菱形的判定和性质
初中数学《菱形的性质与判定》微课精讲
初中数学《菱形的性质与判定》微课精讲+知识点+教案课件+习题知识点:1、菱形的定义:有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
(边)(3)定理2:对角线互相垂直的平行四边形是菱形。
(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半视频教学:练习:1.如图,四边形ABCD的对角线互相平分,则添加下列条件之一,不能使它成为菱形的是()A.AB=ADB.AC=BDC.BD平分∠ABCD.AC⊥BD2.如图,顺次连接四边形ABCD各边的中点得到四边形EFGH,要使四边形EFGH为菱形,应添加的条件是。
3.如图,下列对菱形ABCD表述正确的有。
①AC=BD;②∠OAB=∠OBA;③AC⊥BD;④有4条对称轴;⑤AD=BD;⑥∠OAB=∠OAD。
4.如图,四边形ABCD是菱形,AC BD相交于点O,AC=8,BD=6,DH⊥AB于点H,则DH的长为。
5.如图,在菱形ABCD中,AB=2,∠ABC=120°,则菱形ABCD的面积是。
6.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=128°,则∠AOE的度数为()A.62°B.52°C.68°D.64°课件:教案:【教学目标】1.通过“热身训练”问题的解决,梳理菱形的知识点,建立知识体系。
2.通过“变式训练”建立知识间的联系,进一步提高解题的技能。
菱形的性质与判定 (第2课时菱形的判定)
B
小刚:分别以 A、C 为圆心,以大于 AC
A
C
D
的长为半径作弧,两条弧分别相交于点
B , D,依次连接 A、B、C、D 四点.
想一想:根据小刚的作法你有什么猜想?你能验证小刚的
作法对吗?
猜想:四条边都相等的四边形是菱形.
证明猜想
已知:如图,四边形ABCD中,AB=BC=CD=AD.
1 菱形的性质与判定
第2课时 菱形的判定
学习目标
1.理解并掌握菱形的三个判定方法.(重点)
2.会用菱形的判定方法进行有关的证明和计算.(难点)
知识回顾
菱形的定义是什么?性质有哪些?
一组邻边相等的平行四边形叫做菱形.
平行四边形
菱
形
的
性
质
边
角
一组邻边相等
菱形
两组对边平行
四条边相等
两组对角分别相等
邻角互补
∴四边形 ABCD是菱形.
A
D
总结:
判断一个四边形是菱形的方法
菱形
四边相等
四边形
一组邻边相等
平行四边形
对角线互相垂直
随堂训练
1 . 下 列 条 件 中 ,不 能判 定四 边形 ABCD 为菱 形的 是 (
)
C
A . AC ⊥ BD , AC 与 B D互 相平 分
B. A B= BC =CD=DA
A
M D
O
E
N
B
C
证明:∵MN是AC的垂直平分线,
∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°.
∵CE∥AB,
∴∠DAO=∠ECO,
∴△ADO≌△CEO(ASA).
菱形的性质与判定
B
C
D
O
证明(1)∵四边形ABCD是菱形
∴DA=DC(菱形的定义)
∵DA=BC,AB=DC
∴AB=BC=DC=DA
(2)在△DAC中,又∵AO=CO
∴DB⊥AC, DB平分∠ADC(三线合一)
同理: DB平分∠ABC; AC平分∠DAB和∠DCB
(1)AB=BC=CD=DA
(2)AC⊥BD
A
B
C
D
E
F
你敢挑战吗?
交流反思
1.菱形概念
2.菱形特征
3.菱形与平行四边形的关系
①具有平行四边形的一切性质; ②菱形的四条边都相等; ③菱形的对角线互相垂直平分; ④菱形的对角线分别平分两组对角; ⑤菱形既是轴对称图形,又是中心对称图形。
有一组邻边相等的平行四边形叫做菱形
4.菱形的面积
方法总结:
01
02
03
单击此处添加正文。
平行四边形
菱形
四边形
单击此处添加正文。
对角线互相垂直
一组邻边相等 菱形 有四条边相等
判断下列说法是否正确?为什么? (1)对角线互相垂直的四边形是菱形; ( ) (2)对角线互相垂直平分的四边形是菱形;( ) (3)对角线互相垂直,且有一组邻边相等 的四边形是菱形; ( ) (4)两条邻边相等,且一条对角线平分一 组对角的四边形是菱形. ( )
E
O
D
C
B
A
如图,矩形ABCD的对角线相交于点O,DE∥AC,AE∥DB,AE交DE于E。 求证:四边形AODE是菱形。
D
C
B
A
M
N
2、将两张宽度相等的矩形纸片叠放在一起得到如图所示的四边形ABCD. 求证:四边形ABCD是菱形。
菱形性质与判定课件ppt
面积计算
菱形面积的计算公式为
面积 = (对角线1 × 对角线2) / 2。由于菱形的对角线互相垂直且平分,因此可以使用此公式来计算面积。
另一种计算菱形面积的方法是
面积 = 底 × 高。在这里,底是菱形的一条边,高是从这条边到对角顶点的垂直距离。
周长计算
01
菱形的周长计算公式为:周长 = 4 × 边长。由于菱形的四条边都相等, 因此可以使用此公式来计算周长。
建筑学中的应用
建筑设计
菱形结构在建筑设计中常被用作装饰元素,如菱形窗格、菱形图案的墙面等,增加建筑物的美感和独特性。
空间划分
菱形地砖、菱形玻璃等可以用于室内空间划分,创造出独特视觉效果,同时起到引导人流、划分功能区域的作用。
工程学中的应用
结构工程
菱形结构具有较好的稳定性和承重能力,在桥梁、道路、隧道等工程建设中,菱形结构 常被用于增强结构的稳定性和承载能力。
邻边互相垂直且相等判定
邻边互相垂直
菱形的任意一组邻边互相垂直,因此 可以通过测量任意一组邻边的夹角是 否为90度来判断一个四边形是否为菱 形。
邻边长度相等
除了互相垂直外,菱形的任意一组邻 边的长度还相等。这也是菱形的一个 基本性质。
03
菱形与其他四边形的比较
与矩形的关系
01
02
03
边的性质
菱形的对边相等,与矩形 相同;但菱形的邻边也相 等,这是矩形不具备的性 质。
角度关系
两组对角相等,即∠A=∠C,∠B=∠D;邻角互补,即∠A+∠B=180°, ∠B+∠C=180°。
对角线性质
对角线互相垂直: AC⊥BD。
对角线长度关系:对 角线长度不一定相等 ,但满足 AC²+BD²=4AB²。
菱形的性质和判定
菱形的性质和判定
(一)导学内容
1.菱形的性质
(1)四条边都相等,
(2)对角线互相垂直平分且平分一组对角.
2、菱形是轴对称图形,其中对称轴有两条,分别是两条对角线。
.用心解决下面三个问题:(口述理由)
(1)已知,如图四边形ABCD是平行四边形,
且AB=BC,则这个平行四边形是菱形。
(2)已知,在平行四边形ABCD中,AC BD
,
问四边形ABCD D
(3)已知,在四边形ABCD
问四边形ABCD
(1)一组临边相等的平行四边形是菱形。
(2)四条边都相等的四边形是菱形。
(3)对角线互相垂直平分且平分一组对角的平行四边形是菱形。
菱形的判定方法
A
E
D
O
B F
C
A
11
• 2、已知:如图,矩形ABCD的对角线相交 于点O,PD∥AC,PC∥BD,PD、PC相交于 点P。
• (1)猜想:四边形PCOD是什么特殊的四 边形?
• (2)试证明你的猜想。
P
D
C
O
A
B
A
12
Hale Waihona Puke C FGA
B
D
E
已知,如图, △ ABC中, ∠ ACB=90,BF平分∠ ABC,
5.对角线互相垂直
6.对角线互相垂直且平分
A
7
例题解析:
已知: ABCD的对角线AC的垂直平分
线与边AD 、BC分别交于E、F
求证:四边形AFCE是菱形。 A
E
D
分析: (1)利用定义判定
O
(2) 由已知可知
OA=OC,EF⊥AC. B F
C
(3)利用四边相等,你会吗?
A
8
二.已知:如图,矩形ABCD的对角线 相交于点O,PD∥AC,PC∥BD,PD、 PC相交于点P。
菱形判定方法3: 对角线互相垂直的平行四边形是菱形。
符号语言: ∵四边形ABCD是平行四边形,
AC⊥BD,
∴ ABCD是菱形。
练习巩固
一.选择:
(一) (二)
的平行四边形是菱形。( 1 5 ) 的四边形是菱形。 ( 2 6 )
1.一组邻边相等 2.四条边相等 3.对角线相等
4.对角线相等且互相平分
注: 对角线互相垂直的四边形不能判定为菱形。
B
B
A
CA
C
D
D
若 ABCD的对角线AC⊥BD ,则 ABCD是
18-4 菱形的性质与判定(原卷版)
【变式3-2】(2022秋•朝阳区校级期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=4,则菱形ABCD的周长为( )
A.48B.32C.24D.16
【变式3-3】(2022秋•阳山县期中)如图,菱形ABCD的对角线AC、BC相交于点O,E、F分别是AB、BC边上的中点,连接EF,着EF ,BD=4,则菱形ABCD的周长为( )
【例题5】(2022秋•二七区校级月考)如图▱ABCD的对角线AC和BD相交于点O,下列说法正确的
是( )
A.若OB=OD,则▱ABCD是菱形
B.若AC=BD,则▱ABCD是菱形
C.若OA=OD,则▱ABCD是菱形
D.若AC⊥BD,则▱ABCD是菱形
解题技巧提炼
①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);
②菱形的四条边都相等.
③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
⑤利用菱形的性质可证线段线段,角相等.
性质定理应用格式:
∵ 四边形ABCD是菱形,
∴AB=BC=CD=AD,AC⊥BD;
AC平分∠BAD,AC平分∠BCD;
BD平分∠ABC,BD平分∠ADC;
【变式4-2】(2021秋•武功县期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E,F在对角线BD上,且BF=DE,连接AE,AF.求证:AE=AF.
【变式4-3】(2022秋•渭滨区校级月考)如图,在菱形ABCD中,点E,F分别在边AB,BC上,AE=CF,DE,DF分别与AC交于点M,N.求证:DM=DN.
1.1.3菱形的性质与判定(教案)
(2)菱形的性质:对角线互相垂直平分、对角线平分一组对角,这是菱形与其他四边形区分的关键特征。
举例:通过实际操作和观察,使学生理解并掌握菱形对角线的特性。
(3)菱形的判定方法:掌握四边相等、对角线互相垂直平分、对角线平分一组对角等判定方法。
举例:通过例题和练习,让学生熟悉并掌握各种判定要学习的是《菱形的性质与判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过形状像钻石的图案?”(例如,窗户上的装饰图案)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索菱形的奥秘。
1.1.3菱形的性质与判定(教案)
一、教学内容
《菱形的性质与判定》选自八年级数学教材第1章第3节。本节内容主要包括以下两部分:
1.菱形的性质:讨论菱形的定义,即四边相等的四边形为菱形;掌握菱形的对角线互相垂直平分、对角线平分一组对角的性质。
2.菱形的判定:学习使用四边相等、对角线互相垂直平分、对角线平分一组对角等方法判定一个四边形是否为菱形;同时,掌握菱形与矩形、平行四边形、正方形之间的关系。
其次,在新课讲授环节,我尝试以理论介绍、案例分析、重点难点解析的方式组织教学内容。从学生的反馈来看,这种教学方式有助于他们理解菱形的性质和判定方法。但同时,我也注意到部分学生对菱形对角线性质的推导和判定方法的应用仍存在困难。这可能是因为我在这部分讲解的深度和广度还不够,需要进一步加强。
在实践活动环节,分组讨论和实验操作使学生能够将理论知识与实际操作相结合,提高他们的动手能力和团队协作能力。但我也发现,在实验操作过程中,部分学生动手能力较弱,对实验步骤不够熟悉。为了提高实践活动的效果,我需要在课前对学生进行更多的引导和培训。
菱形的判定和性质
菱形的判定和性质
一个菱形是一种四边形,判定一个图形是菱形首先要看它是否是四边形,如果是,再看其形状是否是对称的,即四条边是否是相等,如果都相等,则这个图形就是一个菱形。
菱形性质:菱形的外切圆的半径向内均等地分割菱形,菱形的四个角,每两条边相交形成的两个角都是相等的,所以菱形是一种正三角形;另外,菱形的对角线是一对平行线,并且对角线长度是菱形的四条边长度之和。
菱形所有边都相等,但是菱形是一种非凸多边形(concave polygon),也就是说,菱形边缘凹陷,两个邻接边之间角度大于180度,这是菱形与正多边形、凸多边形最大的区别。
还有一些性质:如果对菱形的对角线进行划分,那么菱形的四边形就会被划分为两个结构一致的三角形;菱形中外切圆的圆心在对角线的中点处,菱形最大内切圆以及最大外接圆的圆心也在对角线的中点处。
菱形具有很多有趣的性质,并且应用在许多方面。
比如,在绘画上,菱形用于定义简洁的对称元素,在棋盘游戏中使用菱形来实现多边形布局,也用于体育项目中的一些比赛线、标识圈范围等。
菱形的性质和判定教案
菱形的性质和判定教案一、教学目标知识与技能目标:使学生掌握菱形的定义、性质和判定方法,能够运用菱形的性质解决实际问题。
过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
情感态度与价值观目标:激发学生对几何图形的兴趣,培养学生的审美观念,提高学生解决问题的自信心。
二、教学内容1. 菱形的定义:菱形是四条边相等的四边形。
2. 菱形的性质:(1)菱形的对角线互相垂直,且平分对方。
(2)菱形的对边平行且相等。
(3)菱形的对角相等。
(4)菱形的四条边相等。
3. 菱形的判定方法:(1)四条边相等的四边形是菱形。
(2)对角线互相垂直,且平分对方的四边形是菱形。
三、教学重点与难点重点:掌握菱形的性质和判定方法。
难点:理解菱形性质之间的内在联系,以及如何运用判定方法判断一个四边形是否为菱形。
1. 教学PPT或黑板。
2. 几何画图工具。
3. 相关几何图形示例。
五、教学过程1. 导入:通过展示一些生活中的菱形图形,如蜂巢、骰子等,引导学生观察并思考这些图形的共同特点。
2. 新课导入:介绍菱形的定义,引导学生通过观察、操作、推理等方法,发现菱形的性质。
3. 讲解与演示:利用PPT或黑板,展示菱形的性质,如对角线互相垂直、平分对方,对边平行且相等等。
通过几何画图工具,演示菱形的性质,帮助学生理解。
4. 练习与巩固:给出一些四边形,让学生判断它们是否为菱形,并说明理由。
引导学生运用菱形的性质和判定方法进行判断。
5. 拓展与应用:引导学生运用菱形的性质解决实际问题,如在设计图案、构造模型等方面应用菱形。
7. 布置作业:设计一些有关菱形的练习题,巩固学生对菱形性质和判定方法的理解。
六、教学评价1. 课堂讲解:评价学生在课堂上的参与程度、提问回答的正确性和完整性。
2. 练习与巩固:评价学生在练习中应用菱形性质和判定方法的正确性。
3. 拓展与应用:评价学生在实际问题中运用菱形性质的创造性和解决问题的能力。
菱形的性质与判定
一组邻边相等的平行四边形叫做菱形.
菱形有别于平行四边形 性质有哪些?
B
A D C
A
B 边
菱形的两组对边分别平行. 菱形的四条边相等.
C
D
菱 形 的 性 质
角
菱形的两组对角分别相等,邻角互补. 菱形的两条对角线互相垂直平分. 菱形的每一条对角线都平分一组对角.
对角线
对称性
菱形是轴对称图形.
已知:如图所示的一张矩形纸片ABCD (AD>AB),将纸片折叠一次,使点A与点C重合, 再展开,折痕EF交AD边于点E,交BC边于点F, 分别连结AF和CE. (1)求证:四边形AFCE是菱形;
已知:如图所示的一张矩形纸片ABCD (AD>AB),将纸片折叠一次,使点A与点C重合, 再展开,折痕EF交AD边于点E,交BC边于点F, 分别连结AF和CE. 2 (2)若AE=10cm,△ABF的面积为24cm ,求 △ABF的周长;
菱形的面积等于两条对角线乘积的一半.
若用a、b表示菱形的两条对角线,那么菱形的面 A 积为: D
1 S a b 2
O C
B
有关菱形问题可转化为直角三角形或等腰三角 形的问题来解决.
菱形的判定?
A
DBBiblioteka C有一组邻边相等的平行四边形是菱形.
菱 形 的 判 定
边
四条边都相等的四边形是菱形. 对角线互相垂直的平行四边形是菱形.
求证:四边形EGFC为菱形.
C F E A D G
B
如图,矩形ABCD中,点P是线段AD上一动点,O为BD的 中点, PO的延长线交BC于Q. (1)求证: OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D 运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为 何值时,四边形PBQD是菱形.
第1讲 菱形的性质与判定(原卷版)
第1讲 菱形的性质与判定 1.理解掌握菱形的概念性质及判定定理2.会用菱形的有关知识进行证明,会计算菱形的面积 知识点01 菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式. ②菱形面积12ab .(a 、b 是两条对角线的长度) 【知识拓展1】菱形的两条对角线长的比是32,面积是cm 12,则它的对角线的长分别是 cm , cm . (★)【即学即练】两对角线分别是6cm 和8cm 的菱形面积是 _________ cm 2,周长是 _________ cm . (★)【知识拓展2】菱形的周长是它的高的8倍,则菱形较小的一个角为( )(★★)A . 60°B . 45°C . 30°D . 15°【即学即练1】菱形的一条对角线与边长相等,则菱形中较小的内角是( )(★★)A .60° B . 15° C . 30° D . 90°知识精讲目标导航【即学即练2】如果菱形的周长等于一条对角线长的4倍,那么这个菱形较小的一个内角等于度.(★★)【知识拓展3】已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE. (★★)【知识拓展4】如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.(★★)【即学即练】已知:如图,菱形ABCD中,过AD的中点E作AC的垂线EF,交AB于点M,交CB的延长线于点F.如果FB的长是2,求菱形ABCD的周长.(★★)知识点02 菱形的判定①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.几何语言:∵AB=BC=CD=DA∴四边形ABCD是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).几何语言:∵AC⊥BD,四边形ABCD是平行四边形∴平行四边形ABCD是菱形【知识拓展1】已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.(★★)【即学即练1】已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.(★★)【知识拓展2】如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.(★★)【即学即练2】如图,在△ABC中,AD平分∠BAC,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.(★★)【知识拓展3】如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.(★★)【即学即练3】如图,△ABC中,∠BAC=90°,BG平分∠ABC,GF⊥BC于点F,AD⊥BC于点D,交BG于点E,连接EF.求证:①AE=AG;②四边形AEFG为菱形.(★★)【知识拓展4】如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是为E F ,并且DE=DF .求证:四边形ABCD 是菱形.(★★)知识点03 菱形的判定与性质(1)依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.(2)菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形.) (3)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.【知识拓展1】(2019·全国九年级课时练习)补全下列解题过程.如图,在ABC ∆中,AB BC =,D E F ,,分别是BC AC AB ,,的中点.(1)求证:四边形BDEF 是菱形; (2)若10cm AB =,求菱形BDEF 的周长.解:(1)证明:∵E F ,分别是AC AB ,的中点,∴____________________.又∵D E ,分别是BC AC ,的中点,∴12DE AB =,//DE AB . ∵四边形BDEF 是__________.又∵AB BC =,∴_________________.∴四边形BDEF 是菱形.(2)∵F 是AB 的中点,10cm AB =, ∴11105(cm)22BF AB ==⨯=. 又∵四边形BDEF 是菱形.∴BD D E EF BF ===.∴四边形BDEF 的周长为4520(cm)⨯=.【知识拓展2】(2021·浙江八年级专题练习)如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.【知识拓展3】(2019·全国九年级课时练习)如图,在ABCD 中,AB BC =,点E 是AB 的中点,且DE AB ⊥,AB a ,AC ,BD 相交于点O .(1)求ABC ∠的度数;(2)已知32AO =,求对角线AC 的长; (3)求菱形ABCD 的面积.【知识拓展4】(2019·金昌市第五中学九年级一模)如图,已知A 、F 、C 、D 四点在同一条直线上,AF=CD ,AB ∥DE ,且AB=DE(1)求证:△ABC ≌△DEF ;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC 为菱形时AF 的长度.【知识拓展5】(2020·扬州市江都区国际学校八年级期中)如图,在等边ABC ∆中,6cm BC ,射线//AG BC ,点E 从点A 出发沿射线AG 以1cm /s 的速度运动,同时点F 从点B 出发沿射线BC 以2cm /s 的速度运动,设运动时间为(s)t .(1)连接EF ,当EF 经过AC 边的中点D 时,求证:ADE CDF ∆∆≌;(2)当t 为多少时,四边形ACFE 是菱形.能力拓展1.如图,菱形ABCD中,E、F分别是BC、CD上的点,且∠B=∠EAF=60°,∠BAE=18°,则∠CEF=_________.(★★★)2.如图,在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,则∠CEF的大小为_________.(★★★)3.如图,已知△ABD,△BCE,△ACF都是等边三角形.(1)求证:四边形ADEF是平行的四边形;(2)△ABC满足什么条件时,四边形ADEF是菱形?说明理由.(★★★)题组A 基础过关练1.(2021·湖南娄底市·九年级二模)下列各命题是真命题的是( )A .矩形的对称轴是两条对角线所在的直线B .平行四边形一定是中心对称图形C .有一个内角为60︒的平行四边形是菱形D .三角形的外角等于它的两个内角之和 2.(2021·陕西宝鸡市·九年级期末)如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒3.(2020·河北省保定市第二中学分校九年级期中)如图,菱形ABCD 的对角线AC ,BD 的长分别是6和8,则这个菱形的面积是( )A .20B .24C .40D .484.(2020·辽宁锦州市·九年级期中)菱形的边长是5cm ,一条对角线的长为6cm ,则另一条对角线的长为( )A .6cmB .83cmC .8cmD .10cm5.(2020·渠县第四中学九年级月考)若菱形的较长对角线为24cm ,面积为120cm 2,则它的周长为( ) A .50cmB .51cmC .52cmD .56cm6.(2020·福建宁德市·九年级期中)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且AC ⊥BD ,则下列分层提分条件能判定四边形ABCD 为菱形的是( )A .AB =CDB .OA =OC ,OB =OD C .AC =BD D .//AB CD ,AD =BC7.(2020·广东茂名市·九年级期中)在菱形ABCD 中,若AB =2,则菱形的周长为( )A .4B .6C .8D .108.(2020·河北)如图,在菱形ABCD 中,过顶点C 作CE BC ⊥交对角线BD 于点E ,已知130A ∠=︒,则BEC ∠的大小为( ).A .20°B .25°C .65°D .75°题组B 能力提升练一、单选题1.(2021·全国九年级专题练习)如图,将三角尺ABC 沿边BC 所在直线平移后得到△DCE ,连接AD ,下列结论正确的是( )A .AD =ABB .四边形ABCD 是平行四边形C .AD =2ACD .四边形ABCD 是菱形2.(2021·天津九年级一模)如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若4EF =,则菱形ABCD 的周长为( )A .8B .16C .24D .32二、填空题 3.(2021·云南曲靖市·九年级其他模拟)若菱形的周长为20,一条对角线长为6,则另一条对角线长为_______. 4.(2021·福建漳州市·九年级一模)在菱形ABCD 中,若对角线AC =8,BD =5, 则菱形ABCD 的面积为_____. 5.(2021·福建漳州市·九年级一模)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD 中,2AB =,60BAD ∠=︒.如图,以点A 为坐标原点,建立平面直角坐标系,使得边AB 在x 轴正半轴上,则点D 的坐标是_______.三、解答题6.(2021·山东聊城市·九年级二模)已知,如图,四边形ABCD 的对角线AC ⊥BD 于点E ,点F 为四边形ABCD 外一点,且∠FCA =90°,BC 平分∠DBF ,∠CBF =∠DCB .求证:四边形DBFC 是菱形.题组C 培优拔尖练一、单选题1.(2021·河南南阳市·九年级一模)如图,在矩形片ABCD 中,边4AB =,2AD =,将矩形片ABCD 沿EF 折叠,使点A 与点C 重合,折叠后得到的图形是图中阴影部分.给出下列结论:①四边形AECF 是菱形;②BE 的长是1.5;③EF 的长为5;④图中阴影部分的面积为5.5,其中正确的结论有( )A .1个B .2个C .3个D .4个2.(2021·浙江绍兴市·九年级一模)如图,ABCD 中,5AB a =,4BC a =,60A ∠=︒,平行四边形内放着两个菱形,菱形DEFG 和菱形BHIL ,它们的重叠部分是平行四边形IJFK .已知三个阴影平行四边形的周长相等,那么平行四边形IJFK 的面积为( )A .2aB .22aC .232aD .23a二、填空题 3.(2021·云南红河哈尼族彝族自治州·九年级一模)如图,菱形ABCD 的周长为8厘米,120D ∠=︒,点M 为AB 的中点,点N 是边AD 上任一点,把A ∠沿直线MN 折叠,点A 落在图中的点E 处,当AN =_________厘米时,BCE 是直角三角形.4.(2021·北京九年级二模)图1是用一种彭罗斯瓷砖平铺成的图案,它的基础部分是“风筝”和“飞镖”两郎分,图2中的“风筝”和“飞镖”是由图3所示的特殊菱形制作而成.在菱形ABCD 中,72BAD ∠=︒,在对角线AC 上截取AE AB =,连按BE ,DE ,可将菱形分割为“风筝”(凸四边ABED )和“飞镖”(凹四边形BCDE)两部分,则图2中的α=____°.三、解答题5.(2021·浙江杭州市·九年级二模)如图,在平行四边形ABCD中,EF垂直平分对角线AC,分别与边AD,BC交于点F,E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD2∠D=45°,求菱形AECF的周长.6.(2021·江苏南京市·九年级专题练习)已知ABC是等边三角形,点D是射线BC上的一个动点(点D 不与点B,C重合).ABC是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC 于点FG,连接BE.△≌△.(1)如图①,当点D在线段BC上时,求证:AEB ADC(2)如图②,当点D在BC旳延长线时,探究四边形BCGE是怎样特殊的四边形并说明理由.(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.。
菱形的定义和判定
菱形的定义和判定菱形是一种几何图形,它有四条边和四个角,每个角都是直角。
与矩形不同的是,菱形的对边长度相等,但并不一定是直角。
在这篇文章中,我们将讨论菱形的定义和判定方法。
一、菱形的定义菱形是一种四边形,它有四条边和四个角,每个角都是直角。
与矩形不同的是,菱形的对边长度相等,但并不一定是直角。
菱形的定义可以用数学公式来表示。
设ABCD是一个菱形,那么它满足以下条件:1. AB=BC=CD=DA2. ∠A=∠B=∠C=∠D=90°这意味着菱形的对边长度相等,但并不一定是直角。
如果对边长度相等且是直角,那么这个四边形就是矩形。
因此,菱形是矩形的一种特殊情况。
二、菱形的判定在实际应用中,我们需要判断一个四边形是否为菱形。
以下是几种常见的判定方法。
1. 判断对边长度是否相等菱形的对边长度相等,因此我们可以通过测量对边长度来判断一个四边形是否为菱形。
如果对边长度相等,那么这个四边形就是菱形。
否则,它不是菱形。
2. 判断对角线是否相等菱形的对角线长度相等,因此我们可以通过测量对角线长度来判断一个四边形是否为菱形。
如果对角线长度相等,那么这个四边形就是菱形。
否则,它不是菱形。
3. 判断是否满足菱形的定义菱形的定义包括两个条件:对边长度相等,每个角都是直角。
因此,我们可以通过检查这两个条件来判断一个四边形是否为菱形。
如果这个四边形的对边长度相等且每个角都是直角,那么它就是菱形。
否则,它不是菱形。
4. 判断是否为矩形的特殊情况矩形是一种四边形,它有四条边和四个角,每个角都是直角,且对边长度相等。
因此,如果一个四边形满足这些条件,那么它是矩形。
如果它不是矩形,但仍满足对边长度相等和每个角都是直角的条件,那么它就是菱形。
三、菱形的性质菱形具有许多有趣的性质,以下是其中一些常见的性质。
1. 菱形的对边平行菱形的对边长度相等且相邻两边夹角为直角,因此它的对边一定平行。
2. 菱形的对角线相交于垂直平分线菱形的对角线相交于垂直平分线,这意味着对角线的交点是菱形的中心点。
第七讲、菱形的性质和判定
第七讲:菱形的性质和判定1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
几何语言表示为: 口ABCD且AB=AD(任一组邻边相等)口ABCD是菱形2.菱形的性质:(1)四边都相等;(2)两组对角相等;(3)对角线互相垂直,并且每一条对角线平分一组对角;(4)菱形是轴对称图形,它有两条对称轴,分别为它的两条对角线所在的直线。
例1:在如图菱形ABCD中,对角线AC、BD相交于O,E、F分别是AB、BC的中点.求证:OE=OF.例2:如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10(1)求∠ABC的度数;(2)求对角线AC的长;(3)求菱形ABCD的面积.3.菱形的判定方法(1)用定义判定:一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四条边都相等的四边形是菱形。
例3:如图所示,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于D,CG⊥AB于 G,交AD 于F,DE⊥AB于E,求证:四边形CDEF是菱形。
例4:已知:如图,过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形例5:如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.例6:如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.例7(真题2014-2015期中):如图,在菱形ABCD中,AB=4cm,∠ADC=120∘,点E. F同时由A. C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,求t的值例8(真题2014-2015期中)准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点。
第1讲 菱形的性质与判定(解析版)
第1讲 菱形的性质与判定 1.理解掌握菱形的概念性质及判定定理2.会用菱形的有关知识进行证明,会计算菱形的面积 知识点01 菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式. ②菱形面积12ab .(a 、b 是两条对角线的长度) 【知识拓展1】菱形的两条对角线长的比是32,面积是cm 12,则它的对角线的长分别是 cm , cm . (★)解答方法:∵ 设菱形的两条对角线的长分别为厘米厘米x x 3,2,∴ 122132=⋅⋅=x x S 菱形,∴ 解得舍去)(2,221-==x x , ∴ 对角线的长分别为cm cm 6,4。
答案:cm cm 6,4。
【总结方法】菱形的面积等于对角线乘积的一半。
【即学即练】两对角线分别是6cm 和8cm 的菱形面积是 _________ cm 2,周长是 _________ cm . (★) 解答方法:菱形面积是224286cm =÷⨯;∵菱形的对角线互相垂直平分,根据勾股定理可得,边长为5cm ,则周长是20cm . 知识精讲目标导航故答案为24,20.解答:24,20【知识拓展2】菱形的周长是它的高的8倍,则菱形较小的一个角为()(★★) A.60°B.45°C.30°D.15°解答方法:菱形的周长为边长的4倍,又∵菱形周长为高的8倍,∴AB=2AE,∵△ABE为直角三角形,∴∠ABC=30°.故选 C.答案:C【总结方法】本题考查了菱形各边长相等的性质,考查了直角三角形中的特殊角,本题中根据特殊角求得∠ABC=30°是解题的关键.【即学即练1】菱形的一条对角线与边长相等,则菱形中较小的内角是()(★★) A.60°B.15°C.30°D.90°解答方法:因为菱形的一条对角线与边长相等,所以该对角线和菱形的两边组成的是等边三角形,可得该菱形较小内角的度数是60°.解答:A【即学即练2】如果菱形的周长等于一条对角线长的4倍,那么这个菱形较小的一个内角等于度.(★★)解答方法:∵菱形的周长等于一条对角线长的4倍,∴AB=BD=AD,∴△ABD是等边三角形,∴∠A=60°.即这个菱形较小的一个内角等于60°.解答:60【知识拓展3】已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE. (★★)答案:证明:∵ 四边形ABCD 是菱形,∴ BCD CA CD CB ∠=平分,.∴ CE CE DCE BCE =∠=∠又.,∴ △BCE ≌△COB (SAS ).∴ ∠CBE=∠CDE .∵ 在菱形ABCD 中,AB ∥CD , ∴∠AFD=∠FDC∴ ∠AFD=∠CBE .【总结方法】通过菱形的基本性质可以得到三角形全等,进而推出对应角相等,然后利用平行内错角相等进行转化即可得到要证明的结论。
菱形的所有性质
菱形的所有性质
菱形的所有性质如下:
1、对角线互相垂直且平分,并且每条对角线平分一组对角。
2、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形。
3、菱形是特殊的平行四边形,它具备平行四边形的一切性质。
4、四条边都相等。
5、对角相等,邻角互补。
6、在60°的菱形中,短对角线等于边长,长对角线是短对角线的根号三倍。
7、菱形的判定判定
①有一组邻边相等的平行四边形是菱形;
②四条边都相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱形
④有一条对角线平分一组对角的平行四边形是菱形
⑤对角线互相垂直且平分的四边形是菱形
8、菱形的面积
①对角线乘积的一半(只要是对角线互相垂直的四边形都可用);
②设菱形的边长为a,一个夹角为x°,则面积公式是:S=a^2·sinx
9、菱形的周长
菱形周长=边长×4 用“a”表示菱形的边长,“C”表示菱形的周长,则C=4a。
菱形是特殊的平行四边形,而菱形中又有特殊的一类就是正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BCADO菱形的判定和性质一、基础知识(一)菱形的概念一组邻边相等的平行四边形叫做菱形。
(二)菱形的性质:1、 具有平行四边形的一切性质;2、 菱形四条边都相等;3、 菱形的对角线互相垂直平分,每条对角线平分一组对角;4、 菱形是轴对称图形;边 角 对角线 对称性 菱形对边平行; 四边相等对角相等; 邻角互补互相垂直平分且平分对角轴对称(三)菱形的判定:1、 一组邻边相等的平行四边形是菱形;2、 对角线互相垂直的平行四边形是菱形;3、 四条边都相等的四边形是菱形; (四)菱形的面积1、可以用平行四边形的面积算(S=21底×高) 2、用对角线计算(面积的两对角线的积的一半 S=21ab)二、例题讲解考点一 :菱形的判定例1:下列命题正确的是( )(A ) 一组对边相等,另一组对边平行的四边形一定是平行四边形 (B ) 对角线相等的四边形一定是矩形 (C ) 两条对角线互相垂直的四边形一定是菱形(D ) 两条对角线相等且互相垂直平分的四边形一定是正方形BCDE练习1:菱形的对角线具有( ) A .互相平分且不垂直 B .互相平分且相等 C .互相平分且垂直 D .互相平分、垂直且相等练习2:如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形B .四边形AMON 和四边形ABCD 是位似图形C .四边形MBON 和四边形MODN 都是菱形D .四边形MBCO 和四边形NDCO 都是等腰梯形练习3:如图,在三角形ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A '.若四边形ADA E '是菱形,则下列说法正确的是( )A .DE 是△ABC 的中位线B .AA '是BC 边上的中线 C .AA '是BC 边上的高D .AA '是△ABC 的角平分线ABDEA '练习4:如图,下列条件之一能使平行四边形ABCD 是菱形的为( ) ①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD = A .①③B .②③C .③④D .①②③例2 :已知AD 是△ABC 的平分线,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F ,则四边形AEDF 是什么四边形?请说明理由.变化:若D 是等腰三角形底边BC 的中点,DE ∥AC 交AB 于E ,DF ∥交AC 于F ,则四边形AEDF 是什么四DBCA NM OABCDAFE AF E边形?请说明理由.练习1:如图,AD 是Rt △ABC 斜边上的高,BE 平分∠B 交AD 于G ,交AC 于E ,过E 作EF ⊥BC 于F ,试说明四边形AEFG 是菱形.练习2:如图,E 是菱形ABCD 边AD 的中点,EF ⊥AC 于点H ,交CB 延长线于点F ,交AB 于点G ,求证:AB 和EF 互相平分。
练习3:如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,DE 垂直平分BC ,垂足为D ,交AB 于点E ,又点F 在DE 的延长线上,且AF =CE ,求证:四边形ACEF 是菱形。
考点二:菱形的性质例1:如图,四边形ABCD 中,∠ADC =90°,AC =CB ,E 、F 分别是AC 、AB 的中点,且∠DEA =∠ACB =45°,BG ⊥AE 于G ,求证:(1)四边形AFGD 是菱形;(2)若AC =BC =10,求菱形的面积。
练习1:如图,在菱形ABCD 中,E 是AB 中点,且DE ⊥AB ,AB =4, 求:(1)∠ABC 的度数; (2)菱形ABCD 的面积。
例2 :如图 5,ABCD 是菱形,对角线AC 和BD 相交于O ,306ACD BD ∠==°,. (1)求证:△ABD 是正三角形; (2)求 AC 的长(结果可保留根号).练习1:若菱形的边长为1cm ,其中一内角为60°,则它的面积为 ( ) A 23B 23cmC .22cmD .223cm 练习2:若菱形的周长为16cm ,两相邻角的度数之比是1:2,则菱形的面积是( )(A ) 4 3 cm (B )8 3 cm (C )16 3 cm (D )20 3 cm练习3:已知菱形的周长为96㎝,两个邻角的比是1︰2,这个菱形的较短对角线的长是( )A .21㎝B .22㎝C .23㎝D .24㎝O DB ACAD F GHG FDCBA F EDCB AEDCBAGFED CBA例3: 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cmA BCD练习1:菱形的两条对角线分别是12cm 、16cm ,则菱形的周长是( ) A .24cm B .32cm C .40 cm D .60cm练习2:若菱形ABCD 中,AE 垂直平分BC 于E ,AE =1cm ,则BC 的长是( ) (A )1cm (B )2cm (C )3cm (D )4cm 练习3:若菱形周长为52cm ,一条对角线长为10cm ,则其面积为( )A .240 cm 2B .120 cm 2C .60 cm 2D .30 cm2例4:如图,菱形ABCD ,E ,F 分别是BC ,CD 上的点,∠B =∠EAF =60°,∠BAE =18°求∠CEF 的度数。
练习1:如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是B C .CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A . 32B . 33C . 34D . 3AD FCEB练习2:如图,在菱形ABCD 中,60A ∠=°,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是_____________.练习3:如图所示,已知菱形ABCD 中,E 、F 分别在BC 和CD 上,且∠B=∠EAF=60°,∠BAE=15°,FDCBA EBCADOBCADO求∠CEF 的度数。
例5:如图,菱形ABCD 是边长为13cm ,其中对角线AC=10cm , 求(1)菱形ABCD 的面积;(2)作BC 边上的高AH ,求出AH 的长度练习1:如图,在菱形ABCD 中,∠ABC 和∠BAD 的度数比为1:2,周长是48cm . 求:(1)两条对角线的长度; (2)菱形的面积.例6: 已知:如图,在菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且CE=CF 。
过点C 作CG ∥EA 交AF 于H ,交AD 于G ,若∠BAE=25°,∠BCD=130°,求∠AHC 的度数。
练习1: 如图所示,已知菱形ABCD 中E 在BC 上,且AB=AE ,∠BAE=21∠EAD ,AE 交BD 于M ,试说明BE=AM 。
练习2:如图,菱形ABCD 的边长为2,BD =2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE +CF =2. (1) 求证:△BDE ≌△BCF ;(2) 判断△BEF 的形状,并说明理由; (3) 设△BEF 的面积为S ,求S 的取值范围. 考点三:综合例1:如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n 个菱形n n n AB C D 的边nAD 的长是 .例2:菱形ABCD 的对角线交于O ,AO=1,且∠ABC ∶∠BAD=1∶2,∠ABO=300则下列结论:①.∠ABC=600;②.AC=2;③.BD=4;④.SABCD=23;⑤菱形ABCD 的周长是8,其中正确的有( )1D B 3A C 2B 2C 3D 3 B 1D 2C 1 HG FEDBAA .①②③④⑤B .①②④⑤C .②③④⑤D .①②③例3:如图所示,在Rt ABC △中,90ABC =︒∠.将Rt ABC △绕点C 顺时针方向旋转60︒得到DEC △,点E 在AC 上,再将Rt ABC △沿着AB 所在直线翻转180︒得到ABF △.连接AD . (1)求证:四边形AFCD 是菱形;(2)连接BE 并延长交AD 于G ,连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?课后练习:1、若菱形的边长是它的高的2倍,则它的一个较小内角的度数是 。
2、如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15 C .10D .53、菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD 的面积是 ,对角线BD 的长是 .4、如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( )A .35°B .45°C .50°D .55°5、已知:如图,四边形ABCD 是菱形,过AB 的中点E 作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点ADEBADFCEGBA DE P CBFBACDABCDOF.(1)求证:AM=DM ;(2)若DF =2,求菱形ABCD 的周长.第21题图A BCDEFM。