高层建筑风致结构响应结果分析.docx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高层建筑风致结构响应结果分析1概况
某项目位于广州市新滘东路以西琶洲B2区,由塔楼1、塔楼2、塔楼3等3个塔楼和底部连接塔楼1和塔楼2的裙楼组成,3个塔楼呈“<”状排列,其中塔楼2屋面高度为148.10m、塔楼3屋面高度为149.65m。塔楼2、3相互间距较小,楼层质量及刚度存在较大偏心[1],结构平面原为矩形(方案1),后调整为切角三角形(方案2),平面形状变化较大,项目进行了两次建筑物不同平面形状的风洞试验研究和风致结构响应分析。项目效果图、总平面图和结构主要特征见图1、图2和表1。
2风洞风荷载与规范风荷载的结构风致响应对比
风洞风致结构响应分析报告[2,3]提供了用于主体结构设计的风荷载,每个塔楼包含6个不利风向对应的等效楼层风荷载,每个风向风荷载包含顺风向、横风向以及扭转等3个等效风荷载分量及其组合系数,采用YJK计算程序验算风洞风下的结构响应,并和规范[4]风下的结构响应进行比较。篇幅所限,以塔楼2方案1的对比研究成果为例。风洞不利风向和风荷载组合系数如表2所示。塔楼2在风洞风和规范风下的结构楼层等效风荷载包络值对比和位移角对比如图3、图4所示。对比可知,塔楼2风洞风的楼层顺风向风荷载明显小于规
范风,但横风向风力则大幅度大于规范风,且扭转等效风荷载力矩较大,相当于风荷载平面偏心16%引起的扭矩大小。结构扭转效应显著增大,导致结构楼层位移角增大较多。为了解风洞风横风向和扭转风振对结构构件内力的影响[5],选取核心筒一连梁的剪力作为比较对象,为便于比较不同风荷载的对连梁剪力的影响,比较时仅考虑风荷载工况下的连梁剪力标准值(见图5)。选取3种风荷载工况进行比较:①按文献[4]8.5.6条的组合系数进行风荷载组合的规范风荷载工况;②按文献[6]7.5.14条的组合系数进行风荷载组合的规范风荷载工况;③风洞风荷载工况。文献[4]和文献[6]关于风荷载分量的组合系数工况要求如表3所示,两者的要求有较大区别,文献[6]考虑风荷载各荷载间的相关性,且组合系数比文献[4]大。连梁剪力标准值对比如图6所示,横风向风振和扭转风振等效风荷载引起的连梁剪力比例分别如图7、图8所示。对比可知,虽然风洞顺风向风荷载最大值仅为规范风顺风向的68%,但横风向和扭转风振等效风荷载较大,风洞风作用下的连梁剪力较规范算法有较大增幅,剪力标准值最大值相对文献[4]算法和文献[6]算法分别增大40%和34%。在各不利风向风洞风等效风荷载作用下的连梁剪力,由横风向风振等效荷载引起的剪力与连梁总剪力的比值为4%~125%,比值的大小与风向和梁长方向的夹角存在高度相关性,当风向与梁长方向接
近时比值小,当风向与梁长方向接近垂直时比值大。扭转风振引起的剪力占连梁总剪力的比值为5%~75%,270°和30°风向作用下扭转风引起的剪力占比小,该风向为平行于建筑物长边的基底剪力分量主控,其它方向来风扭转风风振引起的剪力占比较大,多数楼层大于32%。风荷载作用下的高层建筑结构的横风向风振和扭转风振等效风荷载引起的结构构件内力较大,构件承载力极限状态设计时应予以考虑。
3不同体型的结构风致响应对比
本项目进行了总平面布置相同而塔楼平面形状不同的两次风洞试验,本文对方案1、2对应的风洞风引起的楼层剪力和位移角等风致结构响应指标进行对比分析,以期得到不同平面形状的建筑物的风致响应规律。⑴楼层剪力。塔楼2、3不同方案在顺风向基底剪力主控风向下,顺风向风荷载引起的单位宽度楼层剪力大小(楼层剪力除以顺风向受风面宽度)对比如图9所示,两栋塔楼的方案2单位宽度风荷载大小均比方案1的大,楼层总剪力亦是相同情况。⑴顺风向楼层位移角。图10分别为塔楼2、3不同方案顺风向楼层位移角对比,楼层位移角的变化趋势与楼层剪力的变化趋势一致,方案1顺风向楼层位移角大于方案2。⑴横风向和扭转风振引起的位移角与总位移角的比值。图11为塔楼2、3扭转风振等效风荷载引起的位移角大小与总位移角的比值,扭转风振引起的位移角比值,方案1(矩形平面)小
于方案2(三角形平面)。两塔楼不同方案横风向风振引起的顺风向位移角均较小,与总位移角的比值小于5%。⑴风洞风和规范风顺风向楼层位移角的对比如图12、图13所示。不同方案的风洞风引起的位移角最大值均大于规范风,结构楼层位移角最大值均为风洞风控制。塔楼2、3的1、2方案结构风致响应指标对比汇总如表4所示。
4地面粗糙度类别的确定
项目场地位于广州市琶洲地块在建核心商务地段,场地南北侧距珠江(或支流)较近,南侧距珠江支流约400m,北侧距珠江约800m,根据卫星图像资料,东南角4km范围内为田野和河流,未有高层建筑物。方案阶段,采用文献[4]8.2.1条条文解释建议的以2km半圆影响范围内建筑物的平均高度方法近似确定,地面粗糙度为C类。笔者认为该方法不能体现不同方向来风建筑物密集程度的差别,且未能合理地消除圆形平面影响范围内个别较高建筑物的对平均高度计算的干扰。东南方向来风田野和河流的地貌,与文献[4]的B类粗糙度定义较为相符。场地地面粗糙度是统一按B类或者C类,或区分风向确定,地面粗糙度的确定存在困难。风荷载按文献[4]计算,地面粗糙度由C类修改为B类时,楼层最大位移角由1/790增大到1/634,增幅达到25%,梁钢筋用量增幅为6%,地面粗糙度的选取对结构性能和经济指标影响较大。[7,8]故本项目委托广东建科院风工程研
究中心进行专门研究。根据周边地貌特点,将场地四周分为4个典型的扇形区域,采用英国工程技术数据ESDU01008(E0108)的数字风力模型,按照Harris和Deaves研究的通用的大气环境中边界层计算方法分析,定量确定场地上空的风特性。根据各典型扇区内沿风来流路径上的地面粗糙度和路径长度,计算得到各扇区内的风速剖面,最不利的扇区风速剖面与文献[4]定义的A、B、C、D类粗糙度的相对关系如图14所示,扇区风速剖面图与规范C类风剖面比较接近,最终设计采用C类地面粗糙度。
5应用风洞试验数据的几点注意事项
在房屋高度较高、平面或立面形状复杂、周围地形和环境复杂时,风洞试验可作为判断确定建筑物风荷载的有效手段,其数据应用时,应注意以下几点事项:
5.1风荷载与地震作用的组合
项目进行抗震设防专项审查时,审查专家提出地震作用与风荷载组合时,两者的方向角应一致。风洞试验提供的等效风荷载最不利风向角,是以风荷载在结构主轴的荷载分量极值大小为判断标准的[9,10],同一风向角的等效风荷载各荷载分量不一定同时达到最大峰值,最不利风向角不等同于在该风向角方向等效风荷载数值最大,故最不利风向风荷载工况应与结构主轴方向的地震作用组合。5.2风荷载力