七年级下册数学一元一次方程应用题归类集锦
完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
初一数学一元一次方程应用题的各种类型

初一数学一元一次方程应用题的各种类型
一、直接问题
例1:
一家商店共有商品150个,其中书籍与文具的总数为110个,书籍的数量是
文具的2倍。
求文具的数量。
解:设文具的数量为x,则书籍的数量为2x,根据题意可列方程: x + 2x = 110,解得 x = 40。
悉知文具的数量为40个。
二、尺寸问题
例2:
将一个正方形底边长为x m的长方体的长、宽、高依次加长,使得体积增加153 m³,求原底边和增长量各是多少?
解:设原正方形底边长为x,则原长方体的体积为x³,经计算可得(DO IT YOURSELF)。
故原底边长为3m,增长量为2m。
三、速度问题
例3:
甲、乙两地相距160km,甲以每小时40km的速度向乙方向行驶,而乙以每小时20km的速度向甲方向行驶。
两人出发时,距离甲地60km的地方对面接触,问:这次相遇到底花费了多少时间?
解:设相遇所需时间为t小时,甲行驶时间为t小时,乙行驶时间为(t - 60/20)小时,由此可列方程: 40t + 20(t - 60/20) = 160,解得t = 2。
故这次相遇花费了
2小时。
四、混合问题
例4:
有一瓶饮料,里面有150ml水,加了40g的糖。
若按这样的方法再加入50g
的糖,得到的糖水浓度为20%,求这瓶饮料总共有多少(ml)?
解:设原糖水总量为x ml,则从题意可列方程: (40+50)/(x+150) = 20%,解得 x = 650。
故这瓶饮料总共为650ml。
未完,待更新……。
七年级数学一元一次方程应用题归类汇集(含答案)

七年级数学一元一次方程应用题归类聚集(含答案)一元一次方程应用题归类聚集一、列方程解应用题的一般步骤〔解题思路〕〔1〕审—审题:认真审题,弄清题意,找出能够表示此题含义的相等关系〔找出等量关系〕.〔2〕设—设出未知数:根据提问,巧设未知数.〔3〕列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.〔4〕解——解方程:解所列的方程,求出未知数的值.〔5〕答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.〔注意带上单位〕二、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度时间时间=路程速度速度=路程时间〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,那么列方程为。
解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:xx 3.6 840 2、某人从家里骑自行车到学校。
假设每小时行15千米,可比预定时间早到15分钟;假设每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系⑴速度15千米行的总路程=速度9千米行的总路程⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x小/时,那么列出方程是:15〔x-0.25〕=9〔x+0.25〕方法二:设从家里到学校有x千米,那么列出方程是:x15x15 15609603、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
七年级下册数学一元一次方程应用题归类集锦(经典)

七年级下册数学一元一次方程应用题归类集锦(经典)一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。
2、多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。
增长量=原有量某增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)等积变形问题等积变形是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.2①圆柱体的体积公式V=底面积某高=S·h=rh②长方体的体积V=长某宽某高=abc③正方体(正六面体)的体积V=棱长3=a3例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?练习:将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).(三)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为:100a+10b+c.2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。
初一一元一次方程解应用题全部类型

1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多少、和、差、不足、剩余……”来体现。
例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?分析:相等关系是:今年捐款=去年捐款×2+1000。
解:设去年为灾区捐款x元,由题意得,2x+1000=250002x=24000∴ x=12000答:去年该单位为灾区捐款12000元。
例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?分析:等量关系为:油箱中剩余汽油+1=用去的汽油。
解:设油箱里原有汽油x公斤,由题意得,x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%去分母整理得,9x+20=5x+6x∴ 2x=20∴ x=10答:油箱里原有汽油10公斤。
2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?分析:等量关系为:机轴的体积和=钢坯的体积。
解:设可足够锻造x根机轴,由题意得,π()2×3x=π()2×30解这个方程得x=x=×10×==40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。
3、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。
(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?分析:此问题中对乙队来说有调出,对甲队来说有调入。
初一下册一元一次方程应用题汇总及答案

一元一次方程应用题归类汇集一、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?5、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)6、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
7、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。
七年级数学一元一次方程解决问题应用题全集

七年级数学一元一次方程应用题解答题全集【配套问题】1、某服装厂生产一种运动服,已知每3m长的布料可做上衣2件或裤子3条,一件上衣一条裤子为一套,计划用800m长的布料生产服装,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?2、某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母,要求每天生产的螺柱和螺母刚好配套.(1)若1个螺柱需要配2个螺母,应安排生产螺柱和螺母的工人各多少名?(2)若3个螺柱需要配5个螺母,则安排生产螺母的工人有名.3、某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?4、一张圆桌由一个桌面和四条桌腿组成.如果1m3木料可以制作圆桌的桌面50个,或制作桌腿300条,那么5m3的木料如何分配可以使桌面和桌腿正好配套?最多能制作成多少张圆桌?【工程问题】1、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?2、已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合5天后,甲另有事,乙再单独做几天才能完成?3、一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?4、甲、乙两工程队共同承包了一段长9200米的某“村村通”道路硬化工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成460米,乙队平均每天比甲队多完成230米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?【销售打折问题】1、某服装店,打折销售服装,若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)每件服装的标价多少元?每件服装的成本价多少元?(2)为了尽快减少库仔,又要保证不亏本,商家最多能打几折?2、2020年,某商场开展“双十一”促销活动,将M,N两种电器捆绑售卖,M电器降价20%,N电器降价30%,已知M,N两种电器的原销售单价之和为2500元,小明参加活动购买M,N电器各一件,共付1900元.(1)M,N两种电器原销售单价各是多少元?(2)若商场在这次促销活动中M电器盈利25%,N电器亏损20%,你认为商场在这次促销活动中是盈利还是亏损了?M,N两种电器捆绑售卖一件盈利或亏损了多少元?3、某文具店今年1月份购进一批笔记本,共2290本.每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增长0.5元,销量就减少15本.(1)若该种笔记本在2月份的销售量为2200本,则2月份售价多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量,进行了销售调整,售价比2月份在(1)的条件下的售价减少了m%,结果3月份的销量比2月份在(1)的条件下的销售量增加了50%,3月份的销售利润达到6600元,求m的值.【课后作业】1、某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x2、一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天3、超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.84、商场经销甲、乙两种商品,甲种商品每件售价70元,利润率为40%,乙种商品每件进价60元,售价90元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2700元,求购进甲种商品多少件?1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
七年级一元一次方程应用题8种类型归类

七年级一元一次方程应用题8种类型归类第一类:简单的线性方程的应用题这类题目基本上是直接套用一元一次方程的定义,根据题目中的条件列出方程,然后解方程得到答案。
这类问题比较简单,适合入门阶段的学生练习。
第二类:带有关系的线性方程应用题这类题目常常要求学生根据题意建立两个或多个物体之间的量的关系,然后通过建立方程解决问题。
这类问题往往需要学生较高的抽象思维能力来解决。
第三类:工作时间线性方程应用题这类题目要求学生根据不同情况下人员的工作效率和时间推导出方程,然后解决问题。
这类问题对学生的逻辑思维和数学应用能力有一定要求。
第四类:比例关系与一元一次方程的整合这类题目旨在让学生熟练掌握用比例关系建立一元一次方程,进一步拓展了一元一次方程的应用范围,对学生的推导能力和计算能力提出了更高的要求。
第五类:几何问题与线性方程的结合这类题目结合了几何图形中的关系与线性方程的解法,通过建立图形中的几何关系,以方程的形式呈现并求解,培养了学生的几何直观和数学抽象能力。
第六类:消耗量的线性方程应用题这类问题常常涉及到消耗量与产出量之间的关系,学生需要根据不同情况下物质的消耗速度和产出速度建立方程,解决问题。
第七类:时间速度距离的线性方程题型这类题目涉及了时间、速度和距离之间的关系,要求学生根据不同的情景情况建立方程,解决问题。
这类题目较为灵活,需要学生综合考虑多个变量间的关系。
第八类:经济问题的线性方程应用题这类题目常常涉及到金钱的支出与收入之间的关系,学生需要根据题目中的条件建立方程,解决经济问题。
这类题目旨在培养学生的实际应用能力和经济思维。
以上就是七年级一元一次方程应用题的8种典型类型,不同类型的题目反映了一元一次方程在现实生活中的广泛应用,通过解决这些问题,学生不仅可以提高解决实际问题的能力,还能深入理解一元一次方程的运用和意义。
希望同学们在学习过程中能够灵活应用这些方法,提高自己的数学水平。
七年级数学一元一次方程应用题类型

七年级数学一元一次方程应用题类型
1.追及问题:
例题:甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路相向而行。
已知甲的速度是乙速度的41,经过$4小时两人相遇。
问:相遇时乙比甲多行了多少千米?
2.相遇问题:
例题:甲、乙两站相距480km,一列慢车从甲站开出,每小时行驶
60km,一列快车从乙站开出,每小时行驶100km。
两车同时开出,相向而行,经过多少小时相遇?
3.生产问题:
例题:一个制造厂生产了200个产品,其中有150个是合格的。
如果从这200个产品中随机抽取一个,那么抽到合格产品的概率是多少?
4.利润与折扣问题:
例题:商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖出这两件衣服总的是盈利还是亏损,或是不盈不亏?
5.行走问题:
例题:甲、乙两人同时从A地出发,向B地前进。
甲步行先到达B地,然后立即返回,在C处与乙相遇。
已知甲步行的速度是乙步行速度的1倍。
请问:甲、乙两人何时相遇?。
初一数学一元一次方程应用题各种类型及专项训练

初一数学一元一次方程应用题各种类型及专项训练一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇)(2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速 = 2水速;顺速 + 逆速 = 2船速(4)顺水的路程 = 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
问:(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。
初中-七年级-一元一次方程应用题(汇总)

知识点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价商品利润×100%(2)商品利润率=商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1.(基础知识)已知一批夏天衣服,厂房生产每件成本价为a元,出厂价为b元,现在某商铺老板从厂房进货该批衣服m件,之后分到各个商店销售,按照每件p元销售,结果销售了n件,假设以上字母均符合现实,现用字母表示,并区分出单项式和多项式,找出多项式的次数。
1.该老板此批衣服的销售额为多少钱?2.厂房从老板手里收了多少钱?赚了多少钱?3.该老板从这批衣服中赚了多少钱?4.假设销售价格减少10元,销售了2n件,此时该老板赚多少钱?2.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.3.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,工商部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知识点2:数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c 均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。
然后抓住数字间或新数、原数之间的关系找等量关系列方程.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
一个四位数的首位数字是7,如果把首位上的数字移动到个位上,那么的所得到的新四位数比原来的四位数的一半多3,求原来的四位数。
工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=11.一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?2.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?3.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?4.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?5.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件?6.一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?基本量之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题(2)追及问题快行距+慢行距=原距快行距-慢行距=原距(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度1.甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
七年级一元一次方程应用题归类汇集题目

七年级一元一次方程应用题归类汇集题目
一、购物题
1.小明花了三分之二的钱买了一本书,余下的钱买了一个水杯,如果书的价格是x元,水杯的价格是
2.5元,求小明一共有多少钱?
2.一家商店打折,原价为80元的书现在只卖60元,求打折力度。
二、几何题
3.一块矩形花园的长是宽的3倍,如果长是x米,宽是多少米?
4.一个矩形的周长是24米,长比宽多2米,求矩形的面积。
5.一个长方形的长是宽的4倍,如果长为3x米,面积是多少平方米?
三、时间题
6.某地有两座高楼相距500米,A地楼顶高出地面20米,B地楼顶高出
地面x米,请计算两座楼垂直高度差x是多少。
7.王老师上学的路程是学生小明的4倍,如果小明走路花了30分钟,王
老师花了多少时间从家到学校?
四、食物题
8.学校食堂一周用了5公斤蔬菜,每天用的蔬菜相等,求每天用的蔬菜
数量。
9.小明每天早餐要吃3个苹果和2x个香蕉,求x是多少个?
五、汽车题
10.一辆汽车以每小时60公里速度向东开,另一辆汽车以每小时80公里
速度向南开,如果两辆汽车从同一地点同时出发,3小时后两车相距多少公里?
11.A地到B地有300公里,小明以每小时40公里的速度骑自行车,小王以每小时60公里的速度骑电动车,小可能比小明早到B地几小时?
以上是关于七年级一元一次方程的应用题汇集,希望对你的学习有所帮助。
七年级一元一次方程应用题所有题型大全

七年级一元一次方程应用题所有题型大全
一、整数应用题
1.小明的妈妈给了他100元,他花了其中的四分之三,然后剩下的钱
还多少?
2.一条绳子长5米,剪成两段,其中一段比另一段多2米,求两段的
长度各是多少米。
3.某商品原价250元,打八五折后的价格是多少?
二、比例应用题
1.小李走了200米,小王走了300米,两人一共走了多少米?
2.一队篮球队员有男生8个,女生5个,男生人数是女生人数的几倍?
3.小华种了一些白菜和胡萝卜,白菜的重量是胡萝卜的3倍,总重量
是12千克,求胡萝卜的重量是多少千克。
三、距离速度时间应用题
1.两点之间的距离为80千米,汽车以每小时60千米的速度开,需要
多长时间到达?
2.小明骑自行车去了一半的路程,速度是10千米每小时,走了2个小
时,求剩下的路程还有多远?
3.水管从一个水塔底部向上喷水,水的喷射速度为10米每秒,水喷到
高度为50米时离水面还有多远?
四、工程应用题
1.甲组工人一天修150米路,乙组工人一天修120米路,如果两组工
人合作修路,一天可以修多少米路?
2.甲组工人修一段路需要7天,乙组工人修同样的路需要10天,如果
两组工人合作修路,完成同等工程需要几天?
3.水库中原有水量是6000立方米,通过排水口每小时流失200立方米,
如果连续5小时不停排水,水库中剩余多少水量?
以上为七年级一元一次方程应用题的一些常见题型,通过解决这些问题,可以
帮助学生更好地理解和应用一元一次方程的知识。
七年级数学一元一次方程应用题复习题及答案

以下是十道七年级数学一元一次方程应用题复习题及试题及答案:1.小明用100元买了一些苹果,每个苹果10元,剩下的钱他用来买香蕉,每个香蕉5元,小明一共买了多少个香蕉?方程:10x+5y=100解:x表示苹果的个数,y表示香蕉的个数2.一辆计程车每公里收费2元,小明乘坐计程车行驶了20公里,一共支付了多少元?方程:2x=20解:x表示行驶的公里数3.一份图书的原价是x元,打折后打8折,售价是35元,求原价x是多少?方程:0.8x=35解:x表示原价4.一桶水共有x升,每天使用3升,经过7天后还剩下15升,求原来桶里有多少升水?方程:x-3(7)=15解:x表示原来的水量5.一支笔的原价是x元,现在打折促销,售价是8元,打折了多少折?方程:8=0.8x解:x表示原价6.小华一次性买了x只铅笔,每只铅笔3元,共花了9元,求小华一共买了多少只铅笔?方程:3x=9解:x表示铅笔的个数7.一份试卷满分为x分,小明得了80分,他的得分率是多少?方程:80/x=y%解:x表示试卷满分,y表示得分率8.一份作业共有x页,小华每天完成3页,经过5天后还剩下10页,求原来作业有多少页?方程:x-3(5)=10解:x表示原来作业的页数9.小明每天花30分钟上网,一共上了x天,总共花了180分钟,求x的值。
方程:30x=180解:x表示上网的天数10.一根木棍的长度是x厘米,从中间折断后,两段木棍的长度之比是2:3,求原来木棍的长度。
方程:x=(2/3)(x)解:x表示原来木棍的长度答案:1.小明一共买了12个香蕉。
2.小明一共支付了40元。
3.原价x是43.75元。
4.原来桶里有36升水。
5.打折了10折。
6.小华一共买了3只铅笔。
7.小明的得分率是80%。
8.原来作业有25页。
9.x的值是6天。
10.原来木棍的长度是60厘米。
一元一次方程方程应用题总结归类

一元一次方程方程应用题总结归类列方程解应用题,是初中数学的重要内容之一;许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.一行程问题:基本量、基本数量关系:路程=速度×时间,顺水速=静水速+水速,逆水速=静水速-水速,寻找相等关系的方法:抓住两码头之间的距离不变,水流速度,船在静水中的速度不变的特点来考虑;1相向问题,寻找相等关系的方法:甲走的路程+乙走的路程=两地距离2追击问题:寻找相等关系的方法:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两地距离=追者所走的路程3航行问题:4飞行问题:1、火车提速后由天津到上海的时间缩短了,若天津到上海的路程为1326km,提速前火车的平均速度为xkm/h,提速后火车的平均速度为ykm/h,x、y应满足的关系式为:2、甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比乙每小时多骑千米,求乙的时速各是多少3、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米4、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时;1求无风时飞机的飞行速度2求两城之间的距离;5、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.1甲、乙两人同时同地反向出发,问多少分钟后他们再相遇2甲、乙两人同时同地同向出发,问多少分钟后他们再相遇6、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里;1慢车先开出1小时,快车再开;两车相向而行;问快车开出多少小时后两车相遇2两车同时开出,相背而行多少小时后两车相距600公里3两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里4两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车5慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车1、一列火车长150米,每秒钟行19米;全车通过长800米的大桥,需要多少时间2、一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒3、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟;求这列火车的速度是每秒多少米车长多少米4、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少5、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过6、一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车上桥到车尾离要多少分钟7、一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是多少米8、铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米9、已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是多少秒10、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟11、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过多少秒后,甲、乙两人相遇12、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米;两车在距中点32千米处相遇;东西两地相距多少千米13、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米14、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米;当摩托车行到两地中点处,与汽车相距75千米;甲乙两地相距多少千米15、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程;16、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地17、学校运来一批树苗,五1班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵;如果这批树苗平均分给五1班的同学去植,平均每人植多少棵18、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米;中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙;求东西两村相距多少千米19、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米;甲到达B地后立即返回A地,在离B地千米处相遇;A、B两地之间相距多少千米20、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米;30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红;小红每分钟走多少米21、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米;上午11时到达B地后立即返回,在距离B地24千米处相遇;求A、B两地相距多少千米22、甲乙两队学生从相距18千米的两地同时出发,相向而行;一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络;甲队每小时行5千米,乙队每小时行4千米;两队相遇时,骑自行车的同学共行多少千米23、长100米的列车,以每秒20米的速度通过了一条座长500米的桥;列车通过这座桥要用多少秒24、一列货车要通过一条1800米长的大桥;已知从货车车头上桥到车尾离开桥共用120秒,货车完全在桥上的时间为80秒,这列货车长多少米25、两码头相距360千米,一艘汽艇顺水航行完全程要9小时,逆水航行完全程要12小时;这艘船在静水中的速度是多少千米这条河水流速度是多少千米26、甲、乙两个码头相距336千米;一艘船从乙码头逆水而上,行了14小时到达甲码头;已知船速是水速的13倍,这艘船从甲码头返回乙码头需要多少小时27、在400米的环形跑道上,甲乙两人同时起跑,如果同向跑3分20秒相遇,如果背向跑25秒相遇,已知甲比乙跑得快,求甲乙两人的速度各是多少28、一列客车车身上190米,每秒运行24米;在这列客车前面有一列长230米的货车,每秒运行18米,两列车在并行的两条轨道上运行;客车从后面追上并完全超过货车要用多少秒29、甲乙两人去同一地点办事,甲每小时走5千米,乙每小时走6千米,甲有急事先出发1小时后,乙才出发,经过几小时后能追上甲二工程问题:基本量、基本数量关系:把总工作量看作单位“1”工作量=工作效率×工作时间;相等关系:各部分工作量之和等于11.一件工程,甲独做10天完工,乙独做15天完工,二人合做几天完工2.一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的错误!3.4.一项工作,甲单独做要10天完成,乙单独做要15天完成;甲、乙合做几天可以完成这项工作的80%5.一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/36.一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完7.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天8.一项工程,甲单独做16天可以完成,乙单独做12天可以完成;现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程9.一项工程,甲独做要12天,乙独做要16天,丙独做要20天,如果甲先做了3天,丙又做了5天,其余的由乙去做,还要几天10. 一批货物,由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完;用小卡车单独运,要几小时运完11. 小王和小张同时打一份稿件,5小时打了这份这稿件的65;如果由小王单独打,10小时可以打完;求如果由小张单独打,几小时可以打完;12. 一项工程,甲队独做15天完成,乙队独做12天完成;现在甲、乙合作4天后,剩下的工程由丙队8天完成;如果这项工程由丙队独做,需几天完成13. 甲和乙两队合修一条公路,完成任务时,甲队修了这条公路的158;如果乙队单独完成要24天,甲队单独做几天完成14. 一项工程,甲独做要10天,乙独做要15天,丙独做要20天;三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假15. 一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完16. 一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成浙江江山市17. 师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成18. 一项工程,由甲工程队修建,需要20天完成;由乙工程队修建,需要的天数是甲工程队的倍才能完成;两队合修共需要多少天完成19.20. 一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作21. 一项工程,甲队独做要20天完成,乙队独做要5天能完成全工程的61;现由两队合做,多少天可以完成22.23.24. 修一条水渠,甲队3天可以修全长的101,乙队单独修20天可以修完,如果两队合修,多少天可以修完25.26.27. 一件工作,甲队独做每天能完成这件工作的201,乙队单独完成这件工作需要12天,如果两面三刀队合作完成这件工作的201,需要多少天 28.29. 一件工作,甲单独做需要12天,乙的工作效率是甲的43,两个合做,几天能完成这件工作的54 30. 31. 一套家具,由一个老工人做40天完成,由一个徒工做80天完成;现由2个老工人和4个徒工同时合做,几天可以完成32. 一个水池上有两个进水管,单开甲管,10小时可把空池注满,单开乙管,15小时可把空池注满;现先开甲管,2小时后把乙管也打开,再过几小时池内蓄有3/4的水33.原是空池34.25、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程26、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.三.分配问题:这类问题要搞清人数的变化,常见题型有:1既有调入又有调出;2只有调入没有调出,调入部分变化,其余不变;3只有调出没有调入,调出部分变化,其余不变;1、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套2、、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母3、、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人4、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母某水利工地派 48 人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走5、某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数6、某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利500元,制成酸奶销售,每吨可获利1200元,制成奶片销售,每吨可获利2000元;该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该厂设计出了两种可行方案:方案一:尽可能多的制成奶片,其余的直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; 你认为那种方式获利最多为什么四、浓度问题以盐水为例,像盐这样能溶于水或其他液体中的纯净物质叫做溶质;像水这样能溶解物质的纯净液体叫做溶剂;溶质与溶剂的混合物叫做溶液,溶质在溶液中所占的百分比叫做浓度,又叫做百分比浓度;浓度问题常见的数量关系式有:溶液的重量=溶质的重量+溶剂的重量浓度=溶质重量÷溶液重量×100%溶液的重量=溶质重量÷浓度溶质重量=溶液重量×浓度1、含盐6%的盐水900克,要使其含盐量加大到10%,需要加盐多少克2、把浓度为25%的盐水30千克,加水冲淡为15%的盐水,问需要加水多少千克3、有浓度为%的盐水210克,为了制成浓度为%的盐水,从中要蒸发掉多少克水4、5、一瓶100克的酒精溶液加入80克水后,稀释成浓度为40%的新溶液,原溶液的浓度是多少5、甲、乙两种酒精浓度分别为70%和55%,现在要配制浓度为65%的酒精3000克,应当从这两种酒精中各取多少克6、一杯纯牛奶,喝去25%再加满水,又喝去25%,再加满水后,牛奶的浓度是多少7、三个容积相同的瓶子里装满了酒精溶液,酒精与水的比分别为2:1,3:1,4:1,当把三种酒精溶液混合后,酒精与水的比是多少1:甲、乙、丙三人到银行存款,甲存入的款数比乙多错误!,乙存入的款数比丙多错误!,问甲存入的款数比丙多几分之几2:小明从甲地到乙地需要2天,第一天走了全程地错误!多72千米,第二天所走的路程等于第一天所走路程地错误!,求甲乙两地的距离;3:兄弟四人合修一条路,结果老大修了另外三人的一半,老二修了另外三人的错误!,老三修了另外三人总数的错误!,老四修了91米,问:这条路长多少米4:一本书,已经看了130页,剩下的准备8天看完,如果每天看的页数相等,3天看的页数恰好为全书的错误!,这本书共有多少页5:书店售一种挂历,每售出一种棵获利18元,售出一部分后每本降价10元出售,全部售完已知减价出售的本数是原价出售挂历本数的错误!,书店售完这种挂历共获利2870元,问:书店共售出这种挂历多少本6:甲乙两个水杯,甲杯有水1千克,乙杯是空的,第一次将甲杯水的错误!倒入乙杯,第二次将乙杯水的水的错误!倒回甲杯里,第三次将甲杯里的水的错误!倒回乙杯里,第四次将乙杯里水的错误!倒回甲杯,照这样来回倒下去,一直倒了1999次以后,甲杯里还剩下水多少克7:哥哥有250张邮票,弟弟有200张邮票,哥哥的邮票比弟弟的邮票多几分之几弟弟邮票比哥哥少几分之几2.一瓶容器盛满药液10升,第一次倒出若干升,用水加满,第二次倒出同样的升数,这时容器剩下药液升那么第一次倒出升数多少;五、利息问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率;利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率20%1、某同学把250元钱存入银行,整存整取,存期为半年;半年后共得本息和元,求银行半年期的年利率是多少不计利息税2.李叔叔于2000年1月1日在银行存了活期储蓄1000元,如果每月的利率是%,存款三个月时,可得到利息多少元本金和利息一共多少元3、叔叔今年存入银行10万元,定期二年,年利率% ,二年后到期,扣除利息税5% ,得到的利息能买一台6000元的电脑吗4、小华妈妈是一名光荣的中国共产党员,按党章规定,工资收入在400-600元的,每月党费应缴纳工资总额的%,在600-800元的应缴纳1%,在800-1000元的,应缴纳%,在1000以上的应缴纳2%,小华妈妈的工资为2400元,她这一年应缴纳党费多少元5、银行定期壹年存款的年利率为%,某人存入一年后本息元,问存入银行的本金是多少元六. 利润问题1销售问题中常出现的量有:进价、售价、标价、利润等2有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率1、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少2、某商品的进价是500元,标价是750元,商店要求以利润低于5%的售价打折出售,售货员最低可以打折出售此商品3、某书店出售一种优惠卡,花100元买这种卡后,可打6折,不买卡可打8折,你怎样选择购物方式;4、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%;则进价为每件多少元5、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少6、某种商品的进价是1000元,售价为1500元, 由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品;7、某商品的进价是150元,售价是180元;求此商品的利润率8、商店对某种商品作调价,按原价的八五折出售,此时商品的利润率是9%, 此商品的进价为500元;求商品的原价9、某商品的进价为200元,标价为300元,折价销售时的利润率为5%,此商品是按几折销售的10、某商品标价是1955元,按此标价的九折出售,利润率为15%;求此商品的进价是多少七、数字问题1要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9则这个三位数表示为:100a+10b+c;2数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示;1、一个两位数,十位上的数字比个位上的数字大1,十位与个位上的数字和是这个两位数的1/6,这两个数是多少2、一个两位数字之和为11,如果原数加45,得的数恰是原两位数字交换后的两位数,求原来这个两位数;3、一个两位数,十位上的数字比个位上的数字的2倍大3,把这两位数的位置对调后组成的两位数比原数小45,求原来这个两位数;4、一个三位数,基个位上的数字相加之和为9,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字小1,求这个三位数;5、三个连续自然数,它们的和为108,求这三个数;6、有一个两位数,十位上的数字比个位上的数字大2,若把这个两位数的十位与个位对调,所得的两位数比原数小18,求原来的两位数;7、一个两位数,十位数字比个位数字少3,两个数字之和等于这两位数的1/4;求这个两位数;8、一个三位数,三个数位上的数字和是15,百位上的数比十位上的数多5,个位上的数字是十位上的数字的3倍,求这个三位数;9、一个两位数的个位与十位数字的和为15,如果把十位数字与个位数字对调,则所得新数比原数小27,则原来的两位数是多少10、已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数;11、一个三位数,三个数位上的数字和为13,百位上的数字比十位上的数少3,个位上的数字是十位上的数字的2倍,求这三位数;12、有一个两位数,十位上的数比个位上的数大2,若把这个两位数的十位与个位对调所得的两位数比原数小18,求原来的两位数;13、三个连续偶数的和比其中最小的一个大14,求这三个连续偶数的积;14、一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的1/5,求这个两位数;15、甲、乙、丙三辆汽车所运货物的吨数比是6:5:4,已知三辆汽车共运货物120吨,求这三丙汽车各运多少吨货物16、甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2;乙、丙两仓存粮数这比是1:,求甲、乙、丙三仓各存粮多少吨17、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资额度比例是5:2:3,问他们各应提交多少元18、三个连续整数之和是81,这三个整数分别是:_______ 、_______、_______连续三个偶数之和是276,这三个数分别是:_______、_______、_______ 三个数之比是5:6:7,他们的和是198,则这三个数分别是:_______、_______、_______19、已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数;20、一个两位数,个位数字比十位数字的2倍大3,如果把个位数字与十位数字对调,则所得两位数比原两位数大45;求这个两位数;21、甲、乙、丙三辆汽车所运货物的吨数是6:5:4,已知三辆汽车共运货物120吨,求这三辆汽车各运货物多少吨22、要拌制一种建筑用的沙桨,生石灰、水泥、黄沙的质量比为2:1:4,现在要拌制这种沙桨1400千克,需生石灰、水泥、黄沙各多少23、一个两位数,十位数字比个位数字少3,两个数字之和等于这个两位数的1/4,求这个两位数;24、有一个三位数,其各数位的数字之和是16,十位数字是个位数字与百位数字的和,若把百位数字与个位数字对调,那么新数比原数大594,求原数;25、一个四位数,千位数字是1,若把1移到个位上去,则所得的新四位数字是原来的5倍少14,求这个四位数;26、一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数27、一个两位数,十位上的数与个位上的数字之和为11,如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求原来两位数;八、和倍问题:基本相等关系:增长量=原有量×增长率,现有量=原有量+增长量或现有量=原有量-降低量寻找相等关系的方法:抓住关键性词语:共、多、少、倍、几分之几以及原有量、先有量之间的关系推导出相等关系;1、根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了%,1990年6月底每10万人中约有多少人具有小学文化程度2、某商场甲、乙两个柜组十二月份营业额共64万元;一月份甲增长了20%,。
七年级一元一次方程解应用题

七年级一元一次方程解应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。
- 甲先走12米后,甲走的路程为8x米,乙走的路程为6(x - (12)/(8))米(因为甲先走了12米,这12米所用时间为(12)/(8)秒,所以乙走的时间比甲少(12)/(8)秒)。
- 根据甲、乙两人相距285米可列方程:8x+6(x - (12)/(8))=285- 去括号得:8x + 6x-9 = 285- 移项得:8x+6x=285 + 9- 合并同类项得:14x=294- 解得:x = 21- 所以甲出发21秒与乙相遇。
2. 一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离。
- 设甲、乙两地的距离为x千米。
- 汽车原来速度v = 60千米/小时,行驶4.5小时后的路程为60×4.5 = 270千米。
- 剩下的路程为(x - 270)千米,后来的速度为60 - 20=40千米/小时。
- 按原计划所需时间为(x)/(60)小时,实际用时为4.5+(x - 270)/(40)小时。
- 因为实际比预计晚45分钟((45)/(60)=(3)/(4)小时),可列方程:4.5+(x - 270)/(40)=(x)/(60)+(3)/(4)- 去分母(两边同时乘以120)得:120×4.5 + 3(x - 270)=2x+120×(3)/(4)- 化简得:540+3x - 810 = 2x + 90- 移项得:3x-2x=90 + 810 - 540- 解得:x = 360- 所以甲、乙两地的距离为360千米。
二、工程问题。
3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题归类汇集考点1:一元一次方程的概念例1. 若关于x的方程是一元一次方程,则m的值是()A. B. –6 C.6 D. 4解析:由一元一次方程的定义得,且,解得,故选C。
点评:这道题考查一元一次方程的概念,我们需要熟练掌握概念,灵活把握概念的特征,根据概念的特征逐条检查题目所给条件。
考点2:方程的解的定义例2. 已知关于x的方程的解是,则a的值为()A.1 B.C. D.解析:根据方程的解的定义,一元一次方程的解能使方程中等号左右两边的值相等,把代入原方程,得到一个关于a的一元一次方程,解这个方程即可得到a的值。
把代入原方程,可得,化简得,解得,所以选A。
点评:根据方程的解的定义,直接把方程的解代入即可,需要注意的是,方程的解和解方程是不同的概念,方程的解实质上是求得的结果,而解方程是指求出方程的解或判断方程无解的过程,方程的解的检验方法:把未知数的值分别代入方程中等号左右两边进行求值,比较两边的值是否相等,从而得出结论。
考点3:等式的性质考点4:一元一次方程的解法例3. 解下列方程。
(1)。
(2)。
解析:第(1)题显然要去分母进行求解,第(2)题可以选择由外向内去括号,这样可以轻松去掉大括号和中括号,既简化了解题过程,又能避免一些常见的解题错误。
(1)去分母,得。
去括号,得。
移项、合并,得。
系数化为1,得。
(2)去大括号,得。
去中括号,得。
去小括号、移项、合并,得。
系数化为1,得。
点评:解方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1。
考点5:一元一次方程的应用一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率…”来体现。
2、多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
增长量=原有量×增长率现在量=原有量+增长量例.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9),则这个三位数表示为:100a+10b+c.2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。
例.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
例.一个2位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个2位数的大6,求这个2位数。
(三)商品利润问题(市场经济问题或利润赢亏问题)(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。
(2)利润问题常用等量关系:商品利润=商品售价-商品进价=商品标价×折扣率-商品进价商品售价=商品标价×折扣率商品利润率=商品利润商品进价×100%=商品售价-商品进价商品进价×100%(3)商品销售额=商品销售价×商品销售量商品的销售利润=(销售价-成本价)×销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率.例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?练习1:某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?练习2:甲、乙两种商品的单价之和为100元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原计划之和提高2%,求甲、乙两种商品的原来单价?练习3:某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。
问这种鞋的标价是多少元?优惠价是多少?(四)行程问题——画图分析法利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:(2)追及问题:(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2抓住两码头间距离不变、水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题。
考虑车长的过桥或通过山洞隧道问题:将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
一般行程问题:追击与相遇问题例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)练习1:甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。
练习:两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车车长150米,已知当两车相向而行时,快车驶过慢车某个窗口所用的时间为5秒。
⑴ 两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少?⑵ 如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?练习:甲、乙两人同时从A 地前往相距千米的B 地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B 地后,立即由B 地返回,在途中遇到乙,这时距他们出发时已过了3小时。
求两人的速度。
行船与飞机飞行问题:例: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?练习:一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。
(五)工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间 =工作总量工作效率工作时间 =工作总量工作时间工作效率2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.工程问题常用等量关系:先做的+后做的=完成量.例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?例:一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?练习:甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的32,问甲、乙两队单独做,各需多少天?练习:某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.(六)储蓄问题1.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.2.储蓄问题中的量及其关系为:利息=本金×利率×期数本息和=本金+利息利率利息本金×100% 利息税=利息×税率(20%)例:某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和元,求银行半年期的年利率是多少?(不计利息税)(七)配套问题:这类问题的关键是找对配套的两类物体的数量关系。
例:某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?例:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?(八)劳力调配问题这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。