EI质谱图和结构解析.ppt
质谱解析
但由此获得的分子拼接结构并不总是合理的,因为碎片离 子并不是只由 M+一次碎裂产生,而且可能会由进一步断裂 或重排产生。
重排离子峰
在两个或两个以上键的断裂过程中,某些原子或基团从一 个位置转移到另一个位置所生成的离子,称为重排离子。质 谱图上相应的峰为重排离子峰。转移的基团常常是氢原子。
分子质量的测定
氢的重排反应
氢的重排反应
氢的重排反应
氢的重排反应
氢的重排反应
Mass Spectrum with Sulfur
=>
Mass Spectrum with Chlorine
=>
Mass Spectrum with Bromine
=>
Mass Spectra of Alkanes
More stable carbocations will be more abundant.
分子式的确定
对分子离子区进行解析(推断分子式)
(1)确认分子离子峰,并注意分子离子峰对基峰的相对强 度比。 (2)注意是偶数还是奇数,如果为奇数,而元素分析又证 明含有氮时,则分子中一定含有奇数个氮原子。
(3)注意同位素峰中M+1/M及M+2/M数值的大小,据此可 以判断分子中是否含有S、CI、Br,并可初步推断分子式。
分子式的确定
离子 M-1 失去的碎片 H 可能存在的结构 醛,某些醚及胺
M-15
M-18 M-28 M-29 M-34 M-35 M-36
CH3
H 2O C2H4,CO,N2C2H4, CHO,C2H5 H 2S CI HCI
甲基
醇类,包括糖类 麦氏重排,CO 醛类,乙基 硫醇 氯化物
如何解析质谱图
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75
The Nitrogen Rule
A molecule with an odd number of nitrogens has an odd molecular weight.
A molecule that
O2N
contains only C, H,
七、负离子
二、同位素离子 1. 常见元素的同位素天然丰度
2. 同位素离子丰度的计算
Isotopic Clusters
H
H
H
H
HH
HH
H
78
79
79
H
HH
HH
H
H
H
H
93.4%
6.5%
0.1%
all H are 1H and all C are 12C
one C is 13C
one H is 2H
Isotopic Clusters in Chlorobenzene
and O or which has
an even number of
nitrogens has an even molecular
O2N
weight.
NH2
93
NH2 138 NO2
NH2 183
3.分子离子丰度与化合物结构的关系
思考题: 比较以下成对分子的分子离子峰相对丰度大小
1。 A
B
2。 A C2H 5O H
6000
5000
4000
3000 64
2000
25
1000
35
37
47
60
质谱法(推算结构)-非常有用
56(C4H8+)
41(C3H5+)
84(M ) Cyclohexane
M=84
10 20 30 40 50 60 70 80 90 100 110
% OF BASE PEAK
MethylCyclohexane
100
90
M=98
80
70
60
55
50
40
41
30
69
20
29
10
0
0 10 20 30 40 50 60 70
(四) 检测器
B
mv2
r
U
灯丝
S1
正极 样品
Bzev
真空泵
S 2 底片
R mv eH
(四) 检测器
电子倍增器示意图
(五) 真空系统
作用: 1) 避免大量氧烧坏离子源的灯丝;2)
消减离子的不必要碰撞,避免离子损失;3) 避免离子-分子反应改变裂解模式,使质谱 复杂化;4) 减小本底。
} 真空度要求:离子源 质量分析器
方向聚焦:
相同质荷比,入 射方向不同的离子会 聚。
能量聚焦:
相同质荷比,速 度(能量)不同的离子 会聚。
+ -
S1 离子源
磁场
S2 收集器
质量相同,能量不同的离子通过电场和磁场时,均产生 能量色散;两种作用大小相等,方向相反时互补实现双聚焦。
飞行时间分析器TOE(2)
质量范围宽,扫描速度快,无需电场和需磁场。但是 离子进入漂移管前产生时间的先后,产生空间的前后 和初始动能的大小不同,达到检测器的时间就不相同, 因而降低了分辨率。目前,通过采取激光脉冲电离方 式,离子延迟引出技术和离子反射技术,可使分辨率 可达20000以上,最高可检质量超过300000 Da,并且 具有很高的灵敏度。广泛应用于气相色谱-质谱联用 仪,液相色谱-质谱联用仪和基质辅助激光解吸飞行 时间质谱仪中。
质谱原理
IoT技术在智能交通中的应用智能交通是指各种交通工具之间以及与交通基础设施之间相互联系、交互运作的综合性交通系统。
IoT技术的出现,使得交通系统更加智能化,实现车辆与基础设施的无缝连接,提高了交通的效率,同时给出行带来更多的安全保障。
一、智慧路灯IoT技术可以使路灯具备“智慧”,实现更加智能、节能、环保、创新的城市路灯智能控制系统。
智能路灯可以自由控制,通过传感器和网络,对路灯进行管理,可以实现路灯的调光、定时开关等功能。
并可以根据环境变化自动调整光线明暗度,并实时监控空气湿度、温度等环境状态,进一步节能和保护环境。
智能路灯可在不同时间和不同地方提供不同类型的照明服务,同时为自动驾驶技术的落地,提供了重要的物联网基础设施,有利于推广自动驾驶的技术发展。
二、智能交通信号灯在现今的城市交通中,交通信号灯的设立是必不可少的。
IoT技术的应用,让智能信号灯的管理更加简单、便捷和高效。
智能信号灯集成车流量数据、天气数据等数据,分析信息将灯的亮度、数量和间隔时间做出调整。
通过交通信号灯设备,可以实时的监控和调控车流量,优化路段繁忙路口等交通流量,并提高城市道路的通行效率和道路安全性,进一步提高城市的品质。
三、智慧停车IoT技术在智慧交通中的另一个重要实践,是车辆停车场系统。
智能停车系统可以通过网络管理,应用传感器技术、车辆识别技术、视频监控等技术,将车位信息和停车,车辆管理,互联互通,打通全链。
通过智能车位导航,可直接导航过去余位,减少了车辆寻找停车位置的时间,极大地改善了城市路面交通秩序,进一步解决了车流堵塞问题。
四、智能路牌智能路牌系统可以在路上带来很多的优势,比如在导航、旅游等方面都能够更加精准的服务。
此外,配合城市建设的不断发展,智能路牌也能够满足用户不同的需求,达到智能城市的标准。
同时,智能路牌升级到无人驾驶城市管理,还能开启完全自动驾驶、特殊技术的使用,可以提供更为全面的计算机视觉技术,使道路更加安全、可靠。
质谱解析基础 ppt课件
(2)诱导断裂
• 酮类也经常会发生下面的i-断裂
•卤素有很强的i断裂反应的趋势
如1-溴丁烷发生i-断裂 产生的碎片(C4H9+, 57) 是丰度最大的基峰
•醛、酮、羧酸、酯、酰胺、碳酸酯、磷酸酯、肟、 腙、烯、炔以及烷基苯等的含有γ-H的有机化合物 很容易发生麦氏重排
以长链羧酸甲酯为例,裂解过程如下:
(2)逆迪尔斯-阿尔德重排(retro Diels-Alder fragmentation,
三、EI有机化合物裂解的一般规律
(一)、影响有机化合物在质谱仪中裂解的主要因素 • 1.裂解产物(包括碎片离子、中性分子、自由基)的稳
定性以及产生这一稳定碎片离子所需要能量的高低。碎片 离子的稳定性越大,其相对强度越高。 • 2.电荷自由基定域理论(Charge Localization)
假定电离后,在分子离子上的电荷或自由基被认为是 定域在分子离子中的某一特定位置上,由它通过转移一个 电子或两个电子而使裂解反应发生。 • 3.键断裂的难易程度,键越弱越容易断裂。 • 4.产生五、六元环过渡态的难易程度。一般形成五元或 六元环的过渡态,随后消除一个中性分子的裂解反应较易 发生。 • 5.丢失最大烃基规则(Loss of Largest Alkyl Group)
三、EI有机化合物裂解的一般规律
• EI质谱除分子离子峰外,可观察到极丰富的碎片 离子
• 碎片离子峰的相对丰度,与分子中键的相对强度、 断裂产物的稳定性及原子或基团的空间排列有关, 其中裂解产物的稳定性是主要因素
• 由于碎片离子峰,特别是相对丰度大的碎片离子 峰,与化合物的分子结构有密切的关系,因此研 究分子离子的裂解规律和裂解机理有助于推测和 解析化合物的结构
质谱分析
m1+ scanned
Q1/Q3扫描并保持m/z差值不变,Q2碰撞活化 中性丢失扫描可用来鉴定类型已知的化合
Δm
物,例如新生儿遗传疾病筛查。也可以帮助进
行未知物结构判断,例如中性丢失18Da的意味 着-H2O,28-CO,30-HCOH,32-CH3OH,44-CO2 等。
m3+ scanned
m/z 50-150, 溶剂离子[(H2O)nH+,n=3-112];
m/z 102, H+乙腈+乙酸, C4H7NO2H+; m/z 288、316, 2mm离心管的产生的特征离子; m/z 149、279、391、413,管路中邻苯二甲酸酯及衍生物; m/z 538, 乙酸+氧+铁(喷雾管), Fe3O(O2CCH3)6.
杂质太多时,竞争使被测物离子化程度低.
山东师范大学
用大气压电离质谱仪可以得到分子量信息 正离子方式常出现如下离子:+Na +22Da;+K +38Da;+Li
+6Da;+NH4 +17Da;+ACN+40 Da;2M+H;2M+Na等
负离子方式常出现如下离子:+TFA +114Da(113和227背景); +Acetate 60Da;+Formic 46Da;+Cl +36Da. 常见的本底离子
常见的准分子离子峰是[M+H]+或[M-H]-.在ESI中, 往往生成质 量大于分子量的离子如M+1,M+23,M+39,M+18......称准分子离 子表示为:[M+H]+,[M+Na]+等. 碎片离子
常见化合物质谱解析
1、m/z 29离子峰
O
O
RCH
CH
m/z 29
2、m/z 43,57,71......离子系列,随着烷基链增长,这些离子的丰度增高
Oi
R CH
R
m/z 43,57,71......
3、m/z 44离子'
H
O
R'
CH
H2C
C H
OH +
rH
R'
H
m/z 44
γH
H
O
H
H
i
H -CO
H
O
O m/z 66
CH
CH
rd
-HCO
m/z 65
芳环上只有一个酚羟基的酚
苯酚、1-萘酚和1-菲酚的质谱
邻乙基苯酚的EI质谱图
若酚羟基的邻位有取代基,而且该取代基有强的接受氢重排的能力, 则酚羟基的氢主要重排到该基团并失去一稳定的中性分子,得到的奇 电子碎片离子还可进一步失去CO。
CH3
-CH3
H H
-CH3
CH3 CH3
甲基环庚三烯离子
m/z 91
α
γH
H
α m/z 92
m/z 91
图9.14 正丁基苯的EI-质谱图
脂肪醇
1 伯醇
分子离子峰很弱,碳数大于4的伯醇已观察不到分子离子峰,只能观察到 M-H2O的峰。主要反应通道如下:
+· [M-H2O]
H
γH R CH CH2 OH
芳香醇-酚
芳环上只有一个酚羟基,一般有较强的分子离子峰M+·。两个主要碎裂产物 :[M-CO]+·、[M-HCO]+·
仪器分析-质谱图解析.
3、m/z 57为M-17离子,m/z 29为M-45 离子,同时产生m/z 45(COOH)离子峰, 说明化合物可能含有羧基
4、m/z 29为乙基碎片离子峰,说明化合物可能含有乙基
H2 O H3C C C OH
m/z=74
H3C
H2 C
O C m/z=57
分子结构的推导
■ 计算分子的不饱和度推测分子结构
一价原三 子价 数原子数
U四价原 - 子2数
2
1
■ 根据碎片离子的质量及所符合的化学通式,推测离子可能 对应的特征结构或官能团
■ 结合相对分子质量、不饱和度和碎片离子结构及官能团等 信息,合并可能的结构单元,搭建完整分子结构
■ 核对主要碎片,检查是否符合裂解机理。 结合其他分析方法最终确定化合物结构
相对丰度 (%)
100 80 60 40 20
m/z
43 O
71
断裂
H7C3 C
58
99
Rearrangement
β异裂
86
113
40
60
80
100 120
4壬酮的质谱图(M=142)
C5H1 1
1、酮类化合物分子离子 峰较强。
2、α裂解(优先失去大 基团)
烷系列:29+14 n
142(M+·) 3、γ-氢重排
未知化合物质谱图分析
CH2
某化合物C10H4
HH CH2
结构式:
1、计算不饱和度U=4, 2、分子离子峰m/z=134较大,结合不饱和度,说明该化合物含有苯环
3、m/z=91为(M-43)碎片离子峰,说明化合物可能失去C3H7+为烷基苯,m/z=65是 其进一步丢失乙炔分子产生的碎片离子峰。
质谱的图谱分析ppt(共55张PPT)
b:某元素重同位素的丰度; c:同位素个数。
23
例:某化合物质谱分子离子区域的离子质荷比和强度如下 :
m/z
132(M+·) 133 134
试推导分子式
解:因[M+2]:[M+]为0.7:100,所以分子中不含 Cl、Br、S、Si等A+2类元素。C原子数的最大值 =[M+1]/[M]÷1.1%=9.9/100÷1.1%=9
m/z 14 (4.0) 16 (0.8) 20 (0.8)
m/z 28 (100) 29 (0.76) 32 (23)
m/z 33 (0.02) 34 (0.99)
40 (2.0)
44 (0.10)
括弧中的数字即峰的相对强度,表示100%者是基 峰 O,2, O,2N在就2在空占空气N2气中的中占23含1%/量5。,最N高2占而且4/5也,最N稳2的定峰。高(为321)0是0%
(1)绝对强度 是将所有离子峰的离子流强度相加作
为总离子流,用各离子峰的离子强度除以 总离子流,得出各离子流占总离子流的百 分数 (2)相对强度
以质谱峰中最强峰作为100%,称为基 峰(该离子的丰度最大、最稳定),然后 用各种峰的离子流强度除以基峰的离子流 强度,所得的百分数就是相对强度。
4
表示方法: (以上图为例)
一般情况下,分子的稳定性与分子离子的稳定性 有平行关系,分子离子的稳定性通常随不饱和度 和环的数目的增加而增大。
杂原子外层未成键电子被电离的容易程度,按周期表纵 列自上而下,横行自右而左的方向增大。
13
分子电离所需的能量越低,分子离子也越 高。
n-C4H9OH n-C4H9SH n- C4H9NH CH3-CH3 CH2=CH2 苯
仪器分析-质谱图解析
[MH]+, [M-H]+
同位素离子: 有些元素具有天然存在的稳定同位素,
所以在质谱图上出现一些M+1,M+2,M+3的峰,由这些 同位素形成的离子峰称为同位素离子峰。
EI 质 谱 的 解 析 步 骤
分子离子峰的识别
■ 假定分子离子峰:
高质荷比区,RI 较大的峰(注意:同位素峰)
H3C CH2
m/z=29
O C OH
m/z=45
HH O
结构式:
H
O
H
CH3
1、不饱和度U=4 2、分子离子峰m/z=122强度较大,结合不饱和度,说明该化合物含有苯环
3、m/z=77为 苯环离子峰,m/z=51是其进一步丢失乙炔分子产生的碎片离子峰
4、m/z=94为 M-28 离子,可能丢失C2H4,说明化合物含有乙基。
RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w
■ 若含硫的样品 RI(M+1) / RI(M) ×100 = 1.1x + 0.37z+ 0.8S RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w +4.4S
例:设 m/z 154为分子离子峰, 154-139=15, 合理
m/z 154 155 156 157 M+2/M=5.1>4.4→分子中含有S RI 100 9.8 5.1 0.5
M/Z=154,偶数,设不含N,含1S
M+1/ M×100 = 1.1x + 0.37z+ 0.8S C数目=(9.80.8)/1.18
质谱介绍及质谱图的解析
质谱介绍及质谱图的解析质谱用于定量分析,其选择性、精度和准确度较高。
化合物通过直接进样或利用气相色谱和液相色谱分离纯化后再导入质谱。
质谱定量分析用外标法或内标法,后者精度高于前者。
定量分析中的内标可选用类似结构物质或同位素物质。
前者成本低,但精度和准确度以使用同位素物质为高。
使用同位素物质为内标时,要求在进样、分离和离子化过程中不会丢失同位素物质。
在使用FAB质谱和LC/MS(热喷雾和电喷雾)进行定量分析时,一般都需要用稳定的同位素内标。
分析物和内标离子的相对丰度采用选择离子监测(只监测分析物和内标的特定离子)的方式测定。
选择离子监测相对全范围扫描而言,由于离子流积分时间长而增加了选择性和灵敏度。
利用分析物和内标的色谱峰面积或峰高比得出校正曲线,然后计算样品中分析物的色谱峰面积或它的量。
解析未知样的质谱图,大致按以下程序进行。
(一)解析分子离子区(1)标出各峰的质荷比数,尤其注意高质荷比区的峰。
(2)识别分子离子峰。
首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。
若二者均相符,可认为是分子离子峰。
(3)分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断化合物是否含有CI、Br、S、Si等元素及F、P、I等无同位素的元素。
(4)推导分子式,计算不饱和度。
由高分辨质谱仪测得的精确分子量或由同位素峰簇的相对强度计算分子式。
若二者均难以实现时,则由分子离子峰丢失的碎片及主要碎片离子推导,或与其它方法配合。
(5)由分子离子峰的相对强度了解分子结构的信息。
分子离子峰的相对强度由分子的结构所决定,结构稳定性大,相对强度就大。
对于分子量约200的化合物,若分子离子峰为基峰或强蜂,谱图中碎片离子较少、表明该化合物是高稳定性分子,可能为芳烃或稠环化合物。
例如:萘分子离子峰m/z 128为基峰,蒽醌分子离子峰m/z 208也是基峰。
分子离子峰弱或不出现,化合物可能为多支链烃类、醇类、酸类等。
12.4 EI质谱图解析
M + 2 0.03 = ×100% =1.23% M 2.44
由(M+2) / M = 1.23知,它不含Cl、Br和S。 根据“氮律”,并查Beynon表,因相对分子质量为116, 则可排除4个含奇数氮的分子式。
根据“氮律”,并查Beynon表,因相对分子质量为116, 则可排除4个含奇数氮的分子式。
例4
结构未知(C6H12O,酮),R'-CO-R ),R CO结构未知(
解析: 解析: 1. 100,分子离子峰; . ,分子离子峰; 2.85,失去 . ,失去CH3(15)的产物; )的产物; 3.57, 丰度最大 稳定结构; . 丰度最大, 稳定结构; 失去CO(28)后的产物。 后的产物。 失去 后的产物
根据(M + 1)/ M(5.74)和(M + 2)/ M(1.23)值,只 有C5H8O3的实验值与Beynon表中的值接近。 因此,该未知化合物的化学式为C5H8O3。 计算不饱和度u= 2。
综合解析步骤( 综合解析步骤(2)
从红外谱图可得到如下信息: 在1700cm-1附近有中等宽度、强的吸收带,羰基。 在3100~3400cm-1有宽的νOH吸收带,在925cm-1附近有 δ OH吸收带,说明为羧基。 在1470 cm-1有吸收带,则有—CH2—存在。
12.4.4 谱图综合解析
例1
某可能含有C,H,N及O的未知化合物。试由质谱、 红外、核磁谱图确定该化合物的结构。 质谱图M=102;从Beynon表查得M=102的化合物 M+1和M+2与分子离子峰M的相对强度如下:
分子式 C5H14N2 C6H2N2 C6H14O C7H2O C8H6 M+1 + 6.93 7.28 6.75 7.64 8.74 M+2 + 0.17 0.23 0.39 0.45 0.34
质谱解析01
③较高分子量的样品,可能同时生成 M+H ┐+ ,M+2H ┐+ , M+3H ┐+等。
6.1.4 由高分辨质谱数据确定分子式
• 可行性: • (1)目前已经测得常见同位素的精确原子量
同位素 1H 2H 13C 14N 15N 16O 18O
若化合物含有i种元素,他们都具有非单可用下式 表示:
6-12与6-11式类似,a1、b1、m1对应第一种元素,余类推。 6-12式展开以后,代表相同质量数的项应相加,代表不同质量数 的项不能相加,它们之间的加号仍理解为峰之间的相对强度比。
多卤化合物的同位素峰簇可用式6-12描述,但是更 好的方法是采用画核磁裂分图的方法,如下图所示。
6.1.1 由EI谱确定分子量
• A. 理论依据
EI谱中,双电荷及多电荷离子峰少,一般情 况 下 失 去 一 个 价 电 子 形 成 带 正 电 离 子 M+., 那 么质荷比数值上就等于离子质量。因此,只 要找出分子离子峰M+,就可以确定分子量。
分子离子是分子电离而尚未碎裂的离子, 因此分子离子峰应为EI谱中质量数最大的峰, 一般也就是谱图中最右端的峰.
芳香化合物、共轭多烯、脂环化合物、短直链烷烃 及某些含硫化合物等有显著 M+;
直链的酮、酯、酸、醛、酰胺、醚和卤化物等通常 显示M+ ;
脂肪族且分子量较大的醇、胺、亚硝酸酯和硝酸酯 等化合物及高分枝的化合物无M+.
C. 分子离子峰识别
2.根据经验规律
⑴ 最大质量峰可能是M+ ⑵ 观察最大质量峰与低质量峰的关系 a.合理的中性碎片丢失
质谱的原理和图谱的分析-PPT课件
• 过剩的能量使分子离子进一步裂解
• 有些化合物的分子离子不出现或很弱
(2) 化学电离(chemical ionization, CI)
高能电子束与小分子反应气(如甲烷、丙烷等)作 用,使其电离生成初级离子,初级离子再与样品分 子反应得到准分子离子。 以CH4为例: CH4 + e → CH4+. + 2e CH4+. + CH4 → CH5+ + CH3+ + CH5 . + CH3. R+. + R → RH+ + (R-H) . + RH . + (R-H)+
MALDI适用于生物大分 子,如肽类,核酸类化合物。
脉冲式激光
可得到分子离子峰,无明显
碎片峰。此电离方式特别适 合于飞行时间质谱计。
5、质谱图的组成
质谱图由横坐标、纵坐标和棒线组成。
横坐标标明离子质荷比(m/z)的数值,纵坐标标明各峰
的相对强度,棒线代表质荷比的离子。图谱中最强的一
个峰称为基峰,将它的强度定为100。
7、质谱中的各种离子
(1) 分子离子 :
分子被电子束轰击失去一个电子形成的离子。
分子离子用 M+• 表示,是一个游离基离子。
在质谱图上,与分子离子相对应的峰为分子离子峰。 分子离子峰的应用: 分子离子峰的质荷比就是化合物的相对分子质量,
所以,用质谱法可测分子量。
(2)同位素离子 含有同位素的离子称为同位素离子。 与同位素离子相对应的峰称为同位素离子峰。
质谱
一、质谱的基本知识
1、定义
化合物分子在真空条件下受电子流的“轰击”或
强电场等其他方法的作用,电离成离子,同时发生某
质谱的原理和图谱的析ppt课件.ppt
• 适用于难汽化、热不稳定的样品. 如: 糖类. • FI、FD分子离子峰较强,碎片离子峰较少。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(4)快原子轰击(fast atom bombardment, FAB) • 用高能量的快速Ar原子束轰击样品分子(用液体基质 负载样品并涂敷在靶上,常用基质有甘油、间硝基苄 醇、二乙醇胺等),使之离子化。 • FAB灵敏度高,适用于对热不稳定、极性强的分子, 如肽、蛋白质、金属有机物等。 • 样品分子常以质子化的[M+H]+离子出现 • 基质分子会产生干扰峰。
静电分析器加在磁分析器之前。加速后的离子在静
电分析器中, 受到外斥内吸的电场力(zE)的作用, 迫使
离子作弧形运动。
zE mv 2
R
结合 1 mv2 zV, 导出 2
R 2V E
静电分析器只允许具有特定能量的离子通过,达到
能量聚焦,提高仪器分辨率。
V:加速电压. E: 电位差.v: 速度. m: 质量.
分子离子峰的应用: 分子离子峰的质荷比就是化合物的相对分子质量, 所以,用质谱法可测分子量。
பைடு நூலகம்
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(2)同位素离子 含有同位素的离子称为同位素离子。 与同位素离子相对应的峰称为同位素离子峰。
(9)亚稳离子
从离子源出口到达检测器之前裂解并被记录的离子称 亚稳离子,其动能小于离子源生成的离子,以低强度
于表观质量m*(跨2~3质量单位)处记录下来,其m/z 一般不为整数。 m*=m22/m1 在质谱中,m*可提供前体离子和子离子之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m /z=65 CH
HC
CH
CH 2 m /z=91
m /z=91
H2 C
CH 2
CH
H
CH 3
CH 2 HC
CH 3
CH 2
H H m /z=92
CH 2CH 2CH 2CH 3 C 4 H 9
HC CH
m /z=134
m /z=77
m /z=51
三、醇和酚的质谱图
R1 R2 R3
C OH
m/z: 31,59,73,
90
CH2 CH2 CH2 CH3
80
70
92
60
50
40
30
134(M )
20 10
39 51 65 77
0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
CH 2 CH 2 CH 2 CH 3
CH 2 CH 2 CH 3
m /z=134
m /z=39 HC
C2H5+( M /e =29)→ C2H3+( M /e =27)+H2 ❖有M /e :28,42,56,70,……CnH2n系列峰(四圆环重排)
2. 支链烷烃
% OF BASE PEAK
m/z=43
5-Methylpentadecane
100
C3
169 141
90
80 70 60
m/z=57 C4
% OF BASE PEAK
90
80 70
H CH 3(CH 2)2 C CH 3
60
OH
50 40 M - (H2O and
45
M - (H2O and CH3)
30
CH2 CH2)
20 10 0
M - H2O M - CH3
M-1 M
0 10 20 30 40 50 60 70 80 90 100110 120130140150
H
H
CH2
RHC HC CH2 CH3
H2C C CH3
H2C CH R
-H2O
M-60
- H
H2 H2C C C2 H R CCHH
H2C C2 H H2C2 H R C CH M -76
% OF BASE PEAK
100 CH 2OH
90 80 70 60 50 40 30
1-PenTanol MW 88
3.环烷烃
% OF BASE PEAK
100 90 80 70 60 50 40 30
20 10 0
0
56(C4H8+)
41(C3H5+)
84(M ) Cyclohexane
M=84
10 20 30 40 50 60 70 80 90 100 110
% OF BASE PEAK
MethylCyclohexane
H 3C
100 90 80 70 60 50 40 30 20 10 0
CH C 41
55 27
H 3C
CH 3
CH 3
CH C CH 2
m /z= 6 9
69 84(M )
0 10 20 30 40 50 60 70 80 90 100 110
二、芳烃的质谱图
% OF BASE PEAK
91
100
% OF BASE PEAK
2-M ethyl-2-butanol M W 88
59
100
CH 3
90 80
70 M - (H 2O and 60 CH2 CH2)
50 40
CH 3 CH 2 C CH 3
M - CH3
OH 59
M - (H 2O and C H 3)
30
20 10 0
0
10 20 30 40 50
M - (H2O and CH2 CH2) C H 3(C H 2)3
C H 2O H
M - (H2O and CH3)
31
M - H2O
20 10 0
0
10 20 30 40 50 60 70
M -1
80 90 100110 120 130140 150
100
45 2 -PenTanol MW88
100
m/z=43C3 C4m/z=57
90
80
n-Hexadecane
70
C5 m/z=71
60
CH3(CH2)14CH3
50 40 m/z=29 C2
30
20 10
0
MW 226
m/z=85 C6 99
C7
m/z=226
113 127 141155 169 183 197 C8 C9 C10 C11 C12 C13 C14
CH3(CH2)3 CH (CH2)9CH3 CH3
50
C6 m/z=85
57 85
40
m/z=71
30
C5 m/z=99
20 10
C7
113 C8
C9
C10
M C12 M 15 C16
0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180190200 210220230
M C16
0 10 20 30 40 50 60 70 80 90 100 110 120 130140 150160 170 180190200210220230
❖分子离子:不强 ❖有M /e :29,43,57,71,……CnH2n+1 系列峰(σ—断裂) ❖有M /e :27,41,55,69,……CnH2n-1 系列峰
质谱图与结构 解析
一、饱合烃的质谱图 二、芳烃的质谱图 三、醇和酚的质谱图 四、 醚的质谱图 五、 醛、酮的质谱图 六、 其他化合物的质谱图
一、饱合烃的质谱图
1. 直链烷烃
16 15
m eth an e M =16
m /z
43
29 15
57 71
正癸烷
85 99 113 142 m/z
% OF BASE PEAK
100
90
M=98
80
70
60
55
50
40
41
30
69
20
10
0
0 10 20 30 40 50 60 70
83 98(M )
80 90 100 110
m/z=98
m/z=83
C3 H
CH 3
H 3 C CH C CH 2 CH 3
CH 2 CH 3 m /z = 5 5 CH 3
% OF BASE PEAK
H
OH
RHC
CH 2
(C H 2)n
R3 R1 C OH
R2
RHC
H OH
CH 2 (C H 2)n
-H 2 O
RHC
CH 2
(C H 2)n
RHC or
CH 2
(C H 2)n
H
O+
H
- CH2 H2C CH2
- RHC
CH2
CH2
H O+
-H2O
H2C CH R
M - (Alkene + H2O) M-46
M - H2O
60 70 80 90 100110 120 130140150
CH 2OH - H
OH - CO
m /z=108 HH
m /z=79
m /z=107
H
H
- H2
H
H
H
m /z=77
H2 C
OH H C H2 H2 C OH H O