流体力学第7章 孔口 管嘴出流和有压管流

合集下载

流体力学专题课程第七章孔口、管嘴出流与有压管流

流体力学专题课程第七章孔口、管嘴出流与有压管流

ε=0.6f4 0.82
ε=1
(3) 与孔口的对比: 1> 公式形式相同,但系数不同: 2> H0 相同时,若A 也相同,则管嘴出流是孔口出流 量的1.32倍。
二、 收缩断面的真空
与自由出流一致
结论 1、流量公式:
QA 2gH0
2、自由式与淹没式对比: 1> 公式形式相同;
2> φ、μ基本相同,但 H0不同;
3> 自由出流与孔口的淹没深度有关, 淹没出流与上、下游水位差有关。
H v0
z
v0
v2
自由式:
H0 = H +
v02 2g
淹没式:
H0 =
z
+
v02 2g

v22 2g
pg AzA2 vg A 2 pg CzC2 vC g 22 vC g 2
pC pa
zAzCpA gpa2 vg A 2 12 vC g 2
H0——自由出流的作用水头
H0
1
vC2
2g
物理意义:促使流体克服阻力,流入大气的全部能量
特例 自由液面:PA=Pa,液面恒定:vA=0
H 0zAzCH
收缩断面流速
一、概念
1、孔口出流 ——容器壁上开孔,流体经容器壁上所开 小孔流出的水力现象,称孔口出流。
2、管嘴出流 ——在孔口上对接长度为3-4倍孔径的短管, 流体经容器壁上所接短管流出的水力 现象,称管嘴出流。
二、任务: 计算过流量Q。 三、依据:
(1)能量方程; (2)总流的连续性方程; (3)能量损失计算式。
vC
1
1
2gH 0 2gH 0
φ——孔口的流速系数,φ=0.97。

流体力学(孔口管嘴出流与有压管流)

流体力学(孔口管嘴出流与有压管流)

二、本章重点掌握 1、孔口、管嘴恒定出流的水力计算。 2、有压管路恒定流动的水力计算。
§7-1
孔口出流
孔口出流分类 薄壁小孔口恒定出流 薄壁大孔口恒定出流 孔口非恒定出流
在容器壁上开孔,流体经孔口流出的现象,称孔口流出。 应用:给排水工程中水池放水,泄水闸孔等。
一、孔口出流分类
1、按孔口大小与其水头高度的比值分
式中µ――全部完善收缩时孔口流量系数; A――孔口面积; A0――孔口所在壁面的全部面积。 上式的适用条件是,孔口处在壁面的中心位置,各方向上影响 不完善收缩的程度近于一致的情况。 想一想:为什么不完善收缩、不完全收缩的流量系数较完善收 缩、完全收缩的流量系数大?
3、淹没出流
当液体通过孔口流到充满液体的空间称为淹没出流。 由于惯性作用,水流经孔口流束形成收缩断面c-c,然后扩大。 列出上、下游自由液面1-1和2-2的伯诺里方程。式中水头损 失项包括孔口的局部损失和收缩断面c-c至2-2断面流束突然扩大 局部损失。
大孔口的流量计算式与小孔口的相同,但大孔口的收缩系数较大, 因而流量系数也较大,见下表(教材表6-1,P189)。
大孔口的流量系数
收缩情况 全部、不完善收缩 底部无收缩,侧向有收缩 底部无收缩,侧向较小收缩 底部无收缩,侧向极小收缩
μ
0.70 0.65~0.70 0.70~0.75 0.80~0.90
2、孔口出流各项系数
边界条件的影响: 对于薄壁小孔口,试验证明,不同形状孔口的流量系数差别不 大。 孔口在壁面上的位置对收缩系数却有直接影响。 全部收缩是 全部收缩是当孔口的全部边界都不与容器的底边、侧边或液面 重合时,孔口的四周流线都发生收缩的现象;如图中I、Ⅱ两孔。 不全部收缩是不符合全部收缩的条件; 不全部收缩 如图中Ⅲ、Ⅳ两孔。 在相同的作用水头下,不全部收缩的 收缩系数 ε 比全部收缩时大,其流量系数

流体力学孔口管嘴出流与管路水力计算

流体力学孔口管嘴出流与管路水力计算

流体力学孔口管嘴出流与管路水力计算流体力学是研究流体运动和力学性质的物理学科。

在水力学中,孔口管嘴出流和管路水力计算是流体力学的一个重要应用。

1.孔口管嘴出流孔口管嘴出流是指在一定压力差下,流体从孔口或管嘴中流出的现象。

它是一种自由射流,不受管道限制,流速和流量可以自由变化。

对于理想流体来说,根据贝努利定律和连续性方程,可以得出孔口管嘴出流速度的计算公式:v = √(2gh)其中,v为出流速度,g为重力加速度,h为液面距离孔口或管嘴的高度差。

可以看出,出流速度与液面高度差成正比,与重力加速度的平方根成正比。

对于真实流体来说,考虑到粘性和摩擦等因素,出流速度会稍有减小。

此时,可以使用液体流量系数进行修正。

液体流量系数是指实际流量与理论流量之比,一般使用实验数据来确定。

根据实验结果,可以通过乘以液体流量系数来修正出流速度的计算。

管路水力计算是指在给定管道材料、管径和流体性质的条件下,计算流体在管路中的流动状态、压力损失以及流量等参数。

管路水力计算是实际工程中常见的问题,它可以帮助我们了解管道的输送性能和节能问题。

管道中的流体运动受到多个因素的影响,包括管道长度、管道粗糙度、流速、流量等。

在水力学计算中,一般常用的公式有达西公式和罗斯诺-魏谢巴赫公式。

达西公式可以用来计算管道中流体的摩阻损失,它的计算公式为:ΔP=λ(L/D)(v^2/2g)其中,ΔP为管道中的压力损失,L为管道长度,D为管道直径,v为流速,g为重力加速度,λ为摩阻系数,也称为达西摩阻系数。

罗斯诺-魏谢巴赫公式则可以用来计算管路中流体的水力损失,它的计算公式为:ΔP=ρ(h_f+h_m)其中,ΔP为管路中的总压力损失,ρ为流体密度,h_f为摩阻压力损失,也称为莫阿P(Moody)摩阻,h_m为各种表面或局部的附加压力损失。

除了达西公式和罗斯诺-魏谢巴赫公式,还有一些经验公式和图表可以用来计算管路的压力损失和流量。

这些公式和图表都是根据实验数据和经验总结得出的,可以帮助工程师在实际应用中进行快速计算。

第七章 孔口、管嘴出流和有压管流

第七章 孔口、管嘴出流和有压管流
短管——局部损失、速度水头均不可忽略的管路。 L <1000 d
长管——局部损失、速度水头均可忽略(或按沿 程损失的一定比例计入)。
2019/10/14
中国矿业大学(北京)地下工程系
真空的抽吸作用,流量增加
2019/10/14
中国矿业大学(北京)地下工程系
26
(2)公式:
第二节 管嘴出流
Q A 2 gH 0
孔口: μ=0.62 φ=0.97
管v 嘴 :f μ2=gφH=0.82
2
0
ε=0f.640.82 ε=1
(3) 与孔口的对比:
1> 公式形式相同,但系数不同:
2019/10/14
中国矿业大学(北京)地下工程系
30
第二节 管嘴出流
例:水箱中用一带薄壁孔口的板隔开,孔口及两出流 管嘴直径均为d=100mm,为保证水位不变,流入水箱 左边的流量Q=80L/s,求两管嘴出流的流量q1、q2。
2019/10/14
中国矿业大学(北京)地下工程系
31
第二节 管嘴出流
特例 自由液面:PA=Pa,液面恒定:vA=0
H0 zA zC H
收缩断面流速
vC
1
1
2gH0 2gH0
φ——孔口的流速系数,φ=0.97。
2019/10/14
中国矿业大学(北京)地下工程系
10
第一节 孔口出流
孔口流量
Q vC AC vCA A 2gH0 A 2gH0
zA
pA
g

v
2 A
2g

zC

pC
g
vC2 2g

vC2 2g

孔口,管嘴出流和有压管路

孔口,管嘴出流和有压管路
相同点
流量计算公式的形式以及流量系数的数值均相同
不同点
两者的作用水头在计量时有所不同,自由出流时是指上游水 池液面至下游出口中心的高度,而淹没出流时则指得是上下 游水位差。
出口位置处的总水头线和测压管水头线的画法不同
短管水力计算的内容
四类问题 已知水头H、管径d,计算通过流量Q;
校核输水 能力
已知流量Q、管径d,计算作用水头H,以确定水箱、水塔水位 标高或水泵扬程H值;
经济流速——在选用时应使得给水的总成本(包括铺设水管的 建筑费、泵站建筑费、水塔建筑费及抽水经常运转费之总和) 最小的流速。
一般的中、小直径的管路大致为:
——当直径 d=100-400mm,经济流速 v =0.6~1.0m/s ——当直径 d400mm,经济流速 v =1.0~1.4m/s
3
2g
(H下3 2

H
32 上
)
b为宽 d为高
如果用孔口中心高度H作为孔口作用水头,将孔口断面 各点的压强水头视为相等,按小孔口计算的流量为
Q bd 2gH
大孔口的流量系数
孔口形状和水流收缩情况
全部不完善收缩 底部无收缩,侧向收缩较大 底部无收缩,侧向收缩较小 底部无收缩,侧向收缩极小
流量系数
圆柱形短管内形成收缩,然后又逐渐扩大
H 0 0v02 0 0 v 2 v 2 ,
2g
2g 2g
H0

1
vB2
2g
流速
vB
1
1
2gH0 2gH0
对锐缘进口的管嘴,ζ=0.5, 1 0.82
1 0.5
流量
Q vB A A 2gH0 n A 2gH0

流体力学(孔口管嘴出流与有压管流)

流体力学(孔口管嘴出流与有压管流)

缩断面后,液体质点受重力作用而下落。
计算孔口出流流量(出流规律) 列出断面1-1和收缩断面c-c的伯诺里方程。
2 p0 0v0 pc c vc2 H hw g 2g g 2g
(1)
式中 p0=pc=pa
孔口出流在一个极短的流程上完成的,可认为流体的阻力损失
完全是由局部阻力所产生,即
数也相同。 但自由出流的水头H是水面至孔口形心的深度,而淹没出流的
水头H是上下游水面高差。因此淹没出流孔口断面各点的水头相同, 所以淹没出流没有“大”、“小”孔口之分。
问题1:薄壁小孔淹没出流时,其流量与 (C) 有关。
A、上游行进水头; B、下游水头;
C、孔口上、下游水面差; D、孔口壁厚。 问题2:请写出下图中两个孔口Q1和Q2的流量关系式(A1= A2)。(填>、< 或=)
将式(2)和式(3)代入式(1)得
2 2 pv pa pc c 1 v2 2 2 1 g g 2g
把式 v2 n 2gH0
代入上式得
2 pv c 1 2 2 2 1 H 0 g
l 太短,液流经管嘴收缩后,还来不及扩大到整个管断面,真
空区不能形成;或者虽充满管嘴,但因真空区距管嘴出口断面太近,
极易引起真空的破坏。
l 太长,将增加沿程阻力,使管嘴的流量系数μ相应减小,又达 不到增加出流的目的。 所以,圆柱形管嘴的正常工作条件是: ①作用水头H0≤9m ②管嘴长度l=(3~4)d 判断:增加管嘴的作用水头,能提高真空度,所以对于管嘴的 出流能力,作用水头越大越好。
2.小孔口自由出流与淹没出流的流量计算公式有何不同?

孔口、管嘴出流和有压管流

孔口、管嘴出流和有压管流

量系数μ和阻力系数ζ。
1
解①
d
AC A
dC d
2
H
C
82 102
0.64
z 1
C
②求μ
因为 p1 pC pa (大气压),及 v02 / 2g 0
所以 H0 H 则得 Q
A 2gH0
1 d
H
10 103 (0.01)2
/ 32.8 2 9.8 2
4
z
C C
0.62
1
③ / 0.62 / 0.64 0.97
Q A
2 gH o
0.62
4
104
2 9.8 5
4.82 103 m3 / s
②δ=40mm时
v n 2gHo 0.82 29.85 8.15 m/s
Q n A
2 gH o
0.82
4
104
2 9.8 5
0.638103 m3 / s
Cl 2

se
A AC
2 1
1
12
pa pC
g
CvC2 v2
2g
se
v2 2g
得到
pv
g
pa pC
g
C 2
1
12
v2 2g
但 v n 2gH0
α0v02
1
2g
故得
v2 2g
2 n
H
0
pa
Ho
H
O
pv
g
C2
1
2
1
n2HBiblioteka 0vo1C2
O
v
d
Cl 2
将各项系数
pv
其他形式的管嘴,如扩散管嘴、收缩管嘴和流线形管嘴 等,不再一一讨论。

有压管流与孔口管嘴出流课件

有压管流与孔口管嘴出流课件

压力与能量损失
压力是流体流动的动力来源,能量损失则是 流体在流动过程中因克服阻力而消耗的能量 。
压力是流体流动的重要参数,它提供了使流 体克服阻力而流动的动力。在有压管流中, 压力的损失通常是由于流体在流动过程中因 摩擦阻力而消耗的能量。这种能量损失可以 通过计算流体在管道中流动时的压差来衡量 。了解压力和能量损失对于优化管道设计和
提高流体输送效率具有重要意义。
03
孔口管嘴出流原理
孔口出流
孔口出流是一种液体通过孔口自由出流的流动方式。
孔口出流是流体在压力作用下,通过管道中的孔口流出的一种流动方式。孔口可以是圆形、方形或其 他形状,其尺寸和形状对出流流量和流动特性有重要影响。在孔口出流中,流体在孔口处受到压力的 作用,克服流动阻力,以一定的速度流出。
流速与流量
流速是指流体在单位时间内流过的距 离,流量则是指单位时间内流过某一 横截面的流体体积。
VS
流速是描述流体流动快慢的物理量, 通常以单位时间内流体流过的距离表 示。流量则是描述流体流动规模的物 理量,表示单位时间内流过某一横截 面的流体体积。在有压管流中,流速 和流量受到管道形状、尺寸、流体性 质以及压力等因素的影响。
01
水利工程
有压管流与孔口管嘴出流在水利工程中有着广泛的应用,如水力发电、
灌溉系统、排水系统等。通过合理设计,可以确保水流在管道中顺畅流
动,满足工程需求。
02
建筑给排水
在建筑给排水系统中,有压管流与孔口管嘴出流技术的应用可以有效控
制水流,保证供水稳定和排水通畅。合理设计管道系统,能够提高建筑
的使用舒适度和安全性。
理论分析。
实验研究
通过实验验证有压管流与孔口 管嘴出流的理论分析结果,并

孔口管嘴出流与有压管流课件

孔口管嘴出流与有压管流课件

有压管
模拟有压管流,通常由透明塑料 或玻璃制成,以便观察水流状态 。
压力表
用于测量管道内的压力。
实验步骤与操作
4. 使用流量计和压力表测量流量 和压力,记录数据。
2. 将水泵连接到供水管道,确保 水源充足。
05
04
03
02
01
5. 调整水泵的流量和压力,重复 实验,以获取更多数据。
3. 开启水泵,观察孔口管嘴出流 和有压管流的流动状态,记录实 验现象。
管嘴出流
管嘴出流定义
液体通过管口流出,出口侧有自由液面。
管嘴出流特点
管内压力逐渐降低,出口侧有自由液面,流动过程中有能量损失。
管嘴出流公式
流量与管径、液位高度、重力加速度有关,可用公式Q=π*D^2*v/4计算,其中D为管径,v为液 位高度。
02 有压管流
有压管流的定义
总结词
有压管流是指流体在管道中受到压力作用,具有确定的流动域,有压管流被用于将水源输送到用户家中,提供生活用水和消防用水。在供 热领域,有压管流被用于将热能传输到用户家中,提供暖气和热水等服务。在化工和石 油领域,有压管流被用于输送各种流体,如酸、碱、油等,实现原料的传输和产品的生
产。此外,有压管流还被应用于城市排水系统、农田灌溉等领域。
03
详细描述
有压管流通常发生在具有一定压力差的管道中,流体在压力作用下沿着管道方向 流动。由于管道的约束作用,流体在流动过程中会受到摩擦阻力,导致流速逐渐 减小。同时,随着管道直径的增加,流速也会相应减小。
有压管流的特性
总结词
有压管流的特性包括压力传递、连续流动、不可压缩性和粘性。这些特性使得有压管流在工业和日常生活中得到 广泛应用。
THANKS

第7章 孔口、管嘴出流和有压管路

第7章 孔口、管嘴出流和有压管路

第7章孔口、管嘴出流和有压管路一、教学目的与任务1本章的目的(1).使学生了解有压管流的特点;(2).理解自由出流、淹没出流的概念;(3).使学生掌握孔口和管嘴出流的水力计算。

二、重点、难点1重点孔口、管嘴的计算问题2难点缝隙流动三、教学方法本章内容是学生通过流体力学基本方程的学习,将其应用到典型的实际流动当中。

进一步增强学生分析、解决实际问题的能力,本章讲授时,要注重理论联本章内容与闸门、阀门、水龙头、喷嘴、汽化器、车辆减震器等等有关,这些构件在机械行业内十分常见,我们日常生活中也很常见。

研究孔口出流和缝隙流动特性对上述构件的性能有密切关系。

§7-1孔口出流一、薄壁孔口:L/d 2即壁面厚度与孔口直径之比小于等于2的孔口。

1.薄壁小孔口:H 10d即作用水头大于十倍的孔口直径。

2.薄壁大孔口:作用水头相对较小,孔口断面上流动不均匀的流动,称薄壁大孔口。

二、管嘴(厚壁孔口)1.圆柱管嘴圆柱管嘴十分常见,被广泛使用用途:增大流量原理:在管嘴内部形成一收缩断面(内收缩),具有一定真空,可提高流速。

管嘴长度:L=(3-4)d2.其他形式管嘴(1)收缩管嘴(2)扩张管嘴(3)流线型管嘴三、自由出流和淹没出流1.自由出流:流体直接排入大气2.淹没出流:流体出流处的压力不为大气压力四、完善收缩和不完善收缩完善收缩:薄壁孔口自由出流的流束周围均匀收缩。

不完善收缩:部分收缩或不收缩五、定常出流和非定常出流定常出流:出流系统的作用水头可以近似不变的出流,否则为非定常出流。

薄壁小孔口定常自由出流这里作用水头为H,设出流为完善收缩,根据研究知收缩断面在0.5d 处, 收缩系数为:以孔口和收缩断面中心线为基准,列1-1到 C-C 断面的方程:取 薄壁小孔口可忽略沿程损失,局部损失为: 与上式联立得令则出流流量为令 为流速系数 则流量为:若P0=0,即容器与大气相通,则:• 薄壁小孔出流参数由 所决定,由实验给出, 由上述定义决定。

孔口、管嘴出流和有压管流

孔口、管嘴出流和有压管流

H0
2v2 2
2g
hw
1 v l d
由此得到管道的流量为
2 gH o
A Q l d
2 gH o
由该式 看出,管道的流量取决于H0、A和Hw。A由管径
的大小决定,Hw按第四章水头损失计算方法求得。


1 1.0 代入式 v l d
hw h f h j
1
pa
该式说明短管水流在 自由出流的情况下, 其作用水头H0 一部分 消耗于水流的沿程水 1 头损失和局部水头损 失,另一部分转化为 管道2-2断面的流速水头。
v1
H HP v 2 H
v2
闸门
2
对于等直径管 , 管中流速为常数v, 所以v2=v,代入上式 ,取α2=α,得
1)短管自由出流
液体经短管流动流入大气后,流束四周受到大气压的 作用,称这种流动为短管自由出流,图示为一短管自由出流。
液流从水箱 进入管径为d, 装有一个阀门并 带有两个弯头的 管路,管路总长 度为 l。
1 pa
v1
1
H HP v 2 H
v2
闸门
2
取出口中心高程的水平面为基准面 0-0,断面1-1 取在 管道入口上游水流满足渐变流条件处,2-2断面则取在管流 出口处,对断面1-1至断面2-2 的水流建立能量方程:
可见, 同一短管在自由出流和淹没出流的情况下,
其流量计算公式的形式及μc的数值均相同,但作用水头
H0 的计量基准不同,淹没出流时作用水头是以下游水面 为基准 ,自由出流时是以通过管道出口断面中心点的水
平面为基准。
3)、短管的水力计算问题
短管的水力计算包括以下几类问题: ①已知作用水头、断面尺寸和局部阻碍的组成,计算 管道输水能力,求流量; ② 已知管线的布置和必需输送的流量(设计 流量), 求所需水头(例如:设计水箱、 水塔的水位标高H、水泵 的扬程H等); ③ 已知管线布置,设计流量及作用水头,求管径d; ④ 分析计算沿管道各过水断面的压强。

流体力学 第七章 孔口、管嘴出流和有压管道 (2)

流体力学 第七章  孔口、管嘴出流和有压管道  (2)

解:倒虹吸管一般作短管计算。本题管道出口淹没在水下;
而且上下游渠道中流速相同,流速水头消去。 因 所以 而
Q c A 2 gz c
d 4Q
d 2
4
2 gz
c 2 gz
c
1 l d
因为沿程阻力系数λ或谢才系数C都是d 的复杂函数,
因此需用试算法。
先假设d=0.8m,计算沿程阻力系数:
v 1 l 1 d
1 1 l d
2 gH 0
通过管道流量 Q
c
1
A 2 gH 0
c A 2 gH0
式中
l 1 d
称为管道系统的流量系数。
当忽略行近流速v时,流量计算公式变为 Q c A 2gH
2、淹没出流
列断面1-1和2-2能量方程
z 3 1 105 85 20m
hw14 为吸水管及压力管水头损失之和。已求得吸水管
水头损失为 0.22m,当压力管按长管计算时,整个管道的 水头损失为
hw14
Q 0.22 2 l K
2
压力管的流量模数
K A2C2 3.14 0.52 1 0.5 2 3 R2 ( ) 4 0.013 4
g
lB v zs (1 e b ) hv d 2g
即 而
lB v2 z s hv (a e b ) d 2g
2
lB v2 hv (1 e b ) d 2g
20 7 (1 0.024 0.5 0.365) 1 1.9852 6.24m 2 3.14 1 2 2 9.8( ) 4
2

孔口管嘴恒定出流和有压管道恒定流

孔口管嘴恒定出流和有压管道恒定流
3m,λ=0.03 ,局部水头损失系数:进口ζ1
=0.5。第一种转弯ζ2 =0.71,第二个转弯ζ3 =0.65,ζ4 =1.0,求涵管流量Q=3m3/s时旳设计 管径d。
解: 有压涵管出流相当于短管淹没出流问题。
Q A 2gH
Q
1
l
d
1
2
3
4
代入已知数据,化简得:
2gH 1 d 2
圆锥形扩张管嘴,能够在收缩断面处形成真空,具有较 大旳过流能力且出口流速较小。常用于各类引射器和农 业浇灌用旳人工降雨喷嘴等设备。
特殊旳专用管嘴,用于满足不同旳工程要求。如冷却设 备用螺旋形管嘴,在离心作用下使水流在空气中扩散, 以加速水旳冷却,喷泉旳喷嘴,做成圆形、矩形、十字 形、内空形,形成不同形状旳射流以供欣赏。
h
h
v2 C
w12
j
2g

H
H
v2 11
0
2g

v 1 2gH 2gH
C
0
0
c
作用水头 H0 流速系数 1 1
1 c
设孔口断面面积为A,收缩断面面积为AC ,
A C
A
为收缩系数,则
Q A V A 2gH A 2gH
CC
0
为孔口流量系数
薄壁孔口旳收缩系数
0.60 0.64
第五章
孔口、管嘴恒定出流和有压管道恒定流
主要内容: 孔口、管嘴出流旳水力计算 有压管道恒定流旳水力计算
(涉及,短管、长管和管网) 要点:孔口、管嘴、短管、长管旳水力计算
5.1 孔口、管嘴出流和有压管流旳基本概念
孔口出流 孔口淹没出流、恒定出流 薄壁孔口 管嘴出流 管嘴淹没出流、恒定出流 有压管流 短管、长管

孔口管嘴出流、有压管路基本概念

孔口管嘴出流、有压管路基本概念

α V
2 01 01
2g
= H2 + 0 +
α 02V02
2g

2
+ hw
l V2 hw = (∑ λ + ∑ ζ ) d 2g
1 V= l λ +∑ ζ ∑ d 2 gH
Q = AV = c A 2 gH
Fluid Mechanics 流 体 力 学
例1:用虹吸管自钻井输水至集水池.如图所示,虹吸管长 l=lAB+lBC=30+40=70m,d=200mm.钻井至集水池间的恒定水位高差 H=1.60m.又已知λ=0.03,管路进口120弯头90°弯头及出口处的 局部阻力系数分别为ζ1=0.5,ζ2=0.2,ζ3=0.5,ζ4=1.0. 试求:(1)流经虹吸管的流量; (2)如虹吸管顶部B点的安装高度hB=4.5m ,校核其真空度.
Fluid Mechanics 流 体 力 学
第三节 管嘴出流
一,圆柱形外管嘴出流 当圆孔壁厚δ等于3 4d时 或者在孔口处外接一段长l= 当圆孔壁厚δ等于3~4d时,或者在孔口处外接一段长l= 3~ 的圆管时,此时的出流称为圆柱形外管嘴出流, 4d 的圆管时,此时的出流称为圆柱形外管嘴出流,外接短管称 为管嘴. 为管嘴. 通过收缩断面形心引基准线0 列出A 通过收缩断面形心引基准线0-0,列出A-A及 a v 两断面的能量方程. B-B两断面的能量方程. p 2g
vc2 he = hm = ξ1 , 2g
H0
H C
0
d
0 C
2 2 vc pA pC α A vA 移项整理得: 移项整理得:αc + ξ1 ) = (Z A ZC ) + ( + γ 2g 2g
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

孔 A1 2 gh1 嘴 A2 2 g (h2 h3 )
4 4 0.000992 h1 0.000738 h2 h3 0.62

0.042 2 gh1 0.82

0.032 2 g (h2 h3 )
0.000992 h1 0.000738 h2 h3
主要内容:
薄壁孔口的恒定出流 液体经管嘴的恒定出流
孔口、管嘴的非恒定出流
短管的水力计算 长管的水力计算 管网的水力计算
7.1 薄壁孔口的恒定出流
在装有液体的容器壁上开一孔口,液流经过孔口流出的水力现 象称为孔口出流。 (1)孔口出流分类: d/H<0.1 小孔口出流 侧壁孔 按孔口断面上各点所受 d/H>0.1 大孔口出流 的作用水头是否相同分 底孔,小孔口出流 按孔口壁面厚度和形 状对出流的影响分 按液体出流时与周 围介质关系分 按作用的总水头是 否改变分 薄壁孔口出流 厚壁孔口出流 孔口自由出流 孔口淹没出流 孔口恒定出流
工程实际中,大孔口出流的计算可以近似采用小孔口的计算公 式。 Q A 2 gH 0
式中H0取为大孔口形心的水头,流量系数可以查表得到。
7.2 液体经管嘴的恒定出流
(1)定义、分类及流动特点:
管嘴实际上是以某种方式连接于薄壁孔口上的具有一定长度 的短管。 液体经由容器外壁上安装的长度约(3~4)倍管径的短管出流, 或容器壁的厚度为(3~4)孔径的孔口出流,称为管嘴出流。
(5)大孔口出流 大孔口出流断面上的流速分布不 均匀,流速系数φ较小,且大多 数属于不完善的非全部收缩,流 量系数较大。 大孔口可看成由很多小孔口组成。
利用小孔口出流计算公式,宽为dh的小孔口流量为 dQ μbdh 2gh
积分,得大孔口流量为
Q dQ b 2 g
H2 H1 2 2 a 3/2 hdh b 2 g H 2 H13/2 A 2 gH 1 2 3 96 H
例:孔板流量计。 为测量某有压管道流的流量,可 在管道中安装一开有圆形小孔的 孔板,测出孔板上游的测压管水 头为H1,孔板下游的测压管水头 为H2,小孔直径为d,且管道直径 D远大于d,求管道流量。 解:孔板流量计的工作原理即为薄壁小孔口淹没出流,利用其 流量计算公式,直接有 d2 Q A 2 gH 2 g ( H1 H 2 ) 4
1 C
1v12 2g
局部水头损失为
2 vC hj 2g
(2)薄壁小孔口恒定自由出流 2 2 v v 则 H 1 1 (C ) C 2g 2g 令 则有 可得
H0 H
1v12
2g
称为作用水头
1 φ称为流速系数。若取动能修正系数为1.0,则 1.0
若再忽略局部水头损失则得c-c断面的理论流速为
2 vC H 0 ( C ) 2g 1 vC 2 gH 0 2 gH 0 C
v 'C 2 gH 0
显然,φ表示实际流速与理想流速的比值。实验测得薄壁小孔的 流速系数 φ =0.97-0.98,则局部阻力系数约为0.06。
(4)孔口收缩系数和流量系数 收缩系数的数值与孔口的位臵有关。 若孔口四周的流线全部发生弯曲,水从 各个方向流向孔口,则称全部收缩孔口 若孔口周围的流线只有部分发生弯曲, 则称非全部收缩孔口 全部收缩孔口又有完善收缩和非完善收 缩之分。 当孔口距侧壁的距离大于同方向孔口尺寸的3倍时,孔口出流 流线弯曲程度最大,收缩得充分,称为完善收缩。否则为非完 善收缩。 由实验结果知:对于全部完善收缩孔口,其收缩系数和流量系 数为 0.62 0.64
管嘴出流也可以分为恒定和非恒定出流,自由和淹没出流。 管嘴出流的流动特点是:水流进入管嘴之前的流动情况和孔口 出流相同,进入管嘴后,先形成收缩断面,在收缩断面附近水 流与管壁分离,形成漩涡区,之后水流逐渐扩大,直至完全充 满整个管面。管嘴出口断面上为满管流。
因为管长很小,沿程损失可以忽略,因此管嘴出流的水头损失 主要来源于孔口的局部水头损失和水流断面扩大所引起的局部 水头损失,即 hw hj hj孔口 hj扩大
2 1v12 2v2
H0,淹没出流的作用水头 2 vC H 0 ( se ) 2g 根据第六章局部水头损失系数可知:ζse=1.0,则有 1 vC 2 gH 0 2 gH 0 1 可见,薄壁孔口淹没出流和自由出流的流速系数表达式的意义 微略不同,但其数值近似相等。 若忽略1-1和2-2断面的流速水头差,则 H0 H1 H2 H 可得
(2)圆柱形外管嘴的恒定出流 设水箱液面为自由液面,管嘴为自 由出流,只考虑局部水头损失。
1v12
2g
以管轴线所在的水平面为基准,对1 -1断面和2-2断面,列伯努利方程, 2 2 有 1v12 2v2 v2 H 0 00 n 2g 2g 2g 式中,H为水箱液面距管轴的高度,ζ n 称为管嘴出流的阻力系 数, 根据实验资料, ζ n 的值约为0.5 1v12 H0 H 令 2g 1 2 gH 0 n 2 gH 0 可得管嘴出流的断面平均流速为 v2 2 n
(2)薄壁小孔口恒定自由出流 设孔口断面面积为A,收缩断面面积为AC,由实验可知AC和A的 比值(收敛(缩)系数) AC A 则通过孔口的水流流量为
Q AC vC A 2 gH 0 A 2 gH 0
上式中μ=εφ,称为孔口流量系数。它综合反应了水流收缩和水 头损失等因素对孔口出流能力的影响。 若水箱液面不变或者变化很慢,则v1≈0或者v1远小于vC,则可 将v1忽略,则有
H0 H
Q A 2gH
(3)薄壁小孔口恒定淹没出流 对薄壁小孔口淹没出流,水流同样 在距孔口约d/2处形成收缩断面。 以C-C断面的形心所在的水平面为基 准,对1-1断面和2-2断面,列伯努 利方程,有
2 2 2 vC vC p1 1v12 p2 2v2 H1 H2 se g 2g g 2g 2g 2g
式中,ζ为流经孔口的局部阻力系数,ζse为收缩断面后水流突 然扩张的局部水头损失。1-1断面和2-2断面的计算点都取 在自由液面上,则有
2 vC H1 H 2 ( se ) 2g 2g 2g 2 1v12 2v2
2 vC H1 H 2 ( se ) 2g 2g 2g
Q n A 2 gH 0 0.82 0.25 3.14 0.012 2 9.8 5 6.36 104 m3 /s
例7.3:水箱用隔板分成A、B两 室如图所示,隔板上开一孔口, 其直径d1=4cm,在B室底部装有 圆柱形外管嘴,其直径d2=3cm。 已知H=3m,h3=0.5m,水恒定 出流。试求:(1)h1,h2;(2)流出 水箱的流量。 解:(1)保持恒定出流的条件是h1,h2不变,即Q1=Q2=Q 由题意知,Q1为孔口淹没出流流量,Q2为圆柱外管嘴出流流量, 即 Q1 孔 A1 2 gh1 ; Q2 嘴 A2 2 g (h2 h3 ) ;
(1) 作用水头H 0 9m (2)管嘴长度l (3 4)d
例7.2:一大水池的侧壁开有一直径d=10mm的小圆孔,水池水面 比孔中线高H=5m,求下列两种情况下的出口流速和流量。①壁 厚为3mm,②壁厚40mm 解: ①壁厚为3mm时,显然为薄壁小孔(l/d=0.3 远小于 3-4) 流速为
流量 Q v2 A2 n A2 2 gH 0 n A2 2 gH 0
n和n 分别为管嘴的流速系数和流量系数。
1 1 n 0.82 n 2 n 1.0 0.5
对于同样的作用水头,圆柱形外管嘴的流量是孔口的1.32倍。 Q管嘴 n 0.82 1.32 Q孔口 0.62 管嘴出流的阻力比孔口出流大,但是流量反而比孔口出流大, 这主要是因为在管嘴收缩段出现真空所致。 对收缩断面c-c和出口断面2-2列伯努利方程,有
pC v v v 0 00 se g 2g 2g 2g 2 2 p ( ) v v se 2 整理,得 C 2 C C 0.75H 0 g 2g 2g 即在c-c断面处真空值可达作用水头的0.75倍。
2 C C 2 2 2 2 2
1v12 2g
vC 2gH
同样设收敛系数
AC A 定义孔口流量系数为μ=εφ ,则淹没小孔口出流的流量为
Q ACvC A 2gH A 2gH
该式与小孔口自由出流流量计算公式形式上完全一致,各项系数 值也相同,但作用水头不同。 注意: ① 孔口淹没出流的流速及流量均与孔口在水面下的深度无关,也 无“大”、“小”孔口之区别。 ② 孔口淹没出流的流量公式与孔口自由出流的流量公式的形式完 全一致,其流量系数μ值也相同。所不同的是:孔口自由出流的 作用水头H为水箱液面到收缩断面形心的距离;而孔口淹没出流 的作用水头H为上、下游水池的水位差。
0.60 0.62
例7.1
10 103 3.049m3 /s 流量 Q 32.8 由薄壁孔口出流的计算公式,可得流量系数
AC dC 8 0.64 解:收缩系数为 A d 10
2
2
Q 3.049 105 =0.62 2 A 2 gH 0.25 3.14 0.01 2 9.8 2 0.62 0.97 流速系数 / 0.64 1 1 1 又因为 可得 2 1 1 0.063 2 1 0.97
流量
Q vC AC A 2 g 1.75H 0
(3)保证管嘴正常工作的条件 从前面的分析可知,收缩断面的真空度和作用水头成正比。作 用水头越大,真空度越大,流量越大。 但是,流量并不能无限制地增大。当真空度大于7m时,由于 收缩断面处真空度过大,气体被从出口处吸入管嘴,真空环境 被破坏,出口流动不再为满管流动,此时管嘴出流近似为孔口 出流,流量反而减小。 因此,要保证管嘴正常工作,要求收缩断面真空度小于7m,则 7 H0 9m 0.75 其次,对管嘴长度也有限制。若长度较大(l>4d),沿程阻力 增大而不能忽略,应当作有压管流处理。相反,若管长较小 ( l<3d ),收缩断面不能形成真空,近似为孔口出流。 因此,管嘴出流正 常工作的条件为:
相关文档
最新文档