工程流体力学(闻建龙)课后答案(部分)
工程流体力学课后习题答案
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少? 【解】根据膨胀系数1t dV V dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=tt dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp V V ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=t V V dT得1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
工程流体力学课后习题答案1-3章[精.选]
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯相对密度 330.906100.9061.010w ρδρ⨯===⨯【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数1t dVV dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P p dV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E由于温度变化而增加的体积,可由1β=tt dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆t p V V ?,相比之下可以忽略由压力变化引起的体积改变,则 由 200L β+=t V V dT 得 1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
流体力学课后习题答案自己整理孔珑4版
《工程流体力学》课后习题答案孔珑第四版第2章流体及其物理性质 (4)2-1 (4)2-3 (4)2-4 (6)2-5 (6)2-6 (6)2-7 (7)2-8 (7)2-9 (8)2-11 (8)2-12 (9)2-13 (9)2-14 (10)2-15 (10)2-16 (11)第3章流体静力学 (12)3-1 (12)3-2 (12)3-3 (13)3-5 (13)3-6 (14)3-9 (14)3-10 (15)3-21 (18)3-22 (19)3-23 (20)3-25 (20)3-27 (20)第4章流体运动学及动力学基础 (22)4-2 (22)4-5 (22)4-6 (23)4-8 (23)4-11 (24)4-12 (24)4-14 (25)4-22 (25)4-24 (26)4-26 (27)第6章作业 (28)6-1 (28)6-3 (28)6-7 (29)6-10 (29)6-11 (29)6-12 (30)6-17 (31)第2章流体及其物理性质2-1已知某种物质的密度ρ=2.94g/cm3,试求它的相对密度d。
【2.94】解:ρ=2.94g/cm3=2940kg/m3,相对密度d=2940/1000=2.942-2已知某厂1号炉水平烟道中烟气组分的百分数为,α(CO2)=13.5%α(SO2)=0.3%,α(O2)=5.2%,α(N2)=76%,α(H2O)=5%。
试求烟气的密度。
解:查课表7页表2-1,可知ρ(CO2)=1.976kg/m3,ρ(SO2)=2.927kg/m3,ρ(O2)=1.429kg/m3,ρ(N2)=1.251kg/m3,ρ(H2O)=1.976kg/m3,ρ(CO2)=1.976kg/m3,3ρ=∑i iαρ=341.1kg/m2-3上题中烟气的实测温度t=170℃,实测静计示压强Pe=1432Pa,当地大气压Pa=100858Pa。
试求工作状态下烟气的密度和运动粘度。
工程流体力学 教学课件作者 闻建龙 工程流体力学习题 答案(部分)
7
题 2-7 图
解:超高 H 2 R2 2g
由:原体积=旋转后的柱体体积+抛物体体积
R2h R2 (H H ) 1 R2H 2
R2h R2 H R 2H 1 R2H 2
H 2(H h) 2(0.5 0.3) 0.4
由 H 2 R2 得 2g
2gH 2 9.81 0.4 18.6rad / s
1-3 底面积为1.5m2 的薄板在液面上水平移动(图 1-3),其移动速度为16 m s ,液层
厚度为 4mm ,当液体分别为 200C 的水和 200C 时密度为 856 kg m3 的原油时,移动平板
所需的力各为多大?
解:20℃ 水: 1103 Pa s
题 1-3 图
20℃, 856kg / m3 , 原油: 7.2 103 Pa s
2
1 D2 1 H 1 R2 H 4 32
R D/ 6
代入(1)
2 D2 H 2g 6
12gH 12 9.81 0.1 17.16
D
0.2
n 60 60 17.16 163.9r / min 2 2 3.14
2-7 如图所示离心分离器,已知:半径 R 15cm ,高 H 50cm ,充水深度 h 30cm , 若容器绕 z 轴以等角速度 旋转,试求:容器以多大极限转速旋转时,才不致使水从容器
V dp
2
0.5 109 Pa1 , dp 0.5106 N / m2 , V 1 42 2000 25120m3 4
dV Vdp 0.5 109 25120 0.5 106 6.28m3
1-6 一种油的密度为 851kg m3 ,运动粘度为 3.39 106 m2 s ,求此油的动力粘度。 解: 851 3.39 106 2.88 103 Pa s
工程流体力学教学作者闻建龙工程流体力学习题+答案
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质就是按什么原则分为固体与液体两大类的?解:从物质受力与运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管就是液体还就是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的就是什么?在解决流动问题时,应用连续介质模型的条件就是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体瞧成就是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设就是流体力学中第一个根本性假设,将真实流体瞧成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可瞧成时间与空间位置的连续函数,使我们有可能用数学分析来讨论与解决流体力学问题。
在一些特定情况下,连续介质假设就是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm)内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水与C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水:233/410416101m N u=⨯⨯=⋅=--δμτ N A F 65.14=⨯=⋅=τ油: 233/8.2810416102.7m N u =⨯⨯=⋅'=--δμτ N A F 2.435.18.28=⨯=⋅=τ1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律就是直线。
工程流体力学课后习题答案
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数1t dVV dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=t t dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp VV ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=tV V dT得1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
工程流体力学课后习题答案4-7章
第四章 流体动力学【4-1】直径d =100mm 的虹吸管,位置如图所示。
求流量和2、3点的压力(不计水头损失)。
【解】列1、4点所在断面的伯努利方程,以过4点的水平面为基准面。
24500 0029.8v ++=++⨯得 4 =9.9 m/s v 2234 3.140.19.90.078 m /s 44π==⨯⨯=Q d v列1、2点所在断面的伯努利方程,以过1点的水平面为基准面222000 02p v g gρ++=++ (v 2=v 4)得 2242210009.9 4.910Pa 22ρ⨯=-=-=-⨯v p列1、3点所在断面的伯努利方程,以过1点的水平面为基准面233000 22p v g gρ++=++ (v 3=v 4)得 2439.9298001000 6.8610Pa 2=-⨯-⨯=-⨯p【4-2】一个倒置的U 形测压管,上部为相对密度0.8的油,用来测定水管中点的速度。
若读数△h =200mm ,求管中流速u =?【解】选取如图所示1-1、2-2断面列伯努利方程,以水管轴线为基准线212 0 002w w p p u g g gρρ++=++其中:p 1和p 2分别为1-1、2-2断面轴线上的压力。
设U 形测压管中油的最低液面到轴线的距离为x ,选取U 形测压管中油的最高液面为等压面,则12()w o w p gx g h p g x h ρρρ--∆=-+∆题 4-1图21()w o p p g h ρρ-=-∆则0.885m/s u ==【4-3】图示为一文丘里管和压力计,试推导体积流量和压力计读数之间的关系式。
当z 1=z 2时,ρ=1000kg/m 3,ρH =13.6×103kg/m 3,d 1=500mm ,d 2=50mm ,H =0.4m ,流量系数α=0.9时,求Q =? 【解】列1-1、2-2断面的伯努利方程、以过1-1断面中心点的水平线为基准线。
工程流体力学(闻建龙)课后答案(部分)
x
D
B
G
h3
yD
L
L T L cos F ( yD y0 ) G cos 2
(2)下游有水时的启门力
y
T L cos F ( yD y0 ) G
L cos F2 ( yD 2 y0 ) 2
L T L cos F ( yD y0 ) G cos 2 2 4 4 3 L h2 / sin 2 / sin 60 = = =2.3094 3 3/2 3 hc (h1 h2 / 2)=(1 2 / 2) 2
解:根据题意,雷诺数为
Re f (v , L, , )
选择 L、v、 作为基本单位,于是
π
Re ,π1 a1 1 1 La v L v
3 0 0, 0, 0 a 1 3 ( L(LT ) ML ) 1 0 1 1, 1 1, 1 1 0 1 1 3 1 1 1 La(LT1 1 ML3 1 ML1T 1 1 )( ) 1 Re f 1 Lv 1
解 该问题是一等直径长管输送问题,因此伯努利方程为
2 2 pA A v A pB B vB zA zB hf g 2g g 2g
由题意
z A zB,v A vB = v,取 A B
pA pB L v2 hf g d 2g
假设流动属于水力光滑区
2 v2 vm p 或 g m lm g p l p
2 2 1 vm v p 则 ,即kv kl2 lm l p
工程流体力学 第二版 孔珑 答案 史上最全 绝无仅有 学校作业整理版
]=11369.6N
=45570N, =
3-26:(朱倩雯,庄思璇)解: 解:Fpx=r*g*h/2*h*B=723050.5 Fpz=r*g*B*Az
过 A 点做水平线,过 B 点做竖直线,与 AO 交于点 N,两条线相 交点极为 M。
有:S(ABO)=ɑ/360*∏*R*R COS(NBO)=H/R MN=OQ/AQ*AM BN=BM+MN ON*ON=ON*ON+OB*OB-OB*ON*COS(NBO) S(OBN)=ON*OB/2 S(AMN)=AM*MN/2 Az=S(ABM)=S(OAB)-S(OBN)-S(AMN) 代入所有数据得:Fpz=524713.7 Fp=894603N TAN&=Fpz/Fpx 过 O 点做一条直线与水平线成角&,则 h=H-R*SIN& 得:h=4.41m
=ρg =ρg[(H-h/2) -1/2
]=256.72kN
3-25(朱保吉,陈海杭)解:闸门在铅直坐标面上的投影面
=BH,其形心淹深 hc= , =44131.5N
曲面 bc 上的压力体 =B ,面积 A 为梯形 oabc 与扇形 obc 面积之差
= [0.5×H( H+ H-H)- × 总压力大小方向
V r2h1 / 2
空气体的最低点为原点,竖直向上为 z 轴正方向建立空间直角坐标
系,设水中的压强分方程为 P=
①
将条件(r,z)=(0,0)和(r,z)=( h)带入方程①,可解得
18.7rad/s
转速 =
ii 容器的总体积
空气的体积=
将(r,z)=(0,0)和(r,z)=(d/2,H)带入,可求得2
第三章-建环
3-13.解:
工程流体力学教学课件pt作者闻建龙工程流体力学习题答案部分
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水:233/410416101m N u=⨯⨯=⋅=--δμτ 油: 233/8.2810416102.7m N u =⨯⨯=⋅'=--δμτ 1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
工程流体力学课后习题答案
第1章绪论【1-1】500cm3的某种液体,在天平上称得其质量为0.453kg,试求其密度和相对密度。
【解】液体的密度相对密度【1-2】体积为5m3的水,在温度不变的条件下,当压强从98000Pa增加到4.9×105Pa时,体积减少1L。
求水的压缩系数和弹性系数。
【解】由压缩系数公式Pa-【1-3】温度为20℃,流量为60m3/h的水流入加热器,如果水的体积膨胀系数βt=0.00055K-1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数Vdt则1【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa。
若汽油的膨胀系数为0.0006K-1,弹性系数为13.72×106Pa,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由pdVP1可得,由于压力改变而减少的体积为VdpE由于温度变化而增加的体积,可由1dVtVdT得(2)因为t,相比之下可以忽略由压力变化引起的体积改变,则由得【1-5】图中表示浮在油面上的平板,其水平运动速度为u=1m/s,油品的粘度μ=0.9807Pa·s,求作单位面积上的阻力。
【解】根据牛顿内摩擦定律dudy习题1-5图δ=10mm,用在平板则习题1-6图【1-6】已知半径为R圆管中的流速分布为r2式中c为常数。
试求管中的切应力τ与r的关系。
【解】根据牛顿3第2章流体静力学【2-1】容器中装有水和空气,求A、B、C和D各点的表压力?【解】空气各点压力相同,与空气接触的液面压力即为空气的压力,另外相互连通的同种液体同一高度压力相同,即等压面【2-2】如图所示的U形管中装有水银与水,试求:(1)A、C两点的绝对压力及表压力各为多少?(2)求A、B两点的高度差h?【解】由p a题2-2图,,得(1)+1(2)选取U形管中水银的最低液面为等压面,则得wH题2-3图w13.6【2-3】在一密闭容器内装有水及油,密度分别为ρw及ρo,油层高度为h1,容器底部装有水银液柱压力计,读数为R,水银面与液面的高度差为h2,试导出容器上方空间的压力p与读数R的关系式。
(完整版)工程流体力学课后习题答案1-3.doc
第一章 流体及其主要物理性质1-1. 轻柴油在温度 15oC 时相对密度为 0.83,求它的密度和重度。
水1000kg / m 3 相对密度: d解: 4oC 时9800 N / m3水水水0.83 所以,0.83水水0.83 1000 830kg / m 3 0.83 9800 8134 N / m 31-2.甘油在温度 0oC 时密度为 1.26g/cm 3 ,求以国际单位表示的密度和重度。
解: 1g / cm 3 1000kg / m 3g1.26g / cm 3 1260kg / m 3g 1260 9.8 12348N / m 31-3.水的体积弹性系数为 1.96×109N/m 2,问压强改变多少时,它的体积相对压缩 1%?解: E1(Pa)pdV VpdppV VV E 0.01E 1.96 10 7 Pa 19.6MPapV1-4.35 2时容积减少3容积 4m 的水,温度不变,当压强增加 10 N/m 1000cm ,求该水的体积压缩系数β p 和体积弹性系数 E 。
V V 1000 10 6解:4 91pp1052.5 10 PaE12.5 1 4 10 8 Pap10 91-5. 用 200L 汽油桶装相对密度为 0.70 的汽油,罐装时液面上压强为 1 个大气压,封闭后由于温度变化升高了 20oC ,此时汽油的蒸气压为 0.18 大气压。
若汽油的膨胀系数为 0.0006oC -1,弹性系数为 2。
试计算由于14000kg/cm 压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?4解: E =E ’· g =14000×9.8×10 PadVVdTVdpT pV V 0 VTVV V 0 V TTTppp Vp所以, dVVdTVdpT V 0dTp V 0dpTp从初始状态积分到最终状态得:V T pdVT V 0 dTp V 0 dpV 0T 0p 0即V V 0T (T T 0 )V 01( p p 0 )V 0E 1040.000620 0.18 9.8 2002009.8 104140002.4L2.57 10 3 L 2.4LMVV 0.7 1000200 2.4138.32kg 1000另解:设灌桶时每桶最多不超过 V 升,则V dV t dV p 200dV t tVdt 0.00061 20VdV ppV dp1 0.18V (1 大气压= 1Kg/cm 2)14000V =197.6 升dV t =2.41 升-3G =0.1976×700= 138Kg = 1352.4N1-6.石油相对密度 0.9,粘度 28cP ,求运动粘度为多少 m 2/s?解: 1cP 10 2 P1mPa s 10 3 Pa s1P 0.1Pa s28 10 3 3.1 10 5 m 2 / s 0.31St 31cSt0.9 10001-7.相对密度 0.89 的石油,温度 20oC 时的运动粘度为 40cSt ,求动力粘度为 多少?解: d-420.89ν= 40cSt =0.4St = 0.4 ×10 m/s水μ=νρ= 0.4 ×10-4 ×890= 3.56 × 10-2 Pa ·s1-8. 图示一平板在油面上作水平运动,已知运动速度 u=1m/s ,板与固定边界的距离δ =1,油的动力粘度μ= 1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:du 1.147 1 1.147 103 N / m 2dy 1 10 31-9. 如图所示活塞油缸,其直径D= 12cm,活塞直径 d= 11.96cm,活塞长度L=14cm,油的μ= 0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力 F=?解: A=π dL , μ= 0.65P=0.065 Pa · s , u=0.5m/s , y=(D-d)/2FA du0.065 3.14 11.96 10 2 14 10 2 0.510 28.55N dy 12 11.96 2第二章 流体静力学2-1. 如图所示的 U 形管中装有水银与水,试求:( 1) A 、 C 两点的绝对压力及表压各为多少?( 2) A 、 B 两点的高度差为多少?解:① p A 表 =γ h 水= 0.3mH 2O =0.03at = 0.3× 9800Pa =2940Pap A 绝= p a + p A 表 =(10+0.3)mH 2 O =1.03at = 10.3×9800Pa= 100940Pap C 表=γ hg h hg + p A 表= 0.1× 13.6mH 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C 绝= p a + p C 表 =(10+1.66)mH 2O = 11.66 mH 2O =1.166at = 11.66×9800Pa =114268Pa ② 30c mH 2 = 2h = 30/13.6cm=2.2cmO 13.6h cmH O题 2-2题 2-32-2. 水银压力计装置如图。
工程流体力学(闻建龙)课后答案(部分)
A bL 3 2.3094 6.9282 F ghc A 1000 9.8 2 6.9282 =135792.72(N ) y0 h1 / sin 1/ sin 60 1.1547 yc hc / sin 2 / sin 2.3094
2 d2 752 v1 v2 2 23 12.94(m/s) 2 d1 100
v1d1 v2d2
y
对弯管的进、出口截面列伯努利方程
2 2 P1 v1 P2 v2 z1 z2 g 2g g 2g
x
P1
2 v2
2
v12
2g
1000 (232 12.942 ) 1.808 105 (Pa) 2
T L cos F ( yD y0 ) G
L cos F2 ( yD 2 y0 ) 2
h3 1 bL F2 ghc2 A3 g A3 1000 9.8 2 2 2 1 3 1000 9.8 2.3094=16974.09(N) 2 2 L L 2 L 2 5 y D 2 y0 1 L 2 2 3 2 3 6
x
h3
yD
L
作业解答
4-8 一射流在平面上以v=5m/s的速度冲击一斜置平板,射流与平板之间夹角 α=60o,射流的过水断面积A=0.008m2,不计水流与平板之间的摩擦力, 试求:(1)垂直于平板的射流作用力; Q (2)如图中所示流量Q1与Q2之比。 v
1 1
X方向动量方程 y方向动量方程
Rx 0 Qv sin
qv v2 x v1 x P1 A1 Fx qv v2 y v1 y Fy
工程流体力学课后习题答案4-7章
第四章 流体动力学【4-1】直径d =100mm 的虹吸管,位置如图所示。
求流量和2、3点的压力(不计水头损失)。
【解】列1、4点所在断面的伯努利方程,以过4点的水平面为基准面。
24500 0029.8v ++=++⨯得 4 =9.9 m/s v 2234 3.140.19.90.078 m /s 44π==⨯⨯=Q d v列1、2点所在断面的伯努利方程,以过1点的水平面为基准面222000 02p v g gρ++=++ (v 2=v 4)得 2242210009.9 4.910Pa 22ρ⨯=-=-=-⨯v p列1、3点所在断面的伯努利方程,以过1点的水平面为基准面233000 22p v g gρ++=++ (v 3=v 4)得 2439.9298001000 6.8610Pa 2=-⨯-⨯=-⨯p【4-2】一个倒置的U 形测压管,上部为相对密度0.8的油,用来测定水管中点的速度。
若读数△h =200mm ,求管中流速u =?【解】选取如图所示1-1、2-2断面列伯努利方程,以水管轴线为基准线212 0 002w w p p u g g gρρ++=++其中:p 1和p 2分别为1-1、2-2断面轴线上的压力。
设U 形测压管中油的最低液面到轴线的距离为x ,选取U 形测压管中油的最高液面为等压面,则12()w o w p gx g h p g x h ρρρ--∆=-+∆题 4-1图21()w o p p g h ρρ-=-∆则0.885m/s u ===【4-3】图示为一文丘里管和压力计,试推导体积流量和压力计读数之间的关系式。
当z 1=z 2时,ρ=1000kg/m 3,ρH =13.6×103kg/m 3,d 1=500mm ,d 2=50mm ,H =0.4m ,流量系数α=0.9时,求Q =? 【解】列1-1、2-2断面的伯努利方程、以过1-1断面中心点的水平线为基准线。
工程流体力学教学工程流体力学习题+答案(部分)
闻建龙主编的《工程流体力学》习题参考谜底之公保含烟创作第一章绪论1-1 物质是按什么原则分为固体和液体两年夜类的?解:从物质受力和运动的特性将物质分红两年夜类:不能抵御切向力,在切向力作用下可以无限的变形(活动),这类物质称为流体.如空气、水等.而在同等条件下,固体则发作有限的变形.因此,可以说:流体不论是液体还是气体,在无论多么小的剪应力(切向)作用下都能发作延续不竭的变形.与此相反,固体的变形与作用的应力成比例,经一段时间变形后将到达平衡,而不会无限增加.1-2 何谓延续介质假定?引入延续介质模型的目的是什么?在解决活动问题时,应用延续介质模型的条件是什么?解:1753年,欧拉首次采用延续介质作为流体微观活动模型,即不思索流体分子的存在,把真实的流体看成是由无限多流体质点组成的稀疏而无间隙的延续介质,甚至在流体与固体边壁间隔接近零的极限情况也认为如此,这个假定叫流体延续介质假定或稀疏性假定.流体延续性假定是流体力学中第一个根赋性假定,将真实流体看成为延续介质,意味着流体的一切微观物理量,如密度、压力、速度等,都可看成时间和空间位置的延续函数,使我们有能够用数学剖析来讨论和解决流体力学问题.在一些特定情况下,延续介质假定是不成立的,例如:航天器在地面稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm)内的活动.1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体辨别为C 020的水和C 020时密度为3856m kg的原油时,移动平板所需的力各为多年夜?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水: 233/410416101m N u =⨯⨯=⋅=--δμτ油: 233/8.2810416102.7m N u =⨯⨯=⋅'=--δμτ 1-4 在相距mm 40=δ的两平行平板间充溢动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假定沿垂直方向速度年夜小的散布规律是直线.1)事先mm h 10=,求薄板运动的液体阻力.2)如果h 可改动,h 为多年夜时,薄板的阻力最小?并计算其最小阻力值.题1-4图解:1) 23/35010)1040(157.0m N h u =⨯-⨯=-⋅=-δμτ上 2) h h u h h h h u h u h u )()()(-⋅=--+⋅=+-+δδμδδμδμτττ)(==下上 要使τ最小,则分母最年夜,所以:02][])[(2=-='-='-h h h h h δδδ, 2δ=h1-5 直径mm d 400=,长m l 2000=输水管作水压试验,管内水的压强加至Pa 6105.7⨯时封锁,经h 1后由于泄漏压强降至Pa 6100.7⨯,不计水管变形,水的压缩率为19105.0--⨯Pa ,求水的泄漏量. 解:dpdV V 1-=κ 19105.0--⨯=Pa κ, 26/105.0m N dp ⨯-=, 32251202000441m V =⨯=π 1-6 一种油的密度为3851m kg ,运动粘度为s m 261039.3-⨯,求此油的动力粘度. 解:s Pa ⋅⨯=⨯⨯==--361088.21039.3851ρυμ1-7 寄存34m 液体的储液罐,当压强增加MPa 5.0时,液体体积增加L 1,求该液体的体积模量. 解:1963105.0105.0101411----⨯=⨯⨯⨯=-=Pa dp dV V κ 1-8 压缩机向气罐充气,相对压强从MPa 1.0升到MPa6.0,温度从C 020升到C 078,求空气体积缩小百分数为多少.解:MRT pV =111MRT V p =,222MRT V p =)20273(101.016+=⨯MR V ,)78273(106.026+=⨯MR VMR V 311093.2-⨯=,MR V 3210585.0-⨯=第二章 流体静力学2-1 如图所示为一复式水银测压计,用来测水箱中的概略压强0p .试求:依据图中读数(单元为m )计算水箱中的概略相对压强和相对压强.题2-1图解:加0-0,1-1,2-2三个辅佐平面为等压面.表压强:相对压强(年夜气压强Pa p a 101325=)2-2 如图所示,压差计中水银柱高差m h 36.0=∆,A 、B 两容器盛水,位置高差m z 1=∆,试求A 、B 容器中心压强差B A p p -.题2-2图解:作辅佐等压面0-0,1-1.2-3 如图2-45所示,一启齿测压管与一封锁盛水容器相通,若测压管中的水柱高出容器液面m h 2=,求容器液面上的压强.题2-3图解:Pa gh p 19620298100=⨯==ρ米水柱2/0=g p ρ2-4 如图所示,在盛有油和水的圆柱形容器的盖上加荷重N F 5788=.已知:cm h 301=,cm h 502=,m d 4.0=,3800m kg =油ρ.求U 形测压管中水银柱高度H .题2-4图解:油概略上压强:列等压面0-0的方程: 2-5 如图所示,试依据水银测压计的读数,求水管A 内的真空度及相对压强.已知:m h 25.01=,m h 61.12=,m h 13=.题2-5图解:a A p h h g h h g p =-+--)()(3212汞水ρρ2-6 如图所示,直径m D 2.0=,高度m H 1.0=的圆柱形容器,装水2容量后,绕其垂直轴旋转.1)试求自由液面抵达顶部边缘时的转速1n ;2)试求自由液面抵达底部中心时的转速2n .题2-6图解:(1)4222222D g g R H ⋅==∆ωω由旋转抛物体体积=相应柱体体积的一半 又H g D H x H 31163122+=+=∆ωH g D D g 3116422222+=⋅ωω (2)⎪⎪⎩⎪⎪⎨⎧'+⋅'-=⋅='')()(2 21])2([4132411 2222222H R H R D H D H g R πππω原体积 抛物体外柱体 抛物体式(2)代入(1) H D g =⋅'6222ω2-7如图所示离心别离器,已知:半径cm R 15=,高cm H 50=,充水深度cm h 30=,若容器绕z 轴以等角速度ω旋转,试求:容器以多年夜极限转速旋转时,才不致使水沉着器中溢出.题2-7图解:超高 g R H 222ω=∆由:原体积=旋转后的柱体体积+抛物体体积 由g R H 222ω=∆得空的体积=)(2h H R ∆-π 空的旋转后体积=有水的旋转抛物体体积=gR R 221222ωπ 2-18 如图所示,一盛有液体的容器以等减速度a 沿x 轴向运动,容器内的液体被带动也具有相同的减速度a ,液体处于相对平衡状态,坐标系建在容器上.液体的单元质量力为a f x -=,0=y f ,g f z -=求此情况下的等压面方程和压强散布规律.题2-8图1)等压面方程2)压强散布规律 又000p p z x ===,0p c =2-19 如图所示矩形闸门AB 宽m b 3=,门重N G 9800=,060=α,m h 11=,m h 73.12=.试求:1)下游无水时的启门力T .2)下游有水时,即223h h =时的启门力T .题2-9图解:1)2/21h h h c +=对转轴A 求矩可得T :2)下游水压力P ' 作用点:离下底29.032/73.13/3==h (垂直间隔) 离A :m h 66.160sin /29.060sin /2=︒-︒对A 求矩得T '2-10 如图2-52所示为一溢流坝上的弧形闸门.已知:m R 10=,门宽m b 8=,030=α.试求:作用在该弧形闸门上的静水总压力.题2-10图解:x c x A gh P ρ=5.6==c c h y ,240m b H A x =⋅=,3358121121⨯⨯==bH I cx 求z P :3.02550600774990===x z P P tg θ,︒=9.16θ 2-11 绕轴O 转动的自动开启式水闸,当水位超越m H 2=时,闸门自动开启.若闸门另一侧的水位m h 4.0=,角060=α,试求铰链的位置x .题2-21图 解:b H Hg A gh P c ⋅==αρρsin 2111 (取1=b ) 第三章 流体运动学根底3-1 已知不成压缩流体平面活动的流速场为y xt v x 2+=,yt xt v y -=2,试求在时刻s t 1=时点()2 ,1A 处流体质点的减速度. 解:yv v x v v t v a x y x x x x ∂∂+∂∂+∂∂= 将2 ,1 ,1===y x t 代入得:4=x a ,6=y a3-2 用欧拉观念写出下列各情况下密度变卦率的数学表达式:1)均质流体;2)不成压缩均质流体;3)定常运动. 解:1)均质流体2)不成压缩均质流体0=dt d ρ,0=∂∂=∂∂=∂∂zy x ρρρ,即c =ρ 3)定常活动2-3 已知平面不成压缩流体的流速重量为y v x -=1,t v y =试求:1)0=t 时过()0 ,0点的迹线方程.2)1=t 时过()0 ,0点的流线方程.解:1)⎪⎪⎩⎪⎪⎨⎧=-=t dt dy y dt dx 1⎪⎩⎪⎨⎧+=+-=22121)1(C t y C t y x 将0=t 时0,0==y x 代入得021==C C ,将二式中的t 消去为: 0)1(222=--y y x , 0242232=-+-y y y x2)y x v dy v dx =, tdy y dx =-1, dy y tdx )1(-= 积分得 C y y tx +-=221 将0,0,1===y x t 代入0=C ,得1=t 时的流线为:3-4 如图所示的一不成压缩流体通过圆管的活动,体积流量为q ,活动是定常的.1)假定截面1、2和3上的速度是平均散布的,在三个截面处圆管的直径辨别为A 、B 、C ,求三个截面上的速度.2)当m q 34.0=,m A 4.0=,m B 2.0=,m C 6.0=时计算速度值.3)若截面1处的流量m q 34.0=,但密度按以下规律变卦,即126.0ρρ=,132.1ρρ=,求三个截面上的速度值.题3-4图解:1) 2141A qv π=,2241B q v π=,2341C q v π= 2) s m v /18.34.0414.021==π,s m v /74.122.0414.022==π,s m v /41.16.0414.023==π3) s m v /18.31=, 11114.0ρρ=A v222111A v A v ρρ= 即 22112.0416.04.0πρρ⋅=v333111A v A v ρρ= 即 23116.0412.14.0πρρ⋅=v 3-5 二维、定常不成压缩活动,x 方向的速度重量为1cosh +=-y e v x x ,求y 方向的速度重量y v ,设0=y 时,0=y v . 解:二维、定常不成压的延续性方程为:hy e x v x x cos -=∂∂, hy e yv x y cos =∂∂ 00==y y v , 0=C3-6 试证下述不成压缩流体的运动是能够存在的: 1)y x v x +=22,z y v y +=22,()xy z y x v z++-=42)()2222y x xyz v x +-=,()()22222y x z y x v y +-=, 22yx y v z += 3)yzt v x =,xzt v y =,xyt v z =解:不成压缩流体的延续性方程为:0=∂∂+∂∂+∂∂zv y v x v z y x (1) 1)x x v x4=∂∂,y y v y4=∂∂,y x zv z 44--=∂∂代入(1)中满足. 2)()()()()()()42222222242222222822222y x y x yz x y x yz y x x y x xyz y x yz x v x ++-+-=+⋅+⋅-+-=∂∂,()()00022222=+⋅-+⋅=∂∂yx y y x z v z 代入(1)中满足. 3)0=∂∂xv x,0=∂∂yv y ,0=∂∂zv z代入(1)中满足. 3-7 已知圆管层流运动的流速散布为()[]22204z y r lgh v f x +-=μρ,0=y v ,0=z v 试剖析流体微团的运动形式. 解:线变形:0=xx ε,0=yy ε,0=zzε纯剪切角变形: 旋转角速度:3-8 下列两个流场的速度散布是: 1)Cy v x -=,Cx v y =,0=z v2)22y x Cx v x+=,22y x Cy v y+=,0=zv试求旋转角速度(C 为常数).解:1)0=x ω,0=y ω,()c c c z =--=)(21ω2)0=x ω,0=y ω,()()0202021222222=⎪⎪⎭⎫ ⎝⎛+⋅--+⋅-=y x y cx y x x cy z ω 2-9 气体在等截面管中作等温活动.试证明密度ρ与速度v 之间有关系式x 轴为管轴线方向,不计质量力.解:1)假定所研究的气体为完全气体,契合RT p ρ=2)等截面一维活动,契合0=∂∂xv由延续性方程:0)(=∂∂+∂∂xv t ρρ (1) 得0=∂∂+∂∂xv t ρρ (2) 对(2)求t 的偏导数:0222=∂∂∂+∂∂∂∂+∂∂t x v x t v tρρρ (3) 对x 的偏导数:0222=∂∂+∂∂∂x v x t ρρ 即 02222=∂∂+∂∂∂xv x t v ρρ (4) 由完全气体的一维运动方程:xpx v v t v ∂∂-=∂∂+∂∂ρ1 (5) 转化为: tvx v v t v x p ∂∂-=∂∂-∂∂-=∂∂ρρ (0=∂∂xv )对x 求导:t v x x t v t v x x p ∂∂∂∂-=∂∂∂-∂∂∂∂-=∂∂ρρρ222 (0=∂∂xv ) (6)题目中:()[]()xt v x v p v x RT v x ∂∂∂∂-∂∂=+∂∂=+∂∂ρρρρ22222222 (7)比照(3)和(4)发现(加上(7))()[]ρρRT v xt +∂∂=∂∂22222得证.第四章 流体动力学根底3-1 不成压缩理想流体作圆周运动,事先a r ≤,速度重量为y v x ω-=,x v y ω=,0=zv 事先a r >,速度重量为22r y a v x ω-=,22r x a v y ω=,0=z v 式中, 222y x r +=,设无穷远处的压强为∞p ,不计质量力.试求压强散布规律,并讨论.解:a r ≤时,y v x ω-=,x v y ω=,质点做等ω的旋转运动. 对二元活动,略去质量力的欧拉微分方程为:⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂+∂∂∂∂-=∂∂+∂∂ypy v v x v v xpy v v x v v y y y x x y x x ρρ11 (1)由速度散布得:0=∂∂x v x ,ω-=∂∂y v x,ω=∂∂x v y ,0=∂∂yv y 于是欧拉方程(1)成为:上二式辨别乘以dy dx ,,相加积分得:c v c r c y x p +=+=++=22)(2222222ρρωρω (2)在涡核鸿沟上0v v =,则c v p +=2200ρ (3)积分常数220v p c ρ-= (4)于是旋涡中任一点的压强为[(4)代入(2)]:a r >时事先a r >,是无旋活动,由拉格朗日积分c v p =+22ρ当∞→r ,0=∞v ,∞=p p ,得∞=p c .于是22v p p ρ-=∞涡核鸿沟2200v p p ρ-=∞3-2 一通风机,如图所示,吸风量s m q 335.4=,吸风管直径m d 3.0=,空气的密度329.1m kg =ρ.试求:该通风机出口处的真空度V p (不计损失).题3-2图解:1-1断面处:v v gh p 水ρ=列0-0,1-1,B 、E21z z =,01=p ,s m d q v /57.613.04135.441222=⨯==ππ,01=v23.19381.9257.6122222-=⨯-=-=g v g p ρ,22221v p ρ-= Pa p 24458.929.123.1932-=⨯⨯-= (真空度)3-3 如图所示,有一管路,A 、B 两点的高差m z 1=∆,点A 处直径m d A 25.0=,压强Pa p A 41084.7⨯=,点B 处直径m d B 5.0=,压强Pa p B 4109.4⨯=,断面平均流速s m v B 2.1=.试求:断面平均流速A v 和管中水流方向.题3-3图解:s m d v Q BB /235.05.0412.141322=⨯⨯=⋅⋅=ππ水流方向B A →.3-4 图所示为水泵吸水管装置,已知:管径m d 25.0=,水泵出口处的真空度Pa p V 4104⨯=,底阀的局部水头损失为gv 282,水泵出口以前的沿程水头损失为g v 22.02,弯管中局部水头损失为gv 23.02.试求:1)水泵的流量q ;2)管中1-1断面处的相对压强.题3-4图•h g v g p z g v g p z w +++=++222222221111αραρ (1) gv •g v g v g v h w 25.823.022.02822222222=++= (2) (2)代入(1)2248.004.10v +-=, s m v /5.12= 3-5 一虹吸管,已知:m a 8.1=,m b 6.3=,由水池引水至C 端流入年夜气.若不计损失,设年夜气压的压强水头为m 10.求:1)管中流速及B 点的相对压强.2)若B 点相对压强的压强水头下降到m 24.0以下时,将发作汽化,设C 端坚持不动,问欲不发作汽化,a 不能超越多少?题3-5图Pa p 52938-= (相对压强)Pa p 48387=绝 (相对压强,Pa p a 101325=)3-6 图为射流泵装置简图,应用喷嘴处的高速水流发作真空,从而将容器中流体吸入泵内,再与射流一起流至下游.若要求在喷嘴处发作真空压强水头为m 5.2,已知:m H 5.12=、mm d 501=、mm d 702=.求上游液面高?1=H (不计损失)题3-6图解:不计损失,不计抽吸后的流量增加(即抽吸开端时)gv H 2221=, 122gH v = 2211A v A v =,1212212gH d d v = (1)事先m 41.1H 1=,射流泵开端抽吸液体,其任务条件(不计损失)为m 41.1H 1>.3-7 如图所示,敞口水池中的水沿一截面变卦的管路排出的质量流量s kg q m 14=,若mm d 1001=、mm d 752=、mm d 503=, 不计损失,求所需的水头H ,以落第二管段M 点的压强,并绘制压强水头线.题3-7图解:s kg q m /14=化成体积流量:s m q /014.01000143==s m d q v /78.11.041014.0412211=⨯==ππ,s m v /17.32=, s m v /13.73=3-8 如图所示,虹吸管直径cm d 101=,管路末端喷嘴直径cm d 52=,m a 3=,m b 5.4=.管中充溢水流并由喷嘴射入年夜气,疏忽摩擦,试求1、2、3、4点的表压强.题3-8图gv b 222'=, s m gb v /4.95.481.9222=⨯⨯==' gv g p 2021+=ρ,s m d v d v /35.2104.952221222=⨯='=同理Pa p p 3.276113-==gv g p a 2022++=ρ,s m d v d v /35.2104.952221222=⨯='= kPa p 76.21-=,kPa p 2.322-=,kPa p 76.23-=,kPa p 4.411=3-9 如图所示,一射流在平面上以s m v 5=的速度冲击一斜置平板,射流与平板之间夹角060=α,射流断面积2008.0m A =,不计水流与平板之间的摩擦力.试求:1)垂直于平板的射流作用力. 2)流量1q 与2q 之比.题3-9图解:()x x x v v Q F 1122ββρ-=∑对本题就写为:(0.1=β)︒--=60cos 02211Qv v q v q (1)列入口,出口1;入口,出口2的B.E ,可得v v v ==21,(1)式成为:解得:Q q 431=,Q q 412=,1/3/21=q q3-10 如图所示,水流经一水平弯管流入年夜气,已知:mm d 1001=,mm d 752=,s m v 232=,水的密度为31000m kg .求弯管上受到的力.(不计水头损失,不计重力)题3-10图•gv g p z g v g p z 2222222111++=++ρρ (1) 21z z =,?1=p ,02=p ,s m v /232=s m A v Q /10.0075.041233222=⨯⨯⨯==π,s m A Q v /9.121.04110.0211=⨯==π81.929.1281.92239810221⨯-⨯=p ,Pa p 1812951= 列所画控制体的动量方程:()()⎩⎨⎧-=∑-=∑y y yx x x v v Q F v v Q F 11221122ββρββρ 取0.121==ββ N F x 3.721=,N F y 1150=3-11 图所示的一洒水器,其流量恒定,m q 34106-⨯=,每个喷嘴的面积20.1cm A =,臂长cm R 30=,不计阻力.求1)转速为多少?2)如不让它转动,应施加多鼎力矩?题3-11图解:1)出口相对流速s m A Q w /31012106244=⨯⨯⨯==--取固定于地球坐标系:()1122v v Q Fββρ-=∑对系统而言 0=∑F ,R w v ωα-=sin 2,01=v代入动量方程:0sin =-R w ωα,s rad R w /07.73.045sin 3sin =︒⨯==αω 2)不转动动量方程两端R ⨯,得动量矩方程:()11122r v R v Q R Fββρ-=⨯∑ 取0.121==ββ,01=r ,w v =2或:1) 由于无阻力,则出口速度w 的切向重量=洒水器的圆周速度R w ωα=sin ,s rad Rw /07.7sin ==αω 3-12 图为一水泵的叶轮,其内径cmd 201=,外径cm d 402=,叶片宽度(即垂直于纸面方向)cm b 4=,水在叶轮入口处沿径向流入,在出口处与径向成030流出,已知质量流量s kg q m 92=,叶轮转速min 1450rn =.求水在叶轮入口与出口处的流速1v 、2v 及输入水泵的功率(不计损失).题3-12图解:1)如图示叶片进出口速度三角形出口:11u v m ⊥,11v v m =,01=u v 出口:22u v m ⊥,2230cos v v m =︒,︒=30cos 22m v v泵体积流量:s m q Q m/092.010003==s m S Q v m /68.3025.0092.011===,s m S Q v m /84.105.0092.022=== s m v v m /68.311==,s m v v m /126.260cos 22=︒=2)泵扬程:由泵根本方程式()11221u u v u v u gH -=, 01=u v , s m Dnu /369.30602==π, s m v v m u /062.160cot 22=︒⋅=功率kW gQH p 986.2==ρ第四章 相似实际与量纲剖析4-1 相似活动中,各物理量的比例系数是一个常数,它们是否都是同一个常数?又,是否各物理量的比例系数值都可以随便取吗?解:相似活动中,各物理量的比例是一个常数,其中l k ,v k ,ρk 是各自独立的,根本比例尺确定之后,其它一切物理量的比例尺都可以确定.根本比例尺之间的换算关系需满足相应的相似准则(如Fr ,Re ,Eu 相似准则).线性比例尺可任意选择,视经济条件、场地等条件而定.4-2 何为决议性相似准数?如何选定决议性相似准数?解:若决议活动的作用力是粘性力、重力、压力,则只要满足粘性力、重力相似准则,压力相似准则数自动满足.所以,依据受力情况,辨别确定这一相似相似活动的相似准则数.对主要作用力为重力,则决议性相似准则数为Fr相似准则数,其余可不思索,也能到达近似相似.对主要作用力为粘性力,则其决议性相似准则数为Re 相似准则数.4-3 如何安插模型活动?如何将模型活动中测定的数据换算到原模型活动中去?为了使模型和原型相似,除要几何相似外,各主要相似准则应满足,如Fr,Re相似准则.通常依据实验场地、经费情况、模型制作和量测条件,定出线性比例尺k,再以l k缩小原型的几何尺寸,得出模型l的几何鸿沟.选定模型相似准则,由选定的相似准则确定流速比尺及模型的流量.在模型上丈量的数据由各种比尺换算至原型中.4-4 何谓量纲?何为根本量纲?何谓导出量纲?在不成压缩流体活动问题中,根本量纲有哪几个?量纲剖析法的依据是什么?解:物理量单元的种类称量纲.物理量的量纲分为根本量纲和导出量纲,在流体力学中,长度、时间和质量的量纲][L、][T 、][M 为根本量纲,在与温度有关的问题中,还要增加温度量纲○H .导出量纲有:][v ,][a ,][ρ,][F 等.量纲剖析法的依据是:量纲调和性原理.4-5 用量纲剖析法时,把原有的n 个有量纲的物理量所组合的函数关系式转换成由m n i -=个无量纲量(用π暗示)组成的函数关系式.这“无量纲”实是由几个有量纲物理量组成的综合物理量.试写出以下这些无量纲量Fr .Re ,Eu ,Sr ,Ma ,L C (升力系数),P C (压强系数)辨别是由哪些物理量组成的?解:glv Fr 2=,υvl=Re ,2v p Eu ρ=,vtl Sr =,c vMa =,221∞=v L C L ρ,221∞=v D C D ρ,221∞∞-=v p p C p ρ4-6Re 数越年夜,意味着活动中粘性力相关于惯性力来说就越小.试解释为什么当管流中Re 数值很年夜时(相当于水力粗拙管活动),管内活动已进入了粘性自模区.解:当雷诺数超越某一数值后,由活动阻力实验可知,阻力系数不随Re 而变卦,此时活动阻力的年夜小与Re 无关,这个活动范围称为自动模型区.若原型与模型活动都处于自动模型区,只需几何相似,不需Re 相等,就自动实现阻力相似.工程中许多明渠水流处于自模区.按弗劳德准则,设计的模型只要进入自模区,便同时满足阻力相似.4-7 水流自滚水坝顶下泄,流量s m q /323=,现取模型和原型的标准比4/1/==p m l l l k ,问:模型活动中的流量m q 应取多年夜?又,若测得模型活动的坝顶水头m H m 5.0=,问:真实活动中的坝顶水头p H 有多年夜?解:用Fr 相似准则1)25l q k k =2)lHk k =41==p m p m l l H H m H H m p 25.044=⨯== 4-8 有一水库模型和实际水库的标准比例是225/1,模型水库开闸放水4min 可泄空库水,问:真实水库将库水放空所需的时间p t 多年夜?解:用Fr 相似准则:21l t k k =4-9 有一离心泵输送运动粘度s m p /108.1825-⨯=υ的油液,该泵转速min /2900r n p =,若采用叶轮直径为原型叶轮直径3/1的模型泵来做实验,模型活动中采用C︒20的清水(s m m /10126-⨯=υ),问:所采用的模型的离心泵的转速m n 应取多年夜?解:采用Re 相似准则速度比尺:18833/1108.18/10156=⨯⨯==--l v k k k υ v n l k k k =,18893/11883===l v n k k k 1889=p m n n ,min /139********r n m =⨯=4-10 气流在圆管中活动的压降拟通过水流在有机玻璃管中实验失掉.已知圆管中气流的s m v p /20=,m d p 5.0=,3/2.1m kg p =ρ,s m p /101526-⨯=υ;模型采用m d m 1.0=,3/1000m kg m =ρ,s m m /10126-⨯=υ.试确定:(1)模型活动中水流m υ;(2)若测得模型管流中2m 管流的压降2/5.2m kN p m =∆,问:气流通过20m 长管道的压降p p ∆有多年夜? 解:1)采用Re 相似准则:ppp mmm l v l v υυ=2)采用欧拉相似准则:22pp p m m mv p v p ρρ∆=∆ 4-11Re 数是流速v ,物体特征长度l ,流体密度ρ,以及流体动力粘度μ这四个物理量的综合表达,试用π定理推出雷诺的表达式. 解:),,,(Re μρv l f =取l ,ρ,v 为根本量,则:γβαρμπv l =][ 3-ML ρ;][ L l ;][ 1-LT v ;][ 11--T ML μ解得:1=α,1=β,1=γvlvl υρμπ==, υvl =Re4-12 机翼的升力L F 和阻力D F 与机翼的平均气动弦长l ,机翼面积A ,飞行速度v ,冲角α,空气密度ρ,动力粘度μ,以及c 等因素有关.试用量纲剖析法求出与诸因素的函数关系式. 解:),,,,,,(C V A L f F μρα=各物理量的量纲为:L AvαρμC FL2L1-LT13-ML11--T ML1-LT2-MLT取l ,v ,ρ为根本量2=α,2=β,1=γρπ22v L A=21=α,01=β,01=γ2L A A =π 12=α,12=β,12=γvLρμπμ=03=α,13=β,03=γvC C =π 第六章 活动阻力与水头损失3-1 试判别以下两种情况下的流态:1)某管路的直径cm d 10=,通过流量s m q 33104-⨯=的水,水温C T 020=.2)条件与上相同,但管中流过的是重燃油,运动粘度m 2610150-⨯=ν.解:1)s m A Q v /51.01.04110423=⨯⨯==-π,s m /10126-⨯=υ 2320Re >紊流2)s m /1015026-⨯=υ3-2 1)水管的直径mm 10,管中水流流速s m v 2.0=,水温C T 010=,试判别其流态.2)若流速与水温同上,管径改为mm 30,管中流态又如何?3)流速与水温同上,管流由层流转酿成湍流的直径多年夜?解:水C T ︒=10,s m /10308.126-⨯=υ1)2320152910308.101.02.0Re 6<=⨯⨯==-υvd,层流 2)2320458710308.103.02.0Re 6>=⨯⨯==-υvd,湍流3)υcc vd =Re ,mm m v d c c 15015.02.010308.12320Re 6==⨯⨯=⋅=-υ 3-3 一输水管直径mm d 250=,管长m l 200=,测得管壁的切应力2046m N=τ.试求:1)在m 200管长上的水头损失.2)在圆管中心和半径mm r 100=处的切应力.解:1)如图示控制体2)Rr 0ττ=,0=r ,m r 1.0=时0046=⨯=R τ,2/8.362/25.01.046m N =⨯=τ 或dL p τ4=∆,2/8.3620021.01472002 m N L r p =⨯⨯=∆=τ3-4某输油管道由A 点到B 点长m l 500=,测得A 点的压强Pa p A 5103⨯=,B 点压强Pa p B 5102⨯=,通过的流量s m q 3016.0=,已知油的运动粘度s m 2610100-⨯=ν,3930m kg=ρ.试求管径d 的年夜小.解:设活动为层流,则由流量公式:lpd Q μπ1284∆=υvd=Re ,s m d Qv /169.1132.041016.04122=⨯==ππ2320154310100132.0169.1Re 6<=⨯⨯=-,层流 3-5 如图3-31所示,水平突然缩小管路的cm d 151=,cm d 102=,水的流量23m q =,用水银测压计测得cm h 8=,试求突然缩小的水头损失.图3-31 题3-5图第七章有压管路、孔口、管嘴的水力计算 7-1如图所示的实验装置,用来测定管路的沿程阻力系数λ和当量粗拙度∆,已知:管径mm d 200=,管长m l 10=,水温C T 020=,测得流量s m q 315.0=,水银测压计读数m h 1.0=∆.试求:1)沿程阻力系数λ.2)管壁的当量粗拙度∆.题7-1图解:1)()()Pa gh p 6.123601.081.9100013600=⨯⨯-=-'=∆ρρgv d l h f 22λ=, 022.078.41081.922.026.1222=⨯⨯⨯⨯=⋅⋅=lv g d h f λ 2)尼古拉兹阻力平方区公式 或由00155.0/=∆→d λ,mm 31.0=∆7-2 在图所示的管路中,已知:管径cm d 10=,管长m l 20=,当量粗拙度mm 20.0=∆,圆形直角转弯半径cm R 10=,闸门相对开度6.0=d h ,水头m h 5=,水温C T 020=,试求管中流量q .题7-2图λ:由d /∆查阻力平方区λ:002.010020.0==∆d ,023.0=λ ξ:5.0=进ξ,29.0=弯ξ(0.1=Rd),06.1=阀ξ 7-3 如图所示,用一根普通旧铸铁管由A 水池引向B 水池,已知:管长m l 60=,管径mm d 200=.有一弯头,其弯曲半径m R 2=,有一阀门,相对开度5.0=d h ,当量粗拙度mm 6.0=∆,水温C T 020=.试求当水位差m z 3=时管中的流量q .题7-3图λ:003.02006.0==∆d ,026.0=λ ξ:5.0=进ξ,29.0=弯ξ,06.2=阀ξ,1=出ξ代入:7-4如图所示,水由具有固定水位的贮水池中沿直径mm d 100=的输水管流入年夜气.管路是由同样长度m l 50=的水平管段AB 和倾斜管段BC 组成,m h 21=,m h 252=.试问为了使输水管B 处的真空压强水头不超越m 7,阀门的损失系数ς应为多少?此时流量q 为多少?取035.0=λ,不计弯曲处损失.题7-4图()gv 235272阀ξ+= (1)289.09v =s m v /17.3= (2)代入(1):7.17=阀ξs m Q /025.03=7-5 如图所示,要求担保自流式虹吸管中液体流量s m q 3310-=,只计沿程损失,试确定:1)当m H 2=,m l 44=,m 2410-=ν,3900m kg =ρ时,为担保层流,d 应为多少?2)若在距出口2l 处断面A 上的极限真空的压强水头为m 4.5,输油管在上面贮油池中油面以上的最年夜允许超高maxz 为多少?题7-15g v d l H 22λ=,Re 64=λυvd =Re 241d Q v π= 541014.9-⨯=d ,m d 055.0=或:层流流量公式lpd Q μπ1284∆=,2=∆gp ρ4128d gl pg Q υρπ∆=,442128gdlQ d πυ=, m d 055.0=校核:231Re = m gp4.5-=ρ,28.023164Re 64===λ,s m v /42.0= 7-6 如图所示,水从水箱沿着高m l 2=及直径mm d 40=的铅垂管路流入年夜气,不计管路的出口损失,取04.0=λ.试求:1)管路起始断面A 的压强与箱内所维持的水位h 之间的关系式,并求当h 为若干时,此断面相对压强等于MPa 098.0(1个工程年夜气压).2)流量和管长l 的关系,并指出在怎样的水位h 时流量将不随l 而变卦.题7-6图g v g v d l l h 2222+=+λ (1)gv g p h A 22+=ρ (2)从(1)中解出gv 22,则为dll h g v λ++=122 (3)代入(2)得:要使Pa Pa p A 46108.910098.0⨯=⨯=(相对压强),求?=h ,即0=A p (相对压强)代入065406540=-=h p A ,m h 1=2)由式(3)解出d l l h gv λ++=12dl lh g d vA Q λπ++==12412 要使Q 与l 无关,则l l h +=+1,m h 1=,此时7-7两容器用两段新的低碳钢管衔接起来,已知:cm d 201=,m l 301=,cm d 302=,m l 602=,管1为锐边入口,管2上的阀门的阻力系数5.3=ς.当流量为m q 32.0=时,求必需的总水头H .题7-7图解:列上、下水池水面的B 、Eλ:钢管 mm 05.0=∆,00025.0200/05.0/1==∆d查莫迪图中的Ⅱ区,得:014.01=λ,013.01=λξ:5.0=入口ξ,5.3=阀门ξ,56.11023011A A 22222122212====扩大⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-d d ξ,1=进口ξ 1v ,2v :7-8一水泵向如图所示的串联管路的B 、C 、D 点供水,D点要求自由水头mh F 10=.已知:流量sm q B 3015.0=,s m q C 301.0=,sm q D 33105-⨯=;管径mm d 2001=,mm d 1502=,mm d 1003=,管长m l 5001=,m l 4002=,m l 3003=.试求水泵出口A 点的压强水头()g p A ρ.题7-8图解:gv d l g v d l g v d l h g p f A 222233332222221111λλλρ+++= s m d Q v /96.02.04103.04122111=⨯==ππ,s m v /85.015.041015.022=⨯=π29.1882.195.252.310=+++=m7-9在总流量为s L q 25=的输水管中,接入两个并联管道.已知:cm d 101=,m l 5001=,mm 2.01=∆,cm d 152=,m l 9002=,mm 5.02=∆,试求沿此并联管道的流量分配以及在并联管道入口和出口间的水头损失. 解:002.01002.011==∆d ,022.01=λ (查莫迪图,按阻力平方区) 003.01505.022==∆d ,025.02=λ (同上) 由2kQ H =,528d g l k πλ=(并联管21H H H +=,21Q Q Q +=)对管路1:21215221512118.909811.014.381.9500022.088Q Q Q d g l H =⨯⨯⨯⨯==πλ (1) 对管路2:2121522152222)(9.24506)(15.014.381.9900025.08)(8Q Q Q Q Q Q d g l H -=-⨯⨯⨯⨯=-=πλ(2) (1)=(2)2121)(9.245068.90981Q Q Q -= 已知025.0=Q 则s L s m Q Q Q /5.16/0165.00085.0025.0312==-=-=7-10 如图所示, 分叉管路自水库取水.已知:干管直径m d 8.0=,长度km l 5=,支管1的直径m d 6.01=,长度km l 101=,支管2的直径m d 5.02=,长度km l 152=,.管壁的粗拙度均为mm 0125.0=∆,各处高程如图3-40所示.试求两支管的出流量1q 及2q .题7-10图解:000016.08000125.0==∆d009.0=λ支管1:gv d l g v d l H 222111121λλ+=2126.787.230v v += (1)支管2:gv d l g v d l H 222222122λλ+= 2228.1387.240v v += (2) 2139.056.0v v v += (3)(1)、(2)、(3)汇总⎪⎩⎪⎨⎧+=+=+=2122221239.056.08.1387.2406.787.230vv v v v v vs m v /75.11=,s m v /55.12=,s m v /51.13=7-11 如图所示,一水箱用隔板分红两局部A 和B .隔板上有一孔口,直径cm d 41=.在B 的底部有一圆柱形外伸管嘴,直径cm d 32=,管嘴长cm l 10=,水箱A 局部水深坚持恒定,m H 3=,孔口中心到箱底下的间隔m h 5.01=.试求:1)水箱B 局部外水位稳定之后的2h 和3h .2)流出水箱的流量q .题7-11图解:孔口流量系数62.0=ϕ, 管嘴流量系数82.0=ϕ孔口流量=管嘴流量()212A H H g Q -⋅孔孔孔=ϕ(1)()l H g Q +⋅22A 嘴嘴嘴=ϕ (2)(1)=(2))1.0(55.0)3(22+=-H H , m H 9.12=则m h H h 4.1122=-=,m h 1.13=7-12 已知:管道长m l 800=,管内水流流速s m v 10=,水的体积模量2901003.2m NK ⨯=,3310m kg=ρ,管径与管壁厚度之比100=e D ,水的体积模量与管壁弹性模量之比01.00=E K .当管端阀门全部封锁时间s t s2=时,求水击压强p ∆.解:s m Eekd k C /4.100710001.0110001003.219=⨯+⨯=+=ρ。
工程流体力学试题库.
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
1)当mm h 10=时,求薄板运动的液体阻力。
2)如果h 可改变,h 为多大时,薄板的阻力最小?并计算其最小阻力值。
题1-4图1-5 直径mm d 400=,长m l 2000=输水管作水压试验,管内水的压强加至Pa 6105.7⨯时封闭,经h 1后由于泄漏压强降至Pa 6100.7⨯,不计水管变形,水的压缩率为19105.0--⨯Pa ,求水的泄漏量。
第二章 流体静力学2-2 如图所示,压差计中水银柱高差m h 36.0=∆,A 、B 两容器盛水,位置高差m z 1=∆,试求A 、B 容器中心压强差B A p p -。
题2-2图第三章 流体运动学基础2-3 已知平面不可压缩流体的流速分量为y v x -=1,t v y =试求:1)0=t 时过()0 ,0点的迹线方程。
2)1=t 时过()0 ,0点的流线方程。
3-8 下列两个流场的速度分布是: 1)Cy v x -=,Cx v y =,0=z v 2)22y x Cx v x +=,22yx Cyv y +=,0=z v 试求旋转角速度(C 为常数)。
第四章 流体动力学基础3-3 如图所示,有一管路,A 、B 两点的高差m z 1=∆,点A 处直径m d A 25.0=,压强Pa p A 41084.7⨯=,点B 处直径m d B 5.0=,压强Pa p B 4109.4⨯=,断面平均流速s m v B 2.1=。
工程流体力学(闻建龙)课后答案(部分)
为了简化湍流计算,研究者们提出了各种湍流模型,如零方程模型、一方程模型 和两方程模型等。这些模型通过建立数学方程来描述湍流的统计性质和流动特性 。
模拟方法
针对湍流模拟,常用的数值方法包括直接数值模拟(DNS)、大涡模拟(LES)和 雷诺平均模拟(RANS)。这些方法在精度和计算成本上各有优缺点,适用于不同 的流动条件和工程问题。
它描述了颗粒运动的速度与颗粒半径和流体粘性的关系。
流体动力学的基本方程
要点一
总结词
流体动力学的近似解法、数值解法。
要点二
详细描述
对于一些复杂的问题,我们可能无法得到精确的解析解, 这时就需要采用近似解法或者数值解法。近似解法包括摄 动法、迭代法等,数值解法则包括有限差分法、有限元法 等。这些方法可以帮助我们得到相对精确的结果,但是计 算量较大,需要借助计算机进行计算。
工程流体力学(闻建龙)课后答 案(部分)
目
CONTENCT
录
• 绪论 • 流体静力学 • 流体动力学基础 • 流体流动的能量转换与损失 • 流体流动的湍流与噪声 • 工程流体力学的应用实例
01
绪论
流体的定义与分类
总结词
流体的定义与分类
详细描述
流体是具有流动性的连续介质,可分为牛顿流体和非牛顿流体。牛顿流体遵循 牛顿第二定律,具有粘性和剪切应力;非牛顿流体不遵循牛顿第二定律,其流 动行为与剪切速率、温度和压力等条件有关。
THANK YOU
感谢聆听
流体流动的效率与节能措施
提高流速
减小流体的粘性和摩擦阻力,提高流速可以减小流体流动的能量 损失,提高流动效率。
优化流道设计
合理设计流道形状、尺寸和布局,减小流体的局部损失和摩擦阻力, 提高流动效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L h2 / sin 2 / sin 60o
2 = 4 = 4 3 =2.3094 3/2 3 3
hc (h1 h2 / 2)= (1 2 / 2) 2
A bL 3 2.3094 6.9282 F ghc A 1000 9.8 2 6.9282
=135792.72( N ) y0 h1 / sin 1 / sin 60 o 1.1547 yc hc / sin 2 / sin 2.3094
解:由连续性方程 v1d12 v2d22
v1v2d d1 2 2 217050222312.94(m /s)
y
对弯管的进、出口截面列伯努利方程
x
P1gz12v1g2 P2gz22v2g2
P 12 v 2 22 v g 1 2 1 0 2 0 0 ( 2 3 2 1 2 .9 4 2 ) 1 .8 0 8 1 0 5 (P a )
第二章 作业
2-8 矩形闸门AB,如图所示。 宽 b 3 m , 门 重 G 9 8 0 0 N , 6 0 o , h 1 1 m , h 2 2 m , h 3 1 m
求:(1)下游无水时的启门力 (2)下游有水时的启门力
T
O (x)
解:(1)下游无水时的启门力 根据题意,可列关于A点的力矩平衡方程
平 面 图
0 ( Q 1 v 1 Q 2 v 2 ) Q v c o s
Q2 v2
连续方程
QAvQ 1Q 2
R x 0.173(kN )
Q Q
=
1
=
2
0 .0 3 (m 0 .0 1 (m
3 3
/ /
s) s)
Q
1
:
Q
=
2
3
:
1
y
α
x
作业解答
4-9 如图示,水流经弯管流入大气,已知d1=100mm,d2=75mm,v2=23m/s, 水的密度为1000kg/m3。不计水头损失,求弯管上所受的力F。
作业解答
6-4 某输油管道由A到B长l=500m,测得A点的压强pA=3×105Pa,B点的压
强pB=2×105Pa,通过的流量qv=0.016m3/s,已知油的运动粘度100×10-6m2/s, 密度930kg/m3。求管径d的大小。
解 该问题是一等直径长管输送问题,因此伯努利方程为
由题意
zA pg A2 A g vA 2zB pg B2 B g vB 2hf
h1 hc
A
y0
h2
C FD
B
h3
yc yD
x
T L c o s F (y D y 0 ) G L 2c o s
y
G
L
(2)下游有水时的启门力
T L c o s F ( y D y 0 ) G L 2 c o s F 2 ( y D 2 y 0 )
T L c o s F (y D y 0 ) G L 2c o s
解 :1)Q
vb
AB vB AA
4 .8 m /s
断 面 A的 总 能 量 为 :
H
A
z
pA g
vA 2g
9 .1 3 5 m
断 面 B的 总 能 量 为 :
H
B
z
pB g
vB 2g
6 .0 7 3 m
2) Q H A H B 水 由 A 流 向 B 水 头 损 失 hw H A H B 3 .0 6 m
pA pB
g
1π2g8dq4v
L
d 4 128 qv L
π pA pB
128 930100106 0.016
3.14
3105 2105
500
3.03287104
Re vd 4qv
πd
4 0.016 3.14 (100 106) 0.13197
1544.4<2320(层流)
选弯管所围成的体积为 控制体,对控制体列动 量方程:
qv v2xv1x P1A1Fx
qv v2yv1y Fy
作业解答
qv v2xv1x P1A1Fx
qv v2yv1y Fy
1 10 00 00 0 2 23 3 4 4 0 0..0 07 75 52 2v v2 2c sio n s3 3 0 0 0 v1 F 1 y .808105 40.12F x
作业解答
3-1 已知不可压缩流体平面流动流速场vx=xt+2y, vy=xt2-yt;求当t=1s时, 点A(1,2)处液体质点加速。
解
dvx dt dvy dt
dvx ddvty dt
vx t
vx
vx x
vy
vx y
vy t
vx
vy x
vy
vy y
x(xt2y)t(xt2yt)2
x1,
L cos 2
2.3094 / 2
2
L
T L c o s F ( y D y 0 ) G 2 c o s F 2 ( y D 2 y 0 )
F2
ghc2 A3
g
h3 2
A3
1000 9.8
1 2
bL 2
1000 9.8 1 3 2.3094=16974.09(N ) 22
解 该问题是一等直径长管输送问题,因此伯努利方程为
由题意
zA pg A2 A g vA 2zB pg B2 B g vB 2hf
z A z B , v A v B = v , 取 A B
pApB
g
hf
Lv2
d 2g
假设流动属于水力光滑区
0.3164 R e 0.25
作业解答
hf
dL2vg2 0R .3e10.6254dL2vg2 0d.3v160.425
yD2
y0
L 2
L 2
2 3
L 2
1
2 3
5 6
L
T F ( yD y0 ) G F2 5
cos
2 cos 6
163324.91387 5 F2 6 cos
T
O (x)
h1 hc
A
y0
x
h2
C
yc
D
B
h3
yD
y
L
G
163324.91387 5 16974.09 135034.76387(N ) 3
Frm Frp 因gm gp
或
v
2 m
v
2 p
gmlm g plp
则vm 2 lm
v2p lp
,即kv
1
kl2
tm tp
kt
kl
1
kl2
1
kl2
tp
tm
1
4
kl2
1 6( 0 min) 1 225
作业解答
5-10 Re是流速v、物体长度L、流体密度ρ及流体动力粘度μ这四个物理量的 综合表达,用π定里推出雷诺数的形达形式。
作业解答
4-8 一射流在平面上以v=5m/s的速度冲击一斜置平板,射流与平板之间夹角
α=60o,射流的过水断面积A=0.008m2,不计水流与平板之间的摩擦力,
试求:(1)垂直于平板的射流作用力;
(2)如图中所示流量Q1与Q2之比。
Q1 v1
X方向动量方程 R x0Q vsin Q,v
y方向动量方程
王常斌 2013
工程流体力学
第一章 第二章 第三章 第四章 第五章
绪论 流体静力学 流体运动学基础 流体动力学基础 相似理论与量纲分析
第六章 流动阻力与水头损失 第七章 有压管路、孔嘴计算 第八章 粘性流体力学基础 第九章 工程湍流及其应用 第十章 流体力学实验技术 第十一章 气体的一元流动 第十二章 缝隙流动
d 4.75 0.03599 g pA pB
930 9.8 0.03599 3 105 2 105 0.00328
d 0.3(m )
故假设不正确
校核,雷诺数为
Re vd 4qv
πd
4 0.016 3.14 (100 106) 0.3 679.40552<2320(层流)
Lv2 0.31640.25Lv2
d2gd0.25v0.25 d 2g
0.31642g0d.251.L 25v1.750.31642g0d.251.L 25π 4dqv21.750.024660d.254q .75v1.75 L
p A g p B 0 . 0 2 4 6 6 0 d . 2 5 4 q . 7 5 v 1 . 7 5 L 0 . 0 2 4 6 6 ( 1 0 0 1 0 d 6 ) 4 . 0 7 . 5 2 5 0 . 0 1 6 1 . 7 5 5 0 0 = 0 . d 0 3 4 . 5 7 5 9 9
0
x
由方程(2)得
y
1 2
t2
C2
C2 0
C1 0 故迹线方程为
x y
t 1 6
1 t2
t3
2
9x 22y3 1 2y2 1 8y0
作业解答
解 1) 求t=1时过(0,0)点的流线方程。
dx dy 1 y t
( 1y)dytdx
50
40
y 1 y2 txC
2
30
y
C0
20
t=1时过(0,0)点的流线方程: 10
解(2)重燃油雷诺数为
R e π 4 q v d 3 .1 4 4 1 5 4 0 1 1 0 0 3 6 0 .1 3 3 9 .5 3 < 2 3 2 0 ( 层 流 )
作业解答
6-4 某输油管道由A到B长l=500m,测得A点的压强pA=3×105Pa,B点的压