羧酸及其衍生物小结-考研班

合集下载

羧酸衍生物知识点

羧酸衍生物知识点

羧酸衍生物知识点羧酸衍生物是一类化合物,它们在化学反应和有机合成中有着广泛的应用。

羧酸衍生物的结构中包含一个羧酸基团,它们的化学性质也与羧酸有关。

本文将从羧酸衍生物的性质、合成和应用三个方面进行阐述。

一、羧酸衍生物的性质羧酸衍生物中含有一个羧酸基团(-COOH),这个基团可以参与许多化学反应。

例如,在碱性条件下,羧酸基团会失去一个质子,形成相应的负离子,即羧酸盐,这种反应叫做羧化反应。

除此之外,羧酸衍生物还能与醇、胺等反应,生成相应的酯、酰胺等衍生物。

二、羧酸衍生物的合成羧酸衍生物的合成方法非常多,下面介绍两种常用的方法:1.羧化反应羧化反应是一种重要的合成羧酸衍生物的方法。

在这种反应中,通常使用羧酸和一定量的碱反应,生成相应的羧酸盐。

羧酸盐再与酸反应,失去一个水分子,形成相应的酯。

这种反应常用的催化剂有酸性离子交换树脂、三氧化硫等。

2.加成反应加成反应是另一种合成羧酸衍生物的方法。

在这种反应中,羧酸衍生物的反应物通常是烯烃或炔烃。

它们与羧酸在催化剂的存在下发生加成反应,生成相应的羧酸衍生物。

加成反应的催化剂有酸性离子交换树脂、钯等。

三、羧酸衍生物的应用羧酸衍生物在有机合成、材料科学、生物化学等领域有着广泛的应用。

1.有机合成羧酸衍生物是有机合成中常用的反应物和中间体。

它们可以通过羧化反应、加成反应等多种方法进行合成。

羧酸衍生物可以与醇、胺等反应,生成相应的酯、酰胺等衍生物。

2.材料科学羧酸衍生物可以与金属离子、聚合物等反应,形成新的材料。

例如,聚丙烯酸可以与铁离子反应,生成Fe3O4/聚丙烯酸复合材料。

这种材料具有磁性,可以应用于磁性材料、制备催化剂等领域。

3.生物化学羧酸衍生物在生物化学中也有着重要的应用。

例如,羧酸基团是许多生物分子的一部分,例如脂肪酸、氨基酸等。

羧酸衍生物还可以用于制备生物活性分子,例如药物、抗生素等。

羧酸衍生物是一类重要的化合物,在化学反应和有机合成中有着广泛的应用。

通过羧化反应、加成反应等方法可以合成羧酸衍生物。

羧酸及其衍生物的性质实验报告

羧酸及其衍生物的性质实验报告

羧酸及其衍生物的性质实验报告实验目的:1.了解羧酸及其衍生物的性质;2.掌握羧酸的制备和鉴别方法;3.验证羧酸的典型性质。

实验原理:羧酸是一类含有羧基(COOH)的有机化合物,其衍生物包括酯、酰氯、酸酐等。

羧酸具有以下一些典型性质:具有酸性,可以形成酸盐;可以与醇反应生成酯;可以发生酯水解反应等。

实验仪器和试剂:仪器:加热设备、测量设备(分析天平、蒸馏装置、pH计等)试剂:苯甲酸、乙醇、稀盐酸、蒸馏水等。

实验步骤:1.制备苯乙酸:将苯甲酸放入烧杯中,加入适量的乙醇,搅拌使其溶解。

使用酸性树脂进行脱水,滴加醋酸作为指示剂,停止滴加直到指示剂不再变色。

将溶液过滤后,用蒸馏水洗涤上清液,制取苯乙酸晶体。

2.鉴别苯乙酸:取少量苯乙酸溶解于水中,使用pH计测定其酸性。

可以得知苯乙酸具有较强的酸性。

3.合成苯乙酯:取苯乙酸溶解于乙醇中,加入小量的稀盐酸催化反应。

加热回流反应一段时间后,用蒸馏水洗涤上清液,取得苯乙酯产物。

4.酯水解反应:将所得苯乙酯加入稀碱溶液中,反应一段时间后,观察结果。

可以看到产生乙醇与苯乙酸的溶液,说明酯水解反应已经发生。

实验结果与分析:1.鉴别苯乙酸的结果表明,苯乙酸具有较强的酸性,符合羧酸的典型性质。

2.合成苯乙酯的过程中,苯乙酸与乙醇发生了酯化反应,生成了苯乙酯。

这说明羧酸可以与醇反应生成酯。

3.酯水解反应的结果显示,苯乙酯经过碱媒介的水解反应,生成了乙醇与苯乙酸的溶液。

这进一步验证了羧酸可以发生酯水解反应的性质。

实验结论:通过实验,我们成功制备了苯乙酸,并验证了羧酸及其衍生物的一些性质。

羧酸具有较强的酸性,可以与醇反应生成酯,并且可以发生酯水解反应。

这些性质为羧酸及其衍生物的应用提供了基础,同时也为进一步的研究与应用提供了方法和思路。

羧酸的衍生物知识点总结

羧酸的衍生物知识点总结

羧酸的衍生物知识点总结一、羧酸的结构及性质1.1 结构羧酸是一类含有一个或多个羧基(-COOH)官能团的有机化合物。

在羧酸中,羧基结构可以与芳香环或脂肪烃环相连,也可以存在于分子中的其他位置。

羧酸的基本结构可以表示为R-COOH,其中R代表羧基所连接的有机基团。

1.2 性质羧酸的结构使其具有一系列特定的物理化学性质。

常见的羧酸通常以无色或白色晶体的形式存在,有时也呈液态。

它们在水中易溶解,并能够与碱反应生成相应的盐,因此具有一定的酸性。

此外,羧酸还表现出一些特定的化学反应活性,如酯化反应、醛化反应等。

1.3 羧酸的共振结构羧酸分子中的羧基(-COOH)可以发生共振结构,即通过π电子的转移,使得羧基中碳与氧之间的键产生双键和单键的交替存在。

这种共振结构的存在使得羧酸分子更加稳定,同时也对其化学性质产生影响。

二、羧酸的主要衍生物类型2.1 酯酯是由羧酸和醇经酯化反应生成的产物。

在这种反应中,羧基上的氧原子与醇中的羟基发生酯键结合,形成一种新的有机化合物。

酯具有独特的香味,因此广泛用于食品、香精等行业。

2.2 醛醛是由羧酸通过脱羧反应生成的产物。

在脱羧反应中,羧酸失去一个CO2分子,生成相应的醛。

醛化反应是一种重要的有机合成反应,广泛应用于制备醇、醚等化合物。

2.3 酰胺酰胺是由羧酸与氨或胺反应生成的产物,它是一类重要的有机化合物。

酰胺在生物体内起着重要的生物活性作用,同时也广泛应用于有机合成领域。

2.4 酰氯酰氯是由羧酸与氯化亚砜、硫酰氯等发生酰化反应生成的一种有机化合物。

酰氯是一类重要的有机合成试剂,广泛用于有机化学合成反应中。

2.5 醛酸醛酸是羧酸分子失去一个羧基而形成的产物,它在有机合成及医药领域有着重要的应用价值。

醛酸可以被还原成相应的醇,也可以通过酰化反应生成酯等化合物。

2.6 酰胺酰胺是由羧酸与胺类化合物经过缩合生成的有机化合物,它在生物体内发挥着重要的生理活性作用。

在有机合成中,酰胺也是一类重要的合成中间体。

了解羧酸及其衍生物的性质

了解羧酸及其衍生物的性质

了解羧酸及其衍生物的性质羧酸及其衍生物是一类重要的有机化合物,具有许多独特的性质和广泛的应用。

本文将对羧酸及其衍生物的性质进行探讨,以便更好地了解这一类化合物。

一、羧酸的定义和结构羧酸是一类化合物,其分子结构中含有一个或多个羧基(-COOH)。

羧基是由一个碳原子与一个羟基(-OH)和一个氧原子形成的。

羧酸的结构式通常用R-COOH表示,其中R表示有机基团。

根据羧基所连接的碳原子数目不同,可以将羧酸分为单官能团羧酸和多官能团羧酸两类。

二、羧酸的物理性质1. 熔点和沸点:羧酸的熔点和沸点通常较高,这是因为羧基中的羧基氧原子具有较高的极性,导致分子间的相互作用增强。

2. 溶解性:大多数羧酸可以在水中溶解,形成羧酸离子和氢离子。

溶解度受到羧酸结构、环境条件以及其它物质的影响。

3. 酸性:羧酸具有明显的酸性,可以与碱反应生成盐和水。

强酸性主要来自羧基中的羟基和带负电荷的氧原子。

三、羧酸的化学性质1. 与碱的反应:羧酸可以与碱反应生成相应的盐。

反应中羧酸中的羧基给出一个负电荷,碱给出一个正电荷,形成盐并释放水。

2. 与醇的酯化反应:羧酸可以与醇反应生成酯。

在反应中,羧酸中的羧基与醇中的氢原子发生取代反应,生成酯和水。

3. 与卤素的取代反应:羧酸中的羟基和羧基都可以与卤素发生取代反应,生成相应的羧酸衍生物。

4. 与羟胺的芳香胺反应:羧酸中的羧基可以与羟胺反应生成相应的芳香胺。

四、羧酸衍生物的性质1. 酯:羧酸与醇反应生成的酯具有较好的挥发性和溶解性,常用于香料、溶剂和聚合物合成等领域。

2. 盐:羧酸与碱反应生成的盐通常具有较高的溶解度和稳定性,在药物、染料和表面活性剂等领域有广泛应用。

3. 胺:羧酸中的羧基与氨或胺反应生成的胺具有一定的碱性,可用于药物合成和化妆品生产中。

4. 酸酐:羧酸中的羧基与无水酸反应生成的酸酐具有良好的环境稳定性,广泛应用于有机合成反应中。

综上所述,羧酸及其衍生物具有多样的性质和广泛的应用价值。

有机化学第十三章羧酸衍生物总结

有机化学第十三章羧酸衍生物总结

反应活性较差
叔醇
吡啶
O C OC(CH3)3
不仅起催化作用 还可吸收产生的HCl
2) 酯交换:由低级醇酯制高级醇酯
= H+
CH2 CHCOOCH3 + CH3(CH2)2CH2OH
b.p: 80.5℃ 低沸点酯
= CH2 CHCOO(CH2)3CH3 + CH3OH
b.p: 145℃
b.p: 64.7℃
R C =O > X
=
R C =O
O RC
O
> R C =O > R C =O
OR′
NH2
第二步——取决于离去基团的离去能力。
基团的离去能力:
! 试解释之
X > RCOO > RO > NH2
碱性越小离去能力越强。
碱性强弱:
X < RCOO < RO < NH2
结论:
羧酸衍生物的反应活性顺序为
R C =O > X
== =
== =
O C O C4H9_ n
C OH
O
邻苯二甲酸单正丁酯
O CH3 C O CH2 CH3 C O CH2
O
乙二醇二乙酸酯
CH2OCOR CHOCOR'
甘油三酯:脂肪和油
CH2OCOR''
O
H3C
CH3
H3C
HO H3CH2CH
OH O
O
CH3
CH3 OH HO O
O O
N(CH3)2
青霉素 ( penicillin )
酸酐:两个羧酸名加“酐”字。
O
OO
OO
COC

有机化学羧酸及衍生物

有机化学羧酸及衍生物

有机化学羧酸及衍生物有机羧酸及其衍生物是有机化学中应用最广泛的重要化合物之一,几乎所有的有机物都是结构和功能性的羧酸衍生物。

它们由非常复杂的结构,从一种亲水性的、具有一个或者多个氢原子的,比较简单的醛与醇体积式羧酸,到脂溶性的、具有脂类或碳酸酯等有机基组成的、比较复杂的多羟基羧酸。

它们都具有很好的化学稳定性和匹配性,在生物体内具有独特的生物活性,因此被广泛应用于各种科学领域。

有机羧酸及其衍生物可分为两大类:一类是单羟基羧酸,它们是由醛与醇有机化合物组成;另一类是多羟基羧酸,它们含有一个以上的羟基,而且具有脂溶性的有机基。

单羟基羧酸有很多种,具体分类如下:呋喃酸、玻璃酸、环酸、乙醇酸、丙酸、乳酸、鞣酸等;多羟基羧酸也有很多种,主要有有机醋酸、有机磷酸、有机碳酸和有机磷脂等。

有机羧酸及其衍生物在化学领域有着广泛的应用。

羧酸及其盐是常用的表面活性剂,羧酸与碱可缓解环境中硫氧化物及酸雨的危害;多羟基羧酸的衍生物是生物体的重要组成部分,包括DNA及RNA的碱基,也是酶的活性中心及核糖体的结构化合物。

此外,它们也可进一步衍生出有机键、芳环等,与功能性化合物相连,用于制造药物和高科技中的医疗器械。

有机羧酸及其衍生物应用广泛,必将深刻影响人们的日常生活,是实现未来科学社会化十分重要的一环。

Organic carboxylic acids and their derivatives are one of the most widely used important compounds in organic chemistry, almost all organic compounds are structural and functional carboxylic acid derivatives. They have very complex structures, from a comparatively simple hydrophilic and one or more hydrogen small molecular alcohol aldehyde carboxylic acid, to lipophilic and composed of lipids or esters and other organic base, more complex polyhydroxy carboxylic acid. They all have good chemical stability and matching, unique biological activity in organisms, and are widely used in various scientific fields.Organic carboxylic acids and their derivatives can be divided into two categories: one is monohydroxy carboxylic acid, which is composed of aldehyde and alcohol organic compounds; the other is polyhydroxy carboxylic acid, which contains one or more hydroxyl groups, and has lipophilic organic base. Monohydroxy carboxylic acid has many kinds, the specific classification is following: furan carboxylic acid, glacial acetic acid, cyclo carboxylic acid, ethyl alcohol carboxylic acid, propionic acid, lactic acid, tannic acid and so on; polyhydroxy carboxylic acid also has many kinds, mainly include organic acetic acid, organic phosphoric acid, organic carbonic acid and organic phospholipid.Organic carboxylic acids and their derivatives have a wide range of applications in chemical field. Carboxylic acid and its salts are commonly used surfactants, and carboxylic acid and alkali。

羧酸及其衍生物

羧酸及其衍生物

羧酸及其衍生物羧酸及其衍生物Ⅰ 目的要求羧酸是含有羧基(―COOH)的含氧有机化合物,我们平常所说的有机酸就是指的这类化合物。

所谓羧酸衍生物,包括的化合物种类很多,诸如羧酸盐类、酰卤类、酯类(包括内酯、交酯、聚酯等)、酸酐类、酰胺类(包括酰亚胺、内酰胺)等都是羧酸衍生物,有人甚至把腈类也包括在羧酸衍生物的范围之内。

其实,比较常见的而又比较重要的是酰卤、酸酐、酯和酰胺这四类化合物。

羧酸盐与一般无机酸盐在键价类型上没大区别,不作专门介绍。

至于腈类,将放在含氮化合物中加以介绍。

这四类化合物都是羧酸分子中,因酰基转移而产生的衍生物,所以又叫羧酸的酰基衍生物。

羧酸及其衍生物RCOL(L:-OH、-X、-OOCR′、-OR′、-NH2)在许多重要天然产物的构成以及在生物代谢过程中均占有重要地位。

本章将以饱和一元脂肪酸为重点,讨论羧酸及其衍生物的结构和性质。

鉴于乙酰乙酸乙酯和丙二酸二乙酯在有机合成上的重要地位,本章作概括介绍。

希望学生在此基础上,探讨设计合成路线的一般方法。

本章学习的具体要求1、掌握羧酸的结构与性质之间的关系。

2、掌握羧酸衍生物的主要化学性质。

3、了解羧酸衍生物的亲核取代反应机理。

4、掌握羧酸与羧酸衍生物之间相互转变条件。

5、了解卤代酸、羟基酸的特性。

6、掌握乙酰乙酸乙酯和丙二酸二乙酯的制法、性质和在有机合成上的应用。

这也是本章的重点之一。

Ⅱ 学习提要(一)羧酸一、概述羧酸往往有俗名,希望学生有所了解,尽可能记忆一些,脂肪酸的系统命名原则和醛相β α同。

γCH3-CH-CH2-COOH2 14 3 OH 芳香酸命名是把芳环视作取代基。

76羧酸的沸点比分子量相近的其它有机物高,这是由于羧酸能以氢键缔合。

同时,即使在气态时,羧酸也是双分子缔合的,所以羧酸的沸点比分子量相近的醇还要高。

二、羧酸结构和化学性质亲核取代O 还原R-C-C-O-H α-H反应H 脱羧酸性1、酸性?E O O O +?R-C H + R-C R-C E EO-H O OO O NaOH/Na2CO3/ NaHCO3H2O + R-C E R-C EH+ O-Na O-H应用:①鉴别:与酚不同,与非酸性物质不同。

羧酸及其衍生物的结构特点分析

羧酸及其衍生物的结构特点分析

羧酸及其衍生物的结构特点分析
羧酸是有机化合物的一类,其通式为R-COOH,其中R为有机基团。

羧酸的结构特点包括官能团、酸性、羧基的构型和胺脱氨反应等方面。

首先,羧酸的结构中含有一个羧基(-COOH),这是羧酸的官能团,也是羧酸的命名基团。

羧基是由一个碳氧双键和一个羟基组成,通常以双键碳上的氧为羰基(-C=O),羟基中的氧为羟氧基(-OH)。

其次,羧酸是弱酸性物质。

羧基中的碳氧双键极性较强,具有较高的电负性,因此能够进行H+的解离,生成羧酸根离子(-COO-)和一个氢离子(H+)。

羧酸的酸性可以通过它的电离常数(Ka)来衡量。

第三,关于羧基的构型,碳氧双键的特殊性使得羧酸中的碳原子存在一个空杂化p轨道,形成一个带有正电荷的共轭碳阳离子。

这使得羧酸具有一定的构象选择性,即平面构象和非平面构象。

平面构象中,羧基的两个键(羧基与羰基)在同一个平面上。

非平面构象中,羧基的两个键呈现弯曲的构象。

最后,羧酸可以发生胺脱氨反应,在适当的条件下,羧酸与氨或胺反应,生成酰胺。

这个反应的条件包括反应物的浓度、反应温度和反应时间等。

胺脱氨反应对于合成酰胺具有重要的意义,因为酰胺在生物体中广泛存在,是许多生物活性物质的重要结构单元。

综上所述,羧酸及其衍生物具有许多结构特点,包括官能团、酸性、羧基的构型和胺脱氨反应等。

对这些结构特点的分析可以帮助我们更好地理解羧酸及其衍生物的性质和反应行为。

2016-2017年羧酸及其衍生物(总结)

2016-2017年羧酸及其衍生物(总结)

羧酸及其衍生物第一节羧酸由烃基(或氢原子)与羧基相连所组成的化合物称为羧酸,其通式为RCOOH,羧基(-COOH)是羧酸的官能团.一,分类和命名按羧酸分子中烃基的种类将羧酸分为脂肪族羧酸和芳香族羧酸.按羧酸分子中所含的羧基数目不同将羧酸分为一元酸和多元酸.一些常见的羧酸多用俗名,这是根据它们的来源命名的.如:HCOOH 蚁酸CH3COOH 醋酸HOOC—COOH 草酸脂肪族羧酸的系统命名原则与醛相同,即选择含有羧基的最长的碳链作主链,从羧基中的碳原子开始给主链上的碳原子编号.取代基的位次用阿拉伯数字表明.有时也用希腊字母来表示取代基的位次,从与羧基相邻的碳原子开始,依次为α,β,γ等.例如:CH3CH═CHCOOH2-丁烯酸2,3-二甲基戊酸α-丁烯酸(巴豆酸)芳香族羧酸和脂环族羧酸,可把芳环和脂环作为取代基来命名.例如:对甲基环已基乙酸3-苯丙烯酸(肉桂酸) 4-甲基-3-(2-萘)丙酸命名脂肪族二元羧酸时,则应选择包含两个羧基的最长碳链作主链,叫某二酸.如:邻-苯二甲酸正丙基丙二酸二,羧酸的制法1,氧化法高级脂肪烃(如石蜡)在加热至120℃-150℃和催化剂存在的条件下通入空气,可被氧化生成多种脂肪酸的混合物.RCH2CH2R1 RCOOH + R1COOH伯醇氧化成醛,醛易氧化成羧酸,因此伯醇可作为氧化法制羧酸的原料.含α-氢的烷基苯用高锰酸钾氧化时,产物均为苯甲酸.例如:2,格氏试剂合成法格氏试剂与二氧化碳反应,再将产物用酸水解可制得相应的羧酸.例如:RMgX + CO2 RCOOMg X RCOOH腈水解法在酸或碱的催化下,腈水解可制得羧酸.RCN + H2O + HCl RCOOH + NH4ClRCN + H2O + NaOH RCOONa + NH3三,物理性质1,状态甲酸,乙酸,丙酸是具有刺激性气味的液体,含4-9个碳原子的羧酸是有腐败恶臭气味的油状液体,含10个碳原子以上的羧酸为无味石蜡状固体.脂肪族二元酸和芳香酸都是结晶形固体.2,沸点羧酸的沸点比分子量相近的醇还高.这是由于羧酸分子间可以形成两个氢键而缔合成较稳定的二聚体.3,水溶性羧酸分子可与水形成氢键,所以低级羧酸能与水混溶,随着分子量的增加,非极性的烃基愈来愈大,使羧酸的溶解度逐渐减小,6个碳原子以上的羧酸则难溶于水而易溶于有机溶剂.化学性质1,酸性羧酸具有酸性,因为羧基能离解出氢离子.因此,羧酸能与氢氧化钠反应生成羧酸盐和水.RCOOH + Na OH RCOONa + H2O羧酸的酸性比苯酚和碳酸的酸性强,因此羧酸能与碳酸钠,碳酸氢钠反应生成羧酸盐.RCOOH + NaHCO3(Na2CO3) RCOONa + H2O + CO2↑但羧酸的酸性比无机酸弱,所以在羧酸盐中加入无机酸时,羧酸又游离出来.利用这一性质,不仅可以鉴别羧酸和苯酚,还可以用来分离提纯有关化合物.例如:欲鉴别苯甲酸,苯甲醇和对-甲苯酚,可按如下步骤进行,在这三者中加入碳酸氢钠溶液,能溶解并有气体产生的是苯甲酸;再在剩下的二个中加入氢氧化钠溶液,溶解的是对-甲苯酚,不溶解的是苯甲醇.当羧酸的烃基上(特别是α-碳原子上)连有电负性大的基团时,由于它们的吸电子诱导效应,使氢氧间电子云偏向氧原子,氢氧键的极性增强,促进解离,使酸性增大.基团的电负性愈大,取代基的数目愈多,距羧基的位置愈近,吸电子诱导效应愈强,则使羧酸的酸性更强.如:三氯乙酸二氯乙酸氯乙酸pKa 0.028 1.29 2.81因此,低级的二元酸的酸性比饱和一元酸强,特别是乙二酸,它是由两个电负性大的羧基直接相连而成的,由于两个羧基的相互影响,使酸性显著增强,乙二酸的pKa1=1.46,其酸性比磷酸的pKa1=1.59还强.取代基对芳香酸酸性的影响也有同样的规律.当羧基的对位连有硝基,卤素原子等吸电子基时,酸性增强;而对位连有甲基,甲氧基等斥电子基时,则酸性减弱.至于邻位取代基的影响,因受位阻影响比较复杂,间位取代基的影响不能在共轭体系内传递,影响较小.对硝基苯甲酸对氯苯甲酸对甲氧基苯甲酸对甲基苯甲酸pKa 3.42 3.97 4.47 4.382,羧基中的羟基被取代羧酸分子中羧基上的羟基可以被卤素原子(-X),酰氧基(-OOCR),烷氧基(-OR),氨基(-NH2)取代,生成一系列的羧酸衍生物.①酰卤的生成羧酸与三氯化磷,五氯化磷,氯化亚砜等作用,生成酰氯.RCOOH + PCl3(PCl5 S OCl2) RCOCl②酸酐的生成在脱水剂的作用下,羧酸加热脱水,生成酸酐.常用的脱水剂有五氧化二磷等.RCOOH + RCOOH RCOOOCR③酯化反应羧酸与醇在酸的催化作用下生成酯的反应,称为酯化反应.酯化反应是可逆反应,为了提高酯的产率,可增加某种反应物的浓度,或及时蒸出反应生成的酯或水,使平衡向生成物方向移动.RCOOH + R1OH RCOOR1 + H2O酯化反应可按两种方式进行:RCOOH + HOR1 RCOOR1 + H2O (1)RCOOH + HOR1 RCOOR1 + H2O (2)实验证明,大多数情况下,酯化反应是按(1)的方式进行的.如用含有示踪原子18O的甲醇与苯甲酸反应,结果发现18O在生成的酯中.④酰胺的生成在羧酸中通入氨气或加入碳酸铵,首先生成羧酸的铵盐,铵盐胺热脱水生成酰胺.RCOOH + NH3 RCOONH4 RCONH23,α-氢被取代羧基和羰基一样,能使α-H活化.但羧基的致活作用比羰基小,所以羧酸的α-H卤代反应需用在红磷等催化剂存在下才能顺利进行.CH3COOH + Cl2 CH2ClCOOH CH Cl2COOH CCl3COOH还原反应羧酸在一般情况下,和大多数还原剂不反应,但能被强还原剂—氢化锂铝还原成醇.用氢化铝锂还原羧酸时,不但产率高,而且分子中的碳碳不饱和键不受影响,只还原羧基而生成不饱和醇.例如: RCH2CH═CH COOH RCH2CH═CHCH2OH5,脱羧反应羧酸分子脱去羧基放出二氧化碳的反应叫脱羧反应.例如,低级羧酸的钠盐及芳香族羧酸的钠盐在碱石灰(NaOH-Ca O)存在下加热,可脱羧生成烃.CH3COONa CH4 + Na2CO3一元羧酸的脱羧反应比较困难,把羧酸盐蒸气通过加热至400-500℃的钍,锰或镁的氧化物,则脱羧生成酮.2CH3COOH CH3COCH3 + CO2 + H2O当一元羧酸的α-碳上连有吸电子基时,脱羧较容易进行,如:CCl3COOH CH Cl3 + CO2↑五,重要的羧酸1,甲酸俗称蚁酸,是具有刺激性气味的无色液体,有腐蚀性,可溶于水,乙醇和甘油.甲酸的结构比较特殊,分子中羧基和氢原子直接相连,它既有羧基结构,又具有醛基结构,因此,它既有羧酸的性质,又具有醛类的性质.如能与托伦试剂,斐林试剂发生银境反应和生成砖红色的沉淀,也能被高锰酸钾氧化.2,乙酸俗称醋酸,是食醋的主要成分,一般食醋中含乙酸6℅-8℅.乙酸为无色具有刺激性气味的液体.当室温低于16.6℃时,无水乙酸很容易凝结成冰状固体,故常把无水乙酸称为冰醋酸.乙酸能与水按任何比例混溶,也可溶于乙醇,乙醚和其它有机溶剂.3,苯甲酸俗名安息香酸,是无色晶体,微溶于水.苯甲酸钠常用作食品的防腐剂.4,乙二酸俗称草酸,是无色晶体,通常含有两分子的结晶水,可溶于水和乙醇,不溶于乙醚.草酸具有还原性,容易被高锰酸钾溶液氧化.利用草酸的还原性,还可将其用作漂白剂和除锈剂.5,已二酸为白色电晶体,溶于乙醇,微溶于水和乙醚.已二酸和已二胺发生聚合反应,生成聚酰胺(尼龙-66).羧酸衍生物一,分类和命名重要的羧酸衍生物有酰卤,酸酐,酯和酰胺.1,酰卤和酰胺酰卤和酰胺的命名由酰基名称加卤素原子或胺.酰基:羧酸分子从形式上去掉一个氢原子以后所乘余的部分.某酸所形成的酰基叫某酰基.例如:某酰基乙酰氯乙酰胺N-甲基乙酰胺2,酸酐某酸所形成的酸酐叫\"某酸酐\".如:乙酐(醋酐)乙丙酐丁二酸酐邻-苯二甲酸酐酯酯的命名为\"某酸某酯\".如:CH3CH2COOCH3 丙酸甲酯(CH3)2C═CHCH2COOCH2CH3 4-甲基-3-戊烯酸乙酯苯甲酸甲酯苯甲酸苄酯HOOC—COOCH2CH3 乙二酸氢乙酯CH3CH2OOC—CH2—COOCH2CH3 丙二酸二乙酯二,物理性质低级酸酐是具有刺激性气味的无色液体,高级酸酐为无色无味的固体.酸酐难溶于水而溶于有机溶剂.低级酯是具有水果香味的无色液体.酯的相对密度比水小,难溶于水而易溶于乙醇和乙醚等有机溶剂.三,化学性质1,水解四种羧酸衍生物化学性质相似,主要表现在它们都能水解,生成相应的羧酸.RCOCl HClRCOOOCR1 R1COOHRCOOR1 + H2O RCOOH + R1OHRCONH2 NH3水解反应进行的难易次序为:酰氯>酸酐> 酯>酰胺例如,乙酰氯与水发生猛烈的放热反应;乙酐易与热水反应;酯的水解在没有催化剂存在时进行得很慢;而酰胺的水解常常要在酸或碱的催化下,经长时间的回流才以完成.2,醇解和氨解酰氯,酸酐和酯都能与醇作用生成酯.RCOCl HClRCOOOR1 + H OR2 RCOOR2 + R1COOHRCOOR1 R1OH酰氯,酸酐和酯都能与氨作用,生成酰胺.RCOCl HClRCOOOR1 + NH3 RCONH2 + R1COOHRCOOR1 R1OH四,重要的羧酸衍生物1,乙酰氯:是一种在空气中发烟的无色液体,有窒息性的刺鼻气味.能与乙醚,氯仿,冰醋酸,苯和汽油混溶.2,乙酐:又名醋(酸)酐,为无色有极强醋酸气味的液体,溶于乙醚,苯和氯仿.3,顺丁烯二酸酐:又称马来酸酐和失水苹果酸酐.为无色结晶性粉末,有强烈的刺激性气味,易升华,溶于乙醇,乙醚和丙酮,难溶于石油醚和四氯化碳.4,乙酸乙酯:为无色可燃性的液体,有水果香味,微溶于水,溶于乙醇,乙醚和氯仿等有机溶剂.5,甲基丙烯酸甲酯:为无色液体,其在引发剂存在下,聚合成无色透明的化合物,俗称有机玻璃.6,丙二酸二乙酯及其在有机合成中的应用:丙二酸二乙酯,简称丙二酸酯,为无色有香味的液体,微溶于水,易溶于乙醇,乙醚等有机溶剂.常用下面的方法来制取丙二酸酯:CH2ClCOONa CH2CNCOONa + C2H5OH C2H5OOCCH2COOC2H5由于丙二酸酯分子中亚甲基上的氢原子受相邻两个酯基的影响,比较活泼,其能在乙醇化钠的催化下与卤代烃或酰氯反应,生成一元取代丙二酸酯和二元取代丙二酸酯.烃基或酰基取代两二酸酯经碱性水解,酸化和脱羧后,可制得相应的羧酸.这是合成各种类型羧酸的重要方法,称为丙二酯酯合成法.取代羧酸羧酸分子中烃基上的氢原子被其它原子或原子团取代后生成的化合物称为取代羧酸.常见的取代羧酸有卤代酸,羟基酸,羰基酸(氧代酸)和氨基酸等.第一节羟基酸一,分类和命名羟基酸可以分为醇酸和酚酸两类.羟基酸的命名是以相应的羧酸作为母体,把羟基作为取代基来命名的.自然界存在的羟基酸常按其来源而采用俗名.如:CH3CH OHCOOH 2-羟基丙酸(乳酸)HOOCCHOH CHOHCOOH 2,3-二羟基丁二酸(洒石酸)2-羟基苯甲酸(水杨酸)3,4,5-三羟基苯甲酸(没食子酸)二,醇酸的性质1,物理性质醇酸一般为结晶的固体或粘稠的液体.由于羟基和羧基都以且慢水形成氢键,所以醇酸在水中的溶解度比相应的醇或羧酸都大,低级的醇酸可与水混溶.2,化学性质醇酸既具有醇和羧酸的一般性质,如醇羟基可以氧化,酰化,酯化;羧基可以成盐,成酯等,又由于羟基和羧基的相互影响,而具有一些特殊的性质.(1)酸性在醇酸分子中,由于羟基的吸电子诱导效应沿着碳链传递到羧基上,而降低了羧基碳的电子云密度,使羧基中氧氢键的电子云偏向于氧原子,促进了氢原子解离成质子.由于诱导效应随传递距离的增长而减弱,因此醇酸的酸性随着羟基与羧基距离的增加而减弱.如:CH3CH OHCOOH OH CH2CH2COOH CH3CH2COOHpKa 3.87 4.51 4.882,α-醇酸的分解反应由于羟基和羧基都有吸电子诱导效应,使羧基与α-碳原子之间的电子云密度降低,有利于二者之间键的断裂,所以当α-醇酸与稀硫酸共热时,分解成比原来少一个碳原子的醛或酮和甲酸.RCHOH COH RCH O + HCOOH此反应常用于由高级羧酸经α-溴代酸制备少一个碳原子的高级醛.RCH2COOH RCHBr COOH RCHOH COOH RCH O + H COOH3,脱水反应脱水产物因羟基与羧基的相对位置不同而有所区别.①α-醇酸生成交酯:α-醇酸受热时,一分子α-醇酸的羟基与另一分子α-醇酸的羟基相互脱水,生成六元环的交酯.RCHOH COOH + RCH OHCOOH交酯②β-醇酸生成α,β-不饱和羧酸:β-醇酸中的α-氢原子同时受到羟基和羧基的影响,比较活泼,受热时容易与β-碳原子上的羟基结合,发生分子内脱水生成α,β-不饱和羧酸.RCHOH CH2COOH RCH═CHCOOH + H2O③γ-和δ-醇酸生成物内酯:γ-和δ-醇酸在室温时分子内的羟基和羧基就自动脱去一分子水,生成稳定的γ-和δ-内酯.④羟基与羧基相隔5个或5个以上碳原子的醇酸受热,发生多分子间的脱水,生成链状的聚酯.三,酚酸的性质(1)物理性质酚酸大多数为晶体,有的微溶于水(如水杨酸),有的易溶于水(如没食子酸).(2)化学性质羟基处于邻或对位的酚酸,对热不稳定,当加热至熔点以上时,则脱去羧基生成相应的酚.+ CO2↑+ CO2↑四,重要的羟基酸1,乳酸:为无色粘稠液体,有很强的吸湿性和酸味,溶于水,乙醇,甘油和乙醚,不溶于氯仿和油脂.2,β-羟基丁酸:是吸湿性很强的无色晶体,一般为糖浆状粘稠液体,易溶于水,乙醇及乙醚,不溶于苯.3,苹果酸:为针状结晶,易溶于水和乙醇,微溶于乙醚.苹果酸在酶的催化下生成草酰乙酸.苹果酸在食品工业中用作酸味剂.5,柠檬酸:为无色结晶,含一分子结晶水,易溶于水,乙醇和乙醚,有强酸味.柠檬酸常用于配制清凉饮料和作糖果的调味剂,也是制药工业的重要原料.6,水杨酸:为无色针状结晶,微溶于冷水,易溶于乙醇,乙醚和热水.它具有酚和羧酸的一般性质,如易被氧化,遇三氯化铁显紫红色,酸性比苯甲酸强等.7,乙酰水杨酸:俗称\"阿司匹林\",为白色针状晶体.它可用水杨酸和乙酐在少量浓硫酸存在下制得.乙酰水杨酸具有解热镇痛作用,是常用的解热镇痛药.乙酰水杨酸分子中中无游离的酚羟基,故其纯品与三氯化铁不显色,但在潮湿的空气中,其易水解为水杨酸和乙酸,因此应密闭于干燥处贮存.8,没食子酸:又称五倍子酸.纯粹的没食子酸为白色结晶性粉末,能溶于水,乙醇和乙醚.没食子酸有较强还原性,极易被氧化,露置在空气中能迅速氧化呈暗褐色,可用作抗氧剂的影像显影剂.没食子酸与三氯化铁产生蓝黑色沉淀,可用来制造墨水.第二节羰基酸一,分类和命名分子中既含有羰基又含有羧基的化合物称为羰基酸.根据所含的是醛基还是酮基,将其分为醛酸和酮酸.羰基酸的命名与醇酸相似,也是以羧酸为母体,羰基的位次用阿拉伯数字或用希腊字母表示.如:OHC—COOH CH3COCOOH CH3COCH2COOH乙醛酸丙酮酸3-丁酮酸(β-丁酮酸)二,化学性质酮酸具有酮和羧酸的一般性质,如与氢或亚硫酸氢钠加成,与羟胺生成肟,成盐和酰化等.由于两种官能团的相互影响,α-酮酸和β-酮酸又有一些特殊的性质.(一)α-酮酸的性质1,脱羧和脱羰反应在α-酮酸分子中,羰基与羧基直接相连,由于羰基和羧基的氧原子都具有较强的吸电子能力,使羰基碳与羧基碳原子之间的电子云密度降低,所以碳碳键容易断裂,在一定条件下可发生脱羧和脱羰反应.α-酮酸与稀硫酸或浓硫酸共热,分别发生脱羧和脱羰反应生成醛或羧酸.RCOCOOH + 稀H2S O4 RCHO + CO2↑RCOCOOH + 浓H2S O4 RCOOH + CO↑2,氧化反应α-酮酸很容易被氧化,托伦试剂就能其氧化成羧酸和二氧化碳.RCOCOOH + *Ag(NH3)2++ RCOONH4 + Ag↓(二)β-酮酸的性质在β-酮酸分子中,由于羰基和羧基的吸电子诱导效应的影响,使α-位的亚甲基碳原子电子云密度降低.因此亚甲基与相邻两个碳原子间的键容易断裂,在不同的反应条件下,能发生酮式和酸式分解反应.1,酮式分解β-酮酸在高于室温的情况下,即脱去羧基生成酮.称为酮式分解.RCOCH2COOH RCOCH3 + CO2↑2,酸式分解β-酮酸与浓碱共热时,α-和β-碳原子间的键发生断裂,生成两分子羧酸盐.称为酸式分解.RCOCH2COOH + 40℅Na OH RCOONa + CH3COONa三,乙酰乙酸乙酯及酮式-烯醇式互变异构现象1,乙酰乙酸乙酯的制备在醇钠的催化作用下,两分子乙酸乙酯脱去一分子乙醇生成乙酰乙酸乙酯,此反应称为克莱森酯缩合反应.2CH3COOC2H5 CH3COCH2COOC2H5 + C2H5OH2,酮式-烯醇式互变异构现象乙酰乙酸乙酯能与羰基试剂如羟按,苯肼反应生成肟,苯腙等,能与氢氰酸,亚硫酸氢钠等发生加成反应.由此,证明它具有酮的结构.另外,乙酰乙酸乙酯还能与金属钠作用放出氢气,能使溴的四氯化碳溶液褪色,与三氯化铁作用产生紫红色.由此,又证明它也具有烯醇式的结构.这种现象的产生是因为乙酰乙酸乙酯室温下通常是由酮式和烯醇式两种异构体共同组成的混合物,它们之间在不断地相互转变,并以一定比例呈动态平衡.像这样两种异构体之间所发生的一种可逆异构化现象,叫做互变异构现象.与羰基和酯基共轭,发生电子离域而比较稳定.当H+与羰基氧结合时,就形成烯醇式异构体.此外,还由于烯醇式异构体能形成六元环的分子内氢键,以及其分子中共轭体系的存在,更加强了它稳定性. 3,分解反应(1)酮式分解乙酰乙酸乙酯在稀碱溶液中加热,可发生水解反应,经酸化后,生成β-丁酮酸.β-丁酮酸不稳定,失去二氧化碳生成丙酮.(2)酸式分解乙酰乙酸乙酯与浓碱共热时,生成两分子乙酸盐,经酸化后得到两分子乙酸.4,在合成上的应用乙酰乙酸乙酯亚甲基上的氢原子很活泼,与醇钠等强碱作用时,生成乙酰乙酸乙酯的钠盐,再与活泼的卤烃或酰卤作用,生成乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物.+ RCOX乙酰乙酸乙酯的钠盐还可与卤代酸酯,卤代丙酮等反应,引入相应的酯基和羰基.乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物,再进行酮式分解或酸式分解反应,可以制取甲基酮,二酮,一元羧酸,二元羧酸,酮酸等化合物.四,重要的羰基酸1,乙醛酸:为无色糖浆状液体,易溶于水.2,丙酮酸:为无色有刺激性气味的液体,可与水混溶,酸性比丙酮和乳酸都强.3,β-丁酮酸:又称乙酰乙酸,是无色粘稠液体,酸性比丁酸和β-羟基丁酸强,可与水或乙醇混溶.临床上把β-丁酮酸,β-羟基丁酸和丙酮三者总称为酮体.酮体是脂肪酸在人体内不能完全氧化成二氧化碳和水的中间产物,大量存在于糖化酶尿病患者的血液和尿中,使血液的酸度增加,发生酸中毒,严重时引起患者昏迷或死亡.4,α-酮丁二酸:又称草酰乙酸,为晶体,能溶于水,在水溶液中产生互变异构,生成α-羟基丁烯二酸,其水溶液与三氯化铁反应显红色.α-酮丁二酸具有二元羧酸和酮的一般反应.如能成盐,成酯,成酰胺,与2,4-二硝基苯肼作用生成2,4-二硝基苯腙等.立体化学基础按结构不同,同分异构现象分为两大类.一类是由于分子中原子或原子团的连接次序不同而产生的异构,称为构造异构.构造异构包括碳链异构,官能团异构,位置异构及互变异构等.另一类是由于分子中原子或原子团在空间的排列位置不同而引起的异构,称为立体异构.立体异构包括顺反异构,对映异构和构象异构.工会党支部工作总结[工会党支部工作总结] xxxx年,我们工会党支部在师直党工委的正确领导下,认真学习贯彻“三个代表”重要思想,学习党的十六届四中全会精神,自觉用“三个代表”重要思想指导工作,进一步加强党支部的建设,在工作中较好的发挥了政治核心和战斗堡垒作用,工会党支部工作总结。

《有机化学》考研2021年考点归纳与考研真题

《有机化学》考研2021年考点归纳与考研真题

《有机化学》考研2021年考点归纳与考研真题第11章羧酸衍生物11.1 考点归纳一、羧酸衍生物的结构1.酰卤羧酸分子中的羟基被卤原子取代后的生成物,通式为:2.酸酐两个羧酸分子间脱水后的生成物,通式为:羧酸还可以与另一分子无机酸脱水而成混酐。

某些二元羧酸脱水后生成环状的酸酐。

3.酯有机酸酯中的羧酸酯是羧酸和醇脱水的产物,通式为:4.酰胺羧酸分子中的羟基被氨基(-NH2)或烃氨基(-NHR,—NR2)取代后的生成物,通式为:5.结构特点(1)酰胺中的C—N键较胺中的C—N键短,主要因为:①酰胺与胺中C—N键的碳分别采用是sp2与sp3杂化轨道与氮成键,前者杂化轨道中的s成分比后者多;②羰基与氨基的氮共轭,从而使C—N键具有某些双键的性质。

(2)由于共轭作用,酯基中的C—O键也比醇中的C—O键短。

(3)酰氯中C—Cl键比氯代烷中的C—Cl键长,这是因为氯在酰氯中的吸电子诱导效应远远强于与羰基的共轭效应。

(4)这种具有相反电荷的偶极结构在羧酸衍生物中的重要性:酰胺>酯>酰氯。

二、羧酸衍生物的命名1.酰卤将相应的酰基(acyl)的名称放在前面,卤素的名称放在后面合起来命名。

英文名称是把相应羧酸的词尾“-ic acid”换成“-yl halide”。

例如:2.酰胺、酸酐酰胺的名称和酰卤相似,也可以从相应的羧酸名称导出。

英文名称是把相应羧酸的词尾“-oic acid”或俗名字尾“-ic acid”换成“amide”。

例如:3.酸酐酸酐常将相应的羧酸的名称之后加一“酐”字。

英文名称是把相应羧酸的“acid”换成“anhydride”。

例如:4.酯酸的名称在前,烃基的名称在后,再加“酯”字。

英文名称是将相应羧酸的词尾“-ic acid”换成“-ate”,并在前面加上烃基名称。

例如:三、羧酸衍生物的物理性质羧酸衍生物的分子中都含有基,因此,它们都是极性的化合物。

1.低级的酰卤和酸酐都是有刺激性臭味的无色液体,高级的为白色固体。

有机化学:第十一章 羧酸及其衍生物

有机化学:第十一章 羧酸及其衍生物

O18
CH3C-OC(CH3)3 + H2O
由于R3C+易与碱性较强的水结合,不易与羧酸结合,故逆向 反应比正向反应易进行。所以3oROH的酯化反应产率很低。
④ 酯化反应的特殊机理:酰基正离子机理
少量空阻大的羧酸按此反应机理进行。
O
O
+
C-OH
C-OH2
CH3
CH3 H2SO4(浓) CH3
CH3
O
+C CH3CH3ຫໍສະໝຸດ +OCCH3
CH3
CH3
CH3
CH3
OH C-O+ CCHH33
-H+ CH3
O
C-OCH3 CH3
CH3
CH3
反应方式:酸脱羟基醇脱氢。
CH3
CH3
O H+
CH3C-OH
+OH CH3C-OH
加成
HOC2H5
OH
CH3-C-OH
HO +
C2H5
四面体正离子
质子转移
OH
+
CH3-C-OH2
OC2H5
-H2O
+OH
-H+
O
消除 CH3C-OC2H5
CH3C-OC2H5
按加成--消除机制进行反应,是羧酸中羧基的C-OH键断 裂,醇中的O-H键断裂。
③ 酯化反应的特殊机理:碳正离子机制
OH
O RC
OH
O RC
O
O RC
O
O RC
O
p-π共轭, 键长完全平均化
键长平均化
C=O比醛酮中C=O键长(0.123nm)要长; C-O比醇的C-O键长(0.143nm)要短。

羧酸的衍生物及其性质实验报告

羧酸的衍生物及其性质实验报告

羧酸的衍生物及其性质实验报告,如"#1实验原理",1实验原理羧酸衍生物是羧酸缩合醚、醋酸酯及其他酸性衍生物,主要由醛或酮衍生物经羧化反应而成。

羧酸衍生物具有两性,它既能与基反应,又能与酸反应,它的pH值主要在4-7之间,它的核酸结合能力差,但有弱结合能力,对微生物有抑菌作用。

这类衍生物性质主要是形成了一个苯环上的乙酸膦(P-CH<sub>2</sub>-CH)或硝酸膦(P-NO<sub>2</sub>-CH)官能团,其稳定性与pH值有关,常温下它是有放电性的,但温度升高时可消除电荷, 使它对某些底物具有较强的吸附性质。

2实验材料1. 1mol以上羧酸;2. 各种醛或酮;3. 醋酸、硫酸或其他缓冲液(如:异烟酸、钛酸等);4. 各种表面活性剂;5. 乙醇或异丙醇;6. 酶模拟剂、核酸甘油酯化剂;7. PH试纸和温度计。

3实验步骤1. 首先,量取羧酸,称量各种醛或酮,加入搅拌中,同时加入醋酸、硫酸或其他缓冲液,充分混合;2. 再加入合适的表面活性剂,加热至恒温,搅拌,调节pH值,并用PH试纸检查;3. 加入乙醇或异丙醇,使反应液具有一定pH值,并在温度下待一段时间;4. 之后,利用反应物溶解在相对低温条件下反应,再加入酶模拟剂、核酸甘油酯化剂,模拟生物体的环境,并将温度升高至适宜的温度;5. 最后,用PH试纸和温度计测量所得到的样品溶液的PH值及温度,记录结果作为最终反应溶液的实验数据。

4实验结果及分析以n-己酸为原料,制备十二醛及其衍生物,结果如下表所示:衍生物|溶解度|结晶度|抑菌率------|------|------|-------乙酰己酸|可溶|大晶|47.6%丙酰己酸|可溶|大晶|39.2%苯乙酰己酸|可溶|小晶|25.2%硝酸己酸|可溶|结晶|37.5%由上表可知,在这次羧酸的衍生物合成实验中,乙酰己酸和硝酸己酸的抑菌率最高,在40%以上;丙酰己酸和苯乙酰己酸的抑菌率分别为39.2%和25.2%,仍然具有一定的抑菌作用。

有机化学羧酸及其衍生物讨论报告

有机化学羧酸及其衍生物讨论报告
羧酸及其衍生物
一. 亲核加成消除反应机理 二.含活泼亚甲基化合物性质和应用
一. 亲核加成消除反应机理
• 羧酸中的羰基表现出与醛,酮中的羰基类似的反 应性;碳的亲核进攻和氢的亲电进攻。然而,羧 基结构中—OH基团的存在使得羧酸有着另一方面 的化学性质。如同在醇中一样,这个—OH可被转 变成离去基团。结果是,在羰基碳的亲核加成发 生后,离去基团离去,导致净的取代过程和新的 羰基化合物的生成。
二.含活泼亚甲基化合物性质和应用
1 . 什么是活泼亚甲基化合物
当一个饱和碳原子上连有硝基、羰基、氰基、酯基、苯基等吸电子基团时,与该碳 原子相连的氢原子就具有一定的酸性,也就是说这个碳原子被致活了,因此这类化合物 叫活泼亚甲基化合物。
2 . 常见的活泼亚甲基化合物
吸电子基及其活性次序 :活泼亚甲基化合物的酸性取 决于与之相连的吸电子集团的吸电效应。这种效应越强, 其a-氢的活性越高。 -NO2> -COR > -SO2R> -COOR> -CN > -C6H5> -CH=CH2
羰基碳受到亲核进攻
羰基碳是亲电性的,可能被亲核试剂进攻。在羧酸和羧酸衍生物(具有通式RCOL的底物,其 中L代表离去基团)中观察到了这类反应性。 羧酸衍生物 与醛和酮的加成产物不同,羧基碳上亲核进攻形成的中间体通过消除一个离去基团而分解。 总的结果是亲核剂通过所谓的加成消除过程而取代离去基团。在此转化中首先形成的物种含 有一个四面体的碳中心(与原料及产物不同),因此它被称为四面体中间体。羰基碳是亲电 性的,可能被亲核剂进攻。在羧酸和羧酸衍生物(具有通式RCOL的底物,其中L代表离去基团) 中观察到了这类反应性。 羧酸衍生物 与醛和酮的加成产物不同,羧基碳上亲核进攻形成的中间体通过消除一个离去基团而分解。 总的结果是亲核剂通过所谓的加成消除过程而取代离去基团。在此转化中首先形成的物种含 有一个四面体的碳中心(与原料及产物不同),因此它被称为四面体中间体。

羧酸及其衍生物的性质实验报告

羧酸及其衍生物的性质实验报告

羧酸及其衍生物的性质实验报告实验报告:羧酸及其衍生物的性质实验研究引言:羧酸及其衍生物是有机化学中重要的化合物,其具有丰富的化学性质以及广泛的应用。

本实验旨在通过对一系列羧酸和衍生物的性质研究,探究它们的酸碱性、溶解性、稳定性等重要特性,为我们进一步认识这些化合物提供参考。

实验方法:1.确定酸碱性:将1mL羧酸溶液分别滴加到标有酸碱指示剂的试管中,并观察其颜色变化。

2.确定溶解性:将0.1g羧酸固体与5mL不同溶剂(如水、无水乙醇、醚等)加入试管中,摇匀后观察其溶解性。

3.确定稳定性:将羧酸固体加热,记录其熔点及变化情况。

结果与讨论:1.酸碱性:在实验中使用了几种常见的酸碱指示剂,如苯酚红、溴酚绿、甲基橙等,但每种羧酸的酸碱性可能不同,因此使用不同的指示剂来检测。

结果表明,大多数羧酸呈酸性反应,指示剂的颜色变化是酸性溶液呈红色或黄色。

但也有少数羧酸是中性或碱性的,其颜色变化则相反。

2.溶解性:实验中使用了多种溶剂来检测羧酸的溶解性。

根据实验结果,羧酸普遍具有一定的溶解性,特别是在水中。

大多数羧酸可在水中溶解并形成透明溶液。

而在有机溶剂中,如乙醇、醚等,羧酸的溶解性较差,甚至不能溶解。

3.稳定性:羧酸的稳定性与其分子结构有关。

部分羧酸在加热时会分解,部分则可以经受高温,而无明显的改变。

从实验结果中可以看出,大多数羧酸在加热到一定温度时会分解,其中一部分可能会发生碳链断裂,产生气体或留下黑色残留物。

但也有少数羧酸在高温下仍能保持稳定,不发生分解。

结论:羧酸及其衍生物具有一系列重要的化学性质,如酸碱性、溶解性和稳定性。

实验结果表明,大多数羧酸呈酸性,在水中溶解性好,加热到一定温度后会发生分解。

然而,尚需进一步研究不同羧酸及其衍生物的性质,以完善对这些化合物的了解,并为其在不同领域的应用提供理论基础。

有机化学基础知识点整理羧酸的衍生物与反应

有机化学基础知识点整理羧酸的衍生物与反应

有机化学基础知识点整理羧酸的衍生物与反应羧酸的衍生物与反应羧酸是有机化学中常见的一类化合物,具有羧基(-COOH)的结构特征。

羧酸的衍生物是指通过对羧酸进行化学反应或者取代得到的相关化合物。

羧酸的反应涉及到许多重要的有机合成反应和应用,对于有机化学的学习非常重要。

本文将对羧酸的衍生物以及与之相关的反应进行整理和概述。

一、酯的合成酯是羧酸醇酯化反应的产物,也是羧酸衍生物中使用最广泛的一种化合物。

酯的合成通常通过将羧酸与醇在酸性条件下进行酯化反应而得到。

此反应是通过羧基中的羟基与醇发生酯化反应而形成的,其反应方程式如下所示:羧酸 + 醇→ 酯 + 水酯化反应可以在各种温度下进行,常见的催化剂有硫酸、盐酸等。

酯化反应是有机合成中的重要步骤,能够制备出许多重要的化合物,如乙酸乙酯、苯甲酸甲酯等。

二、酰氯的合成酰氯是羧酸与氯化物反应生成的一种衍生物。

酰氯是有机合成中常用的试剂,可以作为中间体参与进一步的化学反应。

羧酸与氯化物反应生成酰氯的反应方程式如下所示:羧酸 + 氯化物→ 酰氯 + 酸常见的氯化物有氯化亚砜、氯化磷等。

酰氯在合成中起到重要的作用,可以进一步发生亲核取代反应、缩合反应等。

三、酰亚胺的合成酰亚胺是羧酸与胺反应生成的衍生物,分子中含有酰基与氨基。

酰亚胺具有一定的稳定性和活性,可以作为有机化合物的合成中间体。

酰亚胺的反应方程式如下所示:羧酸 + 胺→ 酰亚胺 + 水酰亚胺的合成可以通过将羧酸与胺在酸性条件下反应而得到。

酰亚胺在有机合成中应用广泛,可以进行类似于酯的各种反应。

四、酰胺的合成酰胺是羧酸与氨反应生成的一种衍生物,分子中含有酰基与氨基。

常见的酰胺有酰胺与酰胺。

酰胺的合成通常通过将羧酸与氨在酸性或碱性条件下反应而得到。

酰胺的反应方程式如下所示:羧酸 + 氨→ 酰胺 + 水酰胺是许多药物和生物活性分子的结构基础,也是有机化学中重要的中间体。

综上所述,羧酸的衍生物包括酯、酰氯、酰亚胺和酰胺等,它们在有机合成和应用领域中具有广泛的应用。

第十二章羧酸及其衍生物分析

第十二章羧酸及其衍生物分析
O-H
O R-C - + H+
O
羧酸的酸性强弱与分子的结构有关。任何能使酸根负离子比 酸更加稳定的因素能增加酸性。
第十二章羧酸及其衍生物分析
吸电基(-I, -C)可分散负电荷,使负离子稳定,因而增加酸性。 反之,给电基(+I, +C)可增强负电荷,使负离子不稳定,因此 酸性减弱。
O G←C
O-H
O
O
H-C
G→C
O-H
O-H
O O2N-CH2C
O-H
O CH3-C
O-H
PKa 1.68
3.77
第十二章羧酸及其衍生物分析
4.75
O
H3C
H3C O
O
HO-C-OH H3C-C-C-OH CH3CHC-OH CH3(CH2)4C-OH
PKa 6.5
H3C 5.02
O
CH3-C-OH
4.84
4.83
XO RCH-C-X+ HX
O RCH2C-OH
海尔-沃尔霍德-泽林斯基反应不仅可以制得α-卤代酸, 继而可制得α-氨基酸、 α-羟基酸和α,β-不饱和酸等。 如:
RCH-COOH + NH3
RCH-COOH
ClNH2Biblioteka 第十二章羧酸及其衍生物分析
五、二元羧酸
分子中含有两个羧基,离解分步进行:
Ka1
HOOC(CH2)nCOOH
HCCl3 + CO2
OO
Δ
O
HO-C-C-OH
HC-OH + CO2
OO HOC-CH2-COH
O Δ CH3C-OH + CO2
第十二章羧酸及其衍生物分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CH3CCH
CH3 CH2CH3
CH3CCH2COOC2H5
CH3CCH2CPh
=
O
O C CH3
O O O O
O
O
=
=
=
=
=
=
(1) EtONa CH3CCH2COC2H5 (2)PhCOCl
CH3CCHCOC2H5 O =CPh
(1)NaOH (2)H,
O
O
=

CH3CCH2CPh
=
丙二酸酯在合成中的应用 丙二酸二乙酯合成 合成单 双取代乙酸和 由丙二酸二乙酯合成单或双取代乙酸和脂环羧酸 2-甲基丁酸 - 环戊烷甲酸 己二酸 环丁烷甲酸
O
O EtONa PhCCH3 + PhCOC2H5
O
=
=
RCCH2COC2H5
=
O O
=
=
=
PhCCH2CPh
=
=
酮式具有酮和烯醇的双重反应性) 酮式-烯醇式互变异构 (具有酮和烯醇的双重反应性)
O CH3CCH2COC2H5 O O CH3 C H ....... O CH COC2H5
碘仿反应
不同β- 不同 -二羰基化合 烯醇式含量 物的烯醇式含量
烯醇量降低 拉电子基使烯 降低, 基烯醇量降低,拉电子基使烯 醇量提高 提高。 醇量提高。
CH3CCHCOC2H5 5% 活性CH 连有体积大的给电子 活性CH2连有体积大的给电子 CH3
乙酰乙酸乙酯在合成中的应用
O O
稀NaOH -C2H5OH
RNH2 碱性
二. 化学性质 羧羰基的亲核取代 亲核取代反应活性 羧羰基的亲核取代反应活性
O O O O O R C X > R C O C R > R C OR' > R C NH2
O R C Y + NuOR C Y Nu O R C Nu + Y-
生成相应的羧酸。 生成相应的羧酸。 羧酸 水解: 1 水解: 2 醇解:生成相应的酯 醇解:生成相应的酯 3 氨解:生成相应的酰胺 氨解:
酸或碱催化酯水解,发生酰氧键还是烷氧键断裂? 酸或碱催化酯水解,发生酰氧键还是烷氧键断裂?
O R C OR' O R C O R'
OR C OR' OH RCOO- + R'OH
+
BAC2机理
O R C OH + -OR'
碱催化
O R C OR' + OH-
AAC2机理
酸催化
O R C OR'
+
H
COOCOO(B) CH3 OH (C) NO2 COO(D) COO-
2.按负离子的稳定性大小排列顺序
(A)
3.下列化合物酸性由强至弱的正确排序 (A)对硝基苯甲酸(B)邻硝基苯甲酸(C)苯甲酸 (D)对羟基苯甲酸 4. 下列酯在碱性条件下水解最快的是______________,最慢的是 __________________。 (A)(CH3)3CCO2CH3 (B) CH3CO2C2H5 (C) CF3CO2CH3 (D) C2H5CO2C2H5
RCH2Cl3 + H2O RCH2CN + H2O RCH2COOR' + H2O ...... RCH2COOH
4.乙酰乙酸乙酯在合成中的应用:成酸分解 4.乙酰乙酸乙酯在合成中的应用: 乙酰乙酸乙酯在合成中的应用 5.由丙二酸二乙酯合成单 双取代乙酸和 5.由丙二酸二乙酯合成单或双取代乙酸和脂环羧酸 合成
=
=
=
O O CH3 C2H5ONa + CH2=CH C CH3 共轭加成 O
O CH3 CH2 O CH3 CH2 C O
O C2H5ONa 羟醛缩合
CH3
O
羧酸的制备 1. 氧化反应
1)1o醇、醛和芳烃的氧化 烯烃、炔烃的氧化断裂 2)烯烃、炔烃的氧化断裂
3)甲基酮的卤仿反应 甲基酮的卤仿反应 2. Grignard试剂与 2反应 试剂与CO 试剂与 3. 水解反应
玻沃- 玻沃-布兰反应
C Cl
硫 — 喹啉
CH3CH CHCH2CH2COOC2H5
Na C2H5OH
CH3CH CHCH2CH2CH2OH
3) 酰胺和腈
O CN(CH3)2
LiAlH4 H2O
CH2N (CH3)2
CH2CN
LiAlH4
H2O
CH2CH2NH2
霍夫曼降 6. 霍夫曼降 重排) 解(重排)
O RCNH2
NaOH + Br2
RNH2
7.酯的热消除
经过环状过渡态顺式消除(酰氧基 环状过渡态顺式消除 酰氧基与 同时离去) • 经过环状过渡态顺式消除 酰氧基与β-H同时离去 同时离去
O OCCH3 ph C C H ph D ph H + CH3COOH
H C C ph D
8. 酯缩合反应 克莱森缩合 含有α-H的酯 含有α 的酯
1.90 6.50
2.羧羟基的取代反应 2.羧羟基的取代反应 1)酯化 )
O * R C OH + H OR'
酰氧键断裂,羟基被取代。 酰氧键断裂,羟基被取代。
O * R C OR' + H2O
酸催化
H
+
醇和羧酸的位阻增加均不利于酯化 醇和羧酸的位阻增加均不利于酯化 位阻增加 甲醇> 10 醇 > 20 醇 > 30 醇;HCOOH > CH3COOH…… 甲醇> 2)形成酰胺 2)形成酰胺 O
2 C2H5ONa Br(CH2)4Br COOC2H5 COOC2H5
2-乙基丁酸 -
CH2(COOC2H5)2
酰化
甲基酮
Michael加成 加成
烯醇负离子与 不饱和羰基化合物的亲核加成反应 烯醇负离子与α,β--不饱和羰基化合物的亲核加成反应。 不饱和羰基化合物的亲核加成反应。
O RC=CH-X + CH2=CH-Y = O RCCH CH2CH2-Y X
O
O
分子内酯缩合( 缩合) 分子内酯缩合( Dieckmann缩合) : 缩合
COOEt CH2COOEt CH2COOEt CH3CH2ONa O
酮酯缩合
= = = =
= = = =
PhCCH2COC2H5
= = = =
= = = =
O
O
RCCH3 + C2H5OCOC2H5
碳酸二乙酯
EtONa
O
CH3CH2CH2COOH + Br2 CH3CH2COOH
Br2 / P
量 催化 PBr3
CH3CHCOOH Br
脱羧反应和二元羧酸热分解反应 5.脱羧反应和二元羧酸热分解反应 Hunsdiecker(亨斯狄克)反应:重金属羧酸盐 如Ag+)和 (亨斯狄克)反应:重金属羧酸盐(如 和 Br2反应脱羧成溴代烃。 反应脱羧 溴代烃。 脱羧成
RCOOAg + Br2 RBr + CO2 + AgBr
HOOCCOOH HOOCCH2COOH
HCOOH + CO2 CH3COOH + CO2
脱羧
(-CO2)
O CH2COOH CH2COOH O + H2O O CH2COOH CH2 CH2COOH O O + H2O 脱水 O
CH2CH2COOH CH2CH2COOH CH2CH2COOH CH2 CH2CH2COOH
O
O
15.9
酮酸酯) (β-酮酸酯) 酮酸酯
交叉克莱森缩合: 适用于一种没有α 交叉克莱森缩合: 适用于一种没有α-氢,等摩尔
O HCOC2H5 =
+
O CH3COC2H5 =
O
1) EtONa 2) H3O
O
EtOH
HCCH 2COC2H5
O
O
PhCOC2H5 + CH 3COC2H5
EtONa
HCOOH CH3COOH ClCH2COOH CH3CH2COOH C6H5COOH 3.77 4.74 2.86 4.88 4.20
共轭效应对酸性的影响 共轭效应对酸性的影响 NO2
Cl
CH3
OH
COOH
pKa 4.20
COOH COOH COOH COOH
3.42 3.97 4.38
COOH NO2 COOH 2.21 3.49 COOH NO2
O + H2O + CO2 脱羧 脱水 O + H2O + CO2

O 酰卤 O O 酸酐
羧酸衍生物
O 酯 O 酰胺 腈
R C X R C O C R R C O R R C NH2(R) R C N
一. 结构
sp2 O R C L (X、O、N) 、 、 )
O RC NH2 = = = = 中性 O C NH C O 弱酸性 = =
羧酸衍生物及取代羧酸练习
一、写出下列化合物结构 1.NBS 2. 乳酸 3.水杨酸 4. 肉桂酸 5. DMF 6.富马酸 7 .阿司匹林 8. 光气 9.ε-己内酰胺 10. 草酸二乙酯 二、填空题 1.按亲核取代反应活性大小排列顺序 (A) CH3COCl, (B) CH3CONH2, (C) CH3COOEt, (D) (CH3CO)2O
RCOOH + NH3 RCOONH4
3) 形成酰卤
COOH
-H2O
RCNH2
卤化剂: 卤化剂:SOCl2、PCl3、PCl5
COCl + SOCl2 + SO2 + HCl
相关文档
最新文档