工程地质数值法-FLAC3d模拟

合集下载

FLAC3D数值模拟在采矿工程的应用

FLAC3D数值模拟在采矿工程的应用

一个多面体可能有5个、6个、7个或8个网格点,主要取决于多
面体的形状。给定每个节点的x,y和z值这样就具体确定了有限
差分单元,。其他叫法有:节点,交点。
有限差分栅格(Finite Difference Grid)……有限差分
网格是研究区域中一个或多个通过物理边界连接的有限差分单
元的集合。另一个叫法是网格,有限差分网格也可以标识出模
岩土力学/岩石力学分析,例矿体滑坡、煤矿开采沉陷预 测、水利枢纽岩体稳定性分析、采矿巷道稳定性研究等
岩土工程、采矿工程、水利工程、地质工程
特色:
大应变模拟 完全动态运动方程使得FLAC3D在模拟物理上的不稳定过
程不存在数值上的障碍 显示求解具有较快的非线性求解速度
FLAC3D简介
1 承受荷载能力与变形分析:用于边坡稳定和基础设计 2 渐进破坏与坍塌反演:用于硬岩采矿和隧道设计 3 断层构造的影响研究:用于采矿设计 4 施加于地质体锚索支护所提供的支护力研究:岩锚和土钉的 设计 5 排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研 究:挡土墙结构的地下水流动和土体固结研究 6 粘性材料的蠕变特性:用于碳酸钾盐矿设计 7 陡滑面地质结构的动态加载:用于地震工程和矿山岩爆研究 8 爆炸荷载和振动的动态响应:用于隧道开挖和采矿活动 9 结构的地震感应:用于土坝设计 10 由于温度诱发荷载所导致的变形和结构的不稳定:高辐射 废料地下埋藏的性能评价 12 大变形材料分析:用于研究粮仓谷物流动及井巷和矿洞中 材料的总体流动
开始
生成网格并调整网格的形状; 持续的运动和连续的物质属性; 特定的边界条件和初始条件。
到达平衡状态
效果是否符合要求
作如下改变: 开挖模型的物质属性
改变边界条件

基于FLAC(3D)的深部巷道围岩稳定性数值模拟研究

基于FLAC(3D)的深部巷道围岩稳定性数值模拟研究

基于FLAC(3D)的深部巷道围岩稳定性数值模拟研究贾晓亮【摘要】针对由于巷道剧烈底鼓、巷道断面变形造成巷道运输及维护困难等问题,采用数值模拟计算软件FLAC~(3D),数值计算得到宏发煤矿+1 650 m集中运输大巷巷道开挖后围岩垂直应力、水平应力分布及塑性区分布,分析并得到了巷道底鼓机理:距离巷道底板临空面更近的倾斜C_(17)煤层的软弱顶板岩层随掘进扰动而首先破坏,造成左侧局部底鼓,继而巷道底板围岩应力因底鼓而持续动态重新分布,并逐渐向右侧及深部发展,致使底鼓逐渐恶化并表现出左右非对称特征。

综合考虑施工、经济、效果、瓦斯等因素,提出采用"构筑反底拱+底板注浆+底板锚杆"联合支护的底鼓控制措施。

【期刊名称】《能源与环保》【年(卷),期】2017(039)006【总页数】5页(P18-22)【关键词】FLAC3D 底鼓数值模拟围岩巷道支护【作者】贾晓亮【作者单位】中煤炭科工集团重庆研究院有限公司,重庆400037【正文语种】中文【中图分类】TD862.1深部巷道围岩变形主要表现为围岩变形量大、变形速度快、巷道持续变形、流变、深部岩石扩容等特征[1-3]。

针对该情况,国内学者进行相关研究,张合超、房健、苏军等[4-6]采用FLAC3D模拟了不同支护参数条件下巷道支护效果,研究了地下开采对围岩的影响范围。

徐文彬、许梦国、余伟健等[7-9]分析了交叉型巷道群围岩由于不同的开挖顺序而产生不同的应力状态、位移变形以及塑性屈服变化特征,对比了不同布置形式的底部结构在开挖影响下的稳定性。

宁建国、刘泉声、何富连等[10-12]采用FLAC3D数值模拟软件分析空间交叉巷道的应力分布特点以及沿下方巷道轴向方向形成的应力增高和降低区。

牛学超、闫长斌、肖明等[13-15]提出了大型地下洞室施工开挖过程动态模拟的三维有限元数值分析方法,并通过工程实例分析爆破震动作用下地下硐室群的稳定性。

宏发煤矿地处云贵高原,地质构造极为复杂,巷道所处的煤层直接顶为粉砂质泥岩,顶板节理发育,表现出深部巷道围岩变形的特征,且其巷道原支护结构方式和参数不合理等原因使得巷道发生严重变形和破坏,其中深部高应力和围岩较低承载能力是该矿巷道变形破坏的主要原因。

用FLAC_3D进行土质高边坡稳定性分析

用FLAC_3D进行土质高边坡稳定性分析

第24卷第3期Vol 124,No 13西华大学学报・自然科学版Journal of Xihua University ・Natural Science2005年5月May 12005文章编号:16732159X (2005)0320087203 收稿日期:2004207207 作者简介:王向东(19712),男,四川省西昌市人,西南交通大学2002级硕士研究生,主要研究方向为岩土边坡稳定性及防护技术。

用FLAC 23D 进行土质高边坡稳定性分析王向东,文江泉(西南交通大学土木学院,四川成都610031) 摘 要:利用FLAC 23D 的基本原理,对昆明东支线两面寺(FD2)土质高边坡的稳定性进行了模拟和分析,并与简化毕肖普法的计算结果进行了相互验证,结果表明:FLAC 23D 是边坡稳定性分析的一种有效工具,在考虑8°地震烈度的条件下,该边坡的设计坡率合理,边坡处于稳定状态。

关键词:土质边坡;稳定性分析;显式有限差分法;FLAC 23D 中图分类号:TU41316+2 文献标识码:BStability Analysis of Soil Slope by Using FLAC 23DW A N G Xiang 2dong ,W EN Jiang 2quan(School of Civil Engineering ,Southwest Jiaotong University ,Chengdu 610031China ) Abstract :This article briefly introduces the basic principles of the FLAC 23D ,by which the stabili 2ty of liangmiansi (FD2)soil slope of the east branch highway in Kunming is analyzed ,and mutually verified with the results obtained from the simplified Bishop approach.The results show that the FLAC 23D is a valid tool for the stability analysis.The design of the slope is reasonable and the slope is in stable shape for eight degree earthquake intensity.K ey w ords :soil slope ;stability analysis ;explicit finite difference method ;FLAC 23D 土质边坡开挖引起的土体卸荷,将导致边坡变形和应力的重分布,对土坡的稳定性产生影响。

abaqus、flac3d 对不同工况隧道开挖的分析过程-岩土工程数值方法

abaqus、flac3d 对不同工况隧道开挖的分析过程-岩土工程数值方法

目录1 工程概况 (2)2 模拟要求 (2)2.1 工况要求 (2)2.2 成果要求 (2)3 工况1(abaqus) (2)3.1 数值模拟介绍 (2)3.2 模拟分析 (3)3.2.1 模型建立 (3)3.2.2 材料赋予 (3)3.2.3 分析步设置 (4)3.2.4 建立相互作用 (5)3.2.5 施加荷载和边界条件 (5)3.2.5.2 施加荷载 (6)3.2.6 网格划分 (7)3.2.7 模型求解 (8)4 工况二(abaqus) (13)4.1 位移分析 (13)4.2 应力分析 (14)4.3 两种工况塑性区分析 (15)5 Flac3D-6.0 模拟分析(工况一) (16)5.1 Flac3d 简介 (16)5.2 建模 (16)5.3 位移分析 (17)5.4 应力分析 (18)6 总结与感想 (19)附件(flac3d 命令代码) (20)参考文献............................................................................................................................... 错误!未定义书签。

1 工程概况某建设工程,地下岩石隧道洞顶位于地表面下9m,洞跨16m,洞的直墙高6m,洞拱为圆弧,拱矢高6m。

据工程勘察报告,场地围岩等级为IV级。

隧道上方偏离洞中轴线6.50m 的地面拟建一建筑物(40层),建筑物荷载简化为均匀分布于15m范围内,每层荷载考虑为20kPa,直接作用于地表。

2 模拟要求2.1 工况要求工况一:先有地面建筑,后修隧道。

模拟可以参考以下步骤进行:第一步:模拟初始地应力场、位移场;第二步:修建地面建筑,施加建筑物荷载;第三步:模拟开挖地下隧道(可全断面开挖,也可分部开挖),也可考虑衬砌支护(厚30cm 的C30混凝土衬砌)。

工况二:先有隧道,后修地面建筑。

FLAC数值模拟介绍

FLAC数值模拟介绍

FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序, 该程序能较好地模拟地质材料在达到强度极限或屈服极限时, 发生的破坏或塑性流动的力学行为, 特别适用于分析渐进破坏和失稳以及模拟大变形.FLAC3D分析的使用领域根据手册总结如下:(1) 承受荷载能力与变形分析: 用于边坡稳定和基础设计(2) 渐进破坏与坍塌反演: 用于硬岩采矿和隧道设计(3) 断层构造的影响研究: 用于采矿设计(4) 施加于地质体锚索支护所提供的支护力研究: 岩锚和土钉的设计(5) 排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研究: 挡土墙结构的地下水流动, 和土体固结研究(6) 粘性材料的蠕变特性: 用于碳酸钾盐矿设计(7) 陡滑面地质结构的动态加载: 用于地震工程和矿山岩爆研究(8) 爆炸荷载和振动的动态响应: 用于隧道开挖和采矿活动(9) 结构的地震感应: 用于土坝设计(10) 由于温度诱发荷载所导致的变形和结构的不稳定(11) 大变形材料分析: 用于研究粮仓谷物流动和放矿的矿石流动10种材料本构模型Flac3D中为岩土工程问题的求解开发了特有的本构模型, 总共包含了10种材料模型:(1) 开挖模型null(2) 3个弹性模型(各向同性, 横观各向同性和正交各向同性弹性模型)(3) 6个塑性模型(Drucker-Prager模型、Morh-Coulomb模型、应变硬化/软化模型、遍布节理模型、双线性应变硬化/软化遍布节理模型和修正的cam粘土模型).Flac3D网格中的每个区域可以给以不同的材料模型, 并且还允许指定材料参数的统计分布和变化梯度. 还包含了节理单元, 也称为界面单元, 能够模拟两种或多种材料界面不同材料性质的间断特性. 节理允许发生滑动或分离, 因此可以用来模拟岩体中的断层、节理或摩擦边界.FLAC3D中的网格生成器gen, 通过匹配、连接由网格生成器生成局部网格, 能够方便地生成所需要的三维结构网格. 还可以自动产生交岔结构网格(比如说相交的巷道), 三维网格由整体坐标系x, y, z系统所确定, 这就提供了比较灵活的产生和定义三维空间参数.五种计算模式(l) 静力模式:这是FLAC-3D默认模式, 通过动态松弛方法得静态解.(2) 动力模式:用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件, 边界可以固定边界和自由边界. 动力计算可以与渗流问题相藕合.(3) 蠕变模式:有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型. (4) 渗流模式:可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合. 渗流服从各向同性达西定律, 流体和孔隙介质均被看作可变形体. 考虑非稳定流, 将稳定流看作是非稳定流的特例. 边界条件可以是固定孔隙压力或恒定流, 可以模拟水源或深井. 渗流计算可以与静力、动力或温度计算耦合, 也可以单独计算.(5) 温度模式:可以模拟材料中的瞬态热传导以及温度应力. 温度计算可以与静力、动力或渗流计算藕合, 也可单独计算.模拟多种结构形式(l) 对于通常的岩体、土体或其他材料实体, 用八节点六面体单元模拟. (2) FIAC-3D包含有四种结构单元:梁单元、锚单元、桩单元、壳单元. 可用来模拟岩土工程中的人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩等.(3) FLAC-3D的网格中可以有界面, 这种界面将计算网格分割为若干部分, 界面两边的网格可以分离, 也可以发生滑动, 因此, 界面可以模拟节理、断层或虚拟的物理边界.有多种边界条件边界方位可以任意变化, 边界条件可以是速度边界、应力边界, 单元部可以给定初始应力, 节点可以给定初始位移、速度等, 还可以给定地下水位以计算有效应力、所有给定量都可以具有空间梯度分布.FLAC-3D嵌语言FISHFLAC-3D具有强大嵌语言FISH, 使得用户可以定义新的变量或函数, 以适应用户的特殊需要, 例如, 利用HSH做以下事情:(l) 用户可以自定义材料的空间分布规律, 如非线性分布等.(2) 用户可以定义变量, 追踪其变化规律并绘图表示或打印输出.(3) 用户可以自己设计FLAC-3D部没有的单元形态.(4) 在数值试验中可以进行伺服控制.(5) 用户可以指定特殊的边界条件.(6) 自动进行参数分析(7) 利用FLAC-3D部定义的Fish变量或函数, 用户可以获得计算过程中节点、单元参数, 如坐标、位移、速度、材料参数、应力、应变、不平衡力等.FLAC-3D前后处理功能FLAC-3D具有强大的自动三维网格生成器, 部定义了多种单元形态, 用户还可以利用FISH自定义单元形态, 通过组合基本单元, 可以生成非常复杂的三维网格, 比如交叉隧洞等.在计算过程中的任何时刻用户都可以用高分辨率的彩色或灰度图或数据文件输出结果, 以对结果进行实时分析, 图形可以表示网格、结构以及有关变量的等值线图、矢量图、曲线图等, 可以给出计算域的任意截面上的变量图或等直线图, 计算域可以旋转以从不同的角度观测计算结果.FLAC3D计算分析一般步骤与大多数程序采用数据输入方式不同, FLAC采用的是命令驱动方式. 命令字控制着程序的运行. 在必要时, 尤其是绘图, 还可以启动FLAc用户交互式图形界面. 为了建立FLAC计算模型, 必须进行以下三个方面的工作:(1) 有限差分网格(2) 本构特性与材料性质(3) 边界条件与初始条件完成上述工作后, 可以获得模型的初始平衡状态, 也就是模拟开挖前的原岩应力状态. 然后, 进行工程开挖或改变边界条件来进行工程的响应分析, 类似于FLAC的显式有限差分程序的问题求解. 与传统的隐式求解程序不同, FLAC采用一种显式的时间步来求解代数方程. 进行一系列计算步后达到问题的解.在FLAC中, 达到问题所需的计算步能够通过程序或用户加以控制, 但是, 用户必须确定计算步是否已经达到问题的最终的解.后处理(一) 用tecplot绘制曲线(1) 第一主应力(2) xdisp、ydisp、zdisp、disp(二) 用excel做曲线隧道(1) 做地表沉降槽(zdisp)(2) 地表横向位移(xdisp)(3) 隧道中线竖向沉降曲线(zdisp)(4) 提取位移矢量图,(5) 显示初期支护结构力(6) 显示state(找塑性区)基坑(1) 做地表沉降槽(zdisp)(2) 提取位移矢量图,(3) 显示初期支护结构力(4) 显示state(找塑性区)边坡(1) 做安全系数和应变图模型最优化用FLAC3D解决问题时, 为了得到最有效的分析使模型最优化是很重要的.(1) 检查模型运行时间:一个FLAC3D例子的运行时间是区域数的4/3倍. 这个规则适用于平衡条件下的弹性问题. 对于塑性问题, 运行时间会有点改变, 但是不会很大, 但是如果发生塑性流动, 这个时间将会大的多. 对一个具体模型检查自己机子的计算速度很重要. 一个简单的方法就是运行基准测试. 然后基于区域数的改变, 用这个速度评估具体模型的计算速度.(2) 影响运行时间的因素:FLAC3D有时会需要较长时间才可以收敛主要发生在下列情况下:(a)材料本身刚度变异或材料与结构及接触面之间的刚度差异很大.(b)划分的区域尺寸相差很大. 这些尺寸差异越大编码就越无效. 在做详细分析前应该研究刚度差异的影响. 例如, 一个荷载作用下的刚性板, 可以用一系列顶点固定的网格代替, 并施以等速度. (记住FIX命令确定速度, 而不是位移. )地下水的出现将使体积模量发生明显的增加(流体-固体相互作用).(3) 考虑网格划分的密度:FLAC3D使用常应变单元. 如果应力/应变曲线倾斜度比较高, 那么你将需要许多区域来代表多变的分区. 通过运行划分密度不同的同一个问题来检查影响. FLAC3D应用常应变区域, 因为当用多的少节点单元与用比较少的多节点单元模拟塑性流动时相比更准确.应尽可能保持网格, 尤其是重要区域网格的统一. 避免长细比大于5:1的细长单元, 并避免单元尺寸跳跃式变化(即应使用平滑的网格). 应用GENERATE命令中的比率关键词, 使细划分区域平滑过渡到粗划分区域.(4) 自动发现平衡状态:默认情况下, 当执行SOLVE 命令时, 系统将自动发现力的平衡. 当模型中所有网格顶点中所有力的平均量级与其中最大的不平衡力的量级的比率小于1*10时, 认为达到了平衡状态. 注意一个网格顶点的力由力(例如, 由于重力)和外力(例如, 由于所加的应力边界条件)共同引起. 因为比率是没有尺寸的, 所以对于有不同的单元体系的模型, 在大多数情况下, 不平衡力和所加力比率的限制给静力平衡提供了一个精确的限制.同时还提供了其他的比率限制;可以用SET ratio 命令施加. 如果默认的比率限制不能为静力平衡提供一个足够精确的限制, 那么应考虑可供选择的比率限制. 默认的比率限制同样可用于热分析和流体分析的稳定状态求解. 对于热分析,是对不平衡热流量和所加的热流量量级进行评估, 而不是力. 对于流体分析,对不平衡流度和所加流度量级进行评估.(5) 考虑选择阻尼:对于静力分析, 默认的阻尼是局部阻尼, 对于消除大多数网格顶点的速度分量周期性为零时的动能很有效. 这是因为质量的调节过程依赖于速度的改变. 局部阻尼对于求解静力平衡是一个非常有效的计算法则且不会引入错误的阻尼力(见Cundall 1987).如果在求解最后状态, 重要区域的网格海域的速度分量不为零, 那么说明默认的阻尼对于达到平衡状态是不够的. 有另外一种形式的阻尼, 叫组合阻尼, 相比局部阻尼可以使稳定状态达到更好的收敛, 这时网格将发生明显的刚性移动. 例如, 求解轴向荷载作用下桩的承载力或模拟蠕变时都可能发生. 使用SETmechanical damp combined命令来调用组合阻尼. 组合阻尼对于减小动能方面不如局部阻尼有效, 所以应注意使系统的动力激发最小化. 可以用SETmechanical damp local命令转换到默认阻尼.(6) 检查模型反应:FLAC3D 显示了一个相试的物理系统是怎样变化的. 做一个简单的试验证明你在做你认为你在做的事情. 例如, 如果荷载和实体在几何尺寸上都是对称的, 当然反应也是对称的. 改变了模型以后, 执行几个时步(假如, 5或10步), 证明初始反应是正确的, 并且发生的位置是正确的. 对应力或位移的期望值做一个估计, 与FLAC3D 的输出结果作比较.如果你对模型施加了一个猛烈的冲击, 你将会得到猛烈的反应. 如果你对模型作了一些看起来不合理的事情, 你一定要等待奇怪的结果. 如果在分析的一个给定阶段, 得到了意外值, 那么回顾到这个阶段所用的时步.在进行模拟前很关键的是检查输出结果. 例如, 除了一个角点速度很大外, 一切都很合理, 那么在你理解原因前不要继续下去. 这种情况下, 你可能没有给定适当的网格边界.(7) 初始化变量:在模拟基坑开挖过程时, 在达到目的前通常要初始化网格顶点位移. 因为计算次序法则不要求位移, 所以可以初始化位移, 这只是由网格顶点的速度决定, 并有益于用户初始化速度却是一件难事. 如果设定网格顶点的速度为一常数, 那么这些点在设置否则前保持不变. 所以, 不要为了清除这些网格的速度而简单的初始化它们为零. . . 这将影响模拟结果. 然而, 有时设定速度为零是有用的(例如, 消除所有的动能).(8) 最小化静力分析的瞬时效应:对于连续性静力分析, 经过许多阶段逐步接近结果是很重要的. . . 即, 当问题条件突然改变时, 通过最小化瞬时波的影响, 使结果更加“静力”. 使FLAC3D 解决办法更加静态的方法有两种.(a) 当突然发生一个变化时(例如, 通过使区域值为零模拟开挖), 设定强度性能为很高的值以得到静力平衡. 然后为了确保不平衡力很低, 设定性能为真实值, 再计算, 这样, 由瞬时现象引起的失败就不会发生了.(b) 当移动材料时, 用FISH 函数或表格记录来逐步减少荷载.(9) 改变模型材料:FLAC3D 对一个模拟中所用的材料数没有限制. 这个准则已经尺寸化, 允许用户在自己所用版本的FLAC3D中最大尺寸网格的每个区域(假如设定的)使用不同的材料.(10) 运行在现场原位应力和重力作用下的问题:有很多问题在建模时需要考虑现场原位应力和重力的作用. 这种问题的一个例子是深层矿业开挖:回填. 此时大多数岩石受很高的原位应力区的影响(即, 自重应力由于网孔尺寸的限制可以忽略不计), 但是回填桩的放置使自重应力发展导致岩石在荷载作用下可能坍塌. 在这些模拟中要注意的重点(因为任何一种模拟都有重力的作用)是网格的至少三个点在空间上应固定. . . 否则, 整个网格在重力作用下将转动. 如果你曾经注意到整个网格在重力加速度矢量方向发生转动, 那么你可能忘记在空间上固定网格了.FLAC3D主要适明模拟计算地质材料和岩土上程的力学行为。

最新FLAC3D数值模拟上机报告

最新FLAC3D数值模拟上机报告

FLAC 3D数值模拟上机报告计算模型分别如图1、2、3所示,边坡倾角分别为30°、45°、60°,岩土体参数为: 密度ρ=2500 kg/m 3, 弹性模量E =1×108 Pa ,泊松比μ=0.3,抗拉强度σt =0.8×106 Pa ,内聚力C =4.2×104 Pa ,摩擦角φ=17°,膨胀角Δ=20°试用FLAC 3D 软件建立单位厚度的计算模型,并进行网格剖分,参数赋值,设定合理的边界条件,利用FLAC 3D 软件分别计算不同坡角情况下边坡的稳定性,并进行结果分析。

附 换算公式:1 kN/m 3= 100 kg/m 3剪切弹性模量:881100.38510()2(1)2(10.3)E G Pa μ⨯===⨯+⨯+ 体积弹性模量:881100.83310()3(12)3(120.3)E K Pa μ⨯===⨯-⨯-⨯ 一 坡度为30°的情况4025.36604010030°图1 倾角为30°的边坡(单位:m)算例分析: 命令流: new;========================================================== 建立网格模型gen zone brick p0 0 0 0 p1 100 0 0 p2 0 2 0 p3 0 0 40 size 50 1 10gen zone brick p0 40 0 40 p1 100 0 40 p2 40 2 40 p3 74.64 0 60 p4 100 2 40 & p5 74.64 2 60 p6 100 0 60 p7 100 2 60 size 30 1 10;=========================================================;设置边界条件fix x y z range z -0.1 0.1fix x range x 99.9 100.1fix x range x -0.1 0.1fix y;======================;初始地应力的生成model elasprop density 2000 bulk 3e9 shear 1e9set gravity 0 0 -10solveini xdisp 0 ydisp 0 zdisp 0ini xvel 0 yvel 0 zvel 0;===================================;安全系数求解model mohrprop density 2500.0 bulk 8.3E7 shear 3.8E7 coh 42000.0 tens 0.8E6 friction 17 dilation 20 solve fos file slope3dfos1.sav associated安全系数:最终计算边坡稳定性系数为1.453图1 网格剖分图图2 速度矢量图图3 速度等值线图图4 位移等值线图图5 剪应变增量云图二 坡度为45°的情况1004060404045°图2 倾角为45°的边坡(单位:m)算例分析:命令流: new;========================================================== 建立网格模型gen zone brick p0 0 0 0 p1 100 0 0 p2 0 2 0 p3 0 0 40 size 50 1 10gen zone brick p0 40 0 40 p1 100 0 40 p2 40 2 40 p3 60 0 60 p4 100 2 40 &p5 60 2 60 p6 100 0 60 p7 100 2 60 size 30 1 10;========================================================= ;设置边界条件fix x y z range z -0.1 0.1 fix x range x 99.9 100.1 fix x range x -0.1 0.1 fix y;====================== ;初始地应力的生成 model elasprop density 2000 bulk 3e9 shear 1e9 set gravity 0 0 -10 solveini xdisp 0 ydisp 0 zdisp 0 ini xvel 0 yvel 0 zvel 0;=================================== ;安全系数求解 model mohrprop density 2500.0 bulk 8.3E7 shear 3.8E7 coh 42000.0 tens 0.8E6 friction 17 dilation 20 solve fos file slope3dfos1.sav associated 安全系数:最终边坡的稳定性系数为1.14图1 网格剖分图 图2 速度矢量图图3 速度等值线图 图4 位移等值线图图5 剪应变增量云图三 坡度为60°的情况100406048.454060°图3 倾角为60°的边坡(单位:m)算例分析:命令流: new;========================================================== 建立网格模型gen zone brick p0 0 0 0 p1 100 0 0 p2 0 2 0 p3 0 0 40 size 50 1 10gen zone brick p0 40 0 40 p1 100 0 40 p2 40 2 40 p3 51.55 0 60 p4 100 2 40 & p5 51.55 2 60 p6 100 0 60 p7 100 2 60 size 30 1 10;========================================================= ;设置边界条件fix x y z range z -0.1 0.1 fix x range x 99.9 100.1 fix x range x -0.1 0.1 fix y;====================== ;初始地应力的生成 model elasprop density 2000 bulk 3e9 shear 1e9 set gravity 0 0 -10 solveini xdisp 0 ydisp 0 zdisp 0 ini xvel 0 yvel 0 zvel 0;=================================== ;安全系数求解 model mohrprop density 2500.0 bulk 8.3E7 shear 3.8E7 coh 42000.0 tens 0.8E6 friction 17 dilation 20 solve fos file slope3dfos1.sav associated 安全系数:最终边坡的稳定性系数为0.928图1 网格剖分图图2 速度矢量图图3 速度等值线图图4 位移等值线图图5 剪应变增量云图四 坡度为60°的边坡开挖情况开挖后坡面原始坡面345°45°100406048.454060°算例分析:命令流: new;========================================================== 建立网格模型gen zone brick p0 0 0 0 p1 100 0 0 p2 0 2 0 p3 0 0 40 size 50 1 10gen zone brick p0 40 0 40 p1 100 0 40 p2 40 2 40 p3 50 0 50 p4 100 2 40 p5 50 2 50 p6 100 &0 50 p7 100 2 50 size 30 1 10gen zone brick p0 53 0 50 p1 100 0 50 p2 53 2 50 p3 63 0 60 p4 100 2 50 p5 63 2 60 p6 100& 0 60 p7 100 2 60 size 15 1 10gen zone brick p0 45.77 0 50 p1 53 0 50 p2 45.77 2 50 p3 51.55 0 60 p4 53 2 50 p5 51.55 2 &60 p6 63 0 60 p7 63 2 60 size 15 1 10 group exc1gen zone wedge p0 40 0 40 p1 50 0 50 p2 40 2 40 p3 45.77 0 50 p4 50 2 50 p5 45.77 2 50 &size 30 1 10 group exc2group section1 range y 0 2 group exc1 group section2 range y 0 2 group exc2 attach face;========================================================= ;定义本构模型 mod elaspro density 2500 bulk 0.83e8 she 0.38e8;================================================================ ;设置边界条件fix x y z range z -.1 .1 fix x range x 99.9 100.1 fix x range x -0.1 0.1fix y;======================;设置重力加速度set gravity 0 0 -10.0;===================================;设定初始条件ini xdisp 0 ydisp 0 zdisp 0ini xvel 0 yvel 0 zvel 0;===================================;开挖mod mohrpro density 2500 bulk 0.83e8 she 0.38e8 fric 17 coh 4.2e4 ten 0.8e6 dila 20mod null range group section1mod null range group section2solve fos file slope3dfos1.sav associated安全系数:最终边坡的稳定性系数为1.36图1网格剖分图图2 速度矢量图图3 速度等值线图 图4 位移等值线图图5剪应变增量云图。

利用FLAC 3D 对基坑支护数值模拟分析

利用FLAC 3D 对基坑支护数值模拟分析

c m,最 大位移为 4 5 a m。采用土钉墙 支护后 ,边墙 的位 移为 2~ 4 a m,最 大位 移 为 6 c m。对 比表 明, 土钉墙 支护 能够有 效的阻止基坑 的 变形 ,维持 基坑的稳定。 同时 ,根据 土钉 的轴 力分布特征 ,分析基
坑在 不采取 支护措 施的情况下将发生滑移破坏 。
d a t i o n p i t i n s o m e d i s t r i c t ,t h e a u t h o r s p r o j e c t e d t h e s o i l n a i l e d w a l l s u p p o r t i n g d e s i g n a n d c a r r i e d o u t n u me i r c a l
第3 2卷
第 4期

界 地

V0 l _ 3 2 No . 4 De C .2 01 3
2 0 1 3年 l 2月
GL OB AL GEOL OGY
文 章 编 号 :1 0 0 4— 5 5 8 9( 2 0 1 3 )0 4— 0 8 5 7— 0 5
利用 F L AC 3 D对基坑 支护数值模拟分析
马 宏 ,季 聪 ,杨 瑞 刚 ,刘 录君
1 .吉林 大学 建设工程学 院,长春 1 3 0 0 2 1 ;
2 .中水东北勘察设计研究有 限责任公司 ,长春 1 3 0 0 2 1
摘要:F L A C 3 D是岩土 工程 中广泛应 用的软件 。本文 以某地 区基 坑 为背景 ,进 行土钉墙 支护设 计 ,并 利用 F L A C 3 D软件 对土钉墙 支护前后 进行 数值 模 拟。在 基 坑 开挖 完成后 ,边墙 位移 一般 为 2 0~ 4 0

FLAC3D对基坑开挖数值模拟分析

FLAC3D对基坑开挖数值模拟分析

平衡状态,此时得到的模拟计算结果见图 2 ~ 6,图 2 为
基坑 Z 方向应力云图,在模型中共分为 9 个区域,各区
域的应力值范围分别为: - 7. 3827e + 005 to - 7. 0000e
+ 005、- 7. 0000e + 005 to - 6. 0000e + 005、- 6. 0000e
536
资源环境与工程
以下取 30 m。因 此 模 型 X 方 向 长 50 m,Y 方 向 长 40 m,Z 方向长 38 m。在初始条件中,不考虑构造应 力,仅考 虑 自 重 应 力 产 生 的 初 始 应 力 场。模 型 共 有 10 500个单元,12 012 个节点( 图 1) 。
2013 年
移为 47. 35 cm,位移变形的影响范围沿基坑边缘向外约 6. 0 m。通过对位移变形矢量图及剪应变增量矢量
图分析,可知基坑边墙可能产生滑动破坏的现象。
关键词: FLAC3D; 基坑; 应力; 位移
中图分类号: TV551. 4 + 2
文献标识码: B
文章编号: 1671 - 1211( 2013) 04 - 0535 - 03
GPa,土体的体积模量 K 和剪切模量 G 与弹性模量 E 及泊松比 μ 之间的转换关系为[4]:
K
=
3(
1
E - 2μ)
( 1)
G
=
2(
E 1+
μ)
( 2)
由式( 1) 和式( 2) 计算得: 体积模量 K = 202. 90 MPa,
剪切模量 G = 110. 24 MPa。将求得的物理力学参数,
+ 005 to - 5. 0000e + 005、- 5. 0000e + 005 to -

FLAC-数值模拟分析

FLAC-数值模拟分析

1工程概况研究此段为中条山隧道K9+450~K10+560段,此处隧道最大埋深约540m,主要由太古界涑水群表壳岩组合解州片麻岩(Hgn)地层组成,构成中条山隧道分水岭北侧的主体;此段组成隧道的围岩岩性主要为变粒岩、花岗片麻岩等。

该套地层岩性复杂,组合无规律。

岩层产状整体倾向南东,倾角一般在50o~70o间变化。

在AK9+900~AK10+000段为区域性断层影响段,此断层为破碎岩石组成,将为基岩裂隙水下渗提供通道,隧道开挖必将引起涌水,同时此段围岩稍差,施工时易引起坍塌。

此段同时也是中条山北侧泉水主要涌出段,水文情况复杂。

总体评价,本段工程地质条件差。

在此处,具体运用FLAC3D进行模拟的区段均取洞身YK10+100~YK10+180段。

该区段为V级围岩区域,埋深为505~512m,为断层,附近太古界涑水群花岗片麻岩、黑云斜长片麻岩、岩石破碎。

隧道断面为SVc型,如图2-2所示。

图2-2SVc型隧道断面图隧道衬砌按新奥法原理设计,采用SVc型复合式衬砌,该衬砌适用于隧道洞身V级断层影响带及软弱破碎围岩段的初期支护及衬砌,超前支护各环采用42×4mm注浆小导管超前预加固围岩,长4.5m,环向间距35cm,搭接长度1.3m,斜插角10o~15o,每环37根;初衬以喷、锚、网为主要支护手段:钢拱架为I20a型钢,纵向间距75cm,每榀钢拱架之间采用φ22钢筋连接,环形间距1.0m;锚杆采用D25中空注浆锚杆,长3.5m,间距75cm(纵)×100cm(环),与钢拱架交错布置;喷C25早强混凝土26cm。

二次衬砌和仰拱均为C30钢筋混凝土结构,厚50cm。

1.2数值计算模型根据中条山隧道工程的实际状况,为提高计算速度,在保证计算精度的前提下,取桩号YK10+100~YK10+160段采用大型有限差分软件FLAC3D进行建模分析。

对于全断面法、预留核心土法、台阶法,由于整个隧道模型左右对称,为减少计算量,可取隧道模型的一半计算,隧道的计算模型I如图2-3所示。

复杂矿坑FLAC^(3D)三维建模及其应用

复杂矿坑FLAC^(3D)三维建模及其应用

现代矿业MODERN MINING总第625期2021年5月第5期Serial No.625May.2021复杂矿坑FLAC3D三维建模及其应用毛志远段蔚平杨强胜邱宇(中钢集团马鞍山矿山研究总院股份有限公司)摘要随着工程建设的发展以及科学技术的进步,对工程的研究由传统的二维逐渐转向三维,计算机技术的成熟为复杂地质体的三维研究提供了可能性。

通过建模软件建立矿坑三维模型,将模型导入FLAC3d可以对模型进行三维应力和变形分析。

基于CAD—3Dmine—Rhino—FLAC3d的建模思路建立复杂矿坑的三维模型,避开了FLAC3d前处理功能弱的缺点。

预计在矿坑内部充填110m高尾砂,在模拟尾砂分级加载的条件下,对矿坑进行三维应力和位移分析。

关键词FLAC3d软件三维建模应力一位移分析D0I:10.3969/j.issn.1674-6082.2021.05.026FLAC3D Three-dimensional Modeling of Complex Mine and its ApplicationMAO Zhiyuan DUAN Weiping YANG Qiangsheng QIU Yu1(Sinosteel Maanshan General Institute of Mining Research Co.,Ltd.)Abstract With the development of engineering construction and the progress of science and technol-ogy,the research on engineering has gradually shifted from the traditional two-dimensional to three-dimen­sional.The maturity of computer technology provides the possibility for the three-dimensional research of complex geological bodies.The three-dimensional model of the mine pit is established through modeling soft­ware,and the model can be imported into FLAC3D to analyze the three-dimensional stress and deformation of the model.Based on the modeling idea of CAD-3Dmine-Rhino-FLAC3D,the three-dimensional model of complex mines is established,which avoids the weak pre-processing function of FLAC3D.It is expected to fill110m high tailings in the pit,and carry out three-dimensional stress and displacement analysis of the pit under the condition of simulated tailings grading loading.Keywords FLAC3D software,three-dimensional modeling,stress-displacement analysis随着工程建设的发展以及科学技术的进步,对工程的研究由传统的二维研究逐渐向三维研究过渡°FLAC(Fast Langrangian of Continua)1]是由Itasca 提出的连续介质力学分析软件。

岩土工程软件FLAC3D的基本知识介绍

岩土工程软件FLAC3D的基本知识介绍

岩土工程软件FLAC3D的基本知识介绍[作者:ChinaMaker 转贴自:天创论坛点击数:185 更新时间:2004-9-17 文章录入:admin ]减小字体增大字体岩土工程结构的数值解是建立在满足基本方程(平衡方程、几何方程、本构方程)和边界条件下推导的。

由于基本方程和边界条件多以微分方程的形式出现,因此,将基本方程近假发改用差分方程(代数方程)表示,把求解微分方程的问题改换成求解代数方程的问题,这就是所谓的差分法。

差分法由来已久,但差分法需要求解高阶代数方程组,只有在计算机的出现,才使该法得以实施和发展。

一、FLAC3D简介FLAC3D(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存(64K),所以,程序求解的最大结点数仅限于2000个以内。

1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。

FLAC3D是一个三维有限差分程序,目前已发展到V2.1版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。

因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。

调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发变形和移动(大变形模式)。

FLAC3D采用的显式拉格朗日算法和混合-离散分区技术能够非常准确发模拟材料的塑性破坏和流动。

FLAC3D对基坑开挖数值模拟分析

FLAC3D对基坑开挖数值模拟分析

的手 段 , 在基 坑工 程 中得 到 广 泛 的 应 用 。本 文 以某 地 区基 坑 开挖 为背 景 , 运 用 有 限 差 分 法计 算 模 拟 基 坑 开 挖后 周 围土体 的变 形 和受力 情况 。为 基坑 边 墙 的稳 定 性 分析 及支 护方 式提 供依 据 … 。
② 粉质粘土 : 黄褐 色、 灰 黑 色, 可 塑 。摇 振 反 应 无, 稍有 光泽 , 干 强度 中等 , 韧 性 中等 。该 层分 布连 续 。 地层 的物 理力 学参 数见 表 1 。
A n a l y s i s o f C o n t i n u a i n 3 D i m e n s i o n s的简 写 , 是 三 维 岩 体 力学 有 限差分 计 算 机 程 序 。 由著 名 的 国 际学 者 P e —
t e r C u n d a l l 博 士 开 发 的 面 向 土木 建 筑 、 采 矿、 交通 、 水
( 2 )定义 本构 模 型 和 赋 予 材 料参 数 , 来 限 定 模 型 对 于外 界 扰动做 出的变化 规 律 ;
于基 坑 为轴对 称 图形 , 因此取基 坑 的 1 / 4建立 模 型 。
( 3 )定义边界条件 、 初始条件 , 来定义模型的初始
为了减少边界条件对计算结果的影响 , 在 x轴上 向基 坑外 取 3 0 m, 在 Y轴 上 向基 坑 外侧 取 3 1 m, 基 坑底 面
阶地 。地下水类型为第四系孔隙潜水。稳定水位埋深
为9 . 3~1 1 . 5 m。地 下水位 年变 化幅度 约为 2 . 0 m, 该
利、 地质 、 石 油及 环境 工程 的通 用软 件 系统 。可 以对 土 质、 岩 石或 其它 材料 进行 三维 岩土 工程 三 维数 值 分析 。 F L A C 3 D可 以解 决分 步 开挖 、 大 变 形 及 大应 变 、 非 线 性 和非 稳定 系统 等有 限元难 以实现 的诸 多 复杂 的 工程 问

基于FLAC_3D_的滑坡稳定性数值模拟分析

基于FLAC_3D_的滑坡稳定性数值模拟分析

近年来,各种数值模拟技术在岩土力学中有了很大的发展和广泛的应用。

然而,这些数值分析方法其理论本身以及采用的算法都有各自的局限性。

例如有限元和边界元都有小变形的假设,且需要大量的内存。

近年来发展起来的快速拉格朗日分析( Fast Lagrangian Analysis of ,简称是在较好吸取上述方法的优点和克服Continua FLAC)其缺点基础上形成的一种新型数值分析方法。

FLAC3D是美国公司为地质工程应用而开发Itasca Consulting Group, Inc.的基于拉格朗日差分法的一种三维显式有限差分程序,它不仅适宜于处理大尺度、大变形工程和地质问题,而且可以在初始模型中加入诸如断裂、节理构造等地质因素。

目前,FLAC3D软件已经广泛应用于工程地质、岩土力学以及构造地质学和矿山工程领域。

本文以三峡工程万州库区安乐寺滑坡为例,阐述了FLAC3D在滑坡稳定性流—固耦合分析中的应用。

1 FLAC3D的解析特点和计算流程解析特点1.1无论是静力还是动力问题,三维快速拉格朗日分析都利用动态的运动方程进行求解,这使得三维快速拉格朗日分析很容易模拟动态问题,如振动、失稳、大变形等。

同有限元相比,FLAC3D具有以下几个特点:()1FLAC3D基本原理类同于离散单元法,但它能像有限元法那样适用于多种材料模式与边界条件的非规则区域的连续问题求解。

()该程序采用了离散元的动态松弛法,不需要求解2大型联立方程组(刚度矩阵),便于在微机上实现。

()基于拉格朗日算法,适合模拟大变形,且能模拟3基于FLAC3D的滑坡稳定性数值模拟分析高圣益1,魏学勇2,周晃3(.长江空间信息技术工程有限公司,武汉;.中国地震局地壳应力研究所,北京;1 4300192 100085.重庆市巫山县国土资源局,重庆)3 404700摘要:在介绍FLAC3D基本特点的基础上,利用FLAC3D软件对万州安乐寺滑坡在水库不同蓄水位条件下的滑坡稳定性进行了流—固耦合模拟分析研究。

flac3d地质建模流程

flac3d地质建模流程

flac3d地质建模流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!FLAC3D 地质建模流程一、前期准备阶段。

在开展 FLAC3D 地质建模之前,要做好充分的准备工作。

基于FLAC^3D模拟验证基层结构合理性

基于FLAC^3D模拟验证基层结构合理性

基于FLAC^3D模拟验证基层结构合理性FLAC^3D是一种基于有限差分法的三维数值模拟软件,主要用于地质和岩土工程领域的数值模拟。

它能够模拟和分析地下工程的稳定性、变形和破坏过程,具有较强的计算能力和可视化功能。

在工程实践中,通过使用FLAC^3D可以对基层结构进行合理性验证,以保证工程的安全性和可靠性。

首先,基于FLAC^3D可以对基层结构的力学行为进行仿真分析。

通过建立基层结构的三维模型,可以使用FLAC^3D模拟不同荷载下的变形和应力分布情况。

通过分析仿真结果,可以了解到基层结构的受力情况,包括剪切、扭转、弯曲等力学行为,从而验证基层结构的合理性。

其次,基于FLAC^3D可以模拟基层结构在不同工况和环境下的响应。

由于FLAC^3D可以模拟不同荷载和边界条件下的工程行为,可以通过改变模型的边界条件来模拟不同的工程情况。

比如,可以模拟基层结构在静力和动力荷载作用下的响应,以及在温度变化、水位变化等环境因素下的变形和破坏情况。

通过对这些情况进行模拟,可以验证基层结构在实际工况和环境下的合理性。

此外,基于FLAC^3D可以分析基层结构的破坏机理和安全性。

FLAC^3D能够模拟基层结构在超过其承载能力时的破坏过程,包括各个部分的开裂、塌陷、位移等。

通过分析模拟结果,可以了解到基层结构的破坏机理和破坏模式,从而评估其安全性和可靠性。

如果模拟结果表明基层结构在一些工况下无法满足安全要求,可以对结构进行进一步的优化设计或加固。

综上所述,基于FLAC^3D模拟可以验证基层结构的合理性,从而保证工程的安全性和可靠性。

通过对基层结构的力学行为、响应和破坏机理的模拟分析,可以评估基层结构在不同工况和环境下的性能,并对结构进行进一步的设计和优化。

因此,FLAC^3D在基层结构合理性验证方面具有重要的应用价值。

[最新]岩土工程的数值方法-FLAC3D的应用介绍ppt版(共15页)

[最新]岩土工程的数值方法-FLAC3D的应用介绍ppt版(共15页)
3.模型边界条件和初始条件 在模型的南北边界上应用y方向上的固定位移条件,在东西边界上应
用x方向上的固定位移边界,在基底上应用固定边界。 地质资料没有提供初始的构造应力条件,因而,假定模型的初始应
力是由岩体自重引起的,可以分为有垂向和水平向初始应力
六、一些成果图像
FLAC3D 2.00
Step 19143 Model Perspective 10:38:41 Wed Nov 12 2003
X: 2.052e+002 X: 40.000
Y: 1.927e+002 Y: 0.000
Z:5.934e+002 Z:220.000
Dist:1.145e+003 Mag.: 0.8
Ang.: 22.500
Contour of SMax
Gradient Calculation -1.3757e+006 to -5.0000e+005 -5.0000e+005 to 0.0000e+000 0.0000e+000 to 5.0000e+005 5.0000e+005 to 1.0000e+006 1.0000e+006 to 1.5000e+006 1.5000e+006 to 2.0000e+006 2.0000e+006 to 2.5000e+006 2.5000e+006 to 3.0000e+006 3.0000e+006 to 3.5000e+006 3.5000e+006 to 3.5463e+006
可见,由于在模型数值模拟中的输入数据中存在着大量 的不确定性,使得希望模型可以提供设计数据(如,预期位移 等)是无益的。这时,数值模型的作用是刻画特定的实际系统 的力学机制,并由模型的力学行为来洞察和领会工程设计。

FLAC数值模拟介绍

FLAC数值模拟介绍

F L A C数值模拟介绍 Document number:NOCG-YUNOO-BUYTT-UU986-1986UTFLAC-3D(ThreeDimensionalFastLagrangianAnalysisofContinua)是美国ItascaConsultingGouplnc开发的三维快速拉格朗日分析程序,该程序能较好地模拟地质材料在达到强度极限或屈服极限时,发生的破坏或塑性流动的力学行为,特别适用于分析渐进破坏和失稳以及模拟大变形.FLAC3D分析的使用领域根据手册总结如下:(1)承受荷载能力与变形分析:用于边坡稳定和基础设计(2)渐进破坏与坍塌反演:用于硬岩采矿和隧道设计(3)断层构造的影响研究:用于采矿设计(4)施加于地质体锚索支护所提供的支护力研究:岩锚和土钉的设计(5)排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研究:挡土墙结构的地下水流动,和土体固结研究(6)粘性材料的蠕变特性:用于碳酸钾盐矿设计(7)陡滑面地质结构的动态加载:用于地震工程和矿山岩爆研究(8)爆炸荷载和振动的动态响应:用于隧道开挖和采矿活动(9)结构的地震感应:用于土坝设计(10)由于温度诱发荷载所导致的变形和结构的不稳定(11)大变形材料分析:用于研究粮仓谷物流动和放矿的矿石流动10种材料本构模型Flac3D中为岩土工程问题的求解开发了特有的本构模型,总共包含了10种材料模型:(1)开挖模型null(2)3个弹性模型(各向同性,横观各向同性和正交各向同性弹性模型)(3)6个塑性模型(Drucker-Prager模型、Morh-Coulomb模型、应变硬化/软化模型、遍布节理模型、双线性应变硬化/软化遍布节理模型和修正的cam粘土模型).Flac3D网格中的每个区域可以给以不同的材料模型,并且还允许指定材料参数的统计分布和变化梯度.还包含了节理单元,也称为界面单元,能够模拟两种或多种材料界面不同材料性质的间断特性.节理允许发生滑动或分离,因此可以用来模拟岩体中的断层、节理或摩擦边界.FLAC3D中的网格生成器gen,通过匹配、连接由网格生成器生成局部网格,能够方便地生成所需要的三维结构网格.还可以自动产生交岔结构网格(比如说相交的巷道),三维网格由整体坐标系x,y,z系统所确定,这就提供了比较灵活的产生和定义三维空间参数.五种计算模式(l)静力模式:这是FLAC-3D默认模式,通过动态松弛方法得静态解.(2)动力模式:用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件,边界可以固定边界和自由边界.动力计算可以与渗流问题相藕合. (3)蠕变模式:有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型. (4)渗流模式:可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合.渗流服从各向同性达西定律,流体和孔隙介质均被看作可变形体.考虑非稳定流,将稳定流看作是非稳定流的特例.边界条件可以是固定孔隙压力或恒定流,可以模拟水源或深井.渗流计算可以与静力、动力或温度计算耦合,也可以单独计算.(5)温度模式:可以模拟材料中的瞬态热传导以及温度应力.温度计算可以与静力、动力或渗流计算藕合,也可单独计算.模拟多种结构形式(l)对于通常的岩体、土体或其他材料实体,用八节点六面体单元模拟.(2)FIAC-3D包含有四种结构单元:梁单元、锚单元、桩单元、壳单元.可用来模拟岩土工程中的人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩等.(3)FLAC-3D的网格中可以有界面,这种界面将计算网格分割为若干部分,界面两边的网格可以分离,也可以发生滑动,因此,界面可以模拟节理、断层或虚拟的物理边界.有多种边界条件边界方位可以任意变化,边界条件可以是速度边界、应力边界,单元内部可以给定初始应力,节点可以给定初始位移、速度等,还可以给定地下水位以计算有效应力、所有给定量都可以具有空间梯度分布.FLAC-3D内嵌语言FISHFLAC-3D具有强大内嵌语言FISH,使得用户可以定义新的变量或函数,以适应用户的特殊需要,例如,利用HSH做以下事情:(l)用户可以自定义材料的空间分布规律,如非线性分布等.(2)用户可以定义变量,追踪其变化规律并绘图表示或打印输出.(3)用户可以自己设计FLAC-3D内部没有的单元形态.(4)在数值试验中可以进行伺服控制.(5)用户可以指定特殊的边界条件.(6)自动进行参数分析(7)利用FLAC-3D内部定义的Fish变量或函数,用户可以获得计算过程中节点、单元参数,如坐标、位移、速度、材料参数、应力、应变、不平衡力等.FLAC-3D前后处理功能FLAC-3D具有强大的自动三维网格生成器,内部定义了多种单元形态,用户还可以利用FISH自定义单元形态,通过组合基本单元,可以生成非常复杂的三维网格,比如交叉隧洞等.在计算过程中的任何时刻用户都可以用高分辨率的彩色或灰度图或数据文件输出结果,以对结果进行实时分析,图形可以表示网格、结构以及有关变量的等值线图、矢量图、曲线图等,可以给出计算域的任意截面上的变量图或等直线图,计算域可以旋转以从不同的角度观测计算结果.FLAC3D计算分析一般步骤与大多数程序采用数据输入方式不同,FLAC采用的是命令驱动方式.命令字控制着程序的运行.在必要时,尤其是绘图,还可以启动FLAc用户交互式图形界面.为了建立FLAC计算模型,必须进行以下三个方面的工作:(1)有限差分网格(2)本构特性与材料性质(3)边界条件与初始条件完成上述工作后,可以获得模型的初始平衡状态,也就是模拟开挖前的原岩应力状态.然后,进行工程开挖或改变边界条件来进行工程的响应分析,类似于FLAC 的显式有限差分程序的问题求解.与传统的隐式求解程序不同,FLAC采用一种显式的时间步来求解代数方程.进行一系列计算步后达到问题的解.在FLAC中,达到问题所需的计算步能够通过程序或用户加以控制,但是,用户必须确定计算步是否已经达到问题的最终的解.后处理(一)用tecplot绘制曲线(1)第一主应力(2)xdisp、ydisp、zdisp、disp(二)用excel做曲线隧道(1)做地表沉降槽(zdisp)(2)地表横向位移(xdisp)(3)隧道中线竖向沉降曲线(zdisp)(4)提取位移矢量图,(5)显示初期支护结构内力(6)显示state(找塑性区)基坑(1)做地表沉降槽(zdisp)(2)提取位移矢量图,(3)显示初期支护结构内力(4)显示state(找塑性区)边坡(1)做安全系数和应变图模型最优化用FLAC3D解决问题时,为了得到最有效的分析使模型最优化是很重要的.(1)检查模型运行时间:一个FLAC3D例子的运行时间是区域数的4/3倍.这个规则适用于平衡条件下的弹性问题.对于塑性问题,运行时间会有点改变,但是不会很大,但是如果发生塑性流动,这个时间将会大的多.对一个具体模型检查自己机子的计算速度很重要.一个简单的方法就是运行基准测试.然后基于区域数的改变,用这个速度评估具体模型的计算速度.(2)影响运行时间的因素:FLAC3D有时会需要较长时间才可以收敛主要发生在下列情况下:(a)材料本身刚度变异或材料与结构及接触面之间的刚度差异很大.(b)划分的区域尺寸相差很大.这些尺寸差异越大编码就越无效.在做详细分析前应该研究刚度差异的影响.例如,一个荷载作用下的刚性板,可以用一系列顶点固定的网格代替,并施以等速度.(记住FIX命令确定速度,而不是位移.)地下水的出现将使体积模量发生明显的增加(流体-固体相互作用).(3)考虑网格划分的密度:FLAC3D使用常应变单元.如果应力/应变曲线倾斜度比较高,那么你将需要许多区域来代表多变的分区.通过运行划分密度不同的同一个问题来检查影响.FLAC3D应用常应变区域,因为当用多的少节点单元与用比较少的多节点单元模拟塑性流动时相比更准确.应尽可能保持网格,尤其是重要区域网格的统一.避免长细比大于5:1的细长单元,并避免单元尺寸跳跃式变化(即应使用平滑的网格).应用GENERATE命令中的比率关键词,使细划分区域平滑过渡到粗划分区域.(4)自动发现平衡状态:默认情况下,当执行SOLVE命令时,系统将自动发现力的平衡.当模型中所有网格顶点中所有力的平均量级与其中最大的不平衡力的量级的比率小于1*10时,认为达到了平衡状态.注意一个网格顶点的力由内力(例如,由于重力)和外力(例如,由于所加的应力边界条件)共同引起.因为比率是没有尺寸的,所以对于有不同的单元体系的模型,在大多数情况下,不平衡力和所加力比率的限制给静力平衡提供了一个精确的限制.同时还提供了其他的比率限制;可以用SETratio命令施加.如果默认的比率限制不能为静力平衡提供一个足够精确的限制,那么应考虑可供选择的比率限制. 默认的比率限制同样可用于热分析和流体分析的稳定状态求解.对于热分析,是对不平衡热流量和所加的热流量量级进行评估,而不是力.对于流体分析,对不平衡流度和所加流度量级进行评估.(5)考虑选择阻尼:对于静力分析,默认的阻尼是局部阻尼,对于消除大多数网格顶点的速度分量周期性为零时的动能很有效.这是因为质量的调节过程依赖于速度的改变.局部阻尼对于求解静力平衡是一个非常有效的计算法则且不会引入错误的阻尼力(见Cundall1987).如果在求解最后状态,重要区域的网格海域的速度分量不为零,那么说明默认的阻尼对于达到平衡状态是不够的.有另外一种形式的阻尼,叫组合阻尼,相比局部阻尼可以使稳定状态达到更好的收敛,这时网格将发生明显的刚性移动.例如,求解轴向荷载作用下桩的承载力或模拟蠕变时都可能发生.使用SETmechanicaldampcombined命令来调用组合阻尼.组合阻尼对于减小动能方面不如局部阻尼有效,所以应注意使系统的动力激发最小化.可以用SETmechanicaldamplocal命令转换到默认阻尼.(6)检查模型反应:FLAC3D显示了一个相试的物理系统是怎样变化的.做一个简单的试验证明你在做你认为你在做的事情.例如,如果荷载和实体在几何尺寸上都是对称的,当然反应也是对称的.改变了模型以后,执行几个时步(假如,5或10步),证明初始反应是正确的,并且发生的位置是正确的.对应力或位移的期望值做一个估计,与FLAC3D的输出结果作比较.如果你对模型施加了一个猛烈的冲击,你将会得到猛烈的反应.如果你对模型作了一些看起来不合理的事情,你一定要等待奇怪的结果.如果在分析的一个给定阶段,得到了意外值,那么回顾到这个阶段所用的时步.在进行模拟前很关键的是检查输出结果.例如,除了一个角点速度很大外,一切都很合理,那么在你理解原因前不要继续下去.这种情况下,你可能没有给定适当的网格边界.(7)初始化变量:在模拟基坑开挖过程时,在达到目的前通常要初始化网格顶点位移.因为计算次序法则不要求位移,所以可以初始化位移,这只是由网格顶点的速度决定,并有益于用户初始化速度却是一件难事.如果设定网格顶点的速度为一常数,那么这些点在设置否则前保持不变.所以,不要为了清除这些网格的速度而简单的初始化它们为零...这将影响模拟结果.然而,有时设定速度为零是有用的(例如,消除所有的动能).(8)最小化静力分析的瞬时效应:对于连续性静力分析,经过许多阶段逐步接近结果是很重要的...即,当问题条件突然改变时,通过最小化瞬时波的影响,使结果更加“静力”.使FLAC3D解决办法更加静态的方法有两种.(a)当突然发生一个变化时(例如,通过使区域值为零模拟开挖),设定强度性能为很高的值以得到静力平衡.然后为了确保不平衡力很低,设定性能为真实值,再计算,这样,由瞬时现象引起的失败就不会发生了.(b)当移动材料时,用FISH函数或表格记录来逐步减少荷载.(9)改变模型材料:FLAC3D对一个模拟中所用的材料数没有限制.这个准则已经尺寸化,允许用户在自己所用版本的FLAC3D中最大尺寸网格的每个区域(假如设定的)使用不同的材料.(10)运行在现场原位应力和重力作用下的问题:有很多问题在建模时需要考虑现场原位应力和重力的作用.这种问题的一个例子是深层矿业开挖:回填.此时大多数岩石受很高的原位应力区的影响(即,自重应力由于网孔尺寸的限制可以忽略不计),但是回填桩的放置使自重应力发展导致岩石在荷载作用下可能坍塌.在这些模拟中要注意的重点(因为任何一种模拟都有重力的作用)是网格的至少三个点在空间上应固定...否则,整个网格在重力作用下将转动.如果你曾经注意到整个网格在重力加速度矢量方向发生转动,那么你可能忘记在空间上固定网格了.FLAC3D主要适明模拟计算地质材料和岩土上程的力学行为。

第四章 FLAC3D数值模拟

第四章 FLAC3D数值模拟

第四章FLAC3D数值模拟4.1 FLAC3D数值分析软件介绍4.2 模型建立与运行4.2.1 建立模型4.2.2 各工况的数值模拟(1)(2)(3)4.3 水平荷载下刚性单桩工作性状分析4.4 水平荷载下带帽刚性桩工作性状分析4.5 水平荷载下带帽刚性桩复合地基工作性状分析4.5.1 桩长、桩径及长径比、桩帽大小、褥垫层厚度带帽刚性桩复合地基应力场和位移场的影响4.5.2 各计算参数的敏感性分析注:本章与第三章要相对应,分三类(刚性单桩、带帽刚性桩、带帽刚性桩复合地基),每一类又有多少工况,依据是什么?第四章FLAC3D数值模拟4.1 FLAC3D数值分析软件介绍自R.W.Clough 1965年首次将有限元引入土石坝的稳定性分析以来,数值模拟技术在岩土工程领域获得了巨大的进步,并且成功的解决列入许多重大的工程问题。

近代个人电脑的出现以及其计算能力的飞速发展,使得分析人员在室内进行岩土工程数值模拟成为可能,也使得数值模拟技术逐渐成为岩土工程研究和设计的必不可少的方法之一。

数值模拟的优势在于有效的延伸和扩展了分析人员的认知范围,为分析人员洞悉岩土体内部的破坏机理提供了强有力的可视化工具。

因此,岩土工程数值模拟软件必须做到专业性、可视化和完善的信息输出能力,才能更方便的帮助分析人员研究问题。

FLAC3D等软件的出现是数值模拟工程发展的一个里程碑。

FLAC3D软件是由Itasca公司研发推出的一款数值分析软件,其界面简单明了,特点鲜明,使用特征和计算特征别具一格,因此在岩土工程中应用广泛,并享有盛誉。

FLAC3D是一个三维有限差分程序,它是二维有限差分程序FLAC2D的扩展,能够进行土质、岩石及其他材料的三维结构受力特性模拟和塑性流动分析。

FLAC3D可对分析的单元进行线性或非线性本构模型的定义,当材料发生屈服流动后,网格能够相应的发生变形和移动(大变形模式)。

其采用了显示拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。

FLAC3D基础介绍--FLAC3D在岩土工程中的应用

FLAC3D基础介绍--FLAC3D在岩土工程中的应用
安全系数计算均匀各向同性的线形本构关系均匀各向同性的线形本构关系均匀各向同性的线形本构关系均匀各向同性的线形本构关系线弹性模型线弹性模型线弹性模型线弹性模型孔洞开挖后续施工材料如回填孔洞开挖后续施工材料如回填孔洞开挖后续施工材料如回填孔洞开挖后续施工材料如回填空空空空空模型空模型空模型空模型实际应用实际应用实际应用实际应用材料特性材料特性材料特性材料特性模型模型模型模型横观各向同性横观各向同性横观各向同性正交各向同性正交各向同性正交各向同性低于强度极限的人工材料如钢低于强度极限的人工材料如钢低于强度极限的人工材料如钢geohohaigeohohai1774岩石岩石岩石岩石各向同性的岩石材料各向同性的岩石材料各向同性的岩石材料各向同性的岩石材料胡克布朗模型胡克布朗模型胡克布朗模型胡克布朗模型粘土粘土粘土粘土变形和抗剪强度是体变的函数变形和抗剪强度是体变的函数变形和抗剪强度是体变的函数变形和抗剪强度是体变的函数修正剑桥模型修正剑桥模型修正剑桥模型修正剑桥模型轻胶结的粒状材料在压力作用下导致永久体积减小永久体积减小永久体积减小永久体积减小双屈服面塑性模型双屈服面塑性模型双屈服面塑性模型双屈服面塑性模型层状材料破坏后研究层状材料破坏后研究层状材料破坏后研究层状材料破坏后研究具有非线性材料硬化或软化的层状材料具有非线性材料硬化或软化的层状材料具有非线性材料硬化或软化的层状材料具有非线性材料硬化或软化的层状材料双线性应变硬化软化遍布解理模型布解理模型布解理模型布解理模型松散沉积地层中的开挖松散沉积地层中的开挖松散沉积地层中的开挖松散沉积地层中的开挖具有强度各向异性的层状材料即板岩具有强度各向异性的层状材料即板岩具有强度各向异性的层状材料即板岩具有强度各向异性的层状材料即板岩遍布解理模型遍布解理模型遍布解理模型遍布解理模型破坏后研究失稳过程立柱屈服顶板崩落顶板崩落顶板崩落顶板崩落存在非线性硬化或软化的粒状材料存在非线性硬化或软化的粒状材料存在非线性硬化或软化的粒状材料存在非线性硬化或软化的粒状材料应变硬化软化摩尔库仑模型模型模型模型岩土力学通用模型边坡稳定性分析地下开挖析地下开挖析地下开挖析地下开挖松散或胶结的粒状材料

工程地质数值法

工程地质数值法

某路基工程施工过程数值模拟摘要本文首先对FLAC3D软件进行了介绍,简明阐述了其特点、应用范围及不足;然后结合具体路堤工程,采用FLAC3D软件对施工过程进行了模拟,生成了初始竖向和水平应力云图、第一次填筑及填筑结束时的沉降云图及水平位移云图;最后生成了路基中心点和坡脚节点的沉降曲线。

关键词:FLAC3D;数值模拟;应力云图;沉降云图;位移云图1 FLAC3D的功能与特性自R.W.Clough 1965年首次将有限元引入土石坝的稳定性分析以来,数值模拟技术在岩土工程领域获得了巨大的进步,并成功解决了许多重大工程问题。

特别是个人电脑的出现及其计算性能的不断提高,使得分析人员在室内进行岩土工程数值模拟成为可能,也使得数值模拟技术逐渐成为岩土工程研究和设计的主流方法之一。

数值模拟技术的优势在于有效延伸和扩展了分析人员的认知范围,为分析人员洞悉岩体、土体内部的破坏机理提供了强有力的可视化手段。

FLAC系列软件的出现,为岩土工程研究工作者提供了一款功能强大的数值模拟工具。

1.1 FLAC3D主要特点FLAC(Fast Lagrangian Analysis of Continua)是由Itasca公司研发推出的连续介质力学分析,是该公司旗下最知名的软件系统之一,FLAC目前已在全球七十多个国家得到广泛应用,在国际土木工程(尤其是岩土工程)学术界和工业界享有盛誉。

FLAC3D界面简洁明了,特点鲜明。

其使用特征主要表现为:命令驱动模式、专一性、开放性。

作为有限差分软件,相对于其他有限元软件,在算法上,FLAC3D 有以下几个优点:采用“混合离散法”来模拟材料的塑性破坏和塑性流动,比有限元中通常采用的“离散集成法”更准确、合理;即使模拟静态系统,也采用动态运动方程进行求解,这使得FLAC3D模拟物理上的不稳定过程不存在数值上的障碍;采用显示差分法求解微分方程。

采用FLAC3D进行数值模拟时,必须指定有限差分网格、本构关系和材料特性、边界和初始条件,这是FLAC3D求解的一般流程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《工程地质数值法》课程论文
论文题目:水窖开挖工程模拟
专业方向:建筑与土木工程
姓名:
学号:
2015年9月1日
1. 工程概况
在地面上开挖一个尺寸为2m ×4m ×5m 的存水地窖,其横截面图如图1。

要求分析开挖后土体受力情况。

图1 睡觉开挖横截面图
2. 分析目的
利用有限单元法分析得出梁以下各个单元不同受力状况,计算出梁下应力分布状况。

3. 计算参数
将地下6m ×8m ×8m 的土体作为计算范围,水窖尺寸为2m ×4m ×5m ,G=100MPa ,3m kg 2000-∙=ρ,35.0=ν。

4. 有限元模型
计算模型(见图)
建立一个6m×8m×8m,的立方体模型,将整个水窖包含其中,然后取其中一半进行开挖模拟,分析开挖后应力应变及位移变化情况。

施工过程中在底部位置监测开挖时的各种变化。

具体命令流入下:
new
gen zone brick p0=(0,0,0) p1=(6,0,0) p2=(0,4,0) p3=(0,0,8) size 6,4,8
plo blo group
model mohr
ini dens 1000
fix x range x -0.1 0.1
fix x range x 5.9 6.1
fix y range y -0.1 0.1
fix y range y 3.9 4.1
fix z range z -0.1 0.1
prop bulk 1e8 shear 0.3e8 fric 35
prop coh 1e10 tens 1e10
set grav 0 0 -9.81
solve
save 初始应力.sav
model null ran z 3 8 x 2 4 y 0 2
prop bulk 3e8 shear 1e8
hist id=1 gp zdis 2 0 3
hist id=2 gp xdis 2 0 3
solve
save 开挖后.sav
call output.txt
其中output命令流为:
n
restore 初始应力.sav
plo blo group ou on
set plot jpg
set plot jpg size (1024,768) quality 2
plot hard 'Base' file 模型.jpg
plo con szz ou on
set plot jpg
set plot jpg size (1024,768) quality 2
plot hard 'Base' file 竖向应力云图.jpg
plo con sxx ou on
set plot jpg
set plot jpg size (1024,768) quality 2
plot hard 'Base' file 横向应力云图.jpg
n
restore 开挖后.sav
plo con zdis ou on
set plot jpg
set plot jpg size (1024,768) quality 2
plot hard 'Base' file 垂直位移(沉降隆起).jpg plo con xdis ou on
set plot jpg
set plot jpg size (1024,768) quality 2
plot hard 'Base' file 水平位移1.jpg
plot hist 1
set plot jpg
set plot jpg size (1024,768) quality 2
plot hard 'Base' file 检测1.jpg
plot hist 2
set plot jpg
set plot jpg size (1024,768) quality 2
plot hard 'Base' file 检测2.jpg
5. 计算结果及分析
通过FLAC3D分析以后得到的开挖以后水平位移图、垂直位移图、横向应力图、及竖向应力和监测点的各类图像如下图所示:
水平位移图垂直位移图
竖向应力云图横向应力云图
监测点竖向位移图监测点水平位移图
由各类图形可以分析得知,在开挖过后开挖处竖向中心位置出现了最大的水平应力,而且有竖向中间点向上下两边应力为缩小趋势,所以在开挖后竖向中间位置最有可能出现破坏隆起。

然而竖向上整体应力分布还是遵循重力产生应力的规律,由上到下逐渐应力增加。

在监测点处出现了有X轴正方向和Z轴负方向运动的趋势。

这说明了在紧随开挖壁的底部土体有向坑内隆出和线下沉降的趋势。

6. 结论
1、开挖后开挖两壁有向坑内隆出的趋势,而且最大的隆出可能位置会出现在开挖壁中部;
2、整体竖向应力分布由上到下逐渐增大,这跟重力产生应力分布情况相符合;
3、在开挖后底部紧邻开挖壁的地方土体有沉降和向坑内隆起的趋势。

相关文档
最新文档