-︒+18. 解不等式组()5131212x x x x ⎧+>-⎨-≤+⎩①②.请结合题意完成本题的解答(每空只需填出最后结果).解:解不等式①,得______.解不等式②,得______.把不等式①和②的解集在数轴上表示出来.所以原不等式组解集为______.19. 如图,B 是线段AC 的中点,,AD BE BD CE ∥∥,求证:ABD BCE △≌△.20. 先化简,再求值:211121x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x =. 21. 第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.的22. 为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:A.文学鉴赏,B.越味数学,C.川行历史,D.航模科技.为了解该校八年级1000名学生对四门校本课程的选择意向,张老师做了以下工作:①抽取40名学生作为调查对象;②整理数据并绘制统计图;③收集40名学生对四门课程的选择意向的相关数据:④结合统计图分析数据并得出结论.(1)请对张老师的工作步骤正确排序______.(2)以上步骤中抽取40名学生最合适的方式是______.A.随机抽取八年级三班的40名学生B.随机抽取八年级40名男生C.随机抽取八年级40名女生D.随机抽取八年级40名学生(3)如图是张老师绘制的40名学生所选课后服务类型的条形统计图,假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过40人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.23. 如图,己知直线1:y=x+4与反比例函数y=kx(x<0)的图象交于点A(−1,n),直线l′经过点A,且与l关于直线x=−1对称.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.24. 如图,线段AC 为⊙O 的直径,点D 、E 在⊙O 上, CD= DE ,过点D 作DF ⊥AC ,垂足为点F .连结CE 交DF 于点G .(1)求证:CG =DG ;(2)已知⊙O 的半径为6,3sin 5ACE ∠=,延长AC 至点B ,使4BC =.求证:BD 是⊙O 的切线.25. 华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.2.如图,在正方形ABCD 中,CE DF ⊥.求证:CE DF =.证明:设CE 与DF 交于点O ,∵四边形ABCD 是正方形,∴90B DCF ∠=∠=︒,BC CD =.∴90BCE DCE ∠+∠=︒.∵CE DF ⊥,∴90COD ∠=︒.∴90CDF DCE ∠+∠=︒.∴CDF BCE ∠=∠.∴CBE DFC ≌△△.∴CE DF =.某数学兴趣小组完成了以上解答后,决定对该问题进一步探究(1)【问题探究】如图,在正方形ABCD 中,点E 、F 、G 、H 分别在线段AB 、BC 、CD 、DA 上,且EG FH ⊥.试猜想EG FH的值,并证明你的猜想. 在(2)【知识迁移】如图,在矩形ABCD 中,AB m =,BC n =,点E 、F 、G 、H 分别在线段AB 、BC 、CD 、DA 上,且EG FH ⊥.则EG FH=______.(3)【拓展应用】如图,在四边形ABCD 中,90DAB ∠=︒,60ABC ∠=︒,AB BC =,点E 、F 分别在线段AB 、AD 上,且CE BF ⊥.求CE BF的值.26. 如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()1,0A -、()2,0B ,与y 轴交于点C ,且tan 2OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x ∥轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBC BCD S S =△△,求点P 的坐标;(3)如图3,若点P是二次函数图象上位于BC下方的一个动点,连接OP交BC于点Q.设点P的横坐标为t,试用含t的代数式表示PQOQ的值,并求PQOQ的最大值。

四川省乐山市中考数学试卷

四川省乐山市中考数学试卷

四川省乐山市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七上·江北期末) 下列一组数:,0,,,,,其中负数的个数有A . 2个B . 3个C . 4个D . 5个2. (2分)(2020·南山模拟) 下列运算正确的是()A .B .C .D .3. (2分)我国发现的首例甲型H1N1流感确诊病例曾在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需要了解这位病人7天体温的()A . 中位数B . 平均数C . 方差D . 众数4. (2分)如果两个相似三角形的面积比是1∶2,那么它们的周长比是()A . 1∶2B . 1∶4C . 1∶D . 2∶15. (2分)(2018·温州) 移动台阶如图所示,它的主视图是()A .B .C .D .6. (2分)下列各选项中,既不是正数也不是负数的是()A . -1B . 0C .D . π7. (2分)如图,矩形OABC在平面直角坐标系中的位置如图所示,OA=3,AB=2.抛物线y=ax2+bx+c(a≠0)经过点A和点B,与x轴分别交于点D、E(点D在点E左侧),且OE=1,则下列结论:①a>0;②c>3;③2a-b=0;④4a-2b+c=3;⑤连接AE、BD,则S梯形ABDE=9.A . 1个B . 2个C . 3个D . 4个8. (2分) (2017七下·湖州月考) 如图1点M是数轴上表示-4的点,点P从点M处向原点跳动,第一次跳到OM的中点M1处,第二次从M1跳到OM1的中点M2处,第三次从M2跳到OM2的中点M3处,如此跳动下去,则第2017次跳动后,该点所在位置表示的数为()A . -2-2017B . -2-2016C . -2-2015D . 22015二、填空题 (共8题;共8分)9. (1分) (2020九上·淅川期末) 若式子在实数范围内有意义,则的取值范围是________.10. (1分)(2017·石城模拟) 已知a+b=8,a﹣b=4,则a2﹣b2=________.11. (1分) (2019七上·施秉月考) - 用科学记数法表示为________.12. (1分)(2020·云南模拟) 关于的一元二次方程有两个相等的实数根,则________.13. (1分)平行四边形ABCD中,AB=5cm,AC+BD=14cm,则△AOB的周长为________.14. (1分)(2019·杭州模拟) 如图,AB为⊙O的直径,AC与⊙O相切于点A,弦BD∥OC.若∠C=36°,则∠DOC=________°15. (1分)(2017·龙华模拟) 如图,已知函数y=kx 与函数y= 的图象交于A、B 两点,过点B作BC⊥y 轴,垂足为C,连接AC.若△ABC 的面积为2,则k 的值为________.16. (1分)(2019·苏州模拟) 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD 边上一动点,将四边形APQD沿直线PQ折叠,A的对应点为A′,则CA′的长度最小值为________.三、解答题 (共11题;共118分)17. (5分) (2020七下·中山月考) 计算:18. (5分) (2017八下·新野期中) 化简:÷ · .19. (5分) (2017七下·抚宁期末) 解不等式组解不等式组,并把它的解集表示在数轴上.20. (15分)(2012·内江) 某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生.现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.21. (17分) (2019九上·弥勒期末) 九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”知识竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表分数段频数(人数)1624请解答下列问题:(1)完成频数分布表, ________, ________.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.22. (10分)(2019·赤峰模拟) 已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C ,使AB=AC ,连结AC ,过点D作DE⊥AC ,垂足为E .(1)求证:DC=BD;(2)求证:DE为⊙O的切线.23. (15分) (2019八下·江都月考) 如图,反比例函数的图像与一次函数的图像交于A、B两点.已知A (2,n),B(,).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)请结合图像直接写出当y1≥y2时自变量x的取值范围.24. (10分) (2019八下·来宾期末) 为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2 ,若甲种花卉的种植面积不少于200m2 ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?25. (10分)(2019·朝阳模拟) 如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?26. (15分) (2019八下·港南期中) 如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C.(1)若∠A=∠AOC,试说明:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB 与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.27. (11分)(2017·武汉模拟) 四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.(1)如图1,若AB=BC,BF∥DE,且交AG于点F,求证:AF﹣BF=EF;(2)如图2,在(1)条件下,AG= BG,求;(3)如图3,连EC,若CG=CD,DE=2,GE=1,则CE=________(直接写出结果)参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共118分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点评:本题考查了三角形的面积,点到直线的距离公式的应用,解此题的关键是求出圆上的点到直线AB的最大距离,属于中档题目.
二、填空题:本大题共6小题,每小题3分,共18分.
11.2解析: 的倒数是2,
故答案为:2
点评:此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
12.x≥2解析:根据题意得,x﹣2≥0,
=a+b+(b﹣2a)
=2b﹣a
∵a<0,
∴2b+a<2b﹣a,
∴m<n.
(2)当对称轴x=﹣ >1时,
2a+b<0,
m=|a﹣b+c|+|2a+b+c|
=b﹣a﹣(2a+b)
=﹣3a
n=|a+b+c|+|2a﹣b﹣c|
=a+b+(b﹣2a)
=2b﹣a
m﹣n=(﹣3a)﹣(2b﹣a)
=﹣2(a+b)
②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;
(3)在(2)的条件下,连结EF,求△PEF周长的最小值.
2015年四川省乐山市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.
A.37B.38C.40D.42
4.下列说法不一定成立的是( )
A.若a>b,则a+c>b+cB.若a+c>b+c,则a>b
C.若a>b,则a >b D.若a >b ,则a>b
5.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知 ,则 的值为( )
A. B. C. D.
6.二次函数y=﹣ +2x+4的最大值为( )
A.3B.4C.5D.6
7.如图,已知△ABC的三个顶点均在格点上,则cosA的值为( )
A. B. C. D.
8.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱到:“三百条狗交给你,一少三多四下分,
不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是( )
2015年四川省乐山市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.
1.3的相反数是( )
A.﹣3B.3C.﹣ D.
2.下列几何体中,正视图是矩形的是( )
A. B. C. D.
3.某班开展1分钟仰卧起坐比赛活动,5名同学的成绩如下(单位:个):37、38、40、40、42.这组数据的众数是( )
C、圆锥的正视图是等腰三角形,故此选项错误;
D、圆台的正视图是等腰梯形,故此选项错误;
故选:B.
点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.
3.C解析:由题意得,40出现的次数最多,众数为40.
故选C.
点评:本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.
4.C解析:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,故本选项错误;
B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,故本选项错误;
C、当c=0时,若a>b,则不等式a >b 不成立,故本选项正确;
D、在不等式a >b 的两边同时除以不为0的 ,该不等式仍成立,即a>b,故本选项错误.
例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).
(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为.
(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的取值范围是.
24.如图,正比例函数y=2x的图象与反比例函数y= 的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.
(1)求k的值;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.
六、本大题共2小题,第25题12分,第26题13分,共25分.
1.A解析:根据相反数的含义,可得
3的相反数是:﹣3.
故选:A.
点评:此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.
2.B解析:A、球的正视图是圆,故此选项错误;
B、圆柱的正视图是矩形,故此选项正确;
10.C解析:∵直线y= x﹣3与x轴、y轴分别交于A、B两点,
∴A点的坐标为(4,0),B点的坐标为(0,﹣3),3x﹣4y﹣12=0,
即OA=4,OB=3,由勾股定理得:AB=5,
∴点C(0,1)到直线3x﹣4y﹣3=0的距离是 ,
∴圆C上点到直线y= x﹣3的最大距离是1+ = ,
∴△PAB面积的最大值是 ×5× = .
∵a+b>0,
∴﹣2(a+b)<0,
∴m<n.
综上,可得m<n.
点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c)
解得x≥2.
故答案为:x≥2.
点评:本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负数.
13.3解析:平均每人植树 =3棵
故答案为:3.
点评:本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,难度不大.
(2)将丁类的五名学生分别记为A、B、C、D、E,现从中随机挑选两名学生参加学校的决赛,请借助树状图、列表或其他方式求B一定能参加决赛的概率.
22.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:
型号
进价(元/只)
售价(元/只)
A型
10
12
B型
15
23
(1)小张如何进货,使进货款恰好为1300元?
A. B.
C. D.
9.已知二次函数y=ax2+bx+c的图象如图所示,记m=|a﹣b+c|+|2a+b+c|,n=|a+b+c|+|2a﹣b﹣c|.则下列选项正确的是( )
A.m<nB.m>n
C.m=nD.m、n的大小关系不能确定
10.10.如图,已知直线y= x﹣3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是( )
7.D解析:过B点作BD⊥AC,如图,
由勾股定理得,
AB= = ,
AD= =2
cosA= = = ,
故选D.
点评:本题主要考查了锐角三角函数和勾股定理,作出适当的辅助线构建全等三角形是解答此题的关键.
8.B解析:设“一少”的狗有x条,“三多”的狗有y条,可得: ,,
故选B
点评:此题考查二元一次方程的应用,关键是根据一少三多四下分,不要双数要单数列出不等式组.
9.A解析:∵抛物线开口向下,
∴a<0,
∵对称轴在y轴右边,
∴b>0,
∵抛物线经过原点,
∴c=0,
∴a﹣b+c<0;
∵x=1时,y>0,
∴a+b+c>0,
∵c=0,
∴a+b>0;
(1)当对称轴x=﹣ ≤1时,
2a+b≥0,
m=|a﹣b+c|+|2a+b+c|
=b﹣a+2a+b
=2b+a
n=|a+b+c|+|2a﹣b﹣c|
25.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E.
(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;
(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD时,求sin∠CAB的值;
②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)
三、本大题共3小题,每小题9分,共27分.
17.计算:|﹣ |+﹣4cos45°+ .
18.18.(9分)(2015•乐山)求不等式组 的解集,并把它们的解集在数轴上表示出来.
19.化简求值: ,其中a= ﹣2.
四、本大题共3小题,每小题10分,共30分.
20.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
14.15°解析:∵A(2 ,2)、B(2 ,1),∴OA=4,OB= ,
故选:C.
相关文档
最新文档