概率统计练习册习题解答定
概率练习册第七章答案
概率练习册第七章答案在概率论的学习过程中,练习题是帮助学生巩固理论知识和提高解题技巧的重要工具。
以下是第七章概率练习册的一些答案,供参考:问题1:假设有两个骰子,每个骰子有6个面,分别掷一次。
求掷出的两个骰子点数之和为7的概率。
答案:掷出点数之和为7的情况有(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)共6种。
每个骰子有6种可能的结果,所以总共有6*6=36种可能的组合。
因此,点数之和为7的概率是6/36 = 1/6。
问题2:一个袋子里有5个红球和3个蓝球。
随机抽取2个球,求至少有一个红球的概率。
答案:至少有一个红球的情况包括:1红1蓝和2红。
1红1蓝的概率是(5/8)*(3/7),2红的概率是(5/8)*(4/7)。
所以,至少有一个红球的概率是(5/8)*(3/7) + (5/8)*(4/7) = 15/56。
问题3:一个班级有30个学生,其中15个是男生,15个是女生。
随机选择5个学生,求至少有3个男生的概率。
答案:我们可以使用组合来解决这个问题。
至少有3个男生的情况有:3男2女,4男1女,5男0女。
计算每种情况的概率并相加即可得到最终答案。
问题4:一个工厂每天生产100个零件,其中大约有2%是次品。
求至少有3个次品的概率。
答案:这是一个二项分布问题,其中n=100,p=0.02。
至少有3个次品的概率可以通过1 - P(X=0) - P(X=1) - P(X=2)来计算,其中P(X=k)是恰好有k个次品的概率。
问题5:一个随机变量X服从正态分布,其均值为μ=50,标准差为σ=10。
求P(40 < X < 60)。
答案:首先,我们需要将区间(40, 60)标准化。
计算Z值:Z1 =(40-50)/10 = -1,Z2 = (60-50)/10 = 1。
然后,使用标准正态分布表查找Z值对应的累积概率,最后相减得到P(40 < X < 60)。
概率统计练习册习题解答[定]
习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t > 2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :(1)同时掷三枚骰子,记录三枚骰子的点数之和,事件A 表示“点数之和大于10”。
解:{},18543,,,=Ω ;{}18,,12,11 =A 。
(2)对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。
解:{} ,,,=321Ω;{}54321A ,,,,=。
(3)车工生产精密轴干,其长度的规格限是15±0.3。
现抽查一轴干测量其长度,事件A 表示测量长度与规格的误差不超过0.1。
3.设A ,B ,C 为三个事件,用A ,B ,C 的运算关系表示下列各事件: (1) A ,B ,C 都发生:解: ABC ;(2) A ,B ,C(3) A 发生,B 与C(4) A ,B ,C 中至少有一个发生:解:C B A ⋃⋃(5)A ,B ,C 4.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2)至少有一个次品;(3)恰好有两个是次品;(4习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P,则)(A P)(AB P)(B A P )(B A P =)(B A P 0 ,)(B A P(2)设事件A 与B 互不相容,()0.4,()0.3P A P B ==,则()P AB ()P AB 0.6(3)盒子中有10个球,其中3(4)一批产品由45件正品、5件次品组成,现从中任取3件产品,其中恰有1件次品的概率为(5)某寝室住有6名学生,至少有两个同学的生日恰好在同一个月的概率为2.选择题(1)如果A 与B 互不相容,则(C )(A) AB =∅ (B) A B = (C ) AB =Ω (D) A B =Ω(2)设A 、B 是任意两事件,则=-)(B A P ( B 、C )。
九年级数学概率统计练习题及答案
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
概率论与数理统计练习册答案
概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。
工程数学概率统计练习册(二)答案
33—34页
1、D 2、B 3、D 4、当时, ;
当时,; 当时,; 当时, 。即:
;,, , 5、 6、(1)
(2), 7、(1) (2)
35—36页
1、C 2、D 3、(1)略 (2); (3) 4、; ; 5、(1) (2) 6、 这说明成绩在60和60以上的考生(第100名),在全体考生中占 84.13%,因此,考生总数大致为:100/0.8413=119名,故前20名考生在 全体考生中的比率大致为:20/119=0.1681。设S为第20名考生的成绩, 它满足:
,
查表得:
7、要解决此问题,首先确定,因为考试人数很多,可用频率近似概 率。
根据已知条件:
。
又因为,
反查标准正态表得:=2 同理: ,
………①
又因为
反查标准正态表得:
………②
联立①,②解得:~。 某人是否能被录取,关键看录取率。已知录取率为155/526≈0.2947, 看某人是否录取解法有两种方法。 方法1: 因为 0.2119<0.2947(录取率),所以此人能被录取。 方法2:看录取分数线,设被录取者最低分数为,则 (录取率) 反查标准正态表得:。 此人成绩78分高于最低分,所以可以录取。
31- 32页
1、A 2、
3、已知:,,,从而有: 4、用A、B、C分别表示甲、乙、丙抽到难签,则有:
,
,
5、(1), ,
; (2),
, 。 (3), 6、用A、B分别表示事件“报警系统A、B有效”,则有:
,, (1) (2) 7、用A、B、C分别表示汽车到甲、乙、丙地去拉菜的事件,用D表示 一级菜,则有:
37-38页
1、
概率论与数理统计练习册(理工类) - 第5,6章答案
答;收入至少400元的概率几乎为0.
(2)设出售1.2元的蛋糕数量为Y,则Y ~ B(300, 0.2), E(Y ) = 60, D(Y ) = 48.
P{Y
60}
=
Y P{
− 60
0}
=
(0)
=
0.5
48
答:售出价格为1.2元的蛋糕多于60只的概率0.5.
28
一、选择题:
概率论与数理统计练习题
x} = (x)
n→
n
n
Xi −n
(C) lim P{ i=1
x} = (x)
n→
n
n
Xi −
(D) lim P{ i=1
x} = (x)
n→
n
二、填空题:
224
1.对于随机变量 X,仅知其 E( X ) = 3,D( X ) = 1 ,则可知 P{| X − 3 | 3} 225
一、选择题:
概率论与数理统计练习题
系
专业
班 姓名
学号
第五章 大数定律与中心极限定理
1.设 n 是 n 次重复试验中事件 A 出现的次数,p 是事件 A 在每次试验中出现的概率,则对任意
的
0
均有
lim
P
n
−
p
n→ n
[A ]
(A) = 0
(B) = 1
(C) 0
(D) 不存在
系
专业
班 姓名
学号
第六章 数理统计的基本知识
§6.1 总体、样本与统计量、§6.2 抽样分布
1.设 X1, X 2 , X 3 是取自总 X 体的样本,a 是一个未知参数,下述哪个样本函数是统计量[ B ]
概率统计练习册习题解答
概率统计练习册习题解答苏州科技学院概率论与数理统计》活页练习册习题解答信息与计算科学系概率论与数理统计教材编写组2013 年12 月习题1-1 样本空间与随机事件1选择题(1)设A,B,C为三个事件,则A,B,C中至少有一个不发生”这一事件可表示为(D)(A)AB IJ AC U BC(B)A U B U C(C )AB CU A B C UA BC(D )AUBUC(2)设三个元件的寿命分别为T1,T2,T3,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件系统的寿命超过t”可表示为(D)A ;T1T2T3kB ITT2T3 t?C :min 汀,T2,T3? t? D;max:T1,T2,T3i >t?2•用集合的形式表示下列随机试验的样本空间「与随机事件A:对目标进行射击,击中后便停止射击,观察射击的次数;事件A表示射击次数不超过5次”。
解:Q = {l,2,3,,}; A = {1,2,3,4,}。
3•设某工人连续生产了4个零件,A i表示他生产的第i个零件是正品(i=123,4 ),试用A表示下列各事件:(1 )只有一个是次品;(2)至多有三个不是次品;卜- A- A3 一A4习题1-2 随机事件的概率及计算1填空题(1)已知 A B,P(A)=0.4,P(B)=0.6,贝P(A)二—0.6,P(AB)二二0 ,P(AB)二0.4。
P(A B)(2)设事件A与B互不相容,P(A) =0.4, P(B) = 0.3,则P(AB)=0.3 ,P(AU B)= 0.6 。
2 •选择题(1)如果P(AB) =0,则(C )(A) A与B互不相容(B) A 与B互不相容(C) P(A_B)二P(A) (D) P(A_B) =P(A) _P(B)(2)两个事件A与B是对立事件的充要条件是(C )(A) P(AB) = P(A) P(B) (B) P(AB) =0 且P(A B) =1(C) AB二•一且 A B 二■1(D) AB 二一3.—批晶体管共40只,其中3只是坏的,今从中任取5只,求(1) 5只全是好的的概率; (2) 5只中有两只坏的的概率; (3) 5只中至多有一只坏的概率P 2=弩(2)C 40=0.03544. ( 1)教室里有r 个学生,求他们的生日都不相同的概率;(2)房间里有四个人,求至少两个人的生日在同一 个月的概率.解:(1)设A 二“他们的生日都不相同”,则P(A)崇;(2)设B 二“至少有两个人的生日在同一个月4112-p 441 96习题1-3 条件概率1.选择题:(1)设A,B为两个相互对立事件, 且P(A) 0,P(B) 0,(B) P(A B) = P(A) (C) P(A B) =0 (D)(A) P(BA)»OP(AB)二 P(A)P(B)(2) —种零件的加工由两道工序组成,第一道工序的废品率为p,第二道工序的废品率为q,则该零件加工的成品率为(|c )(A) 1»q ( B) 1 - pq (C) 1 - p - q pq (D)(1-P) (1-q)2 •填空题:(1)已知P(A) =0.5, P(AUB) =0.6,若A、B 互不相容,贝P(B) = 0 .1_ ;若A、B 相互独立,则P(B)=—0 . 2(2)一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,该射手的命中率2——p=3—。
概率复习题自测题解答
概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。
解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。
解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。
解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n nn n----+--=⋅+⋅=--当n 为偶数时:1122222()112(1)nnn nn P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。
解: 21411136xS dx dy --==⎰⎰13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。
解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。
概率统计练习册习题解答(定)
概率统计练习册习题解答(定)习题1-1 样本空间与随机事件A,B,C 为三个事件,则A,B,C 中至少有一个不发 ”这一事件可表示为(D )(A ) ABU AC U BC (B ) AU BUC ( C ) ABC U ABC U ABC ( D )BUC 2)设三个元件的寿命分别为T”T 2,T 3,并联成一个系 ,则只要有一个元件正常工作则系统能正常工作, 件 系统的寿命超过t”可表示为(D )B TT 2T 3t C min T I ,T 2,T 3 t用集合的形式表示下列随机试验的样本空间 机事件A : 1)同时掷三枚骰子,记录三枚骰子的点数之和, 件A 表示 点数之和大于10”。
O2)对目标进行射击,击中后便停止射击,观察射 击的次数;事件A 表示 射击次数不超过5次o3)车工生产精密轴干,其长度的规格限是15±0.3。
现抽查一轴干测量其长度,事件 A 表示测1.选择题(1)设 生AUT i T 2 T 3tTT 2T3t 2. 随( 事 解: =3,4,5, ,18; A = 11,12, ,18解: =簽2,3,- A = ^2,3,4,5量长度与规格的误差不超过0.1。
O3 .设A ,B ,C 为三个事件,用A ,B ,C 的运算关0.3; A= x; x-15 0.1x; x -15 解:系表示下列各事件:(1)A, B, C 都发生:解:ABC;(2)A, B, C都不发生:解:ABC(3)A发生,B与C不发生:解:A§C (或A-B-C);(4)A, B, C中至少有一个发生:解:AuBuC(5)A, B, C中不多于两个发生:解:刁MUJ4.设某工人连续生产了4个零件,人表示他生产的件:(1 ) 只有一个是次品;A( A2A3A4 u A】A? A3A4 u A t A2 A3A4U A!A2A3A4(2)至少有一个次品;A-55uA。
(3)恰好有两个是次品;1.填空题(1)已知AuB, P(A) = 0.4 9 P(B) = 0.6 9贝|| P(A)=_0.6, P(AB)=0.4,P(JU^)=_0.6, P(AB) =_0.2 , P(AB) = 0 9 P(A B)=A P42A3 A4 uA] A2J3 A4 uAj A2A3J4A2 A3A4 u J]J2J3A4<J A}A2A3A4(4)至多有三个不是次品;A, u A2 u A? u A4 0习题1-2机事件的概率及计算第,个零件是正品(i = 1,2,3,4 ), 试用4表示下列各事0.4 o(2)设事件/与B互不相容,P(A) = 0A9 P(B) = 0.3,贝!| P(AB)=0.3 9 P(A\JB)= 0.6 o(3)盒子中有10个球,其中3个红球,接连不放回抽取五次,第一次抽到红球的概率 三次抽到红球的概率 4) 一批产品由45件正品、5件次品组成,现从中 任取3件产品,其中恰有 1件次品的概率为5)某寝室住有6名学生,至少有两个同学的生日 恰好在同一个月的概率为0.3 , 0.3 。
概率统计练习册习题解答
苏州科技学院 《概率论与数理统计》活页练习册习题解答信息与计算科学系 概率论与数理统计教材编写组2013年12月习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t >2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。
解:{} ,,,=321Ω;{}54321A ,,,,=。
3.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P ,则)(A P)(AB P=)(B A P 0 ,)(B A P(2)设事件A 与B 互不相容,()0.4,()0.3P A P B ==,则()P AB ()P A B 0.62.选择题(1)如果()0P AB =,则( C )(A) A 与B 互不相容 (B) A 与B 互不相容(C) ()()P A B P A -= (D) ()()()P A B P A P B -=- (2) 两个事件A 与B 是对立事件的充要条件是( C )(A ) )()()(B P A P AB P = (B )1)(0)(==B A P AB P 且 (C ) Ω=∅=B A AB 且 (D )∅=AB 3.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率; (3)5只中至多有一只坏的概率。
(正)概率统计练习册答案
(正)概率统计练习册答案概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为()A.{(正,正),(反,反),(一正一反)} B.{(反,正),(正,反),(正,正),(反,反)} C.{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2.设A,B为任意两个事件,则事件(AUB)( -AB)表示()A.必然事件B.A与B恰有一个发生C.不可能事件D.A与B不同时发生3.设A,B为随机事件,则下列各式中正确的是().A.P(AB)=P(A)P(B)B.P(A-B)=P(A)-P(B)C. P(AB) P(A B)D.P(A+B)=P(A)+P(B) 4.设A,B为随机事件,则下列各式中不能恒成立的是( ).A.P(A-B)=P(A)-P(AB)B.P(AB)=P(B)P(A|B),其中P(B)0C.P(A+B)=P(A)+P(B)D.P(A)+P(A)=1 5.若AB ,则下列各式中错误的是().A.P(AB) 0 B.P(AB) 1 C.P(A+B)=P(A)+P(B) D.P(A-B) P(A) 6.若AB ,则( ).A. A,B为对立事件B.A BC.ABD.P(A-B) P(A) 7.若A B,则下面答案错误的是( ). A. P(A) P B B. P B-A 0C.B未发生A可能发生D.B发生A可能不发生8.Ai(i 1,2, ,n)为一列随机事件,且P(A1A2 An) 0,则下列叙述中错误的是( ).A.若诸Ai两两互斥,则P( Ai) P(Ai)i 1nnni 1B.若诸Ai相互独立,则P( Ai) 1 (1 P(Ai))i 1nni 1C.若诸Ai相互独立,则P( Ai) P(Ai)i 1i 1nD.P( Ai) P(A1)P(A2|A1)P(A3|A2) P(An|An 1)i 1n9.袋中有a个白球,b个黑球,从中任取一个,则取得白球的概率是( ). A.1 B.21a bC.aa bD.ba b10.设有r个人,r 365,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r个人中至少有某两个人生日相同的概率为( ).rP365A.1 r365rC365 r!B. r365C. 1r! 365D. 1r!365r11.设A,B,C是三个相互独立的事件,且0 P(C) 1,则下列给定的四对事件中,不独立的是( ).A.AUB与CB. A B与CC. AC与CD. AB与C12.当事件A与B同时发生时,事件C也随之发生,则( ). A.P(C) P(A) P(B) 1 B.P(C) P(A) P(B) 1 C.P(C)=P(AB) D.P(C) P(A B) 13.设0 P(A) 1,0 P(B) 1,且P(A|B) P(AB) 1,则( ). A. A与B不相容B. A与B 相容C. A与B不独立D. A与B独立14.设事件A,B是互不相容的,且P(A) 0,P(B) 0,则下列结论正确的是( ).A.P(A|B)=0B.P(A|B) P(A)C.D.P(B|A) 015.四人独立地破译一份密码,已知各人能译出的概率分别为1,1,1,1则密码最终能被译出的概率为( ).5436P(AB) P(A)P(B)A.1B. 1C. 2D. 2 16.已知*****P(A) P(B) P(C) ,P(AB) 0,P(AC) P(BC) ,416则事件A,B,C全不发生的概率为( ).A. 1B. 3C. 5D. 7888817.三个箱子,第一箱中有4个黑球1个白球,第二箱中有3个黑球3个白球,第三个箱中有3个黑球5个白球,现随机取一个箱子,再从这个箱中取出一个球,则取到白球的概率是( ). A.531209 C.***-*****D. 101918.有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为4:1,1:2,3:2,已知这三类箱子数目之比为2:3:1,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为().A.5B. 19C. 7D. 1913153019.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为( ).A. 1B. 1C. 5D. 12377答:1.答案:(B)2. 答案:(B)解:AUB表示A与B至少有一个发生, -AB表示A与B不能同时发生,因此(AUB)( -AB)表示A与B恰有一个发生.3.答案:(C)4. 答案:(C)注:C成立的条件:A与B互不相容.5. 答案:(C)注:C成立的条件:A与B互不相容,即AB .6. 答案:(D)注:由C得出A+B= .7. 答案:(C)8. 答案:(D)注:选项B由于P( Ai) 1 P( Ai) 1 P( Ai) 1 P(Ai) 1 (1 P(Ai))i 1i 1i 1i 1nnnnn9.答案:(C)注:古典概型中事件A发生的概率为P(A)N(A). N( )10.答案:(A)解:用A来表示事件“此r个人中至少有某两个人生日相同”,考虑A的对立事件A“此r个人的生日各不相同”利用上一题的结rrC365 r!P365论可知P(A) r*****rrP365,故P(A) 1 r36511.答案:(C)12.答案:(B)解:“事件A与B同时发生时,事件C也随之发生”,说明AB C,故P(AB) P(C);而P(A B) P(A) P(B) P(AB) 1, 故P(A) P(B) 1 P(AB) P(C).13.答案:(D)解:由P(A|B) P(AB) 1可知P(AB)P(AB)P(AB)1 P(A B)P(B)P(B)1 P(B)P(B)P(AB)(1 P(B)) P(B)(1 P(A) P(B) P(AB))1P(B)(1 P(B))P(AB)(1 P(B)) P(B)(1 P(A) P(B) P(AB)) P(B)(1 P(B))P(AB) P(AB)P(B) P(B) P(A)P(B) (P(B))2 P(B)P(AB) P(B) (P(B))2 P(AB) P(A)P(B)故A与B独立. 14.答案:(A)解:由于事件A,B是互不相容的,故P(AB) 0,因此P(A|B)=P(AB)P(B)0. P(B)15.答案:(D)解:用A表示事件“密码最终能被译出”,由于只要至少有一人能译出密码,则密码最终能被译出,因此事件A包含的情况有“恰有一人译出密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译出密码”,情况比较复杂,所以我们可以考虑A的对立事件A,事件A只包含一种情况,即“四人都没有译出密码”,故*****P(A) (1 )(1 )(1 )(1 ) P(A) .*****16.答案:(B)解:所求的概率为P(ABC) 1 P(A B C)1 P(A) P(B) P(C) P(AB) P(BC) P(AC) P(ABC)***** 1 0 0***-***** 8注:ABC AB 0 P(ABC) P(AB) 0 P(ABC) 0. 17.答案:(A)解:用A表示事件“取到白球”,用Bi表示事件“取到第i箱”i 1.2.3,则由全概率公式知P(A) P(B1)P(A|B1) P(B2)P(A|B2) P(B3)P(A|B3)***-***** ***-*****0.18.答案:(C)解:用A表示事件“取到白球”,用Bi表示事件“取到第i类箱子”i 1.2.3,则由全概率公式知P(A) P(B1)P(A|B1) P(B2)P(A|B2) P(B3)P(A|B3)***-***** ***-*****.19.答案:(C)解:即求条件概率P(B2|A).由Bayes公式知P(B2)P(A|B2)P(B2|A)P(B1)P(A|B1) P(B2)P(A|B2) P(B3)P(A|B3)75. 7二、填空题1. E:将一枚均匀的硬币抛三次,观察结果:其样本空间.2.设A,B,C表示三个随机事件,试通过A,B,C表示随机事件A发生而B,C都不发生为;随机事件A,B,C不多于一个发生 . 3.设P(A)=0.4,P(A+B)=0.7,若事件A与B互斥,则P(B)= ;若事件A与B独立,则P(B)= . 4.已知随机事件A的概率P(A)=0.5,随机事件B的概率P(B)=0.6及条件概率P(B|A)=0.8,则P(AUB)= . 5.设随机事件A、B及和事件AUB的概率分别是0.4,0.3和0.6,则P()= .6.设A、B为随机事件,P(A)=0.7,P(A-B)=0.3,则P (AB)= .7.已知p(A) p(B) p(C)11,p(AB) 0,p(AC) p(BC) ,则A,B,C全48不发生的概率为 . 8.设两两相互独立的三事件p(A) p(B) p(C)A、B和C满足条件:ABC ,1,且已知p(A B C) 9,则p(A) ______. 2169.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 .10.将C、C、E、E、I、N、S这7个字母随机地排成一行,恰好排成*****的概率为 .11.设工厂A和工厂B的产品的次品率分别为1%和2%,现从由A和B的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于A生产的概率是 . 12.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率是 . 答:1.{(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)}2. 或3.0.3,0.5解:若A与B互斥,则P(A+B)=P(A)+P(B),于是P (B)=P(A+B)-P(A)=0.7-0.4=0.3;若A与B独立,则P (AB)=P(A)P(B),于是由P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B),得P(B) P(A B) P(A) 0.7 0.4 0.5.1 P(A)1 0.44.0.7解:由题设P(AB)=P(A)P(B|A)=0.4,于是P(AUB)=P(A)+P(B)-P(AB)=0.5+0.6-0.4=0.7. 5.0.3 解:因为P(AUB)=P(A)+P(B)-P(AB),又PA(B所以P() P(A B) P(B) 0.6 0.3 0.3. 6.0.6解:由题设P(A)=0.7,P()=0.3,利用公式AB A知B) 1 P(AB)1 04. 06. P(AB) P(A) P()=0.7-0.3=0.4,故P(AB()PA( ),.7.7/12解:因为P(AB)=0,所以P(ABC)=0,于是P(ABC) P(A B C) 1 P(A B C)1 [P(A) P(B) P(C) P(AB) P(BC) P(AC) P(ABC)]. 1 3/4 2/6 7/128.1/4 解P(:A)因B(为C由题设P(A) P(B) P(C),P(AC) P(A)P(C) P2(A),P(AB) P(A)P(B) P2(A),P(BC) P(B)P(C) P2(A),P(ABC) 0,因此有93P(A) 3P2(A),解得16P(A)=3/4或P(A)=1/4,又题设P(A)1/2,故P(A)=1/4. 9.1/6解:本题属抽签情况,每次抽到次品的概率相等,均为1/6,另外,用全概率公式也可求解. 10.1 1260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为1 2 1 2 1 1 1 4,故所求的概率为41.7!126011.3/7解:设事件A={抽取的产品为工厂A生产的},B={抽取的产品为工厂B生产的},C={抽取的是次品},则P(A)=0.6,P(B)=0.4,P(C|A)=0.01,P(C|B)=0.02,故有贝叶斯公式知P(A|C)P(AC)P(A)P(C|A)0.6 0.013. P(C)P(A)P(C|A) P(B)P(C|B)0.6 0.01 0.4 0.02712.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P(A)=P(B)=1/2,P(C|A)=0.6,P(C|B)=0.5,故P(A|C) P(AC) P(C)P(A)P(C|A)0.5 0.66.P(A)P(C|A) P(B)P(C|B)0.5 0.6 0.5 0.511三、设A,B,C是三事件,且P(A) P(B) P(C) 1,P(AB) P(BC)0,41P(AC) . 求A,B,C至少有一个发生的概率。
概率论与数理统计练习册(内附答案)
概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。
解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。
解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。
解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n n n n----+--=⋅+⋅=-- 当n 为偶数时:1122222()112(1)n n n n n P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。
解: 21411136x S dx dy --==⎰⎰ 13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。
解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。
天津理工大学概率论与数理统计同步练习册答案详解
第一章 随机变量 习题一1、写出以下随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子点数之和Ω={}1843,,, (2)生产产品直到有10件正品为止,记录生产产品的总件数Ω= {} ,,1110 (3)对某工厂出厂的产品进展检验,合格的记上“正品〞,不合格的记上“次品〞,如连续查出2个次品就停顿,或检查4个产品就停顿检查,记录检查的结果。
用“0”表示次品,用“1”表示正品。
Ω={111111101101011110111010110001100101010010000,,,,,,,,,,,}(4)在单位圆任意取一点,记录它的坐标Ω=}|),{(122<+y x y x(5)将一尺长的木棍折成三段,观察各段的长度Ω=},,,|),,{(1000=++>>>z y x z y x z y x其中z y x ,,分别表示第一、二、三段的长度(6 ) .10只产品中有3只次品,每次从其中取一只(取后不放回) ,直到将3只次品都取出,写出抽取次数的根本空间U =“在 ( 6 ) 中,改写有放回抽取〞 写出抽取次数的根本空间U =解: ( 1 ) U = { e3 , e4 ,… e10 。
}其中 ei 表示“抽取 i 次〞的事件。
i = 3、 4、…、 10( 2 ) U = { e3 , e4 ,… }其中 ei 表示“抽取 i 次〞的事件。
i = 3、 4、…2、互不相容事件与对立事件的区别何在?说出以下各对事件的关系(1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件(3)20>x 与18<x 互不相容 (4)20>x 与22≤x 相容事件(5)20个产品全是合格品与20个产品中只有一个废品 互不相容(6)20个产品全是合格品与20个产品中至少有一个废品 对立事件解: 互不相容:φ=AB ;对立事件:φ=AB )1(且Ω=⋃B A3、设A,B,C 为三事件,用A,B,C 的运算关系表示以下各事件(1)A 发生,B 与C 不发生 - C B A (2)A 与B 都发生,而C 不发生 - C AB(3)A,B,C 中至少有一个发生-C B A ⋃⋃ (4)A,B,C 都发生 -ABC(5)A,B,C 都不发生-C B A (6)A,B,C 中不多于一个发生 -C B C A B A ⋃⋃(7)A,B,C 中不多于两个发生-C B A ⋃⋃(8)A,B,C 中至少有两个发生-BC AC AB ⋃⋃4、盒装有10个球,分别编有1- 10的,现从中任取一球,设事件A 表示“取到的球的为偶数〞,事件B 表示“取到的球的为奇数〞,事件C 表示“取到的球的小于5”,试说明以下运算分别表示什么事件.(1)B A 必然事件 (2)AB 不可能事件 (3)C 取到的球的不小于5 (4)C A 1或2或3或4或6或8或10(5)AC 2或4 (6)C A 5或7或9 (7)C B 6或8或10 (8)BC 2或4或5或6或7或8或9或105、指出以下命题中哪些成立,哪些不成立. (1)B B A B A = 成立 (2)B A B A = 不成立 (3)C B A C B A = 不成立 (4)φ=))((B A AB 成立(5)假设B A ⊂,那么AB A = 成立(6)假设φ=AB ,且A C ⊂,那么φ=BC 成立(7)假设B A ⊂,那么A B ⊂ 成立 (8)假设A B ⊂,那么A B A = 成立7、设一个工人生产了四个零件,i A 表示事件“他生产的第i 个零件是正品〞),,,(4321=i ,用1A ,2A ,3A ,4A 的运算关系表达以下事件.(1)没有一个产品是次品; (1)43211A A A A B =(2)至少有一个产品是次品;(2)432143212A A A A A A A A B =⋃⋃⋃=(3)只有一个产品是次品;(3)43214321432143213A A A A A A A A A A A A A A A A B ⋃⋃⋃=(4)至少有三个产品不是次品 4)432143214321432143214A A A A A A A A A A A A A A A A A A A A B ⋃⋃⋃⋃=8. 设 E 、F 、G 是三个随机事件,试利用事件的运算性质化简以下各式:(1)()()F E F E (2) ()()()F E F E F E 〔3〕()()G F F E 解 :(1) 原式()()()()E F F F E F E E E ==(2) 原式 ()()()()E F F E F F E F E F E ===(3) 原式()()()()()G E F G F F F G E F E ==9、设B A ,是两事件且7060.)(,.)(==B P A P ,问(1)在什么条件下)(AB P 取到最大值,最大值是多少?(2)在什么条件下)(AB P 取到最小值,最小值是多少? 解: (1)6.0)(,=⊂AB P B A (2)3.0)(,==⋃AB P S B A10. 设事件 A , B , C 分别表示开关 a , b , c 闭合, D 表示灯亮,那么可用事件A ,B ,C 表示:(1) D = A B C ;(2) D = ()C B A 。
《概率统计》第一章习题解答
解:可认为开关之间是独立的,设,分别表示两开关闭合,可靠性为:
设至少需要个, 为此系统失败,(为第个不闭合
则,
(0.04=1-0.96)
则此系统可靠性为.
32.在图(见课本33页第32题图)中,1,2,3,4,5表示继电器接点。假设每一继电器接点闭合的概率为,且设各继电器接点闭合与否相互独立,求是通路的概率。
25. 设一群人中有37.5%的人的血型为型,20.9%为型,33.7%为型, 7.9%为
型,已知能允许输血的血型配对如下表,现在在一群人中任选一人为输血者,再任选一人为需要输血者,问输血能成功的概率是多少?
输血者
受血者
型
求下列事件的概率。(1) 两只都是正品;(2) 两只都是次品;
(3) 一只是正品,一只是次品;(4) 第二次取出的是次品。
解:(1)为 ; (2)为 ; (3)为 ;
(4)第一次取正品第二次取出次品的概率 ;第一次取次品第二次也取出次品的概率;所以第二次取出次品的概率为。
球最大个数为3的种数;则球的最大个数分别为1,2,3的概率分别为
; ;
。
16. 50只铆钉随机地取来用在10个部件上,其中有3只铆钉强度太弱。每个部件用3只
铆钉。若将3只强度太弱的铆钉装在一个部件上,则这个部件强度就太弱。问发生一个部件强度太弱的概率是多少?
14. 在11张卡片上分别写上这11个字母,从中任意连抽7张,求其排列结
果为的概率。
解:抽法总数为,则抽到的概率为。
15. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率。
解:设3个球已编号
球最大个数为1的种数;球最大个数为2的种数
概率统计练习册习题解答(定)
习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t > 2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :(1)同时掷三枚骰子,记录三枚骰子的点数之和,事件A 表示“点数之和大于10”。
解:{},18543,,,=Ω ;{}18,,12,11 =A 。
(2)对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。
解:{} ,,,=321Ω;{}54321A ,,,,=。
(3)车工生产精密轴干,其长度的规格限是15±0.3。
现抽查一轴干测量其长度,事件A 表示测量长度与规格的误差不超过0.1。
3.设A ,B ,C 为三个事件,用A ,B ,C 的运算关系表示下列各事件: (1) A ,B ,C 都发生:解: ABC ;(2) A ,B ,C(3) A 发生,B 与C (4) A ,B ,C 中至少有一个发生:解:C B A ⋃⋃(5)A ,B ,C 4.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2)至少有一个次品;(3)恰好有两个是次品;(4习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P ,则)(A P )(AB P)(B A P )(B A P =)(B A P 0 ,)(B A P(2)设事件A 与B 互不相容,()0.4,()0.3P A P B ==,则()P AB()P AB0.6(3)盒子中有10个球,其中3(4)一批产品由45件正品、5件次品组成,现从中任取3件产品,其中恰有1件次品的概率为(5)某寝室住有6名学生,至少有两个同学的生日恰好在同一个月的概率为2.选择题(1)如果A 与B 互不相容,则(C )(A) AB =∅ (B) A B = (C ) AB =Ω (D) A B =Ω(2)设A 、B 是任意两事件,则=-)(B A P ( B 、C )。
概率练习册答案
班级 学号 姓名(十七)随机事件及概率1、投掷一粒骰子的试验,我们将"出现偶数点"称为( D )A 、样本空间B 、必然事件C 、不可能事件D 、随机事件 2、事件B A ,互为对立事件等价于( D )A 、B A ,互不相容 B 、B A ,相互独立C 、Ω=+B A D 、Φ=Ω=+AB B A 且3、设B A ,为两个事件,则__BA AB+=( C )A 、不可能事件B 、必然事件C 、AD 、BA +4、B A ,为两事件,若()4.0)(,2.0)(,8.0__===+B P A P B AP ,则( B ) A 、32.0____=⎪⎭⎫⎝⎛B A PB 、2.0____=⎪⎭⎫⎝⎛B A P C 、4.0)(=AB P D 、48.0)(____=AB P因为:2.08.01)(1)(1)(=-=+-=-=B A P B A P B A P5、当__A 与__B 互不相容时,=+)(______B A P (C )A 、)(1A P -B 、)()(1B P A P --C 、0D 、)()(____B P A P因为:0)Φ()()(===+P B A P B AP6、设有10个产品,其中3个次品,7个正品,现从中任取4个产品,则取到的4个产品都是正品的概率为( C ) A 、107 B 、44107 C 、41047C CD 、1074⨯7、设C B A ,,为三个事件,试用这三个事件表示下列事件:(1)C B A ,,三个事件至少有一个发生;(2)A 不发生,B 与C 均发生; (3)C B A ,,三个事件至少有2个发生;(4)C B A ,,三个事件中恰有一个发生; (5)A 发生,B 与C 都不发生。
解:(1)A+B+C ;(2)BC A ;(3)AB+AC+BC ;(4)CB AC B A CB A ++;(5)C B A 。
8、随机抽检三件产品,设A 表示“三件中至少有一件是废品”;B 表示“三件中至少有两件是废品”;C 表示“三件都是废品”。
概率论与数理统计练习册-第二章答案
第二章 随机变量及其分布基础训练Ⅰ一、选择题1、下列表中( A )可以作为离散型随机变量的分布律。
A) X 1 -1 0 1 B) X 2 0 1 2P 1/4 1/2 1/4 P -1/4 3/4 1/2C) X 3 0 1 2 D) X 4 1 2 1P 1/5 2/5 3/5 P 1/4 1/4 1/2 2、常数b =( B )时,),2,1()1( =+=k k k bp k 为离散型随机变量的概率分布。
A )2B )1C )1/2D )33、设⎪⎩⎪⎨⎧≥<<≤=1,110,2/0,0)(x x x x x F ,则( D )A )是随机变量的密度函数 B) 不是随机变量的分布函数 C )是离散型随机变量的分布函数 D )是连续型随机变量的分布函数4、设)(1x F 和)(2x F 分别为随机变量21,X X 的分布函数,为使)()()(21x bF x aF x F -=是某一随机变量的分布函数,在下列给定的各组数值中应取( A )A )a =3/5,b =-2/5 B) a =2/3,b =2/3 C )a =-1/2,b =3/2 D )a =1/2,b =-3/25、设随机变量),(~2σμN X ,且}{}{c X P c X P >=≤,则=c ( B )A) 0 B)μ C) μ- D) σ二、填空题1、连续型随机变量取任何给定值的概率为 0 。
2、设离散型随机变量X 分布律为⎪⎪⎭⎫⎝⎛5.03.02.0210,则P (X ≤1.5) = 0.5 。
3、设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F ,则A = 1 ,X 落在(-1,1/2)内的概率为 1 / 4 。
4、设K 在(0, 5)上服从均匀分布,则方程02442=+++K Kx x 有实根的概率为0.6 。
5、随机变量X 的分布函数)(x F 是事件}{x X ≤的概率。
概率论与数理统计练习册 参考答案
概率论与数理统计练习册 参考答案第1章 概率论的基本概念 基础练习 1.11、C2、C3、D4、A B C ++5、13{|02}42x x x ≤<≤<或,{}12/1|<<x x ,Ω6、{3},{1,2,4,5,6,7,8,9,10},{1,2,6,7,8,9,10},{1,2,3,6,7,8,9,10}7、(1) Ω={正,正,正,正,正,次},A ={次,正}(2)Ω={正正,正反,反正,反反},A ={正正,反反},B={正正,正反}(3) 22{(,)|1}x y x y Ω=+≤,22{(,)|10}A x y x y x =+<<且 (4)Ω={白,白,黑,黑,黑,红,红,红,红},A={白},B={黑} 8、(1)123A A A (2)123123123A A A A A A A A A ++ (3)123A A A ++ (4)123123123123A A A A A A A A A A A A +++ (5)123123A A A A A A +9、(1)不正确 (2)不正确 (3)不正确 (4)正确 (5) 正确 (6)正确(7)正确 (8)正确10、(1)原式=()()()A B AB A B AB A B A B B -==+=U U U (2)原式=()()A A B B A B A AB BA BB A +++=+++= (3)原式=()AB AB =∅11、证明:左边=()AAB B A A B B AB B A B +=++=+=+=右边 1.21、C2、B3、B4、0.85、0.256、0.37、2226C C 8、0.081 9、2628C C10、3()()()()()()()()4P A B C P A P B P C P AB P BC P AC P ABC ++=++---+=11、解:设,,A B C 分别表示“100人中数学,物理,化学不及格的人数” 则{10},{9},{8}A B C ===,{5},{4},{4},{2}AB AC BC ABC ====100()84ABC A B C =-++=12、解:设A 表示“抽取3个球中至少有2个白球”21343437()C C C P A C +=13、解:(1)设A 表示“10件全是合格品”,则109510100()C P A C = (2) 设B 表示“10件中恰有2件次品”,则8295510100()C C P B C = 14、解:(1)设A 表示“五人生日都在星期日”,51()7P A =(2)设B 表示“五人生日都不在星期日”, 556()7P B = (3)设C 表示“五人生日不都在星期日”,55516()177P C =-- 15、解:{(,)|01,01}x y x y Ω=≤≤≤≤设A 表示“两人能会到面”,则1{(,)|}3A x y x y =-≤, 所以5()9P A =1.31、0.8,0.252、0.63、0.074、23 5、0.56、注:加入条件()0.4P B =解:()()0.1P AB P A ==,()()0.4P A B P B +==()()0.9P A B P AB +==,()(|)0.25()P AB P A B P B ==7、解:设A 表示"13张牌中有5张黑桃,3张红心,3张方块,2张梅花”则5332131313131352()C C C C P A C =,8、解:设123,,A A A 分别表示“零件由甲,乙,丙厂生产”,B 表示“零件时次品”则112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.20.050.40.040.40.030.036=⋅+⋅+⋅=9、解:设123,,A A A 分别表示“甲,乙,丙炮射中敌机”, 123,,B B B分别表示“飞机中一门,二门,三门炮”,C 表示“飞机坠毁”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t > 2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :(1)同时掷三枚骰子,记录三枚骰子的点数之和,事件A 表示“点数之和大于10”。
解:{},18543,,,=Ω ;{}18,,12,11 =A 。
(2)对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。
解:{} ,,,=321Ω;{}54321A ,,,,=。
(3)车工生产精密轴干,其长度的规格限是15±0.3。
现抽查一轴干测量其长度,事件A 表示测量长度与规格的误差不超过0.1。
3.设A ,B ,C 为三个事件,用A ,B ,C 的运算关系表示下列各事件: (1) A ,B ,C 都发生:解: ABC ;(2) A ,B ,C(3) A 发生,B 与C(4) A ,B ,C 中至少有一个发生:解:C B A ⋃⋃(5)A ,B ,C 4.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2)至少有一个次品;(3)恰好有两个是次品;(4习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P ,则)(A P )(AB P)(B A P )(B A P =)(B A P 0 ,)(B A P(2)设事件A与B 互不相容,()0.4,()0.3P A P B ==,则()P AB()P AB0.6(3)盒子中有10个球,其中3(4)一批产品由45件正品、5件次品组成,现从中任取3件产品,其中恰有1件次品的概率为(5)某寝室住有6名学生,至少有两个同学的生日恰好在同一个月的概率为2.选择题(1)如果A 与B 互不相容,则(C )(A) AB =∅ (B) A B = (C ) AB =Ω (D) A B =Ω(2)设A 、B 是任意两事件,则=-)(B A P ( B 、C )。
(A) )()(B P A P - (B) )()()(B A P B P A P +- (C) )()(AB P A P - (D) )()()(AB P B P A P -+ (3)如果()0P AB =,则( C )(A) A 与B 互不相容 (B) A 与B 互不相容(C) ()()P A B P A -= (D) ()()()P A B P A P B -=-(4)设10张奖券中含有3张中奖的奖券,每人购买1张,则在前3个购买者中恰有一人中奖的概率为( D )(A) 3.07.02310⨯⨯C (B) 0.3 (C) 7/40 (D) 21/40(5) 两个事件A 与B 是对立事件的充要条件是( C )(A ) )()()(B P A P AB P = (B )1)(0)(==B A P AB P 且 (C ) Ω=∅=B A AB 且 (D )∅=AB 3.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率; (3)5只中至多有一只坏的概率。
4.向三个相邻的军火库投掷一枚炸弹,炸中第一个军火库的概率为0.025,炸中其余两个军火库的概率各为0.1。
只要炸中一个另外两个必然爆炸,求军火库发生爆炸的概率。
解:设C B A ,,分别表示击中第一、二、三个军火库爆炸,D 表示军火库爆炸, 易知事件C B A ,,互不相容,且025.0)(=A P ,1.0)()(==C P B P 则225.01.01.0025.0)()()()(=++=++=C P B P A P D P5.两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达。
设两艘轮船停靠泊位的时间分别为1个小时和2个小时。
求有一艘轮船停靠泊位时需要等待的概率。
解:设y x ,分别为甲、乙船到达时刻,甲停靠时间为1小时,乙停靠时间为2小时,24,0≤≤y x 设=A “一艘轮船停靠泊位时需要等待”,则A 发生当且仅当 10≤-≤x y ,20≤-≤y x习题1-3 条件概率1.选择题:(1)设A ,B 为两个相互对立事件,且0)(>A P ,0)(>B P ,则( C )。
(A )0)(>A B P (B ))()(A P B A P = (C )0)(=B A P (D ))()()(B P A P AB P = (2)已知3.0)(=A P ,5.0)(=B P ,15.0)(=AB P ,则( ABCD )。
(A ))()(B P A B P = (B ))()(B P A B P = (C ))()(A P B A P = (D ))()(A P B A P = (3)设8.0)(=A P ,7.0)(=B P ,8.0)(=B A P ,则下列结论正确的是( C )。
(A )A B ⊃; (B ))()()(B P A P B A P +=⋃;(C )事件A 与事件B 相互独立; (D ) 事件A 与事件B 对立。
(4)设1)(0<<A P ,1)(0<<B P ,1)()(=+B A P B A P ,则( D )。
(A ) 事件A 与B 互不相容; (B )事件A 与B 对立; (C ) 事件A 与B 不相互独立; (D )事件A 与B 相互独立。
(5)一种零件的加工由两道工序组成,第一道工序的废品率为p ,第二道工序的废品率为q ,则该零件加工的成品率为( C )(A ) 1p q -- (B )1pq - (C )1p q pq --+ (D )(1)(1)p q -+- (6)对于任意两个事件A B 和,以下结论正确的是( B )。
(A )若,AB φ≠则,A B 一定独立。
(B )若,AB φ≠则,A B 有可能独立。
(C )若,AB φ=则,A B 一定独立。
(D )若,AB φ=则,A B 一定不独立。
2.填空题:(1) 设事件A ,B 相互独立且互不相容,则))(),(min(B P A P =__0_.(2) 已知,6.0)(,5.0)(==B A P A P 若B A 、互不相容,则)(B P B A 、相互独立,则)(B P (3) 已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,)(B A P =___0.3__. (4) 某人独立射击三次,其命中率为0.8,则三次中至多击中一次的概率为_0.104_.(5) 对同一目标进行三次独立射击,第一次、第二次、第三次射击的命中率分别为0.4,0.5,0.7。
则三次射击中恰好有一次击中目标的概率。
3.在10只晶体管中有7只正品,3只次品。
现不放回的抽取两次,每次一只,求下列事件的概率。
(1)两只都是正品;(2)至少有一只次品;(3)一只是正品,一只是次品;(4)第二只是次品;(5)第二次才是次品。
解:设iA 表示第i 次取出次品,则4.已知甲乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品,从甲箱任取3件放入乙箱,然后再从乙箱中任取一件产品,求该产品为次品的概率。
解 设A =“从乙箱中取出的是次品”,i B =“从甲箱中取出的三件中恰有i 个次品”0,1,2i =.3由全概率公式5.已知一批产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率是0.02,一个次品被误认为是合格品的概率是0.05,求在检查后认为是合格品的产品确是合格品的概率. 解 设A =“任取一产品,经检查是合格品”, B =“任取一产品确是合格品”, 0.960.980.040.050.9428=⨯+⨯=,6.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购一箱玻璃杯,售货员随意取一箱,顾客开箱随意地察看四只,若无残次品,则买下该箱,否则退回.试求:(1)顾客买下该箱的概率α;(2)在顾客买下的一箱中,确无残次品的概率β.解 设A =“顾客买下该箱”,B =“箱中恰有i 件残次品”,0,1,2i=, (1)001122()()(|)()(|)()(|)PA PB P A B P B P A B P B P A B α==++7.为防止意外,在矿内同时安装了两种报警系统A 与B ,每种报警系统都使用时,对系统A 其有效的概率是0.92,对系统B 其有效的概率为0.93,在A 失效的条件下,B 有效的概率为0.85.求:(1)发生意外时,这两种报警系统至少有一个有效的概率;(2)B 失灵的条件下,A 有效的概率。
解:设=A “报警系统A 有效”,=B “报警系统B 有效” (2)因为:862.0988.093.092.0)()()()(=-+=-+=B A P B P A P AB P8.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,求该射手的命中率. 解 设该射手的命中率为p ,由题意习题2-1 随机变量及其分布函数1.试说明下列函数能否为某随机变量的分布函数. 解:1()F x 是;2()F x 不是,因为2()01F +∞=≠.2.设随机变量X 的分布函数为0,1,1,1,4(),11,1,1.x x F x ax b x x <-⎧⎪⎪=-⎪=⎨⎪+-<<⎪≥⎪⎩且1(1)2P X ==,试求:(1)常数,a b 的值;(2)(21)P X -<<。
又习题2-2 离散型随机变量1. 填空题(1) 设随机变量X 的分布律为:{},Nak X P == N k , ,2,1=,试确定___1______a =。
(2) 一批产品共100个,其中有10个次品,从中放回取5次,每次取一个,以X 表示任意取出的产品中的次品数,则X(3) 某射手对一目标进行射击,直至击中为止,如果每次射击命中率都是p ,以X表示射击的次数,则X 的分布律为2. 将编号为1,2,3,4的四个球随机地放入3个不同的盒子中,每个盒子所放球的个数不限,以X 表示放球最多的盒子中球的个数,试求X 的分布列及其分布函数()F x .3. 设某城市在一周内发生交通事故的次数服从参数为0.3的泊松分布,试问(1) 在一周内恰好发生2次交通事故的概率是多少? (2) 在一周内至少发生1次交通事故的概率是多少? 解:设一周内发生交通事故的次数为X ,则()3.0~P X 。