数字隔离器工作原理及应用实例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字隔离器工作原理及应用实例
作者:徐华
来源:《电脑知识与技术·学术交流》2008年第22期
摘要:讨论了隔离技术的发展,分析了数字隔离器的工作原理,给出了数字隔离器的应用实例。
关键词:隔离;数字隔离器;高频通道;低频通道;传感器;接口
中图分类号:TN305文献标识码:A文章编号:1009-3044(2008)22-772-02
The Working Principle and Applications of the Digital Isolator
XU Hua
(Xiamen Kerun Electronic Technology Co.Ltd, Xiamen 361006, China)
Abstract: Discuss the development of isolation technology, analysis the working principle of the digital isolator, and also give the applications of digital isolators.
Key words: isolation; digital isolators; high-frequency channel; low-frequency channel; sensor; interface
1 引言
进行隔离是防止电流在两个通讯点之间流动的一种方法。一般在两种情况下采用隔离:第一种情况是,在有可能存在损坏设备或危害人员的潜在的电流浪涌时。第二种情况是必须避免存在不同地电位和分裂的接地回路的互连。两种情形都是采用隔离来避免电流流过,而允许两点之间有数据或功率传送。隔离应用涉及高电压、高速/高精度通信、或者长距离通信。普通的例子如工业I/O系统、传感器接口、电源/调节杆,发动机控制/驱动系统以及仪器仪表。
2 早期的隔离技术
早期的设计除使用变压器之外,还使用各种模拟隔离放大器,将工厂地面的传感器电路与控制室内的信号处理系统进行隔离。在通道数量有限及信号带宽小的应用中,目前仍在采用这些放大器。隔离放大器虽然具有高可靠性和高精度,但受限于信号带宽50kHz。其老旧的技术要求最小±4V的电源,不支持目前的3V及以下的低电压应用。此外,其制造过程涉及输入和输出部分单独制作,异常电路匹配的激光微调,以及在两部分间安装隔离电容,使这些器件相当昂贵。
3 多通道隔离
工业自动控制中的许多数据采集系统采用多输入通道模数转换器(ADC)捕获多个模拟输入的输入数据(被测物理量)。绝大多数Δ-ΣADC都具有串行接口来减小封装尺寸和占板面积。串行接口的复杂性在于需要的慢速控制信号数不同,如片选、功率降低、增益及速度设定以及多路器寻址。不过,所有串行接口都具有时钟信号和输出数据(转换结果)高速传输线。因为信号获取和调理发生在ADC内部,将传感器电路与信号处理电路隔离的最佳位置是在采用数字隔离器的数字接口处。如前所述,因为接口复杂,隔离器必须能够传输高速ADC转换结果,同时也要能传输低速控制信号。
4 数字隔离器工作原理
图1是基于一种电容性隔离屏障技术的隔离器。此器件由两个数据通道组成:一个是高频通道(HF),带宽从100 kHz到150MHz;另一个是低频通道(LF),覆盖范围从100 kHz到直
流。
原则上来说,一个单端输入信号进入HF通道之后被输入端的非门分离为一微分信号。随后的电容电阻网络将此信号微分为瞬变信号,然后再通过两个比较器转换成微分脉冲。比较器输出驱动一个‘或非’门跳转,其输出进入一输出多路器。跳转的输出驱动处的一精密逻辑(DCL)测量信号瞬变之间的间隔。如果两个连续瞬变的间隔超过某一时间限(如在低频率信号时),DCL驱使输出多路器从高频通道转向低频通道。因为低频输入信号需要内部电容为受限制的
大容量值,这些信号用一内部振荡器的载波频率进行宽调制,这样,得到能通过容性屏障的高频信号。调制输入时,需要一个低通滤波器(LPF)将高频载波从实际数据中除掉,然后再到达输出多路器。图2和图3给出了高频通道和低频通道及相应的代表性波形。
4.1 高频操作
将单端输入信号分离成微分信号分量A和/A。每个信号分量然后再微分成瞬变B和/B。
跟随的比较器对瞬变进行比较。只要比较器正输入的电位高于负输入端电位,比较器输出即为逻辑高,这样就将输入瞬变转换成了短输出脉冲了。
输出脉冲置位及复位‘或非’门跳转。我们可以从真值表看出,‘或非’门配置有一个反向跳转,即输入C的高电平将输出/D置为高,而/C为高电平则将D置为高。因为比较器输出脉冲持续时间短,就可能出现两个输出都为低的情况。这时,跳转将其之前的输出状态存储了下来。由于/D的信号与输入信号在形状和相位上都相同,/D就成为了高速通道的输出而与输出多路器相连。
4.2 低频通道工作
慢输入信号用一高频载波进行脉宽调制,信号高则位置A的占空比为90:10,信号低则在此处的占空比为10:90。此后,信号处理与高速通道的不对称信号处理相同。唯一不同是,低速通道(/D)的高频成分用一R-C低通滤波器滤波,然后再进入输出多路器(E)。
5 应用实例
隔离工业接口时,需要区分过程控制和工厂自动化应用。这是因为两者之间的差别会影响到数字接口设计的隔离工作。过程控制一般涉及到检测某些设备、系统或过程的不同物理量(如压力“与”温度)。每一个物理量都用一特定类型的传感器或变换器,其输出信号需要特定的信号调理。因此,多种不同的传感器需要不同的参数设置,如内部增益、采样率、测量重复性、以及阻抗缓冲。支持宽范围设置的ADC提供有多个接口控制线,除标准串行接口线要求隔离之外,所有这些控制线也都要求隔离。
图4中,许多不同灵敏度(mV/K)的传感器测量不同的过程参数,如温度、压力和电流。要求有多种增益设置来使各传感器的ADC的输入动态范围最大化。如果期望一个或多个通道输入变化能比别的通道快,可能就要求采样率(速度)之间有切换。降低功率功能用来节省测量后的功耗,此功能可使控制器执行其它系统功能。这种高度多功能性要求许多控制通道用两个四路隔离器隔离。
与过程控制相比,工厂自动化常涉及监测多个器件和设备的单个物理量(如温度‘或’压力)。因此,这些系统采用多个同类型传感器,灵敏度和响应时间一致。
如果使用的传感器特性一致,通过连接相关控制引脚(Gain1、Gain2和Speed)将增益和采样率设置值固定到合适的电源轨(VDD或GND),接口可以简化为数据、时钟和地址线的隔离,系统配置将大大简化。
在上述例子中,接口隔离出现在ADC和系统控制器之间。这种方法非常适合每个模块只需要一个或最多两个ADC进行通道计数的输入模块。如果超过此种情况,而将每个数据转换器隔离就不经济了。因此,建议使用本地控制器。这时,每个ADC都通过一个GPIO总线接口与本地控制器通信。不过,实际隔离位于本地到系统的控制器接口。
6 结束语
可以肯定地说隔离放大器已经过时了,而数字隔离器正当时。了解系统要求后再决定采用哪种隔离器以及将隔离器置于系统哪个位置。