二元一次方程组的解法(加减消元法)说课稿说课材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组的解法(加减消元法)说课稿
尊敬的各位老师,各位同学:
大家好!我今天说课的题目是《二元一次方程组的解法》,选自沪教版九年义务教育课本六年级下册第六章第九节,本节两个课时,我今天阐述的是第二课时,用加减消元法解二元一次方程组。下面我将从教材分析、教法分析、学法分析、教学过程及教学评价等几个方面进行阐述。
一、教材分析
1、教材的地位和作用
本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
教材的编写目的是通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程;理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.
2、教学目标
通过对新课程标准的研究与学习,我把本节课的三维教学目标确定如下:
知识与技能目标:会用加减消元法解简单的二元一次方程组;
理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
过程与方法目标:
通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
情感态度及价值观:
通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,同时体会到数学与日常生活的密切联系,认识到数学的价值。3、教学重、难点
由于六年级的学生年龄较小,在学习解二元一次方程组的过程中往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:
重点:用加减消元法解决二元一次方程组
难点:在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想为讲清楚重、难点,让学生达到本节设定的目标,我再从教法学法上谈谈。
二、教法分析
考虑到学生已经掌握了用代入消元法解二元一次方程组,懂得其基本思路是把二元一次方程组转化为一元一次方程。所以这节课我以引导、演示教学法为主,引导学生通过两式相加减,把二元一次方程组转化为一元一次方程,通过实例演示让学生掌握知识。
三、学法分析
六级学生思维比较活跃,喜欢发表自己的见解,而且具备小组合作学习的经验,根据这些特征及本节课的特点,我将采用以学生为主体,教师为主导,保证学生的主体地位,调动学生的积极性,让学生动手操作,动脑思考,激发学生学习兴趣,在学习知识的同时获得成功的体验。
教法学法分析完毕,我来分析一下教学过程,这个环节是本次说课的重点。
四、教学过程设计
本节课整体思路是“复习旧知---讲授新课---练习巩固---归纳小结---作业布
置”几个基本环节来完成。
1、 复习旧知这一环节我设计了2个问题,目的是帮助学生回忆上节课所学的主要知识和重要思想。
(1)上节课利用了什么方法解二元一次方程组?(代入消元法)
(2)解二元一次方程组的基本思想是什么?(消元)
2、讲授新课
(1)新课引入(注意时间控制) 课程引入这一环节,我是以解方程组作为引入的。然后再介绍方程组22240x y x y +=⎧⎨+=⎩
这个引入设计跟教材的做法正好相反。我的主要依据是:一是学生做加法要比做减法更容易接受,所以,我先介绍了加法消元,再介绍减法消元;二是把一个用代入消元法解答较复杂而用加法消元解答较简单的方程组放在开头,目的是引起学生学习加减消元法的兴趣。
有了这个引入后,我们就可以自然的把加减消元法介绍给学生。
对于概念做出两点说明:一是加减消元法的目的也是消元,由二元化一元,由未知化已知;二是消元的方式不是代入,而是通过两式适当的加减。适当是指同一未知数的系数要求相反或相等。
接着,为了加深学生对概念的理解,接下来的教学中,我设计一组较为简单的口答题(是由课后习题改编的)
2331x y x y -=⎧⎨+=⎩ 223x y x y +=⎧⎨+=⎩ 29321x y x y +=⎧⎨-=-⎩ 32622
x y x y -=⎧⎨-=-⎩ 通过这一组较为简单的口答题,学生对加减消元法有了直观上的理解,这时,我们就可以引入课本的例题3,通过例题3的讲解,使学生对加减消元法有进一步的理解。
(2)例题讲解 例题3
例题3的讲解,主要是以老师引导,学生以小组为单位,通过共同探究的方式来完成。
目的:消元,化二元为一元,由已知解未知,
方式:加减消元
引导学生如果不做任何改变直接加减,起不到消元的目的,所以看似用加减消元不行。此时可以让学生回顾加减消元的概念,强调做加减消元的前提条件是要求方程组中的某一个未知数的系数相反或相等,而上式并不相等。所以为了加减消元,我们应该通过恰当的方式使得方程组中的某一未知数的系数相反或相等,即在等式两边同乘以适当的数。
这是本节课的重点也是难点,所以在教学过程中要给学生充分的时间和空间进行探究讨论,教师也要参与到学生的讨论之中,及时收集同学们遇到的困难,并给以适当的引导,同时要针对学生的表现及时对学生进行鼓励性评价,充分肯定学生的探究成果。当学生得出这个方程组的解法之后组织学生全班交流,并选代表发言。然后教师规范表达解答过程,为学生做出示范.解答本题后,口算检验,让学生养成检验的习惯。
紧接着教师提出问题:如何用加减法消去上面两个方程组中的另一未知数解方程?目的是让学生从不同的角度实现消元,在培养了发散思维的同时也提高了学生从不同的的角度观察和分析事物的能力。
(3)根据上面方程组的解法,引导学生思考下面的两个问题:
A、加减消元法解二元一次方程组的基本思想是什么?
B、用加减消元法解二元一次方程组的主要步骤有哪些?
学生分组讨论,请学生发言。
老师根据学生的回答情况,把加减消元法的思路和步骤进行总结归纳,使学生熟练的用加减法解二元一次方程组并在练习中摸索运算技巧。
『步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.
第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.
第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.』
3、练习巩固
数学知识的学习离不开足够的练习,所以设计了这一环节,在这个环节中主要还是强化学生对加减消元法的理解。同时为了照顾到不同层次的学生,设计难度不同的练习题。最终是达到培养学生独立思考问题、解决问题的能力,进而使学生对加减消元法解方程组的方法和步骤都有更深的理解。
4、归纳小结:
通过提问“你们今天学会了什么”和学生一起带着疑问总结出本节课的收获,使学生加深对所学知识的理解和巩固。
5、作业布置
课本P3习题6.9(2)解下列方程组第1.2.3题
设计说明:
1、作业布置上设有必做和选做,目的满足不同层次的学生需求,体现分层教学。
2、在必做题中,第1题属于加法的直接应用,而第3题要先进行适当变形,体现了难度的递进性。目的是培养学生独立的分析解决问题的能力,更好的掌握本节课所学知识。
五、教学评价分析
本节课是传授知识,培养能力的一堂课,教学过程中根据本节课的特点通过教师的引导,学生自主学习,教师与学生相互合作共同完成了本节课的教学。教授过程中充分发挥学生主观能动性,激发学生学习兴趣,让学生成为课堂的主体。
以上是我对本节课的理解,请老师批评指正,谢谢!