第三章切削力与切削温度

合集下载

第三章切削与磨削原理

第三章切削与磨削原理

第三章切削与磨削原理3.1 切屑的形成过程学习目标:本节主要讨论金属材料的切削过程,并对硬脆非金属材料的切削过程进行简单介绍。

学习本节必须研究切屑形成过程的物理本质及其变形规律,熟悉不同切屑类型以及切屑控制方法。

3.1.1 切屑的形成过程切屑的形成工件上切屑层的金属材料,在刀具前刀面的推挤作用下发生了塑性变形,最后沿某一面剪切滑移形成了切屑。

切屑形成的过程切屑形成的过程实质是切削层受到前刀面的挤压后产生的以滑移为主的塑性变形过程。

切屑形成过程动态演示被切金属的受力变形分析由图3-2塑性金属(紧靠刀尖前面的被切金属层及切屑)的切屑根部金相照片可知,刀尖前面的金属晶粒变成为沿某一方向倾斜的纤维状结构,发生了极大的剪切变形,且剪切区内的剪切线与自由表面的交角约为45°(符合塑性力学理论)。

一般这一变形区的宽度仅为0.02~0.2mm。

切削速度愈高,宽度愈小。

因此可以将变形区视为一个剪切平面,称为剪切面,剪切面与切削速度夹角以φ表示,称为剪切角。

如图3-3所示。

金属除在剪切区发生显著变形外,还形成3个变形区,如图3-4所示。

图3-4说明:一般将剪切区称为第一变形区,其位置如图中Ⅰ所示,靠前刀面处称为第二变形区,如图中的Ⅱ。

由图3-2可看出,在已加工表面处也发生了显著的变形,方格已纤维化,这是已加工表面受到切削刃和后刀面的挤压和摩擦造成的。

这一部分一般称为第三变形区,如图中的Ⅲ。

3.1.2 切屑变形程度的表示方法剪应变ε切削过程中金属的塑性变形主要集中于第一变形区,且主要形式是剪切滑移,因而其变形量可用剪应变ε来表示,如图3-5所示。

..........(3-1)根据图中所示的几何关系,可导出剪应变ε和剪切角φ的关系:.......................(3-2)按此式计算,剪切角愈小,剪切变形量愈大,即切屑变形愈大。

变形系数Λh由于切削时金属的塑性变形,使切下的切屑厚度h ch通常要大于切削层厚度h D,而切屑长度l ch却小于切削长度l c,如图3-6所示。

切削力对切削温度的影响

切削力对切削温度的影响

切削力对切削温度的影响切削力是切削加工过程中的一项重要参数,它直接影响到切削温度的变化。

切削温度是指切削加工中产生的热量在刀具和工件之间的传递和分布情况,是判断切削加工质量和工具寿命的重要指标之一。

切削力的大小与切削温度之间存在着密切的关系,接下来将详细探讨切削力对切削温度的影响。

切削力的大小直接影响着切削温度的变化趋势。

在切削过程中,切削力会引起刀具与工件之间的摩擦,从而产生摩擦热。

当切削力较小时,摩擦热的产生相对较少,切削温度也相对较低。

但是当切削力增大时,摩擦热的产生也相应增多,切削温度也会随之升高。

因此,可以说切削力的大小直接决定了切削温度的高低。

切削力的方向和大小也影响着切削温度的分布情况。

在切削加工中,切削力的方向和大小会直接影响切削区域的温度分布。

正常切削时,切削力的方向与切削速度和刀具磨损方向一致,此时切削温度分布较为均匀。

但是当切削力的方向与切削速度和刀具磨损方向相反时,会导致切削区域的温度不均匀,出现高温区和低温区的现象。

这是因为切削力的反向作用会影响到切削界面的摩擦热传递,从而使切削温度分布发生变化。

切削力的大小还会对刀具的寿命和切削加工质量产生影响。

切削温度的升高会加剧切削界面的磨损和刀具的热膨胀,从而缩短刀具的使用寿命。

当切削力较大时,摩擦热的产生也相应增多,切削温度会显著升高,从而加剧刀具的磨损和热膨胀,导致刀具寿命缩短。

同时,切削温度的升高也会对切削加工质量产生不利影响,如切削面的烧伤、变色等现象会增加。

切削力的大小与切削温度的关系还与切削材料和切削条件等因素有关。

不同材料的切削特性不同,切削力与切削温度的关系也会有所差异。

一般来说,切削硬度较高的材料,其切削力较大,切削温度也相应较高。

另外,切削条件的不同也会对切削力和切削温度产生影响。

例如,切削速度的增加会使切削力和切削温度均增大;而切削深度的增加会使切削力增大,切削温度也相应增高。

切削力对切削温度具有重要影响。

切削过程及控制

切削过程及控制
➢ 采用高润滑性的切削液,使摩擦和粘结减少; ➢ 适当减少进给量、增大刀具前角; ➢ 适当提高工件材料的硬度; ➢ 提高刀具的刃磨质量; ➢ 合理调节各切削参数间关系,以防止形成中温区域。
问题
❖ 某工厂车工师傅在粗加工一件零件时,他采 用了在刀具上产生积屑瘤的加工方法,而在 精加工时,他又努力避免积屑瘤的产生,请 问这是为什么?在防止积屑瘤方面,你认为 能用哪些方法。
数ξ不断上升至最大值,此时积屑瘤完全消失。 (图)
➢在无积屑瘤的切削速度范围,切削速度愈高,变形系数愈小。 ➢切削铸铁等脆性金属时, 一般不产生积屑瘤。随着切削速度增
大,变形系数逐渐地减小。
图 工件材料强度对变形系数的影响
图 切削速度对变形系数的影响
(2)进给量
3.刀具几何参数
当进给量f增大时,切削层 厚度hD增大,切屑的平均 变形减小,变形系数ξ减小 (图)。
回答
❖ 1、根据本节积屑瘤对加工的影响分析可知, 积屑瘤能增大刀具实际前角,使切削更容易, 所以这位师傅在粗加工时采用了利用积屑瘤的 加工方法,
❖ 2、积屑瘤很不稳定,它会周期性地脱落,这 就造成了刀具实际切削厚度在变化,影响零件 的加工尺寸精度。
❖ 3、积屑瘤的剥落和形状的不规则又使零件加 工表面变得非常粗糙,影响零件表面光洁度。 所以在精加工阶段,这位师傅又努力避免积屑 瘤的发生。
实验表明,切屑的形成过程是被切削 层金属受到刀具前面的挤压作用,迫使 其产生弹性变形,当剪切应力达到金属 材料屈服强度时,产生塑性变形。切屑 的变形和形成过程如图3-3所示。
图3-3 第一变形区金属的滑移
切屑形成本质
➢在第一变形区中,切削变形的主要特征是切削层
金属沿滑移面的剪切变形,并伴有加工硬化现象。

切削热和切削温度

切削热和切削温度

切削热和切削温度切削过程中产生的切削热对刀具磨损和刀具寿命具有重要影响,切削热还会使工件和刀具产生变形、残余应力而影响加工精度和表面质量。

一、切削热的产生与传导切削热来源于两个方面,一是切削层金属发生弹性和塑性变形所消耗的能量转换为热能;二是切屑与前刀面、工件与后刀面间产生的摩擦热。

切削过程中的三个变形区就是三个发热区域。

切削过程中所消耗能量的98%~99%都将转化为切削热。

切削热由切屑、工件、刀具及四周的介质(空气,切削液)向外传导。

影响散热的主要因素是:(1)工件材料的导热系数工件材料的导热系数高,由切屑和工件传导出去的热量增多,切削区温度就低。

工件材料导热系数低,切削热传导慢,切削区温度就高,刀具磨损就快。

(2)刀具材料的导热系数刀具材料的导热系数高,切削区的热量向刀具内部传导快,可以降低切削区的温度。

(3)四周介质采纳冷却性能好的切削液能有效地降低切削区的温度。

车削加工时产生的切削热多数被切屑带走,切削速度越高,切削厚度越大,切屑带走的热量越多;传给工件的热量次之,约为30%;传给刀具的热量更少,一般不超过5%。

钻削时,由于切屑不易从孔中排出,故被切屑带走的热量相对较少,只有30%左右,约有50%的热量被工件汲取。

二、切削温度的测量测量切削温度的方法许多,有热电偶法、辐射热计法、热敏电阻法等。

目前常用的是热电偶法,它简洁、牢靠、使用便利。

1. 自然热电偶法;2. 人工热电偶法。

三、影响切削温度的主要因素1.切削用量对切削温度的影响、、增大,单位时间内材料的切除量增加,切削热增多,切削温度将随之上升。

但、和对切削温度的影响程度不同,切削速度对切削温度的影响最为显著,次之,最小,缘由是:增大,前刀面的摩擦热来不及向切屑和刀具内部传导,所以对切削温度影响最大;增大,切屑变厚,切屑的热容量增大,由切屑带走的热量增多,所以对切削温度的影响不如显著;增大,刀刃工作长度增大,散热条件改善,故对切削温度的影响相对较小。

切削热与切削温度

切削热与切削温度

三、切削热对切削Biblioteka 程的影响切削温度高低决定于产生热量多少和传散热量的 快慢两方面。 快慢两方面。凡是能减小切削过程产生热量的因素 和改善散热条件的因素,都能降低切削温度。 和改善散热条件的因素,都能降低切削温度。 1.工件材料 .
材料的强度、 材料的强度、硬度高,切削时消耗的切削功率
越多,产生的切削温度也高。如加工合金钢产生的 越多,产生的切削温度也高。 切削温度较加工45钢高 钢高30%; 切削温度较加工 钢高 ; 切削区散热越慢, 材料的导热系数越低,切削区散热越慢,切削 温度越高。不锈钢导热系数较45钢小 钢小3倍 温度越高。不锈钢导热系数较 钢小 倍,故切削时 产生的切削温度多于45钢 产生的切削温度多于 钢40%。 。 脆性金属材料时 由于切屑呈崩碎状, 加工脆性金属材料 加工脆性金属材料时,由于切屑呈崩碎状,与前 面的摩擦较小,切削变形也较小,故产生的切削温 面的摩擦较小,切削变形也较小,故产生的切削温 度较低。 度较低。
切削时所产生的热量由切屑、工件、 切削时所产生的热量由切屑、工件、刀具 分别用Q屑 及周围介质传出,分别用 屑、Q工 、Q 工 刀 、Q介表示。 介表示。 上述切削热产生的产生和传散可以写出平 衡方程式: 衡方程式:
Q=Q弹+Q塑+Q前摩 后摩 弹 塑 前摩 后摩=Q 前摩+Q后摩 屑+Q工+Q刀 +Q介 工 刀 介
§3-3 切削热与切削温度
切削热与切削温度是切削过程中产生的又一重 要物理现象。 要物理现象。切削过程中切削力所作的机械功的绝 大部分将转化成热能,即切削热。 大部分将转化成热能,即切削热。若切削热不及时 传散,则切削区的平均温度将大幅度地上升。 传散,则切削区的平均温度将大幅度地上升。切削 温度的升高,一方面使切削区工件材料的强度、 温度的升高,一方面使切削区工件材料的强度、硬 度下降,且使切削区工件材料的强度、硬度下降, 度下降,且使切削区工件材料的强度、硬度下降, 且使一些耐热性好、脆性大的刀具材料( 且使一些耐热性好、脆性大的刀具材料(如硬质合 陶瓷材料等)的韧性有所改善, 金、陶瓷材料等)的韧性有所改善,从而使切削过 程进行比较顺利;但另一方面切削温度的升高, 程进行比较顺利;但另一方面切削温度的升高,会 加速刀具的磨损,使工件和机床产生热变形, 加速刀具的磨损,使工件和机床产生热变形,影响 零件的加工精度,造成工件表面的热损伤等。因此, 零件的加工精度,造成工件表面的热损伤等。因此, 研究切削热和切削温度的变化规律, 研究切削热和切削温度的变化规律,是研究金属切 削过程的一个重要方面。 削过程的一个重要方面。

金属切削原理PPT课件

金属切削原理PPT课件
在切削加工中,也有用进给速度 来表示进 给运动的。所谓进给速度是刀刃选定点相对于工 件的进给运动的速度,其单位为mm/s。若进给 运动为直线运动,则进给速度在刀刃上各点是相 同的。
3. 背吃刀量 对外圆车削(图1-1) 和平面刨削(图1-2)而言,背吃刀量等于已 加工表面与待加工表面间的垂直距离;其中外圆 车削的背吃刀量:
总之,任何切削加工方法都必须有一个主运 动,可以有一个或几个进给运动。主运动和进给 运动可以由工件或刀具分别完成,也可以由刀具 单独完成(例如在钻床上钻孔或铰孔)。
二 工件上的加工表面
在切削过程中,通常工件上存在三个表面, 以图1-1的外圆车削和图1-2的平面刨削为 例,它们是:
1.待加工表面 它是工件上即将被切去的
三 切削用量
所谓切削用量是指切削速度,进给量和背吃 刀量三者的总称。它们分别定义如下:
1. 切削速度v 它是切削加工时,刀刃上选
定点相对于工件的主运动的速度.刀刃上各点的 切削速度可能是不同的。
当主运动为旋转运动时,刀具或工件最大直 径处的切削速度由下式确定:
式中 d——完成主运动的刀具或工件的最大直径 (mm);
(一)刀具在正交平面参考系中的标注角度
刀具标注角度的内容包括两个方面:一是确
定刀具上刀刃位置的角度;二是确定前刀面与后 面位置的角度。以外圆车刀为例(图1-9), 确定车刀主切削刃位置的角度有二:
主偏角 它是在基面上,主切切削忍与 基面的夹角。当刀尖在主切削刃上为最低的点时, 为负值;反之,当刀尖在主切削刃上为最高的点 时, 为正值。必须指出,这个规定是根据IS O标注,同过去某些书上关于正负号的规定恰好 相反。
实际上,除了由上述切削平面和基面组成的 参考平面系以外,还应该有一个平面作为标注和 测量刀具前,后刀面角度用的 “测量平面”。通 常根据刃磨和测量的需要与方便,可以选用不同 的平面作为测量平面。在刀刃上同一选定点测量 其角度时,如果测量平面选得不同,刀具角度的 大小也就不同。

第三章金属切削过程的基本规律

第三章金属切削过程的基本规律
(2) λ s对Fp、 Ff影响较大
Fp随λ s增大而减小,
Ff随λ s增大而增大
2.刀尖圆弧半径rε的影响
rε 增大相当于κ r减小的影响
(1)rε 对Fc影响很小 (2)Fp随 rε 增大而增大
Ff随 rε 增大而减小
3.刀具磨损
刀具的切削刃及后刀面产生磨损后,会使 切削时摩擦和挤压加剧,故使切削力 Fc 和 Fp 增 大。
2 f
Fp FD cos r ; F f FD sin r
(3-5)
二、各分力的作用 1、切削分力的作用---切削力Fc(主切削力Fz)
它是设计机床主轴、齿轮和计算主运动功率的主要依据,也 是用于选用刀杆、刀片尺寸、设计夹具和选择切削用量的重 要依据。使车刀产生弯矩,也是计算切削功率的依据
Fc——切削力,单位为N; vc——切削速度,单位为m/min。 Pc——切削功率,单位为kW。
3
四、影响切削力的因素
(一)切削用量的影响
1.背吃刀量ap与进给量f
ap↑→Ac成正比↑, kc不变, ap的 指数约等于1,因而
切削力成正比增加
f↑→Ac成正比↑,但 kc略减小, f 的 指数小于1,因而 切削力增加但与f 不成正比
(二)切削温度分布
温度分布规律 1)刀-屑接触面间摩擦大, 热量不易传散,故温度值 最高
2)切削区域的最高温度点在前面上近切削刃处, 在离切削刃1mm处的最高温度约900℃,因为 在该处热量集中,压力高。在后面上离切削刃 约0.3mm处的最高温度为700℃;
3)切屑带走热量最多,切屑上平均温度高于刀具 和工件上的平均温度,因切屑剪切面上塑性变 形严重,其上各点剪切变形功大致相同。各点 温度值也较接近。工件切削层中最高温度在近 切削刃处,它的平均温度较刀具上最高温度点 低2~3倍。

机械加工中的切削力与切削热分析

机械加工中的切削力与切削热分析
切削力的分类:主切削力、进给切削力和背向切削力
切削力的影响因素:刀具材料、刀具几何参数、切削参数、工件材料等
切削力的来源:刀具与工件之间的摩擦力和刀具对工件的挤压力
切削热的产生
切削力与切削热的关系
切削力是切削过程中产生的力,包括主切削力、进给力和背向力
切削热是切削过程中产生的热量,包括切削热和摩擦热
切削热对加工环境的影响
温度升高:切削热导致加工环境温度升高,影响加工精度和效率
空气污染:切削热产生的烟雾和粉尘对环境造成污染
设备磨损:切削热导致设备磨损加剧,影响设备寿命和加工质量
安全风险:切削热可能导致火灾、烫伤等安全事故
切削力与切削热的测量与控制
5
切削力与切削热的测量方法
切削力测量:采用测力仪、传感器等设备进行测量
切削力和切削热之间存在密切关系,切削力越大,产生的切削热越多
切削热对刀具寿命和加工质量有重要影响,需要采取措施控制切削热
切削力对加工的影响
3
切削力对加工效率的影响
切削力过大会导致刀具磨损加剧,影响加工效率
切削力过大会导致工件变形,影响加工精度
切削力过大会导致刀具寿命降低,增加加工成本
切削力过大会导致机床振动加剧,影响加工稳定性
机械加工中的切削力与切削热分析
单击此处添加副标题
汇报人:XX
目录
01
添加目录项标题
02
切削力与切削热的基本概念
03
切削力对加工的影响
04
切削热对加工的影响
05
切削力与切削热的测量与控制
06
切削力与切削热的研究进展
添加目录项标题
1
切削力与切削热的基本概念
2
切削力的定义

第三节__切削热和切削温度

第三节__切削热和切削温度
温度约为900℃。该处压力高,热量集中。在后刀面上约 0.3mm处的最 高温度约为700℃。 3)切屑带走的热量最多,它的平均温度高于刀具、工件上的平均温度。 4)工件上最高温度在近切削刃处,平均温度较刀具上最高温度低20~30倍。
三、影响切削温度的主要因素
切削温度高低取决于两个方面:产生的热量和散热速度。 产生的热量少,散热速度高,则切削温度低;或者上述之一起主导作 用,也会降低切削温度。 因而,凡是能影响产生的热量和散热速度的因素均会影响切削温度的高低
学习目的
通过对切削热的来源、切削温度的分布及影响因素进行
研究,以便控制切削热和切削温度对切削过程的影响。
学习内容
一、切削热的来源及传出 二、切削区的温度及其分布 三、影响切削温度的主要因素
一、切削热的来源及传出
1、切削热来源
1)被切削的金属在刀具的作用下,发生弹性和塑性变形而耗功, 这是切削热的一个重要来源。 2)切屑与前刀面之间的摩擦耗功产生出大量的热量。 3)工件与后刀面之间的摩擦耗功产生出大量的热量。 因此,切削时共有三个发热区域 剪切面 切屑与前刀面接触区 后刀面与过渡表面接触区
所以,切削热的来源就是切屑变形功和前、后刀面的摩擦功。
根据切削理论,切削变形和摩擦而产生的热量.
在剪切面上的塑性变形产生的热量最多。 单位时间内产生的切削热的计算公式
Q —单位时间内产生的切削热(J/s); Fc—主切削力(N); Vc—切削速度(m/s)。
注:该公式中忽略了进给运动所消耗的功率,且假定主运动所消耗的功全部转化为热能。
3)实际意义: 从降低切削温度的角度出发,切削用量的选择原则:为提高切削效率, 应优先选用较大的背吃刀量,其次增加进给量,最后确定刀具和机床性 能允许的最大切削速度。

切削力和切削温度

切削力和切削温度
一、切削力
• 1、总切削力的概念: • 切削过程中,为了克服工件被切削层材
料对切削的抵抗,刀具必须对工件施加力 的作用。 • 一个切削部分总切削力:刀具的一个切削 部分在切削工件时所产生的全部切削力。 • 总切削力:所有参与切削的各切削部分所 产生的总切削力的合力。
• 2、总切削力的分解:
• ⑴ 切削力Fc:总切削力 F在主运动方向上的正 投影。
• ⑶ 刀具角度:1)前角增大,总切削抗力减小。2) 后角增大,总切削抗力减小。3)主偏角对切削抗 力Fc′影响较小,但对背向抗力Fp′和进给抗力Ff′ 的比例影响明显。
• ⑷ 切削液的选用:合理选用切削液,可以减小工 件材料的变形抗力和摩擦阻力,使总切削抗力减 小。
二、切削温度
• 1、切削热与切削温度
• 进给抗力Ff′
• 分别与切削力Fc、背向力 Fp、进给力Ff大小相等、 方向相反。
• 4、影响切总削抗力的因素
• ⑴ 工件材料:工件材料的强度、硬度越高,韧性 和塑性越好,越难切削,总切削抗力越大。
• ⑵ 切削用量:背吃刀量ap和进给量f增大时,切 削横截面积也增大,切屑粗壮,切下金属增多, 总切削抗力增大。
• 切削热:切削过程中,由于被切削材料
•Байду номын сангаас
层的变形、分离及刀具和被切

削材料间的摩擦而产生的热量。
• 切削温度:切削过程中,切削区域的温

度。
• 切削热的传导:由切屑带走70%-80%热量

传入刀具15%-20%热量

传入工件5%-10%热量
• 2、减少切削热和降低切削温度的工艺措施:
• ⑴ 合理选择刀具材料和刀具几何角度。 • ⑵ 合理选择切削用量。 • ⑶ 适当选择和使用切削液。

金属切削第三章解析

金属切削第三章解析
• 在这过程中产生一系列现象,如形成切屑、切削 力、切削热与切削温度、刀具磨损等,它们产生 的根本原因时切削过程中的弹性变形和塑性变形
• 金属切削变形过程的研究是金属切削原理的基础 理论研究。是适应生产发展的需要,有助于保证 加工质量,提高生产率和降低成本。
研究切削变形的实验方法
侧面变形观察法 高速摄影法 快速落刀法 SEM观察法 光弹性、光塑性实验法 其它方法,如:X射线衍射等
第II变形区内金属的挤压变形
切屑沿前刀面排出时进一步受到前刀面的挤压和 摩擦,使靠近前刀面的金属纤维化,基本与前刀面平 行。
第Ⅲ变形区:
➢刀工接触区。
➢已加工表面受到刀具刃口钝圆和后刀面挤压和摩 擦,晶粒进一步剪切滑移。
➢有时也呈纤维化,其方向平行已加工表面,也产 生加工硬化和回弹现象。
➢三个变形区汇集在切削刃附近,应力集中而又复 杂。三个变形区内的变形又相互影响。
• 通常加工塑性金属材料,切削厚度较小,切削速度 较高,刀具前角较大时得到。
• 切削力波动很小,切削过程平稳,已加工表面粗糙 度较小。
2、挤裂切屑
• 外侧面呈锯齿状,内侧面有时有裂纹 • 加工塑性金属材料,切削厚度较大,切削速
度较低,刀具前角较小时得到。加工硬化较 大,在局部剪应力超过破裂强度。
• 切削力波动较大,切削过程产生一定的振动, 已加工表面较粗糙。
摩擦。此变形区的变形是造成前刀面磨损和产生积屑瘤的
主要原因。
➢ 第Ⅲ变形区:已加工面受到后刀面挤压与摩擦,产生变 形。此区变形是造成已加工面加工硬化和残余应力的主要 原因。
切 削 变 形 金 相 显 微 照 片
第Ⅰ变形区:
➢从OA线(始滑移线)金属开始发生剪切变形,到 OM线(终滑移线)金属晶粒剪切滑移基本结束, AOM区域叫第一变形区。 ➢是切屑变形的基本区,其特征是晶粒的剪切滑移 ,伴随产生加工硬化。

3.3 切削热与切削温度

3.3  切削热与切削温度

3.3 切削热与切削温度一、切削热的产生和传导切削热产生于三个变形区,切削过程中消耗的能量约98%转换为热能,切削热q≈P c≈F c v=C fc a p f 0.75v-0.15K Fc v=C fc a p f 0.75v0.85K Fc切削热通过切屑、工件、刀具和周围介质向外传出二、切削温度的分布红外胶片法测得切钢料的温度场,分析归纳切削温度分布规律:1.剪切区等温线与滑移线相近OM线温度比OA线上温度高剪切滑移相等的地方温度相等,剪切变形是切削热的第一来源2.前后刀面最高温度点不在刀刃上切屑上最高温度比剪切区温度高切屑底层温度比上层温度高摩擦是切削热的又一来源三、影响切削温度的主要因素切削温度θ 一般指前刀面与切屑接触区内的平均温度两个方面:切削热的产生与传出(一)切削用量的影响由实验得出切削温度经验公式如下θ=C θ v z θf y θa p x θ式中系数及指数见表1-4,由表中数据看出:z θ在0.3~0.5之间,y θ在0.15~0.3,x θ在0.05~0.1切削用量↑时切削温度↑,其中v 对θ影响最大,进给量f 的影响比v 小,背吃刀量a p 的影响很小。

(二)刀具几何参数的影响1. 前角γ的影响γ↑→变形程度↓→F↓q ↓→θ ↓但γ>20°时,因散热面积↓,对θ的影响减小2. 主偏角κr的影响κr ↑,切削宽度aw↓,散热面积↓→θ↑3. 负倒棱和刀尖圆弧半径的影响bγ1 、rε↑,切屑变形程度↑→q ↑同时散热条件改善,两者趋于平衡对θ影响很小(三)工件材料的影响强度硬度、塑性和韧性越大,切削力越大,切削温度升高。

导热率大,散热快,温度下降(四)刀具磨损的影响后刀面磨损增大,切削温度升高; VB达一定值影响加剧; v越高刀磨损对θ影响越显著(五)切削液的影响浇切削液对↓切削温度↓刀具磨损↑加工质量有明显效果。

热导率比热容和流量越大,本身温度越低冷却效果越显著。

第3章 切削过程的基本规律

第3章 切削过程的基本规律

⑶工件材料影响 工件材料是通过强度、硬度和导热 系数等性能不同对切削温度产生影响的。 ⑷其它因素的影响 磨损、干切削都会使温度升高。浇 注切削液是降低切削温度的一个有效措 施
3. 4 刀具磨损与刀具耐用度
一、刀具磨损形式
刀具磨损形式为正常磨损和非正常磨损两大类。 ⑴正常磨损
正常磨损是指在刀具设计与使用合理、制 造与刃磨质量符合要求的情况下,刀具在切削 过程中逐渐产生的磨损。
⑵切削速度
切削速度vc是通过(a)积屑瘤使剪切角φ改变; (b)切削 温度使磨擦系数μ变化,而影响切屑变形的。如图2.11以 中碳钢为例。
⑶进给量
进给量对切屑变形的影响规律如图2.12所示,即f ↗使Λh ↘; 这是由于f ↗后,使切削厚度↗,正压力和平均正应 力↗ ,磨擦系数↘ ,剪切角↗所致。
性变形就产生脆性崩裂,切屑呈不规则的细粒状。
三、切屑变形程度的表示方法 (1)剪切角φ vc
剪切面AB 与切削速度vc 之间的夹角。 V↗,φ↗, A剪切 ↘, (切削省力) F↘。
B
φ
A
大小确定: 获得切屑根部 照片,度量得 出。
(2)相对滑 移ε
B”
B’
ε=Δs/Δy=
ctgφ+tg(φ-γo)
3. 3 切削热与切削温度
一、切削热的来源与传导 1)热源: 剪切区变形功形成的热Qp; 切屑与前刀面摩擦功形成的热Qγf; 已加工表面与后刀面摩擦功形成的热Qαf。 2)传导:传入切屑Qch(切削钢不加切削液时传入比例50%~86%)、 工件Qw(40%~10%) 、刀具Qc(9%~3%)和周围介质Qf(1%)。 3)切削热的形成及传导关系为:
(二)、磨损过程和磨钝标准
▼ 磨损过程如图 3-26所示,图中大致分三个阶 段。 • 初期磨损阶段(I段):磨损较快。是由于刀具 表面粗糙不平或表层组织不耐磨引起的。 • 正常磨损阶段(II): 该磨损度近似为常数。 AB呈直线。 • 急剧磨损阶段(III):磨损急剧加速继而刀具 损坏。由于磨损严重,切削温度剧增,刀具强 度、硬度降低所致。

认识切削热与切削温度

认识切削热与切削温度

7
三、影响切削温度的因素
机械制造基础
2.切削用量
切削用量中,切削速度 vc 对切削温度影响最大,进给量 f 次之,背吃刀量 ap 影响最小。
切削速度 vc 增大,切削变形和摩擦产生的热量急剧增多,尽管切屑带走的热量相应增多,但散热 条件并没有改善,因此切削温度显著升高。
进给量 f 增大,产生的热量增加,但同时切削厚度变大,切屑带走的热量增加,而散热条件并未 改善,因此最终切削温度有所升高。
8
三、影响切削温度的因素
背吃刀量 ap 增大,产生的热量按比例增加,但同时刀具 的传热面积也按比例增加,显著改善散热条件,因此最终切削 温度仅略有升高。
为了控制切削温度,在需要增大切削用量时,应首先考虑 增大背吃刀量 ap ,其次是进给量 f ,最后是切削速度 vc 。
机械制造基础
9
三、影响切削温度的因素
机械制造基础
切削热与切削温度是切削过程中的重要物理 现象之一。切削热与切削温度能改变刀具前刀面 的摩擦系数,从而影响刀具的磨损;同时还会引 起工件变形,影响工件的加工精度和表面质量。 因此,研究切削热与切削温度的产生及变化规律 具有很重要的意义。
`
机械制造基础
2
一、切削热
机械制造基础
切削热是指切削过程中切削区的变形和摩擦消耗能量所产生的热。切削热主要是由工件材料弹塑性
6
三、影响切削温度的因素
机械制造基础
影响切削温度的因素主要有工件材料、切削用量、刀具几何参数、刀具磨损和切削
液等。
1.工件材料
工件材料的强度、硬度、热导率等对切削温度影响较大。工件材料的强度和硬度越高,需要的切削力就 越大,产生的热量就越多,因而切削温度就越高;工件材料的塑性大,切削力也大,切削温度也高。材料的 热导率越大,通过切屑和工件传出的热量就越多,切削温度下降就越快。

3第三章金属切削过程的基本规律

3第三章金属切削过程的基本规律

(1)工件材料的影响
工件材料的塑性或韧性越高,切屑越不易折断,使切 屑与前刀面间摩擦增加,故切削力增大。 注意点:材料硬化能力越高,则力越大。 奥氏体不锈钢,强度低、硬度低,但强化系数大,较 小的变形就会引起材料硬度提高,所以切削力大。 铜、铅等塑性大,但变形时,加工硬化小,则切削力 小。
3.1.7 影响切削变形的主要因素
进给量f增大,切削厚度ac增加,平均正应力av增 大,正压力Fn增大,因此摩擦系数μ下降、剪切 角φ增大。致使变形系数ξ减小。 切削厚度ac增加,切屑中平均变形减小;反之, 薄切屑的变形量大。

3.2 切削力
概念: 切削过程中,刀具施加于工件使工件材 料产生变形,并使多余材料变为切屑所 需的力称为切削力。 而工件低抗变形施加于刀具称为切削抗 力,在分析切削力以及切削机理时,切 削力与切削抗力意义相同。 意义: 切削力是影响质量的重要因素; 是机床、刀具、夹具设计、和计算动力 消耗的主要依据。还可用来监控刀具磨 损与加工表面质量。

(2)切削用量的影响


切削速度 加工塑性金属时,主要因素为积屑瘤与摩擦。 低、中速(5-20m/min):υ提高,切削变形 减小,故Fz逐渐减小;积屑瘤渐成。 中速时(20m/min左右):变形值最小,Fz减 至最小值,积屑瘤最高,大前角作用。 超过中速,υ提高,切削变形增大,故Fz逐渐 增大。积屑瘤消失。 高速(υ>60m/min),切削变形随着切削速 度增加而减小,Fz逐渐减小而后达到稳定。 切削脆性金属,因为变形和摩擦均较小,故切 削速度υ改变时切削力变化不大。

以上切屑虽然与加工不同材料有关,但加工同一种材料采用不同 的切削条件也将产生不同的切屑。如加工塑性材料时,一般得到 带状切屑,但如果前角较小,速度较低,切削厚度较大时将产生 挤裂切屑;如前角进一步减小,再降低切削速度,或加大切削厚 度,则得到单元切屑。掌握这些规律,可以控制切屑形状和尺寸, 达到断屑和卷屑目的。

机械制造中的切削力与切削温度的控制

机械制造中的切削力与切削温度的控制

机械制造中的切削力与切削温度的控制机械制造是指运用机械设备对材料进行切削、磨削、焊接、冲压等加工操作的过程。

在机械制造中,切削力与切削温度是两个非常重要的参数,它们直接影响着加工的质量、效率和工具的寿命。

因此,控制切削力与切削温度成为了机械制造中的关键问题。

一、切削力的控制切削力是在加工过程中产生的力,它与刀具、工件和切削条件等因素密切相关。

在机械制造中,我们可以通过以下几个方面来控制切削力。

1. 材料的选择材料的硬度、韧性和塑性等性质会直接影响切削力的大小。

对于难切削材料,我们可以选择使用硬度更高的刀具材料,以提高其切削效果。

此外,对于某些特殊材料,如高温合金,在切削时需要采用一些特殊的技术手段来降低切削力。

2. 刀具的设计刀具的形状和结构也会对切削力产生影响。

通过合理设计刀具的刃角、后角和刃磨方式等,可以减小切削力的大小。

同时,在刀具使用过程中,定期进行刃磨和更换,可以保持刀具的锋利度,减少切削力的产生。

3. 切削条件的优化切削条件包括切削速度、进给量和切削深度等参数。

合理选择切削条件可以降低切削力的产生。

一般来说,较大的切削速度和进给量可以减小切削力,但要注意不要超过材料的承受能力。

此外,减小切削深度也可以降低切削力的大小。

二、切削温度的控制切削温度是指在切削过程中产生的热量。

高温容易导致工件表面的烧伤、脱硬化等质量问题,并且会使刀具寿命大大减少。

因此,控制切削温度也是机械制造中的重要任务。

1. 冷却润滑剂的使用在切削过程中,可以使用冷却润滑剂来冷却工具和工件,减少切削区域的温度升高。

常用的冷却润滑剂有切削油和切削液等,它们可以有效地降低切削温度,减少切削力的产生。

2. 刀具材料的选择刀具材料的导热性能对切削温度的控制起到重要作用。

一般来说,导热性能好的刀具材料,可以更快地将热量传导到刀具周围,降低切削区域的温度升高。

3. 切削速度的控制切削速度的选择也会对切削温度产生影响。

较高的切削速度可以减少切削时间,降低切削区域的温度升高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.4 影响切削力因素
•刀具几何角度影响
•◆ 前角γ0 增大,切削力减小。 •◆主偏角κr 对主切削力影响不大,对吃刀抗力和走 刀抗力影响显著( κr ↑—— Fy↓,Fx↑)
•切削力F •切 削 力 / N
•γ0 - Fz
•γ0 – Fy •γ0 – Fx
•前角γ0
•图3-17 前角对γ0切削力的影响
PPT文档演模板
第三章切削力与切削温度
3.1.1 切削力及切削分力
•切削力分解(假设总切削力在主剖面P0内)
•F
z
•κr
•F
x
•F •Fxy
y
PPT文档演模板
•v •Fxy
•f •F
r
•吃刀抗力 •F
y •Fxy
•F •走刀抗力
x
•Fz•主切削力
•F •总切削力
r
•图3-1 切削力的分解
第三章切削力与切削温度
PPT文档演模板
第三章切削力与切削温度
•3.2.3 影响切削温度的主要因 素
•刀 具 几 何 参 数 的 影 响
➢ 前角o↑→切削温度↓
➢ 主偏角r↑→切削温度↑
PPT文档演模板
第三章切削力与切削温度
•3.2.3 影响切削温度的主要因 素
•其它因素的影响
• 1. 刀具磨损的影响 • 刀具后面磨损量增大,切削温度升高 •
PPT文档演模板
•220
•0180
•κr - Fz
•表3-6
•0140
•0100
•κr – Fx
0
•60
•κr – Fy
0 •20
0
•30 •45 •60 •75 •90
•主偏角κr / °
•图3-18 主偏角κr对切削力的影响
第三章切削力与切削温度
3.1.4 影响切削力因素
•刀具几何角度影响
•◆ 与主偏角相似,刃倾角λs对主切削力影响不大,对吃 刀抗力和走刀抗力影响显著( λs ↓ —— Fy↑ ,Fx ↓ )•表3-8
第三章切削力与切削温度
3.2.1 切削热的产生和传导
•切 削 热 的 产
生•★ 刀具克服金属弹、塑性变形抗力所作的功和克服摩擦抗
力所作的功,绝大部分转化为切削热。
•切屑
• 主要来源
➢ 第一变形区内被切削金属层的弹、 塑性变形所消耗的功转变成的热;
•刀具
➢第二变形区内切屑底层与刀具前刀 面摩擦所产生的的热;
总切削力在吃刀方向上的投影。因为这个方向上运动 速度为零,所以不做功。
PPT文档演模板
第三章切削力与切削温度
各切削力的关系(直角自由切削):
•各切削力的比值•F:xy
•v
•F
z
•κr
•F •F r
x
•F •Fxy
y
•f
•吃刀抗力 •F y •Fxy
•F •走刀抗力
x
•Fz•主切削力
PPT文档演模板
• 由两种导体组合而成,将温度转化为热电动势
的传感器叫做热电偶。
PPT文档演模板
第三章切削力与切削温度
3.2.2 切削温度的测量方法
•自然热电偶法
• 工件和刀具材料不同,组成热电偶两极。当工件与刀具接触区
的温度升高后,就形成热电偶的热端,而工件的引出端和刀具的尾端 保持室温,形成了热电偶的冷端。这样在刀具与工件的回路中便产生 了温差电动势。通过电位差计测得切削区的平均温度。
•◆ 刀尖圆弧半径 rε 对主切削力影响不大,对吃刀抗力和 走刀抗力影响显著( rε ↑ —— Fy↑,Fx↓) ; •表3-9
PPT文档演模板
第三章切削力与切削温度
3.1.4 影响切削力因素
•刀具几何角度影响
负倒棱br1
PPT文档演模板
第三章切削力与切削温度
3.1.4 影响切削力因素
•其他因素影响
•F •总切削力
r
•图3-15 切削力的分解•(假设总切削力在第主三章剖切削面力P与0切内削)温度
•3.1.2 切削力经验公式
•测力仪的工作原理
PPT文档演模板
第三章切削力与切削温度
•3.1.2 切削力经验公式
•单因素实验法
影响切削力Fz的主要因素是吃刀深度ap和进给量f。
• 首先改变一个因素,其它因素固定不变,测得一组切
• 切削条件:干切削

•★ 切削脆性材料 — — 后刀面靠近刀尖处 温度最高。
•750
℃ •刀 具
PPT文档演模板
第三章切削力与切削温度
•3.2.3 影响切削温度的主要因 素
•工件材料的影响
•切削用量的影响
•刀 具 几 何 参 数 的 影 响
PPT文档演模板
第三章切削力与切削温度
•3.2.3 影响切削温度的主要因 素
PPT文档演模板
第三章切削力与切削温度
•切削速度
•进给量 • 背吃刀量
PPT文档演模板
第三章切削力与切削温度
•从切削温度考虑如何选择切削用量?
因此,若要切除给定的余量,又要求切削温 度较低,则在选择切削用量时,应优先考虑采 用大的背吃刀量,然后选择一个适当的进给量, 最后再选择合理的切削速度。
上述切削用量选择原则是从最低切削温度出 发考虑的,这也是制订零件加工工艺规程时, 确定切削用量的原则。
•主切削力Fc(N )
•◆f加大一倍, FZ只 增大68%~86%;
•98
••◆所切以削,速如度果对欲切提削高生产•7率48 而受到机床动力限制时,则增加
进力给影量响比复提杂高切削深度有利•58。
8
•5 19 28 35 55
100 130

切削速度 v(m/min)
PPT文档演模板
•图3-16 切削速第度三对章切切削力削与力切削的温度影响
第三章切削力与切削温度
•单 位 切 削 功 率•指单位时间切除单位体积金属所消耗的功率
Zw——单位时间内的金属切除量(mm3/s)
PPT文档演模板
第三章切削力与切削温度
3.1.4 影响切削力的因素
•工件材料
•强度、硬度高 •刀具材料与工件材料之间的摩擦力大
•切削用量
•切削力 大
•◆ap加大一倍,FZ约 增大一倍;
•工件材料的影响
PPT文档演模板
•45钢的切削温度
第三章切削力与切削温度
➢工件材料机械性能↑→切削温度↑
工件材料的强度、硬度越高,总切削力越大,单 位时间内产生的热量越多,切削温度也就越高。
➢工件材料导热性↑ →切削温度↓
工件材料的导热性好,从切屑和工件传出的切削 热相应增多,切削区的平均温度降低。
• a1 • b1
PPT文档演模板
第三章切削力与切削温度
2)固定吃刀深度ap=1mm,仅改变进给量f进行实验 ,求进给量f对切削力的影响。
假设主切削力Fz与进给量f的关系
PPT文档演模板
第三章切削力与切削温度
2)固定吃刀深度ap=1mm,仅改变进给量f进行实验 ,求进给量f对切削力的影响。 假设主切削力Fz与进给量f的关系
PPT文档演模板
第三章切削力与切削温度
•切削热对加工的影响
①工件产生热变形,影响加工精度; ②刀具温度升高,磨损加剧,甚至使刀具
丧失切削能力; ③切屑形成的热源,影响机床精度。
PPT文档演模板
第三章切削力与切削温度
•3.2.2 切削温度的测量方法
热电偶测温基本原理
1821年德国物理学家塞贝克(T J Seeback)发现:当两种不 同金属导线组成闭合回路时,若在两接头维持一温差,回路就有电 流和电动势产生,后来称此为塞贝克效应。其中产生的电动势称为 温差电动势,上述回路称为热电偶
假设主切削力Fz与吃刀深度ap的关系
PPT文档演模板
第三章切削力与切削温度
•3.1.2 切削力经验公式
•切削力的指数公式 1)固定进给量f=0.3mm,仅改变吃刀深度ap进行 实验,求吃刀深度对切削力的影响。
假设主切削力Fz与吃刀深度ap的关系
•对数坐标
两边取对数:
PPT文档演模板
第三章切削力与切削温度
•◆ 后刀面磨损:使切削力增大,对吃刀抗力Fy的影响最 为显著 ;
•◆刀具材料:与工件材料之间的亲和性影响其间的摩擦 ,而影响切削力 ;
•◆• 切比削较液::1有)润YT滑硬作质用合,金使刀切具削切力削降钢低材;

2)高速钢刀具切削钢材
PPT文档演模板
第三章切削力与切削温度
•Thank you for your listening!
第三章切削力与切削温 度
PPT文档演模板
2020/12/7
第三章切削力与切削温度
•3.1 切削力
•Cutting Force
切削力:金属切削时,刀具切入工件, 使被加工材料发生变形并成为切屑所需 的力,称为切削力。
PPT文档演模板
第三章切削力与切削温度
3.1.1 切削力及切削分力
•切削力来源
➢三个变形区产生的弹、塑性变形抗力 ➢切屑、工件与刀具间摩擦力
PPT文档演模板
•自然热电偶法测量切削温度示意图
第三章切削力与切削温度
PPT文档演模板
第三章切削力与切削温度
3.2.2 切削温度的测量方法
•人工热电偶法
•★ 将两种预先经过标定的金属
丝组成热电偶,热端焊接在刀具 或工件的预定要测量温度的点上 ,冷端串联毫伏表。
•工件
•刀具
•★ 可测量刀具或工件指 定点温度。
• 3.1.1 切削力及切削分力
◆将总切削力Fr分解为三个互相垂直的分力:
• ①主切削力Fz(切向力)
相关文档
最新文档